JP3945740B2 - Nickel powder - Google Patents

Nickel powder Download PDF

Info

Publication number
JP3945740B2
JP3945740B2 JP2000341649A JP2000341649A JP3945740B2 JP 3945740 B2 JP3945740 B2 JP 3945740B2 JP 2000341649 A JP2000341649 A JP 2000341649A JP 2000341649 A JP2000341649 A JP 2000341649A JP 3945740 B2 JP3945740 B2 JP 3945740B2
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
powder
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000341649A
Other languages
Japanese (ja)
Other versions
JP2002146401A5 (en
JP2002146401A (en
Inventor
淳一 柏木
靖英 山口
尚男 林
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000341649A priority Critical patent/JP3945740B2/en
Publication of JP2002146401A publication Critical patent/JP2002146401A/en
Publication of JP2002146401A5 publication Critical patent/JP2002146401A5/ja
Application granted granted Critical
Publication of JP3945740B2 publication Critical patent/JP3945740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はニッケル粉に関し、より詳しくは、導電ペースト用途に特に適しており、ニッケル粉の粒度分布がシャープであることに起因して積層セラミックコンデンサの薄くて突起がない内部電極を形成することができ且つニッケル粒子内の平均結晶子径が大きいことに起因して熱収縮が抑制された内部電極を形成することができるニッケル粉に関する。
【0003】
【従来の技術】
積層セラミックコンデンサは交互に積層された複数のセラミック誘電体層と内部電極層とが一体化したものであり、このような積層セラミックコンデンサの内部電極を形成させる方法としては、内部電極材料である金属微粉末をペースト化して導電ペーストを調製し、該導電ペーストを用いてセラミック誘電体グリーンシート上に印刷し、このセラミック誘電体グリーンシートと導体ペースト層とを交互に層状に複数層積層し、加熱圧着して一体化させた後、還元性雰囲気中、高温で焼成してセラミック誘電体層と内部電極層とを一体化させることが一般的である。
【0004】
この内部電極材料として、従来は白金、パラジウム、銀−パラジウム等の貴金属が使用されていたが、コスト低減のために、近時にはこれらの貴金属の代わりにニッケル等の卑金属を用いる技術が開発され、進歩してきている。また、一般的には、積層セラミックコンデンサの内部電極を形成するのに用いる導電ペーストは、導電性を付与するニッケル粉等の金属粉の他に、必要に応じてガラス物質等の無機材料やその他の添加剤を有機ビヒクル中に添加し、均一に混合、分散させて製造される。
【0005】
近年、導電ペーストを用いて製造される電子部品、例えば積層セラミックコンデンサ等はますます小型化しており、それで、必然的に、セラミック誘電体層及び内部電極層の薄膜化、多層化が進み、現在積層部品、特に積層セラミックコンデンサでは誘電体層2μm以下、内部電極膜厚1.5μm以下、積層数100層以上の部品が作られている。
【0006】
薄い内部電極層を得るためにはそれに見合った平均粒子径の小さい金属粉、例えばニッケル粉を用いればよいと考えられるが、金属粉の平均粒子径が所定の範囲内にあっても粗粒子が混入していると、そのような金属粉を含む導電ペーストを用いて内部電極層を形成すると、その粗粒子が内部電極層上に突起を形成し、その突起が薄いセラミック誘電体層を突き破って内部電極間の短絡を引き起こすことがある。このような内部電極間の短絡を防止するためには、薄い内部電極層を得るのに見合った平均粒子径のニッケル粉よりもかなり小さい平均粒子径のニッケル粉を用いる必要がある。
【0008】
ニッケル粉は湿式法、乾式法の何れの方法によっても製造可能である。液相還元析出法に代表される湿式法の場合には、粒度分布がシャープなニッケル粉が容易に得られる。そのような製法で得られたニッケル粉を導電ペースト化し、得られた導電ペーストを用いて積層セラミックコンデンサの内部電極を形成させた場合には、粗粉の混入が少ないので内部電極層上に突起が形成されることがほとんどなく、従って、内部電極間の短絡が発生することはほとんどない。しかし、この湿式法により得られるニッケル粉の粒子形状は多面体形状を呈する場合が多いので、粒子間の凝集や粉末の流動性の面で劣っている。
【0009】
一方、気相還元法に代表される乾式法の場合には、粒子間の凝集や粉末の流動性の面では良好なニッケル粉が得易いものの、例えば特開平11−80817号公報に記載されているように、粒子形状を制御するために硫黄等の添加を必要とする。また、そのような製法で得られたニッケル粉を導電ペースト化し、得られた導電ペーストを用いて積層セラミックコンデンサの内部電極を形成させた場合には、内部電極にボイド(膨れ)等の発生が生じる他に、粒度分布がブロードであることに起因して前記したような粗粉による悪影響や分散性への影響も免れない。
【0010】
以上に述べたように、従来技術においては粒度分布がよりシャープで、凝集がより少なく且つ分散性に優れたニッケル粉を得ることは困難であった。
また、積層セラミックコンデンサの内部電極材料としてニッケル粉を用いる場合には、セラミック基材と金属ニッケルとの熱収縮特性の相違に起因して、焼成の際にデラミネーションやクラック等の欠陥が発生し易いので、このニッケル粉の熱収縮も抑制する必要がある。
【0011】
以上に述べた従来のニッケル粉の問題点を改善する技術、即ち粒度分布がよりシャープで、凝集がより少なくて分散性に優れ、且つ熱収縮特性にも優れたニッケル粉を得る技術については、例えば、特開平8−246001号公報に記載の技術を挙げることができる。該公報には、平均粒子径が0.1〜1.0μmの範囲で個数基準の粒度分布における50%粒子径(D50)と積算ふるい下84.3%粒子径(D84.3)との比(D84.3/D50)で求められた幾何標準偏差が2.0以下で、平均結晶子径が平均粒子径の0.2倍以上であるニッケル超微粉が開示されている。
【0012】
このニッケル超微粉は、凝集したニッケル粉が少ないという点で粒度分布に優れ、平均結晶子径が比較的大きく、金属ニッケルの過焼結が抑制されることから熱収縮特性に優れているものの、ニッケル粉の一次粒子に関する粒度分布、特に微粉の粒度については何ら改善がなされていないので、上記の問題点を充分に解決し得る技術とは言い難い。
【0013】
また、熱収縮特性を改善する技術として、塩化ニッケル粉からなる原料粉末を、特定のアルカリ金属又は特定のアルカリ土類金属からなる還元剤粉体と、これらのアルカリ金属塩化物又は特定のアルカリ土類金属塩化物の粉粒体とに混合して固相還元する微細ニッケル粉の製造方法(特開平11−236631号公報)等も開示されている。この製造方法においては、結晶性や分散性に優れたニッケル粉が得られると記載されている。
【0014】
しかしながら、上記の製造方法により得られるニッケル粉では、熱収縮特性はある程度改善されるものの、出発原料がニッケル塩であることにより還元速度の制御が困難であるのみならず、粒度分布がよりシャープで、凝集がより少なくて分散性に優れたニッケル粉とは言い難かった。
【0015】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題点に鑑み、積層セラミックコンデンサの薄くて突起がなく、熱収縮が抑制された内部電極の形成に用いる導電ペースト用途に特に適しているニッケル粉を提供することを課題としている。
【0016】
【課題を解決するための手段】
本発明者等は上記の課題を達成するために鋭意検討した結果、粒度分布がシャープであり且つニッケル粒子内の平均結晶子径が大きいニッケル粉は積層セラミックコンデンサの薄くて突起がなく、熱収縮が抑制され内部電極の形成に用いる導電ペースト用途に特に適していることを見いだし、発明を完成した。
【0017】
即ち、本発明のニッケル粉は、SEM観察による平均粒子径の1.2倍以上の粒子径を持つ粒子個数が全粒子個数の10%以下であり、該平均粒子径の0.8倍以下の粒子径を持つ粒子個数が全粒子個数の10%以下であり、且つニッケル粒子内の平均結晶子径が400Å以上であることを特徴とする。
【0020】
【発明の実施の形態】
本発明のニッケル粉においては、1万倍程度のSEM観察による平均粒子径の1.2倍以上の粒子径を持つ粒子個数が全粒子個数の10%以下、好ましくは7%以下、より好ましくは5%以下であり、該平均粒子径の0.8倍以下の粒子径を持つ粒子個数が全粒子個数の10%以下、好ましくは7%以下、より好ましくは5%以下であることが重要である。
【0021】
即ち、本発明のニッケル粉においては、粗粒の割合が比較的小さく、ニッケル粉中の各ニッケル粒子の粒子径が相当に均一であるので、そのようなニッケル粉を含む導電ペーストを用いて得られる積層部品例えば積層セラミックコンデンサにおいては、ニッケル粉の平均粒子径に比較してかなり薄い内部電極層を形成することができ、しかも内部電極層の表面に突起が形成されることはなく、従って内部電極間の短絡が起こることがない。更に、微細粒の割合も比較的小さいので、そのようなニッケル粉を含む導電ペーストの粘度が上昇するという問題が発生せず、また熱焼結が均一に起こるので電極面積が減少したり、電極が消失したりすることもない。
【0022】
また、本発明のニッケル粉においては、上記の条件に加えて、ニッケル粒子内の平均結晶子径が400Å以上であること、好ましくは450Å以上であることが重要である。即ち、本発明のニッケル粉は平均結晶子径が大きいことにより、結晶性が改善されており、従って積層セラミックコンデンサを製造する際の焼成時において、過焼結による収縮を抑制することができる。
【0028】
導電ペーストに用いるニッケル粉中のアルカリ金属の含有量が高い場合には、例えば、導電ペースト中のニッケル粉を加熱溶融させて積層セラミックコンデンサの内部電極を形成する際に、アルカリ金属が金属ニッケル表面に析出し、またそのアルカリ金属不純物が電解質成分であるので、近隣の電極間で導通が生じ、遂には絶縁破壊を生じせしめることがある。
【0029】
従って、本発明のニッケル粉においては、ニッケル粉中のアルカリ金属の総量、特にリチウム、ナトリウム及びカリウムの1種又は2種以上の合計量はなるべく低い方が好ましく、総量が500ppm以下であることが好ましく、400ppm以下であることがより好ましく、300ppm以下であることが一層好ましい。
【0030】
導電ペーストに用いるニッケル粉中の塩素の含有量が高い場合には、この塩素不純物が電解質成分であるので、上記のアルカリ金属の場合と同様に絶縁破壊が生じることがある。
従って、本発明のニッケル粉においては、ニッケル粉中の塩素含有量はなるべく低い方が好ましく、100ppm以下であることが好ましく、50ppm以下であることがより好ましく、10ppm以下であることが一層好ましい。
【0031】
導電ペーストに用いるニッケル粉中の硫黄の含有量が高い場合には、積層セラミックコンデンサ製造時の焼成の際に、この硫黄成分が酸素と反応して亜硫酸ガスを発生してボイド(膨れ)を惹き起こすのみならず、この硫黄成分が誘電体成分と反応し、その硫化物は半導体としての挙動を示すので、絶縁特性が著しく劣化する。
【0032】
従って、本発明のニッケル粉においては、ニッケル粉中の硫黄含有量はなるべく低い方が好ましく、10000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、200ppm以下であることが一層好ましい。
【0033】
また、本発明のニッケル粉は、SEM観察による平均粒子径が0.05〜1μmであることが好ましく、0.1〜0.8μmであることが一層好ましい。このようなニッケル粉を含む導電ペーストは積層セラミックコンデンサの内部電極を形成するのに特に適している。
なお、本発明のニッケル粉は純ニッケル粉であっても、ニッケル粉の各微粒子の内部に金属酸化物を含有するニッケル粉であってもよい。
【0034】
次に、本発明のニッケル粉の製造方法について述べる。
本発明のニッケル粉の製造方法においては、ニッケル粉とアルカリ土類金属の酸化物、水酸化物、炭酸塩及び炭酸水素塩よりなる群から選ばれたアルカリ土類金属化合物の微粉末とを混合した後、またはニッケル粉の各粒子表面に該アルカリ土類金属化合物を被覆させた後、不活性ガス又は微還元性ガス雰囲気中で、該アルカリ土類金属化合物の溶融温度未満の温度で熱処理を実施する。
【0035】
前記したように、特開平11−236631号公報等に記載の公知技術においては、出発原料として塩化ニッケル等のニッケルの塩や化合物を用いている。かかる方法によれば、直接還元でニッケル粉を製造することができるが、均一な還元反応を進め、粒径制御を行い且つ焼結を防止するためには充分に注意を払う必要がある。従って、原料混合から反応に至るまでの操作や制御が非常に煩雑であり、製品の出来ばえにバラツキが生じ易い。
【0036】
これに対し、本発明のニッケル粉の製造方法においては、出発原料としてニッケル粉を用いるので、焼結の防止のみを制御すればよく、熱処理の際に共存させるアルカリ土類金属化合物の溶融温度未満の温度で熱処理することによりニッケル粒子内の平均結晶子径を効率よく大きくすることが可能である。
【0037】
本発明のニッケル粉の製造方法で出発原料として用いるニッケル粉は、液相還元析出法、気相化学反応法、ガス中蒸発法等の湿式法、乾式法の何れの製造方法で得られたものでもよい。湿式法で得られるニッケル粉は粒度分布に優れているので、湿式法で得られるニッケル粉を出発原料として用いれば既に粒度分布に優れた状態になっており、また、乾式法で得られるニッケル粉は形状が球形に近いので、乾式法で得られるニッケル粉を出発原料として用いれば既に形状が球形に近い状態になっており、従って、本発明で目的とする効果の何れに重点を置くかによって出発原料を適宜選択すればよく、また両者を配合したり、前処理として風力分級を行って粒度分布をよりシャープにしたりすることができる。
【0038】
本発明のニッケル粉の製造方法で用いことのできるアルカリ土類金属化合物は、アルカリ土類金属の酸化物、水酸化物、炭酸塩及び炭酸水素塩よりなる群から選ばれたものであり、その例としては酸化マグネシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素マグネシウム、炭酸水素カルシウム等を挙げることができ、それらは単独で又は2種以上の混合物として使用することができる。
【0039】
本発明のニッケル粉の製造方法においては、先ず、ニッケル粉とアルカリ土類金属化合物の微粉末とを良く混合するか、又はニッケル粉の個々の粒子の表面にアルカリ土類金属化合物を被覆させることが重要である。
上記のアルカリ土類金属化合物は融点が高く、且つニッケル粉との反応性も殆どない上、両者が焼結してしまうこともないので、熱処理によりニッケル粒子内の平均結晶子径を大きくさせる際の焼結防止剤として極めて有効である。従って、アルカリ土類金属化合物の微粉末がニッケル粉中に比較的均一に混合されているか、又はアルカリ土類金属化合物がニッケル粉の個々の粒子の表面を被覆していると、この効果が一層良く発揮される。
【0040】
上記の混合方法としては、例えばヘンシェルミキサー等の圧縮作用の少ない混合機を使用する乾式法を採用することができ、また上記の被覆方法としては、アルカリ土類金属化合物の水溶液中にニッケル粉を分散させたニッケル粉含有スラリーを中和処理して共沈させる方法、スプレードライヤーで造粒する方法によりニッケル粉表面にアルカリ土類金属化合物を被覆化する方法等の湿式法を採用することができる。特に、乾式法ではアルカリ土類金属化合物の微粉末の粒子形状が板状である場合、湿式法ではアルカリ土類金属化合物が水溶性、又は酸もしくはアルカリに可溶で溶液として用いることによりアルカリ土類金属化合物がニッケル粉の表面を薄く均一に被覆している場合、ニッケル粉同士の焼結が一層有効に防止される。
【0041】
また、ニッケル粉同士の融着を防止するためにはアルカリ土類金属化合物の均一な付着が必要であるので、少量のアルカリ土類金属化合物の微粉末を用いてこの効果を達成するためには、アルカリ土類金属化合物の微粉末のSEM観察による平均粒子径がニッケル粉のSEM観察による平均粒子径の1/5以下であることが好ましく、1/8以下であることが一層好ましい。
【0042】
このようにして得られたニッケル粉とアルカリ土類金属化合物の微粉末との混合物又はアルカリ土類金属化合物で被覆されたニッケル粉を、引き続き、不活性ガス又は微還元性ガス雰囲気中で、該アルカリ土類金属化合物の溶融温度未満の温度で熱処理を実施する。この熱処理の際に用いることのできる不活性ガス又は微還元性ガスとしては、窒素、アルゴン、ヘリウムや、一酸化炭素、水素含有窒素等がある。
【0043】
上記のように不活性ガス又は微還元性ガス雰囲気中で熱処理することによりニッケル粉の酸化を防止しながら、ニッケル粒子内の平均結晶子径を効率よく大きくすることができ、また、アルカリ土類金属化合物の微粉末がニッケル粉の個々の粒子の表面に存在しているので、ニッケル粉同士の無用の焼結を抑制することができる。
【0044】
なお、熱処理はアルカリ土類金属化合物の溶融温度未満の温度、好ましくは300〜800℃、より好ましくは400〜600℃で実施する。また、熱処理の際の保持時間は好ましくは0.1〜2時間、より好ましくは0.5〜1時間である。このように熱処理して得られるニッケル粉においては、ニッケル粒子内の平均結晶子径が大きくなっている。
【0045】
なお、熱処理はアルカリ土類金属化合物の溶融温度未満の温度で実施するので、アルカリ土類金属化合物が溶融してニッケル粒子の微細な窪みや微細な亀裂中に入り込むことがなく、従ってアルカリ土類金属化合物は希硫酸等での洗浄、水洗により完全に除去され、ニッケル粉を汚染する危険性は極めて少ない。
【0046】
この熱処理の後、ニッケル粉とアルカリ土類金属化合物の微粉末との混合物又はアルカリ土類金属化合物で被覆されたニッケル粉からアルカリ土類金属化合物を溶解させて除去する。この溶解処理には、アルカリ土類金属化合物を溶解することができるものであればいかなる液体でもよく、例えば希硫酸等の酸溶液、アンモニア水等のアルカリ溶液を用いることができる。従って、アルカリ土類金属化合物が水溶性、又は酸もしくはアルカリに可溶であることが好ましい。この溶解処理の後充分に水洗し、乾燥して本発明のニッケル粉を得る。
【0047】
【実施例】
以下に実施例及び比較例に基づいて本発明を具体的に説明する。
比較例1
硫酸ニッケル・六水和物(品位22.2質量%)44.8kgを純水80Lに溶解して得た水溶液を、水酸化ナトリウム濃度200g/Lの水溶液100Lにその液温を60℃に維持しながらゆっくりと滴下して、ニッケルの水酸化物を析出させた。
【0048】
この懸濁液にその液温を60℃に維持しながらヒドラジン・一水和物30kgを30分間にわたって添加してニッケルの水酸化物をニッケルに還元した。この生成ニッケル粒子含有スラリーを濾過した後、洗浄液のpHが9以下になるまで純水で洗浄し、その後乾燥してニッケル粉を得た。
【0049】
このニッケル粉について、下記の方法によって各特性を求めた。
(1)平均結晶子径
自動X線回折装置RINT2200(株式会社リガク製)を用いて、X線回折ピークの半値幅から平均結晶子径を求めた。
【0050】
(2)SEM観察による平均粒子径、粗粒比率及び微粒比率
1万倍のSEMによって観察し、無作為に選んだ5視野の合計で1500個の粒子の粒子径をそれぞれ測定し、平均粒子径を求めた。また、この平均粒子径の1.2倍以上の粒子径を持つ粒子個数、及び平均粒子径の0.8倍以下の粒子径を持つ粒子個数をそれぞれ計測し、全粒子個数に対する比率を計算した。
【0052】
)化学分析値
試料を溶解し、Na及びSはICPによって測定し、Clは比濁法によって測定した。 上記(1)〜()の測定、計算結果は第1表に示す通りであった。
【0053】
実施例1
比較例1で得たニッケル粉100gと板状炭酸水素マグネシウム100gとをヘンシェルミキサーで混合した後、窒素通気量1L/分の窒素雰囲気中で、600℃で1時間加熱した。その後、希硫酸で洗浄してマグネシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
【0054】
実施例2
比較例1で得たニッケル粉100gと酸化マグネシウム(一次粒子径50nm)30gとをヘンシェルミキサーで混合した後、アルゴン通気量1L/分のアルゴン雰囲気中で、800℃で1時間加熱した。その後、希硫酸で洗浄してマグネシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
【0055】
実施例3
比較例1で得たニッケル粉100gを水1L中に良く分散させた後、この分散スラリーに硝酸カルシウム・四水和物236gを添加し、攪拌して均一に溶解させた。更に、この分散スラリーに水酸化ナトリウム水溶液を添加してpHを8に調整し、1時間攪拌した後、濾過し、乾燥した。このようにして得た水酸化カルシウム被覆ニッケル粉を窒素通気量1L/分の窒素雰囲気中で、500℃で1時間加熱した。その後、希硫酸で洗浄してカルシウム成分を除去し、水洗し、濾過し、乾燥して目的とするニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
【0056】
比較例2
板状炭酸水素マグネシウムを使用しなかった以外は実施例1の場合と同様に処理してニッケル粉を得た。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
【0057】
比較例3
特開平11−236631号公報に記載の実施例2の方法に準じて、無水塩化ニッケル粉221g、還元剤としてマグネシウム金属27g(1.1当量)及び無水塩化カルシウム151gをグローボックス中で充分に混合した後、純ニッケル製の反応容器に入れ、蓋をし、その後ステンレス製の反応容器に入れてアルゴンガスで置換した後、30分間で1000℃まで昇温させ、1000℃に30分間保持した後800℃まで降温させ、次いで電気炉から反応容器を取り出して室温まで空冷した。
【0058】
その後、その還元生成物をクラッシャーで数ミリ程度の粒状に粉砕後、レパルプ、沈降を繰り返すことにより水洗し、塩化カルシウムを除去した後、固液分離することにより微細ニッケル粉を回収した。固液分離で回収したスラリー又はケーキ状の湿潤な微細ニッケル粉を150℃の気流中で解砕しながら乾燥した。このニッケル粉について、比較例1の場合と同様にして各特性を求めた。その結果は第1表に示す通りであった。
【0059】
【表1】
第 1 表
【0060】
第1表のデータから明らかなように、実施例1〜3で得られたニッケル粉は、出発原料のニッケル粉と比較して平均結晶子径が大きくなっており、また平均粒子径に対する粗粒、微粒の比率少なく、粒度分布がシャープである。また、ナトリウム、硫黄、塩素等の不純物の含有量も充分に低い。
【0061】
これに対して、比較例1で得られたニッケル粉は熱処理を加えていないため、粒度分布はシャープであるものの、平均結晶子径が小さいものであった。比較例2で得られたニッケル粉は、平均結晶子径がかなり大きいものの、アルカリ土類金属化合物の微粉末を使用していないため、出発原料のニッケル粉の焼結が進み、導電ペースト用途には全く適さないニッケル粉になっていた。また、比較例3で得られたニッケル粉は、平均結晶子径がかなり大きいものの、出発原料としてニッケル塩を用いたことに起因して還元生成されたニッケルの粒径を制御しきれずにバラツキが大きかった。
【0062】
【発明の効果】
本発明のニッケル粉は、粒度分布がシャープであることに起因して積層セラミックコンデンサの薄くて突起がない内部電極を形成することができ且つニッケル粒子内の平均結晶子径が大きいことに起因して熱収縮が抑制された内部電極を形成することができ、導電ペースト用途に特に適している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nickel powder and, more particularly, conductive are particularly suitable for paste applications, the particle size distribution of the nickel powder to form a thin no protrusion internal electrodes of multilayer ceramic capacitors due to a sharp It relates to nickel powder capable of forming an internal electrode due thermal contraction is suppressed can be and the average crystallite size of the nickel particles is large.
[0003]
[Prior art]
A multilayer ceramic capacitor is formed by integrating a plurality of alternately laminated ceramic dielectric layers and internal electrode layers. As a method of forming the internal electrodes of such a multilayer ceramic capacitor, a metal which is an internal electrode material is used. A conductive paste is prepared by pasting fine powder, printed on the ceramic dielectric green sheet using the conductive paste, and a plurality of layers of the ceramic dielectric green sheet and the conductive paste layer are alternately laminated and heated. In general, after the pressure bonding and integration, the ceramic dielectric layer and the internal electrode layer are integrated by firing at a high temperature in a reducing atmosphere.
[0004]
Conventionally, noble metals such as platinum, palladium, and silver-palladium have been used as the internal electrode material, but recently, a technique using a base metal such as nickel instead of these noble metals has been developed for cost reduction. Progressing. In general, the conductive paste used to form the internal electrode of the multilayer ceramic capacitor is not limited to metal powder such as nickel powder that imparts conductivity, but may be an inorganic material such as a glass substance or the like, if necessary. Are added to an organic vehicle and uniformly mixed and dispersed.
[0005]
In recent years, electronic parts manufactured using conductive paste, such as multilayer ceramic capacitors, have become increasingly smaller, and inevitably, the ceramic dielectric layers and internal electrode layers have become thinner and multilayered. In a multilayer component, particularly a multilayer ceramic capacitor, a component having a dielectric layer of 2 μm or less, an internal electrode film thickness of 1.5 μm or less, and a stacking number of 100 layers or more is produced.
[0006]
In order to obtain a thin internal electrode layer, it is considered that a metal powder having a small average particle size corresponding to the internal electrode layer, for example, nickel powder, may be used, but even if the average particle size of the metal powder is within a predetermined range, When mixed, when an internal electrode layer is formed using a conductive paste containing such metal powder, the coarse particles form protrusions on the internal electrode layer, and the protrusions break through the thin ceramic dielectric layer. May cause short circuit between internal electrodes. In order to prevent such a short circuit between the internal electrodes, it is necessary to use a nickel powder having an average particle size that is considerably smaller than the nickel powder having an average particle size suitable for obtaining a thin internal electrode layer.
[0008]
Nickel powder can be produced by either a wet method or a dry method. In the case of a wet method represented by a liquid phase reduction precipitation method, nickel powder having a sharp particle size distribution can be easily obtained. When nickel powder obtained by such a manufacturing method is made into a conductive paste and the internal electrode of the multilayer ceramic capacitor is formed using the obtained conductive paste, there is little mixing of coarse powder, so there is a protrusion on the internal electrode layer. Is hardly formed, and therefore, a short circuit between the internal electrodes hardly occurs. However, since the particle shape of the nickel powder obtained by this wet method often exhibits a polyhedral shape, it is inferior in terms of aggregation between particles and powder fluidity.
[0009]
On the other hand, in the case of a dry method typified by a gas phase reduction method, good nickel powder is easily obtained in terms of aggregation between particles and fluidity of the powder, but it is described in, for example, JP-A-11-80817. As shown, it is necessary to add sulfur or the like in order to control the particle shape. In addition, when the nickel powder obtained by such a manufacturing method is made into a conductive paste and the internal electrode of the multilayer ceramic capacitor is formed using the obtained conductive paste, generation of voids (swells) or the like occurs in the internal electrode. In addition to the above, the adverse effect of the coarse powder and the influence on the dispersibility are unavoidable due to the broad particle size distribution.
[0010]
As described above, in the prior art, it has been difficult to obtain nickel powder having a sharper particle size distribution, less aggregation, and excellent dispersibility.
Also, when nickel powder is used as the internal electrode material of a multilayer ceramic capacitor, defects such as delamination and cracks occur during firing due to the difference in thermal shrinkage characteristics between the ceramic substrate and metallic nickel. Since it is easy, it is necessary to suppress the thermal shrinkage of this nickel powder.
[0011]
Regarding the technology for improving the problems of the conventional nickel powder described above, that is, the technology for obtaining nickel powder with a sharper particle size distribution, less aggregation, excellent dispersibility, and excellent heat shrinkage characteristics, For example, the technique described in JP-A-8-246001 can be mentioned. In this publication, the ratio between the 50% particle size (D 50 ) and the 84.3% particle size (D 84.3 ) under integrated sieving in a number-based particle size distribution with an average particle size in the range of 0.1 to 1.0 μm. An ultrafine nickel powder having a geometric standard deviation determined by (D 84.3 / D 50 ) of 2.0 or less and an average crystallite diameter of 0.2 times or more of the average particle diameter is disclosed.
[0012]
Although this nickel ultrafine powder is excellent in particle size distribution in that there are few aggregated nickel powders, the average crystallite diameter is relatively large, and oversintering of metallic nickel is suppressed. Since no improvement has been made with respect to the particle size distribution of the primary particles of nickel powder, particularly the particle size of the fine powder, it is difficult to say that the technique can sufficiently solve the above problems.
[0013]
Further, as a technique for improving heat shrinkage characteristics, a raw material powder made of nickel chloride powder, a reducing agent powder made of a specific alkali metal or a specific alkaline earth metal, and these alkali metal chlorides or a specific alkaline earth Also disclosed is a method for producing fine nickel powder (Jpn. Pat. Appln. KOKAI Publication No. 11-236631) that is mixed with a powdered metal chloride powder and subjected to solid phase reduction. In this production method, it is described that nickel powder excellent in crystallinity and dispersibility can be obtained.
[0014]
However, in the nickel powder obtained by the above manufacturing method, although the heat shrinkage characteristics are improved to some extent, not only is the reduction rate controlled difficult because the starting material is a nickel salt, but also the particle size distribution is sharper. It was difficult to say nickel powder with less aggregation and excellent dispersibility.
[0015]
[Problems to be solved by the invention]
In view of the above-described problems of the prior art, the present invention provides a nickel powder that is particularly suitable for use in a conductive paste used for forming an internal electrode in which a multilayer ceramic capacitor is thin, has no protrusions, and has reduced thermal shrinkage. It is a problem.
[0016]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the nickel powder having a sharp particle size distribution and a large average crystallite diameter in the nickel particles is thin and free of protrusions of the multilayer ceramic capacitor, and heat shrinks. are particularly suitable found Tei Rukoto conductive paste application used for forming the internal electrodes is suppressed, thereby completing the invention.
[0017]
That is, in the nickel powder of the present invention, the number of particles having a particle size of 1.2 times or more of the average particle size by SEM observation is 10% or less of the total number of particles, and 0.8 times or less of the average particle size. The number of particles having a particle size is 10% or less of the total number of particles, and the average crystallite size in the nickel particles is 400 mm or more.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the nickel powder of the present invention, the number of particles having a particle size of 1.2 times or more of the average particle size by SEM observation of about 10,000 times is 10% or less, preferably 7% or less, more preferably It is important that the number of particles having a particle size of 5% or less and 0.8 times or less of the average particle size is 10% or less, preferably 7% or less, more preferably 5% or less of the total number of particles. is there.
[0021]
That is, in the nickel powder of the present invention, the proportion of coarse particles is relatively small, and the particle diameter of each nickel particle in the nickel powder is considerably uniform, and therefore obtained using a conductive paste containing such nickel powder. In a laminated component such as a laminated ceramic capacitor, an internal electrode layer that is considerably thinner than the average particle diameter of nickel powder can be formed, and projections are not formed on the surface of the internal electrode layer. There is no short circuit between the electrodes. Furthermore, since the proportion of fine particles is relatively small, there is no problem that the viscosity of the conductive paste containing such nickel powder increases, and since the thermal sintering occurs uniformly, the electrode area can be reduced, Will not disappear.
[0022]
Further, in the nickel powder of the present invention, in addition to the above conditions, it is important that the average crystallite diameter in the nickel particles is 400 mm or more, preferably 450 mm or more. That is, the nickel powder of the present invention has improved crystallinity due to the large average crystallite size, and therefore, shrinkage due to oversintering can be suppressed during firing when manufacturing a multilayer ceramic capacitor.
[0028]
When the content of alkali metal in the nickel powder used for the conductive paste is high, for example, when the nickel powder in the conductive paste is heated and melted to form the internal electrode of the multilayer ceramic capacitor, the alkali metal is on the surface of the nickel metal In addition, since the alkali metal impurity is an electrolyte component, conduction may occur between neighboring electrodes, which may eventually cause dielectric breakdown.
[0029]
Therefore, in the nickel powder of the present invention, the total amount of alkali metals in the nickel powder, in particular, the total amount of one or more of lithium, sodium and potassium is preferably as low as possible, and the total amount is 500 ppm or less. Preferably, it is 400 ppm or less, more preferably 300 ppm or less.
[0030]
When the content of chlorine in the nickel powder used for the conductive paste is high, since this chlorine impurity is an electrolyte component, dielectric breakdown may occur as in the case of the alkali metal.
Accordingly, in the nickel powder of the present invention, the chlorine content in the nickel powder is preferably as low as possible, preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less.
[0031]
When the content of sulfur in the nickel powder used in the conductive paste is high, this sulfur component reacts with oxygen to generate sulfurous acid gas and cause voids (blowing) during firing during the production of multilayer ceramic capacitors. Not only does this occur, but this sulfur component reacts with the dielectric component, and the sulfide behaves as a semiconductor, so that the insulating properties are significantly degraded.
[0032]
Therefore, in the nickel powder of the present invention, the sulfur content in the nickel powder is preferably as low as possible, preferably 10,000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.
[0033]
In addition, the nickel powder of the present invention preferably has an average particle size of 0.05 to 1 μm, more preferably 0.1 to 0.8 μm, as observed by SEM. Such a conductive paste containing nickel powder is particularly suitable for forming an internal electrode of a multilayer ceramic capacitor.
The nickel powder of the present invention may be pure nickel powder or nickel powder containing a metal oxide inside each fine particle of nickel powder.
[0034]
Next, the manufacturing method of the nickel powder of this invention is described.
In the production method of the nickel powder of the present invention, oxides of nickel powder and alkaline earth metal hydroxides, and a fine powder of the selected alkaline earth metal compound from the carbonates and the group consisting of bicarbonate mixture Or after coating the surface of each particle of nickel powder with the alkaline earth metal compound, heat treatment is performed at a temperature lower than the melting temperature of the alkaline earth metal compound in an inert gas or slightly reducing gas atmosphere. you out.
[0035]
As described above, in the known technique described in Japanese Patent Application Laid-Open No. 11-236631, etc., nickel salts and compounds such as nickel chloride are used as starting materials. According to such a method, nickel powder can be produced by direct reduction, but sufficient care must be taken to advance a uniform reduction reaction, control the particle size, and prevent sintering. Therefore, the operation and control from the raw material mixing to the reaction is very complicated, and the product quality tends to vary.
[0036]
On the other hand, in the method for producing nickel powder of the present invention, since nickel powder is used as a starting material, it is only necessary to control the prevention of sintering, which is less than the melting temperature of the alkaline earth metal compound that coexists during heat treatment. It is possible to efficiently increase the average crystallite size in the nickel particles by heat treatment at a temperature of.
[0037]
The nickel powder used as a starting material in the method for producing nickel powder of the present invention is obtained by any one of a wet method such as a liquid phase reduction deposition method, a gas phase chemical reaction method, a gas evaporation method, and a dry method. But you can. Since the nickel powder obtained by the wet method is excellent in particle size distribution, if the nickel powder obtained by the wet method is used as a starting material, the particle size distribution is already excellent, and the nickel powder obtained by the dry method Since the shape is close to a sphere, if nickel powder obtained by a dry method is used as a starting material, the shape is already close to a sphere, so depending on which of the effects intended by the present invention is to be emphasized What is necessary is just to select a starting material suitably, and also can mix | blend both and can perform an air classification as pre-processing, and can make a particle size distribution sharper.
[0038]
The alkaline earth metal compound that can be used in the method for producing nickel powder of the present invention is selected from the group consisting of oxides, hydroxides, carbonates and bicarbonates of alkaline earth metals, Examples include magnesium oxide, calcium oxide, magnesium hydroxide, calcium hydroxide, magnesium carbonate, calcium carbonate, barium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate, etc., and these may be used alone or as a mixture of two or more. Can be used as
[0039]
In the method for producing nickel powder of the present invention, first, nickel powder and fine powder of alkaline earth metal compound are mixed well, or the surface of each particle of nickel powder is coated with alkaline earth metal compound. is important.
The above alkaline earth metal compound has a high melting point and hardly reacts with nickel powder, and both of them do not sinter, so when the average crystallite diameter in the nickel particles is increased by heat treatment. It is extremely effective as a sintering inhibitor. Therefore, if the alkaline earth metal compound fine powder is mixed relatively uniformly in the nickel powder, or the alkaline earth metal compound covers the surface of the individual particles of the nickel powder, this effect is further enhanced. Well demonstrated.
[0040]
As the above-mentioned mixing method, for example, a dry method using a mixer having a small compression action such as a Henschel mixer can be adopted, and as the above-mentioned coating method, nickel powder is added in an aqueous solution of an alkaline earth metal compound. Wet methods such as a method of neutralizing the co-precipitated nickel powder-containing slurry and a method of granulating with a spray dryer and a method of coating an alkaline earth metal compound on the surface of the nickel powder can be adopted. . In particular, in the dry method, when the particle shape of the fine powder of the alkaline earth metal compound is plate-like, in the wet method, the alkaline earth metal compound is water-soluble or soluble in acid or alkali and used as a solution. When the metal compound covers the surface of the nickel powder thinly and uniformly, the sintering of the nickel powder is more effectively prevented.
[0041]
In order to prevent the fusion between nickel powders, uniform adhesion of the alkaline earth metal compound is necessary, so in order to achieve this effect using a small amount of fine powder of the alkaline earth metal compound. The average particle size of the alkaline earth metal compound fine powder by SEM observation is preferably 1/5 or less, more preferably 1/8 or less of the average particle size of nickel powder by SEM observation.
[0042]
A mixture of the nickel powder thus obtained and a fine powder of an alkaline earth metal compound or a nickel powder coated with an alkaline earth metal compound is subsequently used in an inert gas or a slightly reducing gas atmosphere. Heat treatment is performed at a temperature lower than the melting temperature of the alkaline earth metal compound. Examples of the inert gas or slightly reducing gas that can be used in the heat treatment include nitrogen, argon, helium, carbon monoxide, and hydrogen-containing nitrogen.
[0043]
While preventing oxidation of nickel powder by heat treatment in an inert gas or slightly reducing gas atmosphere as described above, the average crystallite diameter in the nickel particles can be increased efficiently, and alkaline earths Since the fine powder of the metal compound is present on the surface of each particle of the nickel powder, unnecessary sintering of the nickel powder can be suppressed.
[0044]
In addition, heat processing is implemented at the temperature below the melting temperature of an alkaline-earth metal compound, Preferably it is 300-800 degreeC, More preferably, it is implemented at 400-600 degreeC. The holding time during the heat treatment is preferably 0.1 to 2 hours, more preferably 0.5 to 1 hour. In the nickel powder obtained by such heat treatment, the average crystallite size in the nickel particles is large.
[0045]
In addition, since the heat treatment is performed at a temperature lower than the melting temperature of the alkaline earth metal compound, the alkaline earth metal compound does not melt and enter into the fine dents and fine cracks of the nickel particles. The metal compound is completely removed by washing with dilute sulfuric acid or the like and washing with water, and there is very little risk of contaminating the nickel powder.
[0046]
After this heat treatment, the alkaline earth metal compound is dissolved and removed from the mixture of the nickel powder and the fine powder of the alkaline earth metal compound or the nickel powder coated with the alkaline earth metal compound. For the dissolution treatment, any liquid can be used as long as it can dissolve the alkaline earth metal compound. For example, an acid solution such as dilute sulfuric acid or an alkaline solution such as aqueous ammonia can be used. Accordingly, it is preferable that the alkaline earth metal compound is water-soluble or soluble in acid or alkali. After this dissolution treatment, it is sufficiently washed with water and dried to obtain the nickel powder of the present invention.
[0047]
【Example】
The present invention will be specifically described below based on examples and comparative examples.
Comparative Example 1
An aqueous solution obtained by dissolving 44.8 kg of nickel sulfate hexahydrate (quality 22.2 mass%) in 80 L of pure water was maintained in 100 L of an aqueous solution having a sodium hydroxide concentration of 200 g / L, and the liquid temperature was maintained at 60 ° C. While dropping slowly, nickel hydroxide was precipitated.
[0048]
While maintaining the liquid temperature at 60 ° C., 30 kg of hydrazine monohydrate was added to the suspension over 30 minutes to reduce the nickel hydroxide to nickel. After this produced nickel particle-containing slurry was filtered, it was washed with pure water until the pH of the washing liquid became 9 or less, and then dried to obtain nickel powder.
[0049]
About this nickel powder, each characteristic was calculated | required with the following method.
(1) The average crystallite diameter was determined from the half-value width of the X-ray diffraction peak using an automatic average crystallite diameter X-ray diffraction apparatus RINT2200 (manufactured by Rigaku Corporation).
[0050]
(2) SEM observation of average particle diameter, coarse particle ratio, and fine particle ratio observed by SEM of 10,000 times, and the particle diameters of 1500 particles were measured in total for 5 randomly selected fields. Asked. Further, the number of particles having a particle diameter of 1.2 times or more of the average particle diameter and the number of particles having a particle diameter of 0.8 or less of the average particle diameter were measured, and the ratio to the total number of particles was calculated. .
[0052]
( 3 ) Chemical analysis value A sample was dissolved, Na and S were measured by ICP, and Cl was measured by a turbidimetric method. The measurement and calculation results of the above (1) to ( 3 ) were as shown in Table 1.
[0053]
Example 1
After mixing 100 g of nickel powder obtained in Comparative Example 1 and 100 g of plate-like magnesium hydrogen carbonate with a Henschel mixer, the mixture was heated at 600 ° C. for 1 hour in a nitrogen atmosphere with a nitrogen flow rate of 1 L / min. Thereafter, the magnesium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.
[0054]
Example 2
After mixing 100 g of the nickel powder obtained in Comparative Example 1 and 30 g of magnesium oxide (primary particle diameter 50 nm) with a Henschel mixer, the mixture was heated at 800 ° C. for 1 hour in an argon atmosphere with an argon flow rate of 1 L / min. Thereafter, the magnesium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.
[0055]
Example 3
After 100 g of the nickel powder obtained in Comparative Example 1 was well dispersed in 1 L of water, 236 g of calcium nitrate tetrahydrate was added to this dispersed slurry, and the mixture was stirred and dissolved uniformly. Further, an aqueous sodium hydroxide solution was added to the dispersion slurry to adjust the pH to 8, stirred for 1 hour, filtered and dried. The calcium hydroxide-coated nickel powder thus obtained was heated at 500 ° C. for 1 hour in a nitrogen atmosphere with a nitrogen flow rate of 1 L / min. Thereafter, the calcium component was removed by washing with dilute sulfuric acid, washed with water, filtered, and dried to obtain the desired nickel powder. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.
[0056]
Comparative Example 2
A nickel powder was obtained by the same treatment as in Example 1 except that plate-like magnesium hydrogen carbonate was not used. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.
[0057]
Comparative Example 3
In accordance with the method of Example 2 described in JP-A-11-266331, 221 g of anhydrous nickel chloride powder, 27 g (1.1 equivalents) of magnesium metal as a reducing agent and 151 g of anhydrous calcium chloride are sufficiently mixed in a glow box. After putting in a reaction vessel made of pure nickel, capping, and then putting in a reaction vessel made of stainless steel and replacing with argon gas, the temperature was raised to 1000 ° C. in 30 minutes and held at 1000 ° C. for 30 minutes The temperature was lowered to 800 ° C., then the reaction vessel was taken out of the electric furnace and air-cooled to room temperature.
[0058]
Thereafter, the reduced product was pulverized to a few millimeters with a crusher, washed with water by repeating repulping and sedimentation, calcium chloride was removed, and solid nickel was recovered by solid-liquid separation. The slurry or cake-like wet fine nickel powder recovered by solid-liquid separation was dried while being crushed in an air stream at 150 ° C. About this nickel powder, each characteristic was calculated | required like the case of the comparative example 1. FIG. The results were as shown in Table 1.
[0059]
[Table 1]
Table 1
[0060]
As is clear from the data in Table 1, the nickel powders obtained in Examples 1 to 3 have a larger average crystallite diameter than the starting nickel powder, and coarse grains relative to the average particle diameter. The ratio of fine particles is small and the particle size distribution is sharp. In addition, the content of impurities such as sodium, sulfur and chlorine is sufficiently low.
[0061]
On the other hand, since the nickel powder obtained in Comparative Example 1 was not subjected to heat treatment, the particle size distribution was sharp but the average crystallite size was small. Although the nickel powder obtained in Comparative Example 2 has a considerably large average crystallite diameter, since the fine powder of the alkaline earth metal compound is not used, the sintering of the starting nickel powder proceeds, and the conductive paste is used. Was a nickel powder that was totally unsuitable. Moreover, although the nickel powder obtained in Comparative Example 3 has a considerably large average crystallite size, the particle size of the nickel produced by reduction due to the use of the nickel salt as a starting material cannot be controlled, and variation is not achieved. It was big.
[0062]
【The invention's effect】
The nickel powder of the present invention is due to the fact that the particle size distribution is sharp, so that it is possible to form an internal electrode that is thin and has no protrusions of a multilayer ceramic capacitor, and that the average crystallite diameter in the nickel particles is large. thermal shrinkage can form internal electrodes is suppressed Te, that is particularly suitable for the conductive paste applications.

Claims (1)

SEM観察による平均粒子径の1.2倍以上の粒子径を持つ粒子個数が全粒子個数の10%以下であり、該平均粒子径の0.8倍以下の粒子径を持つ粒子個数が全粒子個数の10%以下であり、且つニッケル粒子内の平均結晶子径が400Å以上であり、ニッケル粉中のアルカリ金属の総量が500ppm以下であり、塩素量が100ppm以下であり、硫黄量が10000ppm以下であることを特徴とするニッケル粉。The number of particles having a particle size of 1.2 times or more of the average particle size by SEM observation is 10% or less of the total number of particles, and the number of particles having a particle size of 0.8 or less of the average particle size is all particles. 10% or less of the number, the average crystallite diameter in the nickel particles is 400 mm or more , the total amount of alkali metals in the nickel powder is 500 ppm or less, the chlorine content is 100 ppm or less, and the sulfur content is 10000 ppm or less. Nickel powder characterized by being.
JP2000341649A 2000-11-09 2000-11-09 Nickel powder Expired - Lifetime JP3945740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341649A JP3945740B2 (en) 2000-11-09 2000-11-09 Nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341649A JP3945740B2 (en) 2000-11-09 2000-11-09 Nickel powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007056264A Division JP2007197836A (en) 2007-03-06 2007-03-06 Nickel powder

Publications (3)

Publication Number Publication Date
JP2002146401A JP2002146401A (en) 2002-05-22
JP2002146401A5 JP2002146401A5 (en) 2006-06-29
JP3945740B2 true JP3945740B2 (en) 2007-07-18

Family

ID=18816359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341649A Expired - Lifetime JP3945740B2 (en) 2000-11-09 2000-11-09 Nickel powder

Country Status (1)

Country Link
JP (1) JP3945740B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150638B2 (en) * 2002-06-28 2008-09-17 三井金属鉱業株式会社 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP4197151B2 (en) * 2003-11-27 2008-12-17 三井金属鉱業株式会社 Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP2009052146A (en) * 2008-11-26 2009-03-12 Dowa Holdings Co Ltd Copper powder and its manufacturing method
KR101745030B1 (en) * 2009-09-24 2017-06-08 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel powder and production method thereof
JP6149217B2 (en) * 2012-11-08 2017-06-21 エム・テクニック株式会社 Metal fine particles with protrusions
JP5894228B2 (en) * 2013-08-07 2016-03-23 ニホンハンダ株式会社 Continuous production method of metal fine particles, conductive curable composition, and electronic device

Also Published As

Publication number Publication date
JP2002146401A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
US7261761B2 (en) Metallic nickel powder and process for production thereof
KR101236245B1 (en) Metal powder for electrically conductive paste and electrically conductive paste
US7534283B2 (en) Method of producing copper powder and copper powder
TWI517914B (en) Nickel powder and its manufacturing method
CN108602129B (en) Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder
JP5519938B2 (en) Method for producing copper powder for conductive paste
CA2304030C (en) Metal powder
JP4063151B2 (en) Porous spherical nickel powder and method for producing the same
JP6135935B2 (en) Method for producing wet nickel powder
JP2012092432A (en) Copper powder for conductive paste and method for manufacturing the same
TWI716526B (en) Nickel powder
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP2007197836A (en) Nickel powder
JP2009024197A (en) Method for producing nickel powder
JP4060187B2 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
JP3945740B2 (en) Nickel powder
JP5046044B2 (en) Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles
JP5530270B2 (en) Cobalt powder and method for producing the same
JP4150802B2 (en) Metal powder processing method
JP3474170B2 (en) Nickel powder and conductive paste
JP3542079B2 (en) Nickel powder and conductive paste
JP2004323884A (en) Nickel powder of hyperfine particle, and production method therefor
TWI544977B (en) Copper powder for conductive paste and method for producing same
JP2004339601A (en) Method for manufacturing nickel powder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20030609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20030630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3945740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term