JP5519938B2 - Method for producing copper powder for conductive paste - Google Patents

Method for producing copper powder for conductive paste Download PDF

Info

Publication number
JP5519938B2
JP5519938B2 JP2009004661A JP2009004661A JP5519938B2 JP 5519938 B2 JP5519938 B2 JP 5519938B2 JP 2009004661 A JP2009004661 A JP 2009004661A JP 2009004661 A JP2009004661 A JP 2009004661A JP 5519938 B2 JP5519938 B2 JP 5519938B2
Authority
JP
Japan
Prior art keywords
copper
particles
reaction
reducing agent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009004661A
Other languages
Japanese (ja)
Other versions
JP2010018880A (en
Inventor
英史 藤田
秀一 藤山
慎一 紺野
晃嗣 平田
整哉 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009004661A priority Critical patent/JP5519938B2/en
Priority to KR1020090027660A priority patent/KR101522738B1/en
Publication of JP2010018880A publication Critical patent/JP2010018880A/en
Application granted granted Critical
Publication of JP5519938B2 publication Critical patent/JP5519938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper

Description

本発明は、導電性ペースト用銅粉およびその製造方法に関し、特に、積層セラミックコンデンサや積層セラミックインダクタなどの積層セラミック電子部品の内部電極や、小型積層セラミックコンデンサや積層セラミックインダクタなどの外部電極を形成するための導電性ペーストに使用する銅粉およびその製造方法に関する。   The present invention relates to copper powder for conductive paste and a method for manufacturing the same, and in particular, forms internal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors, and external electrodes such as small multilayer ceramic capacitors and multilayer ceramic inductors. The present invention relates to a copper powder used in a conductive paste for manufacturing and a manufacturing method thereof.

積層セラミックコンデンサの一般的な製造方法では、まず、チタン酸バリウム系セラミックなどの誘電体セラミックグリーンシートを複数枚用意し、各々のシートの上に、内部電極用の導電性ペーストを所定のパターンで印刷し、これらのシートを積み重ねて圧着することによって、誘電体セラミックグリーンシートと導電性ペースト層が交互に積層された積層体を作製する。この積層体を所定の形状の複数のチップに切断した後、高温で同時に焼成して、積層セラミックコンデンサの素体を作製する。次いで、この素体の内部電極が露出する端面に、導電性粉体、ガラス粉末および有機ビヒクルを主成分とする外部電極用の導電性ペーストを塗布し、乾燥した後、高温で焼成することによって外部電極を形成する。その後、必要に応じて外部電極にニッケルやスズなどのめっき層を電気めっきなどにより形成する。   In a general manufacturing method of a multilayer ceramic capacitor, first, a plurality of dielectric ceramic green sheets such as barium titanate ceramics are prepared, and a conductive paste for internal electrodes is formed in a predetermined pattern on each sheet. By printing and stacking and pressing these sheets, a laminated body in which dielectric ceramic green sheets and conductive paste layers are alternately laminated is produced. The multilayer body is cut into a plurality of chips having a predetermined shape and then simultaneously fired at a high temperature to produce a multilayer ceramic capacitor element body. Next, a conductive paste for an external electrode mainly composed of conductive powder, glass powder and an organic vehicle is applied to the end face where the internal electrode of the element body is exposed, dried, and then fired at a high temperature. External electrodes are formed. Thereafter, if necessary, a plating layer of nickel, tin, or the like is formed on the external electrode by electroplating or the like.

従来、このような積層セラミックコンデンサなどの内部電極を形成するための導電性ペーストに使用する金属材料として、パラジウム、銀−パラジウム、白金などが使用されていたが、これらは高価な貴金属であるため、コストがかかるという問題があった。そのため、近年では、ニッケルや銅などの卑金属を使用するのが主流になってきており、現在では、主にニッケル微粒子(積層セラミックコンデンサの大きさや容量などにもよるが、一般に平均粒径0.1〜0.5μmのニッケル微粒子)が使用されている。また、銅は、ニッケルと比べて、導電率が高く、融点が低いため、積層セラミックコンデンサの特性を改善し、焼成時の低温化などの生産時の省エネに寄与することが可能であり、今後の内部電極用の金属材料の有望な一つとして期待されている。   Conventionally, palladium, silver-palladium, platinum, and the like have been used as metal materials used in conductive pastes for forming internal electrodes such as multilayer ceramic capacitors, but these are expensive noble metals. There was a problem of cost. Therefore, in recent years, the use of base metals such as nickel and copper has become mainstream, and at present, nickel fine particles (although depending on the size and capacity of the multilayer ceramic capacitor, the average particle size is generally 0. 0). 1 to 0.5 μm nickel fine particles) are used. Also, copper has higher electrical conductivity and lower melting point than nickel, so it can improve the characteristics of multilayer ceramic capacitors and contribute to energy saving during production, such as lower temperatures during firing. It is expected as a promising metal material for internal electrodes.

一方、近年、積層セラミックコンデンサなどの高容量化や小型化のために、内部電極の薄層化が求められている。また、積層セラミックコンデンサなどの用途の拡大により、内部インダクタが小さく、高周波数特性としてGHzオーダーまで使用可能な特性を有する積層セラミックコンデンサなどが求められている。   On the other hand, in recent years, there has been a demand for thinner internal electrodes in order to increase the capacity and size of multilayer ceramic capacitors and the like. In addition, with the expansion of applications such as multilayer ceramic capacitors, multilayer ceramic capacitors having small internal inductors and high frequency characteristics that can be used up to GHz order are required.

このような背景から、積層セラミックコンデンサなどの内部電極用の金属材料として、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いなどの特性を有する銅微粒子が求められている。   Against this background, as a metal material for internal electrodes such as multilayer ceramic capacitors, copper fine particles are monodispersed fine particles, have a sharp particle size distribution, do not contain coarse particles, and have a shape close to a true sphere. Is required.

現在、銅微粒子は、主に積層セラミックコンデンサなどの外部電極用の導電性ペーストに使用されており、銅微粒子の大きさは、積層セラミックコンデンサなどの大きさにもよるが、0.5〜10μm程度であり、球状、フレーク状、不定形状などの様々な形状の銅微粒子が使用されている。また、一般的な外部電極用の導電性ペーストには、上記の大きさや形状の銅微粒子が混合されて使用されている。   At present, copper fine particles are mainly used in conductive pastes for external electrodes such as multilayer ceramic capacitors. The size of copper fine particles depends on the size of the multilayer ceramic capacitors, but is 0.5 to 10 μm. The copper fine particles having various shapes such as spherical shape, flake shape, and irregular shape are used. Also, general conductive paste for external electrodes is used by mixing copper fine particles of the above size and shape.

このような銅微粒子の製造方法として、硫酸銅溶液をL−アルコスビン酸またはL−アスコルビン酸塩類で還元する方法(例えば、特許文献1参照)、硫酸銅溶液をD−エリソルビン酸またはD−エリソルビン酸塩類で還元する方法(例えば、特許文献2参照)、硫酸銅溶液を水素化ホウ素化合物で還元する方法(例えば、特許文献3参照)、硫酸銅溶液をヒドロキシル(−OH)基を含む芳香族化合物で還元する方法(例えば、特許文献4参照)、銅イオン、還元剤および錯化剤からなる混合水溶液に反応開始剤を添加して還元反応させた後に、銅イオン、還元剤、pH調整剤を添加して銅微粉末を製造する方法(例えば、特許文献5参照)、2価の銅イオンを有する銅塩水溶液に水酸化アルカリを混合して酸化第二銅を生成し、還元糖を加えて酸化第二銅を酸化第一銅に還元し、さらにヒドラジン系還元剤を加えて酸化第一銅を還元する方法(例えば、特許文献6参照)、硫黄系化合物と保護コロイドを存在させた溶媒液中において、酸化銅をヒドラジンなどの還元剤と反応させて銅微粒子を製造する方法(例えば、特許文献7参照)などが提案されている。   As a method for producing such copper fine particles, a method of reducing a copper sulfate solution with L-arcosbic acid or L-ascorbate (see, for example, Patent Document 1), a copper sulfate solution with D-erythorbic acid or D-erythorbic acid A method of reducing with a salt (for example, see Patent Document 2), a method of reducing a copper sulfate solution with a borohydride compound (for example, see Patent Document 3), and an aromatic compound containing a hydroxyl (—OH) group in the copper sulfate solution. After reducing the reaction by adding a reaction initiator to a mixed aqueous solution composed of copper ions, a reducing agent and a complexing agent (for example, see Patent Document 4), the copper ions, the reducing agent and the pH adjuster are added. A method for producing a copper fine powder by adding (see, for example, Patent Document 5) A cupric oxide is produced by mixing an alkali hydroxide with a copper salt aqueous solution having divalent copper ions, and reducing sugar is added. A method of reducing cuprous oxide to cuprous oxide and reducing cuprous oxide by adding a hydrazine-based reducing agent (for example, see Patent Document 6), a solvent in which a sulfur-based compound and a protective colloid are present A method of producing copper fine particles by reacting copper oxide with a reducing agent such as hydrazine in a liquid (for example, see Patent Document 7) has been proposed.

特開昭63−186803号公報(第1頁)JP 63-186803 A (first page) 特開昭63−186805号公報公報(第1頁)JP 63-186805 A (first page) 特開昭63−186811号公報(第1頁)JP-A 63-186811 (first page) 特開平1−225705号公報(第1頁)JP-A-1-225705 (first page) 特開昭63−274706号公報(第2頁)JP-A 63-274706 (2nd page) 特開2003−342621号公報公報(段落番号0012)JP 2003-342621 A (paragraph number 0012) 特開2004−256857号公報(段落番号0006−0013)Japanese Patent Laying-Open No. 2004-256857 (paragraph numbers 0006-0013)

しかし、特許文献1の方法で得られる銅微粒子の平均粒径は、1.0〜1.8μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、pHを調整した銅イオンの水溶液とpHを調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   However, the average particle diameter of copper fine particles obtained by the method of Patent Document 1 is 1.0 to 1.8 μm, which is not sufficient for use as copper fine particles for internal electrodes. In addition, using an aqueous solution of copper ions adjusted in pH and an aqueous solution of a reducing agent adjusted in pH, copper particles are reduced to copper particles through cuprous oxide, so the control of the particle size is unstable and condensation ( (Bonding between particles) occurs, the shape is not constant, and the particle size distribution may be broad.

また、特許文献2の方法で得られる銅微粒子の平均粒径は、0.8〜2.0μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、pH調整した銅イオンの水溶液とpH調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 2 is 0.8 to 2.0 μm, which is not sufficient for use as copper fine particles for internal electrodes. In addition, since the pH-adjusted aqueous solution of copper ions and the aqueous solution of reducing agent adjusted in pH are used to reduce copper ions to copper particles through cuprous oxide, the control of the particle size is unstable, and condensation (particles May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献3の方法で得られる銅微粒子の平均粒径は、0.3〜0.7μmであり、特許文献1および2の方法で得られる銅微粒子と比べれば小さい銅微粒子を得ることができるが、この場合も内部電極用の銅微粒子として使用するには、まだ十分ではない。また、還元剤として水素化ホウ素化合物を使用するため、還元剤のpH調整時にpHが低いと、自己分解が起こり、作業性や安定性が悪くなる場合がある。一方、pHを高くすれば水素化ホウ素化合物は安定するが、その場合、銅イオンの還元反応が亜酸化銅を経て行われるので、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 3 is 0.3 to 0.7 μm, and it is possible to obtain small copper fine particles as compared with the copper fine particles obtained by the methods of Patent Documents 1 and 2. Although this is possible, it is still not sufficient for use as copper fine particles for internal electrodes. In addition, since a borohydride compound is used as the reducing agent, if the pH is low when adjusting the pH of the reducing agent, self-decomposition occurs, and workability and stability may deteriorate. On the other hand, if the pH is increased, the borohydride compound becomes stable. In this case, since the reduction reaction of copper ions is performed through cuprous oxide, the control of the particle size is unstable, and condensation (bonding between particles) occurs. ) May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献4の方法で得られる銅微粒子の平均粒径は、0.7〜1.5μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、還元剤としてヒドロキノンを使用しており、反応pHや反応温度などを調整しても、銅粒子をさらに微粒子化するのは困難である。また、pH調整した銅イオンの水溶液とpH調整した還元剤の水溶液を用いて、銅イオンから亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 4 is 0.7 to 1.5 μm, which is not sufficient for use as copper fine particles for internal electrodes. Further, hydroquinone is used as a reducing agent, and even if the reaction pH, reaction temperature, etc. are adjusted, it is difficult to further reduce the copper particles. In addition, since the pH-adjusted aqueous solution of copper ions and the aqueous solution of reducing agent adjusted in pH are used to reduce copper ions to copper particles through cuprous oxide, the control of the particle size is unstable, and condensation (particles May occur, the shape may not be constant, and the particle size distribution may be broad.

また、特許文献5の方法で得られる銅微粒子の平均粒径は、0.16〜0.61μmであり、平均粒径から判断すれば、内部電極用の銅粉として使用することができると考えられる。しかし、この方法では、還元反応を高pH領域(pH12〜13.5)で行っているので、銅イオンから水酸化銅、酸化銅、亜酸化銅を経て銅粒子に還元させるため、粒径の制御が不安定であり、凝結(粒子同士の結合)が生じ、形状が一定にならず、粒度分布がブロードになる場合がある。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 5 is 0.16 to 0.61 μm, and it can be used as copper powder for internal electrodes if judged from the average particle diameter. It is done. However, in this method, since the reduction reaction is performed in a high pH region (pH 12 to 13.5), in order to reduce copper ions to copper particles via copper hydroxide, copper oxide, and cuprous oxide, The control is unstable, condensation (bonding between particles) occurs, the shape is not constant, and the particle size distribution may be broad.

また、特許文献6の方法で得られる銅微粒子の平均粒径は、0.5〜4.0μmであり、内部電極用の銅微粒子として使用するには十分ではない。また、この方法の反応は、2価の銅イオンから生成した酸化第二銅を酸化第一銅に還元した後にさらに銅粒子に還元する反応であり、酸化第二銅から銅粒子への還元反応は、溶解析出型といわれる反応である。この方法をある程度粒径が大きい銅粒子の製造に用いる場合には、安定した制御を行うことができ、粒度分布をシャープすることができるが、内部電極用の銅微粒子として用いられるような微細な銅微粒子を得るのが困難であり、(連晶粒子や凝結粒子を含まない)個々に分離した微細粒子を得るのが困難である。   Moreover, the average particle diameter of the copper fine particles obtained by the method of Patent Document 6 is 0.5 to 4.0 μm, which is not sufficient for use as copper fine particles for internal electrodes. The reaction of this method is a reaction in which cupric oxide generated from divalent copper ions is reduced to cuprous oxide and then further reduced to copper particles. Reduction reaction from cupric oxide to copper particles Is a reaction called dissolution precipitation type. When this method is used for the production of copper particles having a large particle size, stable control can be performed and the particle size distribution can be sharpened, but the fine particles used as copper fine particles for internal electrodes can be used. It is difficult to obtain copper fine particles, and it is difficult to obtain finely separated fine particles (not including intergrowth particles and condensed particles).

さらに、特許文献7の方法で得られる銅微粒子の平均粒径は、一次粒子径が0.25〜0.5μm、二次粒子径が0.3〜0.6μmであり、平均粒径から判断すれば、内部電極用の銅粉として使用することができると考えられる。また、タップ密度が3.2〜3.4g/cmと微粒子にしては高タップ密度であり、分散性に優れているといえる。しかし、特許文献7の方法の反応は、硫黄化合物の存在下における反応であるため、銅微粒子の内部や表面に硫黄化合物が含まれる可能性がある。一般に、硫黄は電子部品の信頼性に悪影響を与える物質であるため、導電性ペースト用銅粉に含まれるのは好ましくない。 Furthermore, the average particle diameter of the copper fine particles obtained by the method of Patent Document 7 is 0.25 to 0.5 μm for the primary particle diameter and 0.3 to 0.6 μm for the secondary particle diameter, and is determined from the average particle diameter. If so, it can be used as copper powder for internal electrodes. In addition, it can be said that the tap density is 3.2 to 3.4 g / cm 3 and the fine particles have a high tap density and are excellent in dispersibility. However, since the reaction of the method of Patent Document 7 is a reaction in the presence of a sulfur compound, there is a possibility that the sulfur compound is contained inside or on the surface of the copper fine particles. In general, since sulfur is a substance that adversely affects the reliability of electronic components, it is not preferable to contain it in copper powder for conductive paste.

したがって、本発明は、このような従来の問題点に鑑み、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いなどの特性を有する銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉およびそのような導電性ペースト用銅粉を安定して製造することができる方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention is a monodispersed fine particle, the particle size distribution is sharp, does not include coarse particles, and the copper fine particles have characteristics such as a shape close to a true sphere, To provide a copper powder for conductive paste that enables thinning of an electrode and a method capable of stably producing such copper powder for conductive paste while avoiding adverse effects on electrical characteristics Objective.

本発明者らは、上記課題を解決するために鋭意研究した結果、2価の銅イオンを含む水溶液に還元剤を添加して銅粒子を還元析出させる銅粉の製造方法において、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に、凝集防止剤を含む反応促進剤を存在させることにより、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いなどの特性を有する銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉を安定して製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have added a reducing agent to an aqueous solution containing divalent copper ions, and in the method for producing copper powder in which copper particles are reduced and precipitated, divalent copper. The presence of a reaction accelerator containing an agglomeration inhibitor in at least one of an aqueous solution containing ions and a reducing agent allows monodispersed fine particles, sharp particle size distribution, no coarse particles, and a shape close to a true sphere. It has been found that the copper fine particles for conductive paste that can reduce the thickness of the electrode can be stably produced while avoiding adverse effects on the electrical characteristics, and the copper fine particles having characteristics such as It came to be completed.

すなわち、本発明による導電性ペースト用銅粉の製造方法は、2価の銅イオンを含む水溶液に還元剤を添加して銅粒子を還元析出させる銅粉の製造方法において、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に、凝集防止剤を含む反応促進剤を存在させることを特徴とする。この導電性ペースト用銅粉の製造方法において、反応促進剤が銅より貴な金属の粒子からなるのが好ましく、平均粒子径10〜100nmのAg粒子およびPd粒子の少なくとも一方からなるのがさらに好ましい。また、凝集防止剤が水溶性ポリマーであるのが好ましく、ポリエチレンイミンまたはメチルセルロースであるのがさらに好ましい。また、還元剤が、L−アスコルビン酸、D−エリソルビン酸またはこれらの混合物であるのが好ましい。さらに、2価の銅イオンを含む水溶液が、硫酸銅、硝酸銅またはこれらの混合物の水溶液であるのが好ましい。また、還元析出した銅粒子の表面にAl、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物を被着させてもよく、還元析出した銅粒子の表面をAl、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物で被覆してもよい。   That is, the method for producing a copper powder for conductive paste according to the present invention is a method for producing a copper powder in which a reducing agent is added to an aqueous solution containing divalent copper ions to reduce and precipitate copper particles. A reaction accelerator containing an aggregation inhibitor is present in at least one of the aqueous solution and the reducing agent. In this method for producing a copper powder for conductive paste, the reaction accelerator is preferably composed of particles of metal nobler than copper, and more preferably composed of at least one of Ag particles and Pd particles having an average particle diameter of 10 to 100 nm. . Further, the aggregation inhibitor is preferably a water-soluble polymer, more preferably polyethyleneimine or methylcellulose. Further, the reducing agent is preferably L-ascorbic acid, D-erythorbic acid or a mixture thereof. Furthermore, the aqueous solution containing divalent copper ions is preferably an aqueous solution of copper sulfate, copper nitrate or a mixture thereof. Further, a compound containing one or more selected from the group consisting of Al, Ba, Ti and Si may be deposited on the surface of the reduced and precipitated copper particles, and the surface of the reduced and precipitated copper particles may be coated with Al, Ba, Ti and You may coat | cover with the compound containing 1 or more types chosen from the group which consists of Si.

また、本発明による導電性ペースト用銅粉は、レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μm、検出の最大粒径(Dmax)が1.5μm以下であり、10〜10000ppmのAgおよびPdの少なくとも一方を含むことを特徴とする。この導電性ペースト用銅粉において、SEMによって観測された銅単体粒子の平均粒径(単体粒子径)に対する、レーザー回折式粒度分布測定装置によって観測された凝集粒子の50%粒径(凝集粒子径)の比(二次粒子径/一次粒子径)が2.0以下であるのが好ましい。また、SEMによって観測された銅粒子の中で単一の略球状の銅粒子の個数の割合が90%以上であるのが好ましい。さらに、導電性ペースト用銅粉の表面にAl、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物を被着させてもよく、導電性ペースト用銅粉の表面をAl、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物で被覆してもよい。 The copper powder for conductive paste according to the present invention has a 50% particle size (D 50 ) measured by a laser diffraction particle size distribution measuring device of 0.1 to 0.5 μm, and a maximum particle size (D max ) for detection. Is 1.5 μm or less, and contains at least one of 10 to 10000 ppm of Ag and Pd. In this copper powder for conductive paste, the 50% particle diameter (aggregated particle diameter) of the aggregated particles observed by the laser diffraction particle size distribution measuring device with respect to the average particle diameter (single particle diameter) of the copper single particle observed by SEM ) Ratio (secondary particle diameter / primary particle diameter) is preferably 2.0 or less. Moreover, it is preferable that the ratio of the number of single substantially spherical copper particles among the copper particles observed by SEM is 90% or more. Furthermore, the surface of the copper powder for conductive paste may be coated with a compound containing one or more selected from the group consisting of Al, Ba, Ti and Si, and the surface of the copper powder for conductive paste may be coated with Al, Ba, You may coat | cover with the compound containing 1 or more types chosen from the group which consists of Ti and Si.

さらに、本発明による導電性ペーストは、導電性粉体として上記の導電性ペースト用銅粉を含むことを特徴とする。   Furthermore, the conductive paste according to the present invention is characterized by containing the above-described copper powder for conductive paste as a conductive powder.

本発明によれば、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いなどの特性を有する銅微粒子であり、電気的特性への悪影響を回避しながら、電極の薄膜化を可能にする導電性ペースト用銅粉を安定して製造することができる。   According to the present invention, monodispersed fine particles are copper fine particles having characteristics such as a sharp particle size distribution, no coarse particles, and a shape close to a true sphere, while avoiding adverse effects on electrical characteristics. The copper powder for conductive paste that enables the electrode to be thin can be stably produced.

本発明による導電性ペースト用銅粉の製造方法の実施の形態では、2価の銅イオンを含む水溶液に還元剤を添加して銅粒子を還元析出させる銅粉の製造方法において、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に、凝集防止剤を含む反応促進剤(核剤)を存在させる。   In embodiment of the manufacturing method of the copper powder for electrically conductive paste by this invention, in the manufacturing method of the copper powder which adds a reducing agent to the aqueous solution containing a bivalent copper ion, and carries out reduction | restoration precipitation of a copper particle, bivalent copper A reaction accelerator (nucleating agent) containing an aggregation inhibitor is present in at least one of the aqueous solution containing ions and the reducing agent.

本発明による導電性ペースト用銅粉の製造方法の実施の形態は、2価の銅イオンを含む水溶液を、水酸化銅、酸化銅、亜酸化銅またはこれらの混合物を経由することなく、銅粒子まで直接還元する方法である。このような反応プロセスを取ることにより、粒径および粒度分布を制御するために存在する反応促進剤が効果的に作用する。また、水酸化銅、酸化銅または亜酸化銅の中間体を経由する溶解析出型の還元反応にならないので、粒子同士の凝集、凝結および結合が抑制された高分散した銅微粒子を得ることができる。すなわち、2価の銅イオンが、反応促進剤の表面で還元されて銅微粒子になる。   Embodiment of the manufacturing method of the copper powder for electrically conductive pastes by this invention is copper particle | grains, without passing aqueous solution containing a bivalent copper ion through copper hydroxide, copper oxide, cuprous oxide, or a mixture thereof. It is a method of reducing directly. By taking such a reaction process, the reaction accelerator which exists in order to control a particle size and a particle size distribution acts effectively. In addition, since it does not result in a dissolution-precipitation type reduction reaction via an intermediate of copper hydroxide, copper oxide or cuprous oxide, highly dispersed copper fine particles in which aggregation, aggregation and bonding between particles are suppressed can be obtained. . That is, divalent copper ions are reduced on the surface of the reaction accelerator to become copper fine particles.

湿式反応によって銅粉を製造する従来の一般的な方法では、2価の銅イオンを中和して、水酸化銅を作製し、温度調整により脱水反応を促進させて酸化銅を作製している。また、酸化銅を糖類などの弱い還元剤で亜酸化銅まで一次還元して生成した亜酸化銅を、ヒドラジンなどの強力な還元剤で銅粒子まで二次還元する方法も知られている。この方法の二次還元反応(亜酸化銅から銅への還元)では、亜酸化銅の固体から銅イオンが析出した後、その一部が還元されて銅の微細な核が生成され、その核が成長して銅粒子になる。この場合、銅イオンが亜酸化銅から溶解する反応と、溶解した銅イオンが銅粒子に還元される反応との2種類の反応が行われる。そのため、銅の微細な核を生成する工程と、その核が成長する工程とを厳密に分離し難く、その結果、二次核が発生し、粒度分布がブロードになり、粒径を制御し難い反応になる。また、還元初期の銅イオンの供給量が少ないので(大部分の銅は反応溶液中ではなく亜酸化銅中にあるので)、多量の核を発生させ難く、微粒子を得るのが困難である。また、還元剤の添加量を多くしたり、反応温度を高くしたりすることによって、多量の核を発生させるために銅イオンの溶解量を多くすることができたとしても、同時に還元反応を促進させることにもなり、その結果、還元と溶解が同時に起こることによって、異形粒子(粒子同士が凝結または結合して歪んだ形になった粒子)が多く発生するなどの問題がある。加えて、急激な反応になるため、液噴きや突沸が起こり、反応の安全面や再現性の面からも好ましくない。   In the conventional general method for producing copper powder by wet reaction, divalent copper ions are neutralized to produce copper hydroxide, and the dehydration reaction is promoted by adjusting the temperature to produce copper oxide. . There is also known a method in which cuprous oxide produced by primary reduction of cuprous oxide to cuprous oxide with a weak reducing agent such as saccharide is secondarily reduced to copper particles with a strong reducing agent such as hydrazine. In the secondary reduction reaction (reduction from cuprous oxide to copper) of this method, after copper ions are precipitated from the cuprous oxide solid, a part of it is reduced to produce fine copper nuclei. Grow into copper particles. In this case, two types of reactions are performed: a reaction in which copper ions are dissolved from cuprous oxide and a reaction in which the dissolved copper ions are reduced to copper particles. Therefore, it is difficult to strictly separate the process of generating fine copper nuclei and the process of growing the nuclei. As a result, secondary nuclei are generated, the particle size distribution becomes broad, and the particle size is difficult to control. Become a reaction. In addition, since the supply amount of copper ions at the initial stage of reduction is small (most of the copper is not in the reaction solution but in cuprous oxide), it is difficult to generate a large amount of nuclei and it is difficult to obtain fine particles. Even if the amount of copper ions dissolved can be increased by increasing the amount of reducing agent added or increasing the reaction temperature to generate a large amount of nuclei, the reduction reaction is simultaneously promoted. As a result, there is a problem in that a large number of irregularly shaped particles (particles that are distorted due to condensation or bonding of particles) are generated by simultaneous reduction and dissolution. In addition, since the reaction becomes abrupt, liquid jetting or bumping occurs, which is not preferable from the viewpoint of safety and reproducibility of the reaction.

そのため、本発明による導電性ペースト用銅粉の製造方法の実施の形態では、反応促進剤が存在する反応系において、2価の銅イオンから、水酸化銅、酸化銅、亜酸化銅またはこれらの混合物を経由することなく、銅粒子まで直接還元させている。   Therefore, in the embodiment of the method for producing a copper powder for conductive paste according to the present invention, in a reaction system in which a reaction accelerator is present, from divalent copper ions, copper hydroxide, copper oxide, cuprous oxide or these The copper particles are directly reduced without going through the mixture.

2価の銅イオンを使用するのは、1価の銅イオンの場合には、水溶性反応系で簡便に取り扱うことができる原料がないためである。例えば、シアン化銅(I)の場合には、(アルカリ溶液では銅への還元反応時に水酸化銅または亜酸化銅を経由し、)酸性溶液中では有毒なシアン化水素が発生するので、安全に反応するためには相応の設備が必要であり、取扱上の制約も多くなる。2価の銅イオンの供給源になる原料として、コスト、入手し易さ、取り扱いの安全性から、硫酸銅(水和物を含む)、硝酸銅(水和物を含む)またはこれらの混合物を使用するのが好ましい。   The reason why divalent copper ions are used is that, in the case of monovalent copper ions, there are no raw materials that can be easily handled in a water-soluble reaction system. For example, in the case of copper (I) cyanide, toxic hydrogen cyanide is generated in an acidic solution (via an alkali solution via copper hydroxide or cuprous oxide during the reduction reaction to copper). In order to do so, appropriate equipment is required, and there are many restrictions on handling. As raw materials to be a source of divalent copper ions, copper sulfate (including hydrates), copper nitrate (including hydrates), or a mixture thereof is used because of cost, availability, and safety of handling. It is preferred to use.

2価の銅イオンを銅微粒子へ還元する還元剤として、L−アスコルビン酸、D−エリソルビン酸またはこれらの混合物を使用するのが好ましい。また、還元剤は、酸性側で2価の銅イオンを銅まで還元するのが好ましい。酸性側が好ましいのは、銅のpH−電位図によれば、中性〜アルカリ性側での還元反応する場合は、2価の銅イオンの中和反応によって水酸化銅が生成するおそれがあり、また、水酸化銅が生成しなくても、亜酸化銅が生成するおそれがあるからである。また、使用する錯化剤やキレート剤などによって2価の銅イオンの各pHにおける還元電位が変化するので、pHを厳密に決定することはできないが、pH5以下、好ましくはpH4以下で2価の銅イオンを銅まで還元する還元剤を使用するのが好ましい。なお、反応pHは、低い程よいわけではない。反応pHが低いと、2価の銅イオンの溶解度が高くなり、還元を阻害するおそれがあり、生成した銅粒子の再溶出が起こるため、反応pHは1〜4であるのが好ましい。   It is preferable to use L-ascorbic acid, D-erythorbic acid or a mixture thereof as a reducing agent that reduces divalent copper ions to copper fine particles. Further, the reducing agent preferably reduces divalent copper ions to copper on the acidic side. According to the pH-potential diagram of copper, the acidic side is preferable. When a reduction reaction is carried out on the neutral to alkaline side, copper hydroxide may be generated by a neutralization reaction of divalent copper ions. This is because even if copper hydroxide is not generated, cuprous oxide may be generated. In addition, since the reduction potential of divalent copper ions at each pH varies depending on the complexing agent or chelating agent used, the pH cannot be determined strictly, but the divalent is not more than pH 5, preferably not more than pH 4. It is preferable to use a reducing agent that reduces copper ions to copper. Note that the lower the reaction pH, the better. When the reaction pH is low, the solubility of divalent copper ions increases, and there is a possibility that the reduction may be inhibited, and the produced copper particles are re-eluted. Therefore, the reaction pH is preferably 1 to 4.

このような還元剤として、L−アスコルビン酸、D−エリソルビン酸、次亜リン酸、次亜リン酸Na、水素化ホウ素化合物、ヒドラジン類などが挙げられる。しかし、本発明者らが鋭意研究した結果、ヒドラジン類は、酸性側でも2価の銅イオンを還元することができるが、酸性側では還元力が弱く、所望の粒径の銅粒子を得ることができなかった。また、次亜リン酸や次亜リン酸Naでは、異形粒子(粒子同士が凝結または結合して歪んだ形になった粒子)が生じ、所望の形状および粒径の銅粒子を得ることができなかった。さらに、水素化ホウ素化合物は、酸性側では自己分解(水の還元)が生じて取り扱いが困難であった。一方、L−アスコルビン酸やD−エリソルビン酸は、酸性側で2価の銅イオンを銅まで還元することができ、取り扱い易く、所望の銅微粒子を得ることができるので、L−アスコルビン酸、D−エリソルビン酸またはこれらの混合物を使用するのが好ましい。   Examples of such a reducing agent include L-ascorbic acid, D-erythorbic acid, hypophosphorous acid, sodium hypophosphite, borohydride compounds, hydrazines, and the like. However, as a result of intensive studies by the present inventors, hydrazines can reduce divalent copper ions even on the acidic side, but the reducing power is weak on the acidic side, and copper particles having a desired particle size can be obtained. I could not. In addition, hypophosphorous acid or sodium hypophosphite produces irregularly shaped particles (particles that are distorted due to condensation or bonding between the particles), and copper particles having a desired shape and particle size can be obtained. There wasn't. Furthermore, the borohydride compound is difficult to handle due to autolysis (reduction of water) on the acidic side. On the other hand, L-ascorbic acid and D-erythorbic acid can reduce divalent copper ions to copper on the acidic side, are easy to handle, and can obtain desired copper fine particles. -It is preferred to use erythorbic acid or mixtures thereof.

反応促進剤として、TEMより観察された平均粒径が10〜100nmのAg粒子およびPd粒子の少なくとも一方を使用するのが好ましい。AgやPdの他に、Au、Pt、白金族元素なども使用することができるが、Ag粒子やPd粒子が好ましいのは、(平均粒径が10〜100nmの)微粒な反応促進剤(核剤)を得るために、還元速度が速く(貴な金属である必要があり)、その結果、少量の使用で済むので、コストがそれ程かからず、また、一般に人体および環境への影響(Hgなど)が懸念されない物質であるからである。   As the reaction accelerator, it is preferable to use at least one of Ag particles and Pd particles having an average particle diameter of 10 to 100 nm observed by TEM. In addition to Ag and Pd, Au, Pt, platinum group elements and the like can also be used. However, Ag particles and Pd particles are preferable because of a fine reaction accelerator (nucleus having an average particle diameter of 10 to 100 nm) (Required to be a noble metal), resulting in less cost and less cost, and generally less impact on the human body and the environment (Hg This is because the substance is not a concern.

得られる銅微粒子の粒子径は、反応促進剤として使用するAg粒子やPd粒子が、仕込みの銅イオンに対して何個存在するかによって決定される。反応促進剤の粒子径が100nmより大きい場合は、使用するAgやPdの割合が多くなり、コスト上不利になる。また、目的とする銅微粒子の粒径が0.1μmである場合は、それより小さいAg粒子およびPd粒子の少なくとも一方を反応促進剤として使用するのが好ましい。コストおよび制御上の関係から(より多くの反応促進剤を添加すると仕込みの2価の銅イオン量および還元剤量が制約されるため)、目的とする銅粒子径に対して1/50〜1/5の大きさの反応促進剤としてのAg粒子およびPd粒子の少なくとも一方を使用するのが好ましい。したがって、反応促進剤として、TEMより観察された平均粒径が10〜100nmのAg粒子およびPd粒子の少なくとも一方を使用するのが好ましい。   The particle diameter of the obtained copper fine particles is determined by the number of Ag particles and Pd particles used as reaction accelerators with respect to the charged copper ions. When the particle size of the reaction accelerator is larger than 100 nm, the ratio of Ag or Pd to be used increases, which is disadvantageous in terms of cost. In addition, when the target copper fine particle has a particle size of 0.1 μm, it is preferable to use at least one of smaller Ag particles and Pd particles as a reaction accelerator. From a cost and control relationship (because addition of more reaction accelerators limits the amount of charged divalent copper ions and the amount of reducing agent), 1/50 to 1 to the target copper particle diameter It is preferable to use at least one of Ag particles and Pd particles as a reaction accelerator having a size of / 5. Therefore, it is preferable to use at least one of Ag particles and Pd particles having an average particle diameter of 10 to 100 nm observed by TEM as a reaction accelerator.

反応促進剤中に含まれる凝集防止剤は、銅粒子の凝集を防ぐためではなく、反応促進剤として生成したAg粒子やPd粒子の凝集を防ぐための凝集防止剤であり、その表面に銅が還元析出するのを阻害しないものであればよく、水溶性ポリマーを使用することができる。水溶性ポリマーの量は、生成する粒子径などにもよるが、Ag粒子やPd粒子の重量に対して1〜10倍程度であるのが好ましい。   The aggregation inhibitor contained in the reaction accelerator is an aggregation inhibitor for preventing aggregation of Ag particles and Pd particles generated as a reaction accelerator, not to prevent aggregation of copper particles, and copper is present on the surface thereof. Any water-soluble polymer may be used as long as it does not inhibit the reduction precipitation. The amount of the water-soluble polymer is preferably about 1 to 10 times the weight of the Ag particles or Pd particles, although it depends on the particle size to be produced.

水溶性ポリマーとして、セルロース誘導体、ゼラチン、可溶性デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、アクリル酸(塩)含有ポリマー、スチレン−無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物、水溶性ポリウレタンなどを使用することができる。セルロース誘導体としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロースおよびこれらのケン化物や、カチオン化セルロースなどがある。アクリル酸(塩)含有ポリマーとしては、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の水酸化ナトリウム部分中和物、アクリル酸ナトリウム−アクリル酸エステル共重合体などがある。水溶性ポリウレタンとしては、ポリエチレングリコールなどや、ポリイソシアネートの反応生成物などがある。これらの水溶性ポリマーのうち、ポリエチレンイミンまたはメチルセルロースを使用するのが好ましい。   As water-soluble polymers, cellulose derivatives, gelatin, soluble starch, dextrin, gum arabic, chitin, chitosan, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylamide, acrylic acid (salt) -containing polymers, styrene-maleic anhydride A sodium hydroxide (partial) neutralized product of a copolymer, water-soluble polyurethane, or the like can be used. Examples of the cellulose derivative include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, saponified products thereof, and cationized cellulose. Examples of the acrylic acid (salt) -containing polymer include sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, sodium hydroxide partial neutralized product of polyacrylic acid, and sodium acrylate-acrylic acid ester copolymer. . Examples of the water-soluble polyurethane include polyethylene glycol and a reaction product of polyisocyanate. Of these water-soluble polymers, polyethyleneimine or methylcellulose is preferably used.

凝集防止剤を含む反応促進剤は、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に存在するのが好ましい。また、反応促進剤は、2価の銅イオンを還元する直前に、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に添加してもよいし、まず、反応促進剤を含む水溶液を作製し、この水溶液の中に2価の銅イオンを含む水溶液または還元剤を加えた溶液を用意し、この反応促進剤と2価の銅イオンおよび還元剤の一方が存在する溶液に、2価の銅イオンおよび還元剤の他方を添加することによって、還元反応を行ってもよい。この還元反応では、反応促進剤としてのAg粒子やPd粒子の個数が銅粒子の粒子径を決定する主な因子になるため、反応の自由度があり、また、反応の再現性に優れている。   The reaction accelerator containing the aggregation inhibitor is preferably present in at least one of the aqueous solution containing divalent copper ions and the reducing agent. Moreover, the reaction accelerator may be added to at least one of the aqueous solution containing divalent copper ions and the reducing agent immediately before reducing the divalent copper ions, or first, an aqueous solution containing the reaction accelerator is prepared. Then, an aqueous solution containing divalent copper ions or a reducing agent is added to the aqueous solution, and a divalent copper ion and a reducing agent are added to the solution containing the reaction accelerator and one of the divalent copper ions and the reducing agent. You may perform a reductive reaction by adding the other of a copper ion and a reducing agent. In this reduction reaction, the number of Ag particles and Pd particles as reaction accelerators is the main factor determining the particle size of the copper particles, so there is a degree of freedom of reaction and excellent reproducibility of the reaction. .

反応促進剤の作製に使用するPd原料またはAg原料は、水溶性であり、入手し易く、取り扱い易いものであればよく、例えば、硝酸Pd、硝酸Ag、硫酸Agなどが挙げられる。   The Pd raw material or the Ag raw material used for the production of the reaction accelerator may be water-soluble, easily available, and easy to handle, and examples thereof include Pd nitrate, Ag nitrate, and sulfuric acid Ag.

また、反応促進剤の水溶液中のAgやPdのイオン濃度は、高過ぎると、還元反応により10〜100nmのAg粒子やPd粒子を得ることが困難になり、低過ぎると、(仕込みの2価の銅イオン量や目的とする粒径にもよるが)添加する反応促進剤の量が多くなるため、0.00001〜0.01モル/Lであるのが好ましい。   Moreover, if the ion concentration of Ag or Pd in the aqueous solution of the reaction accelerator is too high, it will be difficult to obtain Ag particles or Pd particles of 10 to 100 nm by a reduction reaction, and if it is too low, (Depending on the amount of copper ions and the target particle size), the amount of the reaction accelerator to be added is increased, so 0.00001 to 0.01 mol / L is preferable.

AgイオンまたはPdイオンの溶液を還元するために使用する還元剤は、なるべく強力な還元力を有するものであればよく、例えば、ヒドラジン類や水素化ホウ素化合物などが挙げられる。この還元剤の添加量は、化学量論的にAgイオンまたはPdイオンを還元することができる量以上であることが必要である。この還元剤の添加量が少ないと、十分な還元力が得られず、AgやPdの粒子径が10〜100nmの大きさにならず、一方、添加量が多過ぎると、次工程において銅に還元する際に残存する還元剤の還元力や溶液のpHなどの影響が無視できなくなる。そのため、AgイオンまたはPdイオンの仕込み濃度の状態や還元条件(銅の仕込み条件など)により一概にはいえないが、還元剤の添加量は、AgイオンまたはPdイオンに対して1〜40当量であるのが好ましい。また、反応温度は、20℃〜80℃程度であればよい。   The reducing agent used for reducing the Ag ion or Pd ion solution may be any reducing agent as much as possible, and examples thereof include hydrazines and borohydride compounds. The amount of the reducing agent added needs to be at least the amount capable of reducing Ag ions or Pd ions stoichiometrically. If the amount of the reducing agent added is small, sufficient reducing power cannot be obtained, and the particle diameter of Ag or Pd is not as large as 10 to 100 nm. Effects such as the reducing power of the reducing agent remaining during the reduction and the pH of the solution cannot be ignored. Therefore, although it cannot be generally said depending on the state of the charged concentration of Ag ions or Pd ions and the reducing conditions (copper charged conditions, etc.), the addition amount of the reducing agent is 1 to 40 equivalents with respect to the Ag ions or Pd ions. Preferably there is. Moreover, the reaction temperature should just be about 20 degreeC-80 degreeC.

還元剤の添加方法は、溶液内の均一反応を実現する観点から、添加する溶液を一挙に添加するのが好ましい。具体的な添加時間は、反応溶液の攪拌方法(溶液の拡散速度)、反応スケールにより一概にはいえないが、速い程よく、例えば1分以内であるのが好ましい。また、還元の際に反応液を攪拌するのが好ましい。   As a method for adding the reducing agent, it is preferable to add the solutions to be added all at once from the viewpoint of realizing a uniform reaction in the solution. Although the specific addition time cannot be generally specified depending on the stirring method of the reaction solution (diffusion speed of the solution) and the reaction scale, it is preferable that the addition time is fast, for example, within 1 minute. Moreover, it is preferable to stir the reaction liquid during the reduction.

還元により得られたAg粒子やPd粒子の凝集を防ぐために、凝集防止剤としてポリエチレンイミンまたはメチルセルロースを添加するのが好ましい。凝集防止剤は、AgイオンまたはPdイオンの還元前に添加してもよいし、還元終了後に添加してもよい。   In order to prevent aggregation of Ag particles and Pd particles obtained by reduction, it is preferable to add polyethyleneimine or methylcellulose as an aggregation inhibitor. The aggregation inhibitor may be added before the reduction of Ag ions or Pd ions, or may be added after the reduction is completed.

2価の銅イオンを銅まで還元する際に添加する還元剤の量は、化学量論的に2価の銅イオンを銅まで還元することができる量以上であることが必要である。この還元剤の量が多過ぎるとコスト的に不利になるので、2価の銅イオンの原料に対して1〜10モルであるのが好ましい。   The amount of the reducing agent to be added when divalent copper ions are reduced to copper needs to be greater than or equal to the stoichiometric amount capable of reducing divalent copper ions to copper. If the amount of the reducing agent is too large, it is disadvantageous in terms of cost.

この還元反応時の攪拌方法としては、反応液が均一に混ざるような方法であればよく、例えば、マグネットスターラーにより攪拌する方法や、羽根を備え付けた攪拌棒を反応溶液中に設置して外部モーターにより回転させることにより攪拌する方法などが挙げられる。この還元時の反応温度は、20〜100℃程度であればよく、反応の制御性から40〜80℃であるのが好ましい。   As a stirring method at the time of the reduction reaction, any method may be used as long as the reaction solution is uniformly mixed. For example, a stirring method using a magnetic stirrer or a stirring rod equipped with a blade is installed in the reaction solution to provide an external motor. And the like. The reaction temperature during this reduction may be about 20 to 100 ° C., and is preferably 40 to 80 ° C. from the viewpoint of controllability of the reaction.

反応促進剤としてのAg粒子やPd粒子の割合は、生成したAg粒子やPd粒子の粒径(10〜100nm)、銅イオンの仕込み量および目的とする粒径(0.1〜0.5μm)から適宜決定すればよい。   The ratio of Ag particles and Pd particles as a reaction accelerator is as follows: the particle size of Ag particles and Pd particles produced (10 to 100 nm), the charged amount of copper ions, and the desired particle size (0.1 to 0.5 μm). It may be determined as appropriate.

銅への還元反応では、溶液内の均一反応を実現する観点から、添加する溶液を一挙に添加するのが好ましい。具体的な添加時間は、反応溶液の攪拌方法(溶液の拡散速度)、反応スケールにより一概にはいえないが、例えば1分以内であるのが好ましい。この還元反応では、2価の銅イオンを含む水溶液と還元剤を混合すると直ぐに反応が発生するため、長時間反応させる必要はなく、具体的には10分以内でよい。   In the reduction reaction to copper, it is preferable to add the solutions to be added all at once from the viewpoint of realizing a uniform reaction in the solution. The specific addition time cannot be generally determined depending on the reaction solution stirring method (solution diffusion rate) and reaction scale, but is preferably within 1 minute, for example. In this reduction reaction, when an aqueous solution containing divalent copper ions and a reducing agent are mixed, the reaction occurs immediately. Therefore, it is not necessary to carry out the reaction for a long time, and specifically, it may be within 10 minutes.

このようにして得られた銅粉含有スラリーをろ過し、水洗することによって、塊状の銅ケーキが得られる。ろ過および水洗の方法としては、フィルタープレスなどにより粉体を固定した状態で水洗する方法や、スラリーをデカントし、その上澄み液を除去した後に純水を加えて攪拌し、その後、再びデカントして上澄み液を除去する操作を繰り返し行う方法や、ろ過後の銅粉をリパルプした後に再度ろ過する操作を繰り返し行う方法などのいずれでもよいが、銅粉体中に局所的に残留している不純物をできる限り除去することができる方法が好ましく、これにより、乾燥処理中の凝集を防止する効果や、銅粉の表面に存在する官能基の活性度合いが高まることにより脂肪酸を表面処理した際の脂肪酸や表面処理剤などの銅粉への付着率が高まる効果があると考えられる。その後、脂肪酸やベンゾトリアゾール(BTA)などの防錆効果ある物質を低級アルコールなどに溶解し、水洗した銅ケーキに通液またはリパルプさせることにより、その物質で被覆してもよいし、また、銅ケーキの乾燥を早めるために、銅ケーキ中の水分を低級アルコールにより置換してもよい。また、得られた銅ケーキを、酸化させない雰囲気において乾燥(窒素雰囲気中の乾燥や真空乾燥)することによって銅微粒子を得ることができる。また、必要に応じて、乾式解砕処理、篩分け、風力分級などの処理を行ってもよい。   The copper powder-containing slurry thus obtained is filtered and washed with water to obtain a massive copper cake. As a method of filtration and washing with water, a method of washing with powder fixed by a filter press or the like, or decanting the slurry, removing the supernatant liquid, stirring with pure water, and then decanting again Either the method of repeatedly removing the supernatant liquid or the method of repeatedly filtering the filtered copper powder and then re-filtering it may be used, but impurities remaining locally in the copper powder may be removed. A method that can be removed as much as possible is preferable, whereby the effect of preventing aggregation during the drying treatment and the fatty acid when the fatty acid is surface-treated by increasing the activity of the functional groups present on the surface of the copper powder. It is thought that there is an effect of increasing the adhesion rate to the copper powder such as a surface treatment agent. Thereafter, a substance having an antirust effect such as fatty acid and benzotriazole (BTA) may be dissolved in a lower alcohol or the like, and coated with the substance by passing or repulping it into a washed copper cake. In order to accelerate the drying of the cake, the water in the copper cake may be replaced with a lower alcohol. Moreover, copper fine particles can be obtained by drying the obtained copper cake in an atmosphere that does not oxidize (drying in a nitrogen atmosphere or vacuum drying). Moreover, you may perform processes, such as a dry crushing process, sieving, and an air classification, as needed.

なお、2価の銅イオンを含む水溶液に、2価の銅イオンと錯体やキレートを形成する物質や、銅微粒子の凝集を抑制する分散剤を添加してもよい(但し、これらの添加により還元反応時に水酸化銅や亜酸化銅を経由するようなpH領域にならないようにする必要がある)。例えば、クエン酸や酢酸などのカルボキシル基を有する物質、グリシンやアラニンなどのアミノ基とカルボキシル基を有する物質、ポリエチレンイミンなどのキレート剤、アラビアゴムやゼラチンなどの分散剤などを添加してもよい。   It should be noted that a substance that forms a complex or chelate with a divalent copper ion or a dispersant that suppresses aggregation of copper fine particles may be added to an aqueous solution containing divalent copper ions (however, reduction by these additions) It is necessary to avoid a pH range that passes through copper hydroxide or cuprous oxide during the reaction). For example, a substance having a carboxyl group such as citric acid or acetic acid, a substance having an amino group and a carboxyl group such as glycine or alanine, a chelating agent such as polyethyleneimine, a dispersant such as gum arabic or gelatin may be added. .

また、作製した銅粉を積層セラミックコンデンサの内部電極に使用する場合に、誘電体グリーンシートとともに焼成する際の銅粉の熱収縮挙動(焼結挙動)を変化させるために、誘電体に使用される金属化合物と同じ種類の金属を含む化合物(例えば、チタン酸バリウム、チタニア、アルミナ、シリカなど)を銅粉の表面に被着させてもよい(またはその化合物で銅粉の表面を被覆してもよい)。このような処理によって、銅粉を積層セラミックコンデンサの内部電極に使用する場合に、誘電体と銅粉の焼結挙動を合わせることが可能になり、その結果、誘電体と電極との剥離(デラミネーション)の発生による不良を防止することができる。   In addition, when the produced copper powder is used as an internal electrode of a multilayer ceramic capacitor, it is used for dielectrics to change the thermal shrinkage behavior (sintering behavior) of copper powder when fired together with the dielectric green sheet. A compound containing the same type of metal as the metal compound (for example, barium titanate, titania, alumina, silica, etc.) may be deposited on the surface of the copper powder (or by coating the surface of the copper powder with the compound) May be good). Such treatment makes it possible to match the sintering behavior of the dielectric and the copper powder when the copper powder is used as the internal electrode of the multilayer ceramic capacitor. Defects due to the occurrence of lamination can be prevented.

銅粉の表面に被着させる方法(または銅粉の表面を被覆する方法)は、生成した銅粒子を凝集させない方法であればよい。例えば、作製した銅粉をアルコール中に分散させた溶液に(誘電体材料を含む物質である)金属アルコキシドを加えて加水分解した後にろ過して乾燥する方法、銅粉と(誘電体材料を含む物質である)金属アルコキシド溶液とを混合する方法、誘電体として使用する物質(銅粉の粒子径と同じか、それ以下の粒子径のもの)と銅粉を乾式または湿式により混合する方法などがある。また、その被着量または被覆量は、内部電極の導電性を劣化させず且つ収縮挙動に効果がある量であればよく、例えば、銅粒子に対して0.1〜10質量%程度であるのが好ましい。   The method of depositing on the surface of the copper powder (or the method of coating the surface of the copper powder) may be any method as long as the generated copper particles are not aggregated. For example, a method in which a metal alkoxide (which is a substance containing a dielectric material) is added to a solution in which the produced copper powder is dispersed in alcohol, hydrolyzed and then filtered and dried, and copper powder (including a dielectric material) A method of mixing a metal alkoxide solution (which is a substance), a method of mixing a substance to be used as a dielectric (having a particle diameter equal to or smaller than the particle diameter of copper powder) and copper powder in a dry or wet manner. is there. Further, the deposition amount or the coating amount may be an amount that does not deteriorate the conductivity of the internal electrode and has an effect on the shrinkage behavior, and is, for example, about 0.1 to 10% by mass with respect to the copper particles. Is preferred.

上述した本発明による導電性ペースト用銅粉の製造方法の実施の形態によって製造した導電性ペースト用銅粉は、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いものであり、積層セラミックコンデンサの内部電極の導電性ペースト用や外部電極の導電性ペースト用の銅粉として適した銅粉であり、この導電性ペースト用銅粉を用いて、公知の方法により導電性ペーストを製造することができる。このようにして製造した導電性ペーストは、電気的特性への悪影響を回避しながら電極の薄膜化を可能にし、積層セラミックコンデンサの内部電極用や外部電極用の導電性ペーストとして使用することができる。   The copper powder for conductive paste manufactured according to the above-described embodiment of the method for manufacturing copper powder for conductive paste according to the present invention is monodispersed fine particles, has a sharp particle size distribution, does not contain coarse particles, and has a true shape. It is close to a sphere, and is a copper powder suitable as a copper powder for a conductive paste for an internal electrode of a multilayer ceramic capacitor or a conductive paste for an external electrode. Using this copper powder for a conductive paste, A conductive paste can be produced by the method. The conductive paste produced in this way enables electrode thinning while avoiding adverse effects on electrical characteristics, and can be used as a conductive paste for internal electrodes and external electrodes of multilayer ceramic capacitors. .

また、本発明による導電性ペースト用銅粉の製造方法の実施の形態によって製造した導電性ペースト用銅粉は、レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μm、検出の最大粒径(Dmax)が1.5μm以下であり、10〜10000ppmのAgおよびPdの少なくとも一方を含む。レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)が0.1〜0.5μmであれば、積層セラミックコンデンサなどの高容量化や小型化のために必要な内部電極の薄層化(近年では層の厚さ1.5μm以下)を実現することができる。また、検出の最大粒径(Dmax)が1.5μm以下であれば、内部電極と誘電体セラミックグリーンシートを積層させた際に、内部電極の薄層における粗粒の存在により誘電体層を突き破って絶縁不良を引き起こすおそれがない。さらに、10〜10000ppmのAgおよびPdの少なくとも一方を含むのは、上記の粒径の銅微粒子を得るために必要な反応促進剤に含まれるためである。10ppm未満では、上記の粒径の銅微粒子を得る上で困難になり、10000ppmより多いと、コスト高になり、品質に悪影響を及ぼす可能性がある。 Further, the copper powder for conductive paste manufactured by the embodiment of the method for manufacturing copper powder for conductive paste according to the present invention has a 50% particle size (D 50 ) measured by a laser diffraction particle size distribution measuring device of 0. 0.1 to 0.5 μm, the maximum particle size (D max ) for detection is 1.5 μm or less, and contains at least one of 10 to 10000 ppm of Ag and Pd. If the 50% particle size (D 50 ) measured by a laser diffraction particle size distribution analyzer is 0.1 to 0.5 μm, the internal electrode necessary for high capacity and miniaturization of a multilayer ceramic capacitor and the like Thinning (in recent years, layer thickness of 1.5 μm or less) can be realized. Further, if the maximum particle size (D max ) of detection is 1.5 μm or less, the dielectric layer is formed due to the presence of coarse particles in the thin layer of the internal electrode when the internal electrode and the dielectric ceramic green sheet are laminated. There is no risk of breaking through and causing poor insulation. Further, the reason why it contains at least one of Ag and Pd of 10 to 10,000 ppm is that it is contained in a reaction accelerator necessary for obtaining copper fine particles having the above particle diameter. If it is less than 10 ppm, it is difficult to obtain copper fine particles having the above-mentioned particle diameter, and if it exceeds 10000 ppm, the cost is increased and the quality may be adversely affected.

また、上述した検出の最大粒径(Dmax)の存在と同様に、凝集粒子の存在も上記の内部電極の形成に悪影響を及ぼす。そのため、導電性ペースト用銅粉は、一次粒子(単体粒子)だけが個々に存在している形態であるのが好ましい。具体的には、電界放出形走査電子顕微鏡(SEM)によって観測される単体粒子(一次粒子)の平均粒径(単体粒子径)に対して、レーザー回折式粒度分布測定装置によって観測される凝集粒子(二次粒子)の50%粒径(凝集粒子径)の比(二次粒子径/一次粒子径)が2.0以下であるのが好ましい。 In addition, the presence of aggregated particles has an adverse effect on the formation of the internal electrode, similar to the presence of the maximum particle diameter (D max ) for detection described above. Therefore, the copper powder for conductive paste is preferably in a form in which only primary particles (single particles) are present individually. Specifically, agglomerated particles observed by a laser diffraction particle size distribution measuring device with respect to the average particle size (single particle size) of single particles (primary particles) observed by a field emission scanning electron microscope (SEM) The ratio (secondary particle diameter / primary particle diameter) of 50% particle diameter (aggregated particle diameter) of (secondary particles) is preferably 2.0 or less.

さらに、上述した検出の最大粒径(Dmax)の存在と同様に、結合または凝結粒子(連晶粒子)の存在も内部電極の形成に悪影響(粗大粒子の原因や電極形成時の膜密度の低下(粉体特性のTAP密度の低下))を及ぼす。なお、本明細書中において「凝集粒子」とは、静電気引力などの作用により物理的に単一の粒子が数個〜数十個集まって形成された一つの大きな粒子(還元反応後に生成された粒子)をいい、「結合または凝結粒子(連晶粒子)」とは、銅イオンの還元反応により略球状の粒子の表面に銅粒子が成長して歪んだ形状の粒子をいう。凝集粒子は、比較的弱い力により単一粒子(一次粒子)まで解砕して分散させることができるが、結合または凝結粒子(連晶粒子)は、強力な外力を加えないと解砕する(剥がす)ことができず、解砕することができたとしても、剥がれた部分の面が露出することによって、粒子の表面特性が元からある表面特性と異なり、導電性ペーストに使用した際の悪影響や、解砕作業やペースト混錬作業において良好に分散させることができず、粒子の付着が生じ(結合または凝結粒子が一つの粗大粒子になり)、さらに粗大な粒子になる可能性がある。そのため、SEMによって観測される銅粒子の中で単一の略球状の銅粒子の個数の割合が90%以上であるのが好ましい。 Further, similar to the presence of the maximum particle size (D max ) of detection described above, the presence of bound or condensed particles (intergranular particles) has an adverse effect on the formation of internal electrodes (cause of coarse particles and film density at the time of electrode formation). Reduction (decrease in TAP density of powder properties). In the present specification, “aggregated particles” means one large particle (generated after the reduction reaction) formed by collecting several to tens of physical single particles by an action such as electrostatic attraction. The term “bonded or condensed particles (continuous crystal particles)” refers to particles having a shape that is distorted by the growth of copper particles on the surface of substantially spherical particles due to the reduction reaction of copper ions. Aggregated particles can be crushed and dispersed to a single particle (primary particle) with relatively weak force, but bonded or agglomerated particles (intergranular particles) are crushed without applying a strong external force ( Even if it can not be peeled off and can be crushed, the surface of the peeled part is exposed, and the surface characteristics of the particles differ from the original surface characteristics. In addition, it cannot be dispersed well in the pulverization operation or paste kneading operation, and particle adhesion occurs (bonded or coagulated particles become one coarse particle), which may result in coarser particles. Therefore, it is preferable that the ratio of the number of single substantially spherical copper particles among the copper particles observed by SEM is 90% or more.

以下、本発明による導電性ペースト用銅粉およびその製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the copper powder for electrically conductive paste by this invention and its manufacturing method is described in detail.

[実施例1]
まず、5Lの反応槽内に純水3410gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を200rpmに調整し、反応槽内の純水の温度を25℃に調整した。次に、硝酸パラジウム(II)(和光純薬工業株式会社製)0.0922gを純水250gに溶解した溶液を反応槽内に入れ、2分間攪拌して均一に混合した。次に、還元剤として0.1%ヒドラジン水和物溶液(大塚化学株式会社製の80%ヒドラジン水和物を純水により希釈した溶液)100gを反応槽内の溶液に一挙に添加して還元反応を行った。次に、凝集防止剤としてポリエチレンイミン(PEI)(和光純薬工業株式会社製、平均分子量10000)0.4256gを純水210gに溶解した溶液を反応槽内の溶液に添加し、10分間攪拌して反応促進剤の溶液を得た。得られた溶液中の反応促進剤は、透き通った薄い黒色で、この溶液を透過電子顕微鏡(TEM)で観察したところ、溶液中の反応促進剤は平均粒径25nmの粒子であった。
[Example 1]
First, 3410 g of pure water was put in a 5 L reaction tank, nitrogen was supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank was changed. The temperature was adjusted to 200 rpm, and the temperature of pure water in the reaction vessel was adjusted to 25 ° C. Next, a solution in which 0.0922 g of palladium nitrate (II) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 250 g of pure water was placed in the reaction vessel, and stirred for 2 minutes to mix uniformly. Next, 100 g of a 0.1% hydrazine hydrate solution (a solution obtained by diluting 80% hydrazine hydrate manufactured by Otsuka Chemical Co., Ltd. with pure water) as a reducing agent was added to the solution in the reaction tank at once and reduced. Reaction was performed. Next, a solution prepared by dissolving 0.4256 g of polyethyleneimine (PEI) (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10,000) as an aggregation inhibitor in 210 g of pure water is added to the solution in the reaction vessel and stirred for 10 minutes. Thus, a reaction accelerator solution was obtained. The reaction accelerator in the obtained solution was clear and light black, and when this solution was observed with a transmission electron microscope (TEM), the reaction accelerator in the solution was a particle having an average particle diameter of 25 nm.

また、2Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、還元剤としてL−アスコルビン酸(和光純薬工業株式会社製)33.0gを添加して溶解させて、還元剤溶液を得た。この還元剤溶液に上記の反応促進剤447gを計量して添加した後、1分間攪拌して均一になるように混合した。   Further, 600 g of pure water was put into a 2 L beaker, and while adjusting the temperature of pure water to 60 ° C., 33.0 g of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved as a reducing agent. A reducing agent solution was obtained. 447 g of the above reaction accelerator was weighed and added to this reducing agent solution, and then stirred for 1 minute and mixed uniformly.

また、5Lの反応槽内に純水3000gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を290rpmに調整し、反応槽内の純水の温度を60℃に調整しながら、硫酸銅5水和物(小名浜製錬株式会社製)37.5gを添加して溶解させて、2価の銅イオンを含む水溶液を得た。   Also, 3000 g of pure water is put into a 5 L reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is adjusted. While adjusting to 290 rpm and adjusting the temperature of pure water in the reaction vessel to 60 ° C., 37.5 g of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was added and dissolved to divalent copper. An aqueous solution containing ions was obtained.

次に、この2価の銅イオンを含む水溶液が入っている反応槽の上部から、上記の反応促進剤を添加した還元剤溶液を一挙に添加して還元反応を行った。この還元剤溶液を添加した直後に銅粒子が発生したのが確認された。なお、添加した反応促進剤中のPd量はCuに対して約500ppmである。反応槽内の溶液を連続して攪拌し、その状態のまま5分間熟成させた後、攪拌を止め、洗浄し、乾燥させて、銅微粒子を得た。   Next, from the upper part of the reaction vessel containing the aqueous solution containing the divalent copper ions, the reducing agent solution added with the above reaction accelerator was added all at once to perform a reduction reaction. It was confirmed that copper particles were generated immediately after this reducing agent solution was added. The amount of Pd in the added reaction accelerator is about 500 ppm with respect to Cu. The solution in the reaction vessel was continuously stirred and aged for 5 minutes in that state, and then the stirring was stopped, washed and dried to obtain copper fine particles.

[実施例2]
反応促進剤を還元剤溶液に添加せずに2価の銅イオンを含む水溶液に添加した後、この反応促進剤が添加された2価の銅イオンを含む水溶液に還元剤溶液を添加した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 2]
The reaction accelerator is not added to the reducing agent solution but added to the aqueous solution containing divalent copper ions, and then the reducing agent solution is added to the aqueous solution containing divalent copper ions to which the reaction accelerator is added. By the same method as in Example 1, copper fine particles were obtained.

[実施例3]
還元剤としてL−アスコルビン酸の代わりにD−エリソルビン酸(和光純薬工業株式会社製)を使用した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 3]
Copper fine particles were obtained by the same method as in Example 1 except that D-erythorbic acid (Wako Pure Chemical Industries, Ltd.) was used instead of L-ascorbic acid as the reducing agent.

[実施例4]
2価の銅イオンの原料として硫酸銅5水和物の代わりに硝酸銅(II)3水和物(片山化学工業株式会社製)36.2gを使用した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 4]
The same method as in Example 1 except that 36.2 g of copper nitrate (II) trihydrate (manufactured by Katayama Chemical Co., Ltd.) was used instead of copper sulfate pentahydrate as a raw material for divalent copper ions. Thus, copper fine particles were obtained.

[実施例5]
還元剤溶液および2価の銅イオンを含む水溶液を作製する際の温度をそれぞれ80℃にした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 5]
Copper fine particles were obtained by the same method as in Example 1 except that the temperature for preparing the reducing agent solution and the aqueous solution containing divalent copper ions was 80 ° C., respectively.

[実施例6]
還元剤溶液および2価の銅イオンを含む水溶液を作製する際の温度をそれぞれ40℃のした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 6]
Copper fine particles were obtained by the same method as in Example 1 except that the temperature for preparing the reducing agent solution and the aqueous solution containing divalent copper ions was 40 ° C., respectively.

[実施例7]
2価の銅イオンを含む水溶液に、さらにポリエチレンイミン(和光純薬工業株式会社製、平均分子量10000)を銅の仕込み量に対して1質量%になるように添加した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 7]
Example 1 except that polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10,000) was further added to an aqueous solution containing divalent copper ions so as to be 1% by mass with respect to the charged amount of copper. By the same method, copper fine particles were obtained.

[実施例8]
2価の銅イオンを含む水溶液に、さらにグリシン(関東化学株式会社製)0.125モルを添加した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 8]
Copper fine particles were obtained in the same manner as in Example 1 except that 0.125 mol of glycine (manufactured by Kanto Chemical Co., Inc.) was further added to the aqueous solution containing divalent copper ions.

[実施例9]
2価の銅イオンを含む水溶液に、さらにアラビアゴム(和光純薬工業株式会社製)を銅の仕込み量に対して5質量%になるように添加した以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 9]
According to the same method as in Example 1, except that gum arabic (manufactured by Wako Pure Chemical Industries, Ltd.) was further added to the aqueous solution containing divalent copper ions so as to be 5% by mass with respect to the charged amount of copper. Copper fine particles were obtained.

[実施例10]
反応促進剤の溶液を作製する際に硝酸パラジウムと凝集防止剤としてのポリエチレンイミンを同時に添加した以外は、実施例1と同様の方法により、銅微粒子を得た。なお、本実施例で得られた反応促進剤は、実施例1と比べて薄い色であり、この反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径20nmの粒子であった。
[Example 10]
Copper fine particles were obtained by the same method as in Example 1 except that palladium nitrate and polyethyleneimine as an anti-aggregation agent were added simultaneously when preparing the reaction accelerator solution. In addition, the reaction accelerator obtained in the present example is lighter in color than in Example 1. When the solution of this reaction accelerator was observed with TEM, the reaction accelerator in the solution had an average particle diameter of 20 nm. It was a particle.

[実施例11]
反応促進剤の溶液を作製する際に硝酸パラジウムと還元剤(ヒドラジン水和物溶液)と凝集防止剤(ポリエチレンイミン)の量を8倍にし、反応促進剤が添加された還元剤溶液を作製する際に還元剤溶液に反応促進剤55.9gを計量して添加(添加した反応促進剤中のPd量がCuに対して約500ppmになるように)した以外は、実施例1と同様の方法により、銅微粒子を得た。なお、本実施例で得られた反応促進剤は、実施例1と比べて濃いグレーの溶液であり、この反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径28nmの粒子であった。
[Example 11]
When preparing the solution of the reaction accelerator, the amount of palladium nitrate, reducing agent (hydrazine hydrate solution) and anti-aggregation agent (polyethyleneimine) is increased 8 times to prepare a reducing agent solution to which the reaction accelerator is added. At this time, the same method as in Example 1 except that 55.9 g of the reaction accelerator was weighed and added to the reducing agent solution (so that the amount of Pd in the added reaction accelerator was about 500 ppm with respect to Cu). Thus, copper fine particles were obtained. The reaction accelerator obtained in this example is a dark gray solution compared to Example 1. When the solution of this reaction accelerator was observed with TEM, the reaction accelerator in the solution had an average particle size. The particles were 28 nm.

[実施例12]
2価の銅イオンを含む水溶液を作製する際に硫酸銅5水和物(小名浜製錬株式会社製)の添加量を187.3gにし、還元剤溶液を作製する際にL−アスコルビン酸(和光純薬工業株式会社製)の添加量を165.1gにし、還元剤溶液に添加した反応促進剤の量を277.4gにした以外は、実施例1と同様の方法により、銅微粒子を得た。
[Example 12]
When preparing an aqueous solution containing divalent copper ions, the addition amount of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was 187.3 g, and when preparing a reducing agent solution, L-ascorbic acid (Japanese Copper fine particles were obtained in the same manner as in Example 1 except that the amount added was 165.1 g and the amount of the reaction accelerator added to the reducing agent solution was 277.4 g. .

[実施例13]
反応促進剤を添加した還元剤溶液を2価の銅イオンを含む水溶液に添加する代わりに、反応促進剤を添加した還元剤溶液に2価の銅イオンを含む水溶液を添加した以外は、実施例1と同様の方法により、銅微粒子を得た。すなわち、5Lの反応槽内に純水3000gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を290rpmに調整し、反応槽内の純水の温度を60℃に調整しながら、L−アスコルビン酸(和光純薬工業株式会社製)33.0gを添加して溶解させて、還元剤溶液を得た。また、2Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、硫酸銅5水和物(小名浜製錬社製)37.5gを添加して溶解させて、2価の銅イオンを含む水溶液を得た。
[Example 13]
Example except that the reducing agent solution added with the reaction accelerator was added to the aqueous solution containing divalent copper ions instead of adding the aqueous solution containing divalent copper ions to the reducing agent solution added with the reaction accelerator. In the same manner as in No. 1, copper fine particles were obtained. That is, 3000 g of pure water is put into a 5 L reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is increased. Adjusting to 290 rpm and adjusting the temperature of pure water in the reaction vessel to 60 ° C., 33.0 g of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added and dissolved to obtain a reducing agent solution. It was. Further, 600 g of pure water was put into a 2 L beaker, and 37.5 g of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was added and dissolved while adjusting the temperature of the pure water to 60 ° C. An aqueous solution containing copper ions was obtained.

[実施例14]
まず、反応槽内に純水1900gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を200rpmに調整し、反応槽内の純水の温度を25℃に調整した。次に、硝酸銀(関東化学株式会社製)0.34gを純水250gに溶解した溶液を反応槽内に入れ、2分間攪拌して均一に混合した。次に、還元剤として0.1%ヒドラジン水和物溶液(大塚化学株式会社製の80%ヒドラジン水和物を純水により希釈した溶液)625gを反応槽内の溶液に一挙に添加して還元反応を行った。次に、凝集防止剤としてポリエチレンイミン(和光純薬工業株式会社製、平均分子量10000)2.16gを純水1080gに溶解した溶液を反応槽内の溶液に添加し、10分間攪拌して反応促進剤溶液を得た。得られた反応促進剤をTEMで観察したところ、溶液中の反応促進剤は平均粒径60nmの粒子であった。
[Example 14]
First, 1900 g of pure water is put into the reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is set to 200 rpm. The temperature of pure water in the reaction vessel was adjusted to 25 ° C. Next, a solution in which 0.34 g of silver nitrate (manufactured by Kanto Chemical Co., Ltd.) was dissolved in 250 g of pure water was placed in the reaction vessel and stirred for 2 minutes to mix uniformly. Next, 625 g of a 0.1% hydrazine hydrate solution (80% hydrazine hydrate manufactured by Otsuka Chemical Co., Ltd. diluted with pure water) as a reducing agent was added to the solution in the reaction tank at once and reduced. Reaction was performed. Next, a solution obtained by dissolving 2.16 g of polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10,000) as a coagulation inhibitor in 1080 g of pure water is added to the solution in the reaction vessel, and stirred for 10 minutes to accelerate the reaction. An agent solution was obtained. When the obtained reaction accelerator was observed with TEM, the reaction accelerator in the solution was particles having an average particle diameter of 60 nm.

また、1Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、還元剤としてL−アスコルビン酸(和光純薬工業株式会社製)33.0gを添加して溶解させて、還元剤溶液を得た。この還元剤溶液に上記の反応促進剤875gを計量して添加した後、1分間攪拌して均一になるように混合した。   Moreover, 600 g of pure water was put into a 1 L beaker, and while adjusting the temperature of pure water to 60 ° C., 33.0 g of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved as a reducing agent. A reducing agent solution was obtained. 875 g of the above reaction accelerator was weighed and added to this reducing agent solution, and then stirred for 1 minute and mixed uniformly.

また、5Lの反応槽内に純水2500gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を290rpmに調整し、反応槽内の純水の温度を60℃に調整しながら、硫酸銅5水和物(小名浜製錬株式会社製)37.5gを添加して溶解させて、2価の銅イオンを含む水溶液を得た。   In addition, 2500 g of pure water is put into a 5 L reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is increased. While adjusting to 290 rpm and adjusting the temperature of pure water in the reaction vessel to 60 ° C., 37.5 g of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was added and dissolved to divalent copper. An aqueous solution containing ions was obtained.

次に、この2価の銅イオンを含む水溶液が入っている反応槽の上部から、上記の反応促進剤を添加した還元剤溶液を一挙に添加して還元反応を行った。この還元剤溶液を添加した直後に銅粒子が発生したのが確認された。なお、添加した反応促進剤中のAg量はCuに対して約5000ppmである。反応槽内の溶液を連続して攪拌し、その状態のまま5分間熟成させた後、攪拌を止め、洗浄し、乾燥させて、銅微粒子を得た。   Next, from the upper part of the reaction vessel containing the aqueous solution containing the divalent copper ions, the reducing agent solution added with the above reaction accelerator was added all at once to perform a reduction reaction. It was confirmed that copper particles were generated immediately after this reducing agent solution was added. The amount of Ag in the added reaction accelerator is about 5000 ppm with respect to Cu. The solution in the reaction vessel was continuously stirred and aged for 5 minutes in that state, and then the stirring was stopped, washed and dried to obtain copper fine particles.

[実施例15]
まず、反応槽内に純水1900gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を200rpmに調整し、反応槽内の純水の温度を25℃に調整した。次に、硝酸銀(関東化学株式会社製)0.34gを純水250gに溶解した溶液を反応槽内に入れ、2分間攪拌して均一に混合した。次に、還元剤として水素化ホウ素ナトリウム(和光純薬工業株式会社製)0.475gを純水625gに溶解した溶液を反応槽内の溶液に一挙に添加して還元反応を行った。次に、凝集防止剤としてポリエチレンイミン(和光純薬工業株式会社製、平均分子量10000)2.16gを純水1080gに溶解した溶液を反応槽内の溶液に添加し、10分間攪拌して、反応促進剤溶液を得た。得られた反応促進剤をTEMで観察したところ、溶液中の反応促進剤は平均粒径50nmの粒子であった。
[Example 15]
First, 1900 g of pure water is put into the reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is set to 200 rpm. The temperature of pure water in the reaction vessel was adjusted to 25 ° C. Next, a solution in which 0.34 g of silver nitrate (manufactured by Kanto Chemical Co., Ltd.) was dissolved in 250 g of pure water was placed in the reaction vessel and stirred for 2 minutes to mix uniformly. Next, a solution obtained by dissolving 0.475 g of sodium borohydride (manufactured by Wako Pure Chemical Industries, Ltd.) as a reducing agent in 625 g of pure water was added to the solution in the reaction tank all at once to perform a reduction reaction. Next, a solution obtained by dissolving 2.16 g of polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10,000) as a coagulation inhibitor in 1080 g of pure water is added to the solution in the reaction vessel, and stirred for 10 minutes to react. An accelerator solution was obtained. When the obtained reaction accelerator was observed with TEM, the reaction accelerator in the solution was particles having an average particle diameter of 50 nm.

また、1Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、硫酸銅5水和物(小名浜製錬株式会社製)12.5gを添加して溶解させて、2価の銅イオンを含む水溶液を得た。   In addition, 600 g of pure water was put into a 1 L beaker, and 12.5 g of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was added and dissolved while adjusting the temperature of pure water to 60 ° C. An aqueous solution containing copper ions was obtained.

また、5Lの反応槽内に純水1250gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を200rpmに調整し、反応槽内の純水の温度を60℃に調整しながら、還元剤としてL−アスコルビン酸(和光純薬工業株式会社製)99.0gを添加して溶解させて、還元剤溶液を得た。この還元剤溶液に上記の反応促進剤2095gを計量して添加した後、1分間攪拌して均一になるように混合した。   Moreover, 1250 g of pure water is put in a 5 L reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is adjusted. While adjusting to 200 rpm and adjusting the temperature of pure water in the reaction vessel to 60 ° C., 99.0 g of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added and dissolved as a reducing agent. A solution was obtained. To this reducing agent solution, 2095 g of the above reaction accelerator was weighed and added, and stirred for 1 minute to mix uniformly.

次に、この反応促進剤が添加された還元剤溶液が入っている反応槽の上部から、上記の2価の銅イオンを含む水溶液を一挙に添加して還元反応を行った。この反応促進剤を添加した還元剤溶液を添加した直後に銅粒子が発生したのが確認された。なお、添加した反応促進剤中のAg量はCuに対して約4000ppmである。反応槽内の溶液を連続して攪拌し、その状態のまま5分間熟成させた後、攪拌を止め、洗浄し、乾燥させて、銅微粒子を得た。   Next, the above-described aqueous solution containing divalent copper ions was added all at once from the upper part of the reaction tank containing the reducing agent solution to which the reaction accelerator was added, and a reduction reaction was performed. It was confirmed that copper particles were generated immediately after the addition of the reducing agent solution containing the reaction accelerator. In addition, the Ag amount in the added reaction accelerator is about 4000 ppm with respect to Cu. The solution in the reaction vessel was continuously stirred and aged for 5 minutes in that state, and then the stirring was stopped, washed and dried to obtain copper fine particles.

[実施例16]
まず、5Lの反応槽内に純水2560gを入れ、反応槽の上部から5L/分の流量で窒素を供給して反応槽内を窒素雰囲気に維持し、反応槽内の攪拌棒の回転速度を200rpmに調整し、反応槽内の純水の温度を25℃に調整した。次に、硝酸銀(関東化学株式会社製)0.216gを純水100gに溶解した溶液を反応槽内に入れ、2分間攪拌して均一に混合した。次に、還元剤として80%ヒドラジン水和物(大塚化学株式会社製)0.498gを純水100gに溶解した溶液を反応槽内の溶液に一挙に添加して還元反応を行った。次に、凝集防止剤としてポリエチレンイミン(和光純薬工業株式会社製、平均分子量10000)1.373gを純水500gに溶解した溶液を反応槽内の溶液に添加し、10分間攪拌して、反応促進剤の溶液を得た。得られた反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径55nmの粒子であった。
[Example 16]
First, 2560 g of pure water is put in a 5 L reaction tank, nitrogen is supplied from the upper part of the reaction tank at a flow rate of 5 L / min to maintain the inside of the reaction tank in a nitrogen atmosphere, and the rotation speed of the stirring rod in the reaction tank is increased. The temperature was adjusted to 200 rpm, and the temperature of pure water in the reaction vessel was adjusted to 25 ° C. Next, a solution obtained by dissolving 0.216 g of silver nitrate (manufactured by Kanto Chemical Co., Ltd.) in 100 g of pure water was placed in a reaction vessel and stirred for 2 minutes to uniformly mix. Next, a reductive reaction was performed by adding a solution obtained by dissolving 0.498 g of 80% hydrazine hydrate (manufactured by Otsuka Chemical Co., Ltd.) as a reducing agent in 100 g of pure water all at once to the solution in the reaction vessel. Next, a solution obtained by dissolving 1.373 g of polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10000) as an agglomeration inhibitor in 500 g of pure water is added to the solution in the reaction vessel and stirred for 10 minutes to react. An accelerator solution was obtained. When the obtained solution of the reaction accelerator was observed with TEM, the reaction accelerator in the solution was particles having an average particle diameter of 55 nm.

また、1Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、還元剤としてL−アスコルビン酸(和光純薬工業株式会社製)118.9gを添加して溶解させて、還元剤溶液を得た。   Further, 600 g of pure water was put into a 1 L beaker, and 118.9 g of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved as a reducing agent while adjusting the temperature of the pure water to 60 ° C. A reducing agent solution was obtained.

また、1Lビーカーに純水600gを入れ、純水の温度を60℃に調整しながら、硫酸銅5水和物(小名浜製錬株式会社製)134.8gを添加して溶解させて、2価の銅イオンを含む水溶液を得た。   Further, 600 g of pure water was put into a 1 L beaker, and 134.8 g of copper sulfate pentahydrate (manufactured by Onahama Smelting Co., Ltd.) was added and dissolved while adjusting the temperature of pure water to 60 ° C. An aqueous solution containing copper ions was obtained.

次に、上記の反応促進剤の溶液が入っている5Lの反応槽内の攪拌棒の回転速度を290rpmに調整し、反応槽内の純水の温度を60℃に調整しながら、上記の還元剤溶液を添加して、5分間攪拌して均一になるように混合した後、上記の2価の銅イオンを含む水溶液を一挙に添加して還元反応を行った。この2価の銅イオンを含む水溶液を添加した直後に銅粒子が発生したのが確認された。なお、添加した反応促進剤中のAg量はCuに対して約4000ppmである。その後、反応槽内の溶液を連続して攪拌し、その状態のまま5分間熟成させた後、攪拌を止め、洗浄し、乾燥させて、銅微粒子を得た。   Next, while adjusting the rotation speed of the stirring rod in the 5 L reaction vessel containing the above reaction accelerator solution to 290 rpm and adjusting the temperature of pure water in the reaction vessel to 60 ° C., the above reduction After adding the agent solution and stirring for 5 minutes to mix uniformly, the aqueous solution containing the above divalent copper ions was added all at once to perform a reduction reaction. It was confirmed that copper particles were generated immediately after the addition of the aqueous solution containing divalent copper ions. In addition, the Ag amount in the added reaction accelerator is about 4000 ppm with respect to Cu. Thereafter, the solution in the reaction vessel was continuously stirred and aged for 5 minutes in that state, and then the stirring was stopped, washed and dried to obtain copper fine particles.

[実施例17]
反応促進剤を作製する際の温度を40℃にした以外は、実施例16と同様の方法により、銅微粒子を得た。なお、得られた反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径55nmの粒子であった。
[Example 17]
Copper fine particles were obtained by the same method as in Example 16 except that the temperature at the time of preparing the reaction accelerator was 40 ° C. In addition, when the solution of the obtained reaction accelerator was observed with TEM, the reaction accelerator in the solution was a particle having an average particle diameter of 55 nm.

[実施例18]
反応促進剤を作製する際に添加するポリエチレンイミンの量を0.137gとし、還元剤としてエリソルビン酸を使用した以外は、実施例16と同様の方法により、銅微粒子を得た。なお、得られた反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径70nmの粒子であった。
[Example 18]
Copper fine particles were obtained by the same method as in Example 16 except that the amount of polyethyleneimine added when preparing the reaction accelerator was 0.137 g and erythorbic acid was used as the reducing agent. In addition, when the solution of the obtained reaction accelerator was observed with TEM, the reaction accelerator in the solution was a particle having an average particle diameter of 70 nm.

[実施例19]
反応促進剤を作製する際に凝集防止剤としてポリエチレンイミンの代わりにメチルセルロース(和光純薬工業株式会社製のメチルセルロース4000)1.373gを使用した以外は、実施例16と同様の方法により、銅微粒子を得た。なお、得られた反応促進剤の溶液をTEMで観察したところ、溶液中の反応促進剤は平均粒径45nmの粒子であった。
[Example 19]
Copper fine particles were prepared in the same manner as in Example 16 except that 1.373 g of methylcellulose (methylcellulose 4000 manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of polyethyleneimine as an aggregation inhibitor when preparing the reaction accelerator. Got. In addition, when the solution of the obtained reaction accelerator was observed by TEM, the reaction accelerator in the solution was a particle having an average particle diameter of 45 nm.

[実施例20]
実施例16で得られた銅粒子10gとイソプロピルアルコール100gとを200mLビーカー中で十分に攪拌して混合した溶液に、エチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル社製のS−75P)0.666gを添加して、1時間攪拌した後、攪拌を継続しながら純水5gを10分間で添加した。純水の添加が終了した後、さらに1時間攪拌し、その後、ろ過、乾燥して、誘電体に使用される金属化合物としてAl化合物が被着した銅粉(またはAl化合物で被覆された銅粉)を得た。
[Example 20]
To a solution obtained by sufficiently stirring and mixing 10 g of the copper particles obtained in Example 16 and 100 g of isopropyl alcohol in a 200 mL beaker, ethyl acetoacetate aluminum diisopropylate (S-75P manufactured by Kawaken Fine Chemical Co.) After adding 666 g and stirring for 1 hour, 5 g of pure water was added over 10 minutes while continuing stirring. After the addition of pure water is completed, the mixture is further stirred for 1 hour, then filtered and dried, and copper powder coated with an Al compound as the metal compound used for the dielectric (or copper powder coated with the Al compound) )

[実施例21]
実施例16で得られた銅粒子10gとイソプロピルアルコール100gとを200mLビーカー中で十分に攪拌して混合した溶液に、チタニウムエチルアセトアセテート(三菱ガス化学株式会社製のTEAA)0.5gを添加して、1時間攪拌した後、攪拌を継続しながら純水5gを10分間で添加した。純水の添加が終了した後、さらに1時間攪拌し、ろ過、乾燥して、誘電体に使用される金属化合物としてTi化合物が被着した銅粉(またはTi化合物で被覆された銅粉)を得た。
[Example 21]
To a solution obtained by sufficiently stirring and mixing 10 g of the copper particles obtained in Example 16 and 100 g of isopropyl alcohol in a 200 mL beaker, 0.5 g of titanium ethyl acetoacetate (TEAA manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added. After stirring for 1 hour, 5 g of pure water was added over 10 minutes while continuing stirring. After the addition of pure water is completed, the mixture is further stirred for 1 hour, filtered and dried, and a copper powder (or a copper powder coated with the Ti compound) coated with a Ti compound as a metal compound used for the dielectric is applied. Obtained.

[実施例22]
実施例16で得られた銅粒子10gとイソプロピルアルコール100gとを200mLビーカー中で十分に攪拌して混合した溶液に、チタン(IV)テトライソプロポキシド(和光純薬工業株式会社製)0.64gとバリウムメトキシド溶液(金属バリウムをメタノールに溶かしてBa濃度0.00075モル/gに調整した溶液)2.9gの混合溶液を添加して、1時間攪拌した後、攪拌を継続しながら純水5gを10分間で添加した。純水の添加が終了した後、さらに1時間攪拌し、ろ過、乾燥して、誘電体に使用される金属化合物としてBa−Ti化合物が被着した銅粉(またはBa−Ti化合物で被覆された銅粉)を得た。
[Example 22]
To a solution obtained by sufficiently stirring and mixing 10 g of the copper particles obtained in Example 16 and 100 g of isopropyl alcohol in a 200 mL beaker, 0.64 g of titanium (IV) tetraisopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) And a barium methoxide solution (a solution in which metal barium is dissolved in methanol and adjusted to a Ba concentration of 0.00075 mol / g) is added to a mixed solution of 2.9 g and stirred for 1 hour. 5 g was added over 10 minutes. After the addition of pure water was completed, the mixture was further stirred for 1 hour, filtered and dried, and coated with a copper powder (or a Ba-Ti compound) coated with a Ba-Ti compound as a metal compound used for the dielectric. Copper powder) was obtained.

[実施例23]
実施例16で得られた銅粒子10gとイソプロピルアルコール100gとを200mLビーカー中で十分に攪拌して混合した溶液に、テトラエトキシシラン(コルコート株式会社製のエチルシリケート28)0.62gを添加して、5分間攪拌した後、28%アンモニア水(和光純薬工業株式会社製)1.3gを45分間で添加した。アンモニア水の添加が終了した後、さらに1時間攪拌し、ろ過、乾燥して、誘電体に使用される金属化合物としてSi化合物が被着した銅粉(またはてSi化合物で被覆された銅粉)を得た。
[Example 23]
To a solution in which 10 g of the copper particles obtained in Example 16 and 100 g of isopropyl alcohol were sufficiently stirred and mixed in a 200 mL beaker, 0.62 g of tetraethoxysilane (ethyl silicate 28 manufactured by Colcoat Co., Ltd.) was added. After stirring for 5 minutes, 1.3 g of 28% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) was added over 45 minutes. After the addition of ammonia water is complete, the mixture is further stirred for 1 hour, filtered and dried, and copper powder coated with a Si compound as a metal compound used for the dielectric (or copper powder coated with the Si compound) Got.

[比較例1]
反応促進剤を添加しなかった以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行った。この比較例では、銅までの還元が5分間で終了しなかったので、反応を中止した。
[Comparative Example 1]
A divalent copper ion reduction reaction was performed in the same manner as in Example 1 except that no reaction accelerator was added. In this comparative example, since the reduction to copper did not end in 5 minutes, the reaction was stopped.

[比較例2]
反応促進剤を添加せず、L−アスコルビン酸の量を264gにした以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行った。この比較例では、5分間の熟成で銅まで還元することができたが、実施例1と比べて銅への還元に時間がかかった。
[Comparative Example 2]
A divalent copper ion reduction reaction was carried out in the same manner as in Example 1 except that no reaction accelerator was added and the amount of L-ascorbic acid was changed to 264 g. In this comparative example, copper could be reduced by aging for 5 minutes, but it took longer to reduce to copper than in Example 1.

[比較例3]
反応促進剤として硝酸パラジウム(II)0.010gを還元剤溶液ではなく2価の銅イオンを含む水溶液に溶解させた以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、添加した反応促進剤中のPd量はCuに対して約500ppmである。
[Comparative Example 3]
Reduction reaction of divalent copper ions by the same method as in Example 1 except that 0.010 g of palladium nitrate (II) was dissolved in an aqueous solution containing divalent copper ions instead of a reducing agent solution as a reaction accelerator. To obtain copper particles. In this comparative example, the amount of Pd in the added reaction accelerator is about 500 ppm with respect to Cu.

[比較例4]
反応促進剤として硝酸銀0.075gを2価の銅イオンを含む水溶液に溶解させた以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、添加した反応促進剤中のAg量はCuに対して約5000ppmである。
[Comparative Example 4]
Divalent copper ions were reduced by the same method as in Example 1 except that 0.075 g of silver nitrate was dissolved in an aqueous solution containing divalent copper ions as a reaction accelerator to obtain copper particles. . In this comparative example, the amount of Ag in the added reaction accelerator is about 5000 ppm with respect to Cu.

[比較例5]
保護剤としてのヘプタン酸の存在下で硝酸銀をヒドラジンで還元することによって作製したナノAg粒子を反応促進剤として使用し、この反応促進剤を界面活性剤とともに水に分散させて使用した以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、添加した反応促進剤中のAg量はCuに対して500ppmである。また、使用したAg粒子をTEM観察したところ、平均粒径23nmであった。
[Comparative Example 5]
Except for using nano Ag particles prepared by reducing silver nitrate with hydrazine in the presence of heptanoic acid as a protective agent as a reaction accelerator, and using this reaction accelerator dispersed in water together with a surfactant, By the same method as in Example 1, a divalent copper ion reduction reaction was performed to obtain copper particles. In this comparative example, the Ag amount in the added reaction accelerator is 500 ppm with respect to Cu. Further, when the Ag particles used were observed by TEM, the average particle size was 23 nm.

[比較例6]
反応促進剤を作製する際に凝集防止剤としてポリエチレンイミンを添加しなかった以外は、実施例16と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。この比較例では、還元反応により反応促進剤(Ag粒子)を得た後に攪拌を継続することにより、生成したAg粒子が凝集していくのを目視により確認することができた。
[Comparative Example 6]
A divalent copper ion reduction reaction was carried out in the same manner as in Example 16 except that polyethyleneimine was not added as an aggregation inhibitor when preparing the reaction accelerator to obtain copper particles. In this comparative example, it was confirmed by visual observation that the produced Ag particles were aggregated by continuing the stirring after obtaining the reaction accelerator (Ag particles) by the reduction reaction.

[比較例7]
還元剤溶液に水酸化ナトリウム溶液(50%)を添加してpHを7に調整した以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、還元剤溶液を2価の銅イオンを含む水溶液(硫酸銅溶液)添加したときに、硫酸銅溶液がオレンジ色に変化したため、亜酸化銅が生成していたと予想される。また、銅までの還元が遅かったため、反応時間(熟成時間)を実施例1よりも5分長くして10分間とした。
[Comparative Example 7]
Divalent copper ions were reduced by the same method as in Example 1 except that a sodium hydroxide solution (50%) was added to the reducing agent solution to adjust the pH to 7, thereby obtaining copper particles. It was. In addition, in this comparative example, when the reducing agent solution was added with an aqueous solution (copper sulfate solution) containing divalent copper ions, the copper sulfate solution was changed to orange, so that it was expected that cuprous oxide was generated. . Further, since the reduction to copper was slow, the reaction time (ripening time) was made 5 minutes longer than Example 1 to 10 minutes.

[比較例8]
硫酸銅を水酸化ナトリウムで中和して得られた水酸化銅溶液にブドウ糖を添加して作製した亜酸化銅をろ過し、洗浄し、乾燥し、10.73gを計量して、純水3410gに再分散させて作製した亜酸化銅溶液を2価の銅イオンを含む水溶液の代わりに使用し、2Lビーカーに入れた純水600gに還元剤としてヒドラジン水和物5.85gを添加して均一に混合させた還元剤溶液を使用した以外は、実施例1と同様の方法により、銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、銅までの還元が終了までに7時間程度かかった。
[Comparative Example 8]
Cuprous oxide prepared by adding glucose to copper hydroxide solution obtained by neutralizing copper sulfate with sodium hydroxide was filtered, washed, dried, weighed 10.73 g, and 3410 g of pure water A cuprous oxide solution prepared by re-dispersing in water was used instead of an aqueous solution containing divalent copper ions, and 5.85 g of hydrazine hydrate as a reducing agent was added to 600 g of pure water placed in a 2 L beaker to make it uniform. A copper ion reduction reaction was performed in the same manner as in Example 1 except that the reducing agent solution mixed in the above was used to obtain copper particles. In this comparative example, it took about 7 hours to complete the reduction to copper.

[比較例9]
2Lビーカーに入れた純水600gに還元剤としてヒドラジン水和物23.5gを添加して均一に混合させた還元剤溶液を使用した以外は、比較例8と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。なお、この比較例では、銅までの還元が終了までに3時間程度かかった。
[Comparative Example 9]
A divalent copper was prepared in the same manner as in Comparative Example 8 except that a reducing agent solution in which 23.5 g of hydrazine hydrate was added as a reducing agent to 600 g of pure water placed in a 2 L beaker and mixed uniformly was used. An ion reduction reaction was performed to obtain copper particles. In this comparative example, it took about 3 hours to complete the reduction to copper.

[比較例10]
L−アスコルビン酸の代わりに50%次亜リン酸溶液(和光純薬工業株式会社製)39.6gを使用した以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行って、銅粒子を得た。
[Comparative Example 10]
A divalent copper ion reduction reaction was carried out in the same manner as in Example 1 except that 39.6 g of a 50% hypophosphorous acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of L-ascorbic acid. Going to obtain copper particles.

[比較例11]
硫酸銅5水和物の代わりに硝酸銅3水和物36.2gを使用し、L−アスコルビン酸の代わりに次亜リン酸ナトリウム1水和物(和光純薬工業株式会社製)38.4gを使用した以外は、実施例1と同様の方法により、2価の銅イオンの還元反応を行った。この比較例では、銅までの還元が進まなかったため、20分間攪拌を継続したが、それでも還元反応が起こらなかったので中止した。
[Comparative Example 11]
Instead of copper sulfate pentahydrate, 36.2 g of copper nitrate trihydrate was used, and sodium hypophosphite monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 38.4 g instead of L-ascorbic acid A divalent copper ion reduction reaction was performed in the same manner as in Example 1 except that was used. In this comparative example, since the reduction to copper did not proceed, the stirring was continued for 20 minutes.

[比較例12]
還元剤溶液および2価の銅イオンを含む水溶液を作製する際の温度をそれぞれ80℃にした以外は、比較例11と同様の方法により、2価の銅イオンの還元反応を行った。この比較例では、5分間では銅までの還元が進まなかったため、攪拌を継続したところ、還元剤溶液の投入から約15分後に急激な反応が起こり、銅粒子を得ることができた。
[Comparative Example 12]
A divalent copper ion reduction reaction was performed in the same manner as in Comparative Example 11 except that the temperature at the time of preparing the reducing agent solution and the aqueous solution containing the divalent copper ion was 80 ° C., respectively. In this comparative example, since the reduction to copper did not proceed in 5 minutes, when stirring was continued, a rapid reaction occurred approximately 15 minutes after the introduction of the reducing agent solution, and copper particles could be obtained.

[比較例13]
L−アスコルビン酸の還元剤溶液の代わりに、ヒドラジン水和物11.8gを純水600gに溶解した溶液を希硫酸でpH3に調整した還元剤溶液を使用し、反応促進剤を還元剤溶液ではなく2価の銅イオンを含む水溶液に添加した以外は、実施例1と同様の方法により、銅粒子を得た。この比較例では、銅までの還元時間は、実施例1ほど速くはないが、5分以内に銅まで還元することができた。
[Comparative Example 13]
Instead of the reducing agent solution of L-ascorbic acid, a reducing agent solution in which 11.8 g of hydrazine hydrate was dissolved in 600 g of pure water was adjusted to pH 3 with dilute sulfuric acid, and the reaction accelerator was used as the reducing agent solution. The copper particles were obtained by the same method as in Example 1 except that it was added to an aqueous solution containing divalent copper ions. In this comparative example, the reduction time to copper was not as fast as Example 1, but could be reduced to copper within 5 minutes.

[比較例14]
L−アスコルビン酸の還元剤溶液の代わりに、水素化ホウ素ナトリウム3.6gを純水600gに溶解した溶液を希硫酸でpH3.5に調整した還元剤溶液を使用し、反応促進剤を還元剤溶液ではなく2価の銅イオンを含む水溶液に添加した以外は、実施例1と同様の方法により、銅粒子を得た。なお、希硫酸を添加した際にかなり激しい発泡が起こった。この比較例では、還元剤溶液を添加した直後から、色などの変化が見られなかったため、5分後に上記の還元剤溶液と同量の還元剤溶液(pH調整した溶液)を添加することによって、銅まで還元することができた。また、熟成時間は、初めの還元剤溶液の添加から10分間であった。
[Comparative Example 14]
Instead of the reducing agent solution of L-ascorbic acid, a reducing agent solution prepared by adjusting 3.6 g of sodium borohydride in 600 g of pure water to pH 3.5 with dilute sulfuric acid was used, and the reaction accelerator was the reducing agent. Copper particles were obtained by the same method as in Example 1, except that the solution was added to an aqueous solution containing divalent copper ions instead of a solution. When dilute sulfuric acid was added, quite severe foaming occurred. In this comparative example, since no change in color or the like was observed immediately after the addition of the reducing agent solution, the same amount of reducing agent solution (pH adjusted solution) as the above reducing agent solution was added after 5 minutes. It was possible to reduce to copper. The aging time was 10 minutes from the first addition of the reducing agent solution.

また、実施例および比較例で得られた銅粉の粒度分布、50%粒径(D50)、Dmin(検出の最小粒径)およびDmax(検出の最大粒径)を、レーザー回折式粒度分布測定装置(ベックマン・コールター社製のLS−230)を用いて測定した。これらの結果を表1〜表4に示す。なお、測定試料として、実施例および比較例で得られた銅粉と2−プロパノールをビーカーに入れて超音波分散槽などにより十分に分散させた液を使用した。 In addition, the particle size distribution, 50% particle size (D 50 ), D min (minimum particle size of detection) and D max (maximum particle size of detection) of the copper powder obtained in Examples and Comparative Examples were determined by laser diffraction. It measured using the particle size distribution analyzer (LS-230 by Beckman Coulter, Inc.). These results are shown in Tables 1 to 4. In addition, the liquid which put the copper powder and 2-propanol obtained by the Example and the comparative example in a beaker, and was fully disperse | distributed with the ultrasonic dispersion tank etc. was used as a measurement sample.

Figure 0005519938
Figure 0005519938

Figure 0005519938
Figure 0005519938

Figure 0005519938
Figure 0005519938

Figure 0005519938
Figure 0005519938

また、実施例および比較例で得られた銅粉の粒子形状および平均粒径を電界放出形走査電子顕微鏡(SEM)(日立製作所製のS−4700形)により評価した。なお、SEMによって観測した銅単体粒子の平均粒径(単体粒子径)は、粒子50個のフェレ径の平均値から算出した。また、5万倍の撮影視野を用いて粒子径を算出したが、50個の粒子数を測定できない場合には倍率を下げて撮影した視野を用いて粒子径を算出した。また、SEMによって測定された銅単体粒子の平均粒径に対する、レーザー回折式粒度分布測定装置によって測定された50%粒径(D50)の比を算出した。さらに、SEMによって観測した50個の銅粒子から単一の略球状の銅粒子(凝結または結合している連晶粒子)の個数および割合を求めた。この結果を表5および表6に示す。 Moreover, the particle shape and average particle diameter of the copper powder obtained in Examples and Comparative Examples were evaluated by a field emission scanning electron microscope (SEM) (S-4700, manufactured by Hitachi, Ltd.). In addition, the average particle diameter (single particle diameter) of the copper single particle observed by SEM was calculated from the average value of the ferret diameters of 50 particles. Moreover, although the particle diameter was calculated using the imaging | photography visual field of 50,000 times, when the number of 50 particles was not measurable, the particle diameter was calculated using the visual field image | photographed by reducing magnification. Further, the ratio of the 50% particle size (D 50 ) measured by the laser diffraction particle size distribution measuring device to the average particle size of the single copper particles measured by SEM was calculated. Furthermore, the number and ratio of single substantially spherical copper particles (consolidated or bonded intergranular particles) were determined from 50 copper particles observed by SEM. The results are shown in Tables 5 and 6.

また、銅粒子中のAgまたはPdの含有量をICP(日本ジャーレル・アッシュ社製のIRIS/IRIS−AP)により測定した。この結果を表5および表6に示す。なお、実施例20〜22において、銅粒子に被着(または銅粒子を被覆)しているAl、Ti、Baの量を同様にICPにより測定したところ、実施例20ではAlが0.47質量%、実施例21ではTiが0.52質量%、実施例22ではTiが1.01質量%、Baが2.86質量%であった。また、実施例23において、銅粒子に被着(または銅粒子を被覆)しているSiの量をJIS H1061に準拠して測定したところ、0.72質量%であった。   Further, the content of Ag or Pd in the copper particles was measured by ICP (IRIS / IRIS-AP manufactured by Nippon Jarrell-Ash). The results are shown in Tables 5 and 6. In Examples 20 to 22, when the amounts of Al, Ti, and Ba deposited on copper particles (or coated with copper particles) were similarly measured by ICP, in Example 20, Al was 0.47 mass. %, In Example 21, Ti was 0.52% by mass, in Example 22, Ti was 1.01% by mass, and Ba was 2.86% by mass. In Example 23, when the amount of Si deposited on copper particles (or coated with copper particles) was measured in accordance with JIS H1061, it was 0.72% by mass.

Figure 0005519938
Figure 0005519938

Figure 0005519938
Figure 0005519938

表5および表6の結果から、実施例のように、2価の銅イオンを含む水溶液に還元剤を添加して銅粒子を還元析出させる銅粉の製造方法において、2価の銅イオンを含む水溶液および還元剤の少なくとも一方に、凝集防止剤を含む反応促進剤を存在させることにより、単分散した微粒子で、粒度分布がシャープで、粗粒を含まず、形状が真球に近いなどの特性を有する銅微粒子を安定して製造することができることがわかる。   From the results of Tables 5 and 6, as in the examples, in the method for producing copper powder in which a reducing agent is added to an aqueous solution containing divalent copper ions to reduce and precipitate copper particles, divalent copper ions are contained. By having a reaction accelerator containing an anti-aggregation agent in at least one of the aqueous solution and reducing agent, the characteristics are monodispersed fine particles, sharp particle size distribution, no coarse particles, and a shape close to a true sphere. It can be seen that the copper fine particles having the can be produced stably.

本発明による導電性ペースト用銅粉は、積層セラミックコンデンサや積層セラミックインダクタなどの積層セラミック電子部品の内部電極や、小型積層セラミックコンデンサや積層セラミックインダクタなどの外部電極を形成するための導電性ペーストに使用することができる。   The copper powder for conductive paste according to the present invention is used as a conductive paste for forming internal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors, and external electrodes such as small multilayer ceramic capacitors and multilayer ceramic inductors. Can be used.

Claims (8)

2価の銅イオンを含む水溶液に還元剤溶液を添加して銅粒子を還元析出させる銅粉の製造方法において、前記還元剤溶液として2価の銅イオンを銅まで還元する還元剤を水に溶解させた還元剤溶液を使用し、前記2価の銅イオンを含む水溶液および前記還元剤溶液の少なくとも一方に、銅より貴な金属の粒子からなり且つこの粒子の凝集を防止する凝集防止剤を含む反応促進剤の溶液を添加した後に、前記2価の銅イオンを含む水溶液に前記還元剤溶液を添加することにより、前記2価の銅イオンを銅まで直接還元して銅粒子を析出させることを特徴とする、導電性ペースト用銅粉の製造方法。 In the method for producing copper powder in which a reducing agent solution is added to an aqueous solution containing divalent copper ions to reduce and precipitate copper particles, a reducing agent that reduces divalent copper ions to copper is dissolved in water as the reducing agent solution. A reducing agent solution is used, and at least one of the divalent copper ion-containing aqueous solution and the reducing agent solution includes a coagulation inhibitor made of particles of metal nobler than copper and preventing aggregation of the particles. After adding the solution of the reaction accelerator, by adding the reducing agent solution to the aqueous solution containing the divalent copper ions, the divalent copper ions are directly reduced to copper to precipitate copper particles. The manufacturing method of the copper powder for electrically conductive paste characterized by the above-mentioned. 前記反応促進剤が平均粒子径10〜100nmのAg粒子およびPd粒子の少なくとも一方からなることを特徴とする、請求項1に記載の導電性ペースト用銅粉の製造方法。 The method for producing a copper powder for conductive paste according to claim 1, wherein the reaction accelerator comprises at least one of Ag particles and Pd particles having an average particle diameter of 10 to 100 nm. 前記凝集防止剤が水溶性ポリマーであることを特徴とする、請求項1または2に記載の導電性ペースト用銅粉の製造方法。 Wherein the aggregation inhibitor is a water-soluble polymer, method for producing a copper powder for conductive paste according to claim 1 or 2. 前記凝集防止剤がポリエチレンイミンまたはメチルセルロースであることを特徴とする、請求項1または2に記載の導電性ペースト用銅粉の製造方法。 The method for producing copper powder for conductive paste according to claim 1 or 2 , wherein the anti-aggregation agent is polyethyleneimine or methylcellulose. 前記還元剤が、L−アスコルビン酸、D−エリソルビン酸またはこれらの混合物であることを特徴とする、請求項1乃至のいずれかに記載の導電性ペースト用銅粉の製造方法。 The method for producing copper powder for conductive paste according to any one of claims 1 to 4 , wherein the reducing agent is L-ascorbic acid, D-erythorbic acid or a mixture thereof. 前記2価の銅イオンを含む水溶液が、硫酸銅、硝酸銅またはこれらの混合物の水溶液であることを特徴とする、請求項1乃至のいずれかに記載の導電性ペースト用銅粉の製造方法。 The method for producing a copper powder for conductive paste according to any one of claims 1 to 5 , wherein the aqueous solution containing divalent copper ions is an aqueous solution of copper sulfate, copper nitrate, or a mixture thereof. . 前記還元析出した銅粒子の表面に、Al、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物を被着させることを特徴とする、請求項1乃至のいずれかに記載の導電性ペースト用銅粉の製造方法。 The conductive material according to any one of claims 1 to 6 , wherein a compound containing at least one selected from the group consisting of Al, Ba, Ti, and Si is deposited on the surface of the reduced and precipitated copper particles. Of producing copper powder for adhesive paste. 前記還元析出した銅粒子の表面を、Al、Ba、TiおよびSiからなる群から選ばれる一種以上を含む化合物で被覆することを特徴とする、請求項1乃至のいずれかに記載の導電性ペースト用銅粉の製造方法。 The surface of the reducing deposited copper particles, Al, Ba, and wherein the covering with a compound containing one or more kinds selected from the group consisting of Ti and Si, a conductive according to any one of claims 1 to 6 A method for producing copper powder for paste.
JP2009004661A 2008-04-01 2009-01-13 Method for producing copper powder for conductive paste Active JP5519938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009004661A JP5519938B2 (en) 2008-04-01 2009-01-13 Method for producing copper powder for conductive paste
KR1020090027660A KR101522738B1 (en) 2008-04-01 2009-03-31 Copper Powder For Conductive Paste and Method For Preparation Thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008095062 2008-04-01
JP2008095062 2008-04-01
JP2008153675 2008-06-12
JP2008153675 2008-06-12
JP2009004661A JP5519938B2 (en) 2008-04-01 2009-01-13 Method for producing copper powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2010018880A JP2010018880A (en) 2010-01-28
JP5519938B2 true JP5519938B2 (en) 2014-06-11

Family

ID=41535504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004661A Active JP5519938B2 (en) 2008-04-01 2009-01-13 Method for producing copper powder for conductive paste

Country Status (2)

Country Link
JP (1) JP5519938B2 (en)
KR (1) KR101522738B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126942A (en) * 2010-12-14 2012-07-05 Jx Nippon Mining & Metals Corp Fine spherical copper powder and method for producing the same
JP2012126815A (en) * 2010-12-15 2012-07-05 Tosoh Corp Conductive ink composition, and method for producing the same
KR101276595B1 (en) * 2011-01-10 2013-06-19 한국지질자원연구원 APPARATUS FOR MANUFACTURING FINE Cu POWDERS USING WET CHEMICAL REDUCTION AND METHOD OF MANUFACTURING CUPPER POWDERS USING THE APPARATUS
EP2923781A4 (en) * 2012-11-26 2016-07-13 Mitsui Mining & Smelting Co Copper powder and method for producing same
CN105050757B (en) * 2013-04-05 2018-04-13 株式会社村田制作所 Metal dust and its manufacture method, conductive paste and monolithic ceramic electronic component using the metal dust
KR101671324B1 (en) * 2014-02-14 2016-11-02 미쓰이금속광업주식회사 Copper powder
US20180029121A1 (en) * 2015-02-27 2018-02-01 Hitachi Chemical Company, Ltd. Copper-containing particles, conductor-forming composition, method of producing conductior, conductor, and apparatus
JP6627228B2 (en) * 2015-02-27 2020-01-08 日立化成株式会社 Copper-containing particles, conductor-forming composition, method for producing conductor, conductor and device
WO2016152214A1 (en) * 2015-03-26 2016-09-29 三井金属鉱業株式会社 Copper powder and conductive composition containing same
JP2017204371A (en) * 2016-05-11 2017-11-16 日立化成株式会社 Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate, and device
US10851257B2 (en) * 2017-11-08 2020-12-01 Eastman Kodak Company Silver and copper nanoparticle composites
WO2019131378A1 (en) * 2017-12-28 2019-07-04 株式会社Adeka Copper powder manufacturing method, copper powder obtained using said manufacturing method, resin composition containing said copper powder, method for forming cured product of said resin composition, and said cured product
CN108372311B (en) * 2018-03-21 2019-07-16 北京科技大学 A method of copper nano-particle is prepared using modification of polysaccharides
JP7141967B2 (en) * 2019-03-12 2022-09-26 川崎重工業株式会社 Modeled body manufacturing method, intermediate and shaped body
CN112863875B (en) * 2020-11-26 2022-07-15 南昌航空大学 Preparation method of core-shell structure tin oxide photo-anode dye-sensitized solar cell
CN115011279B (en) * 2022-06-21 2023-07-25 深圳田十科技有限公司 Conductive adhesive film material with dual curing mode and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186805A (en) * 1987-01-27 1988-08-02 Tanaka Kikinzoku Kogyo Kk Production of fine copper particles
JPH07107168B2 (en) * 1987-01-27 1995-11-15 田中貴金属工業株式会社 Method for producing fine copper particles
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP3353648B2 (en) * 1997-06-05 2002-12-03 住友金属鉱山株式会社 Method for producing copper powder and copper oxide powder used for the method
JP4001438B2 (en) * 1999-05-31 2007-10-31 三井金属鉱業株式会社 Method for producing composite copper fine powder
JP4428085B2 (en) * 2004-02-26 2010-03-10 住友金属鉱山株式会社 Method for producing copper fine particles
JP4449676B2 (en) * 2004-03-25 2010-04-14 住友金属鉱山株式会社 Method for producing copper fine particles
JP4428138B2 (en) * 2004-05-21 2010-03-10 住友金属鉱山株式会社 Copper fine particles, production method thereof, and copper fine particle dispersion
JP7107168B2 (en) * 2018-10-30 2022-07-27 トヨタ自動車株式会社 vehicle seat belt device

Also Published As

Publication number Publication date
KR20090105843A (en) 2009-10-07
JP2010018880A (en) 2010-01-28
KR101522738B1 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
JP2005307335A (en) Copper fine particle, production method therefor and copper fine particle-dispersed liquid
JP2007138291A (en) Nickel powder and production method therefor
US20100208410A1 (en) Nickel powder or alloy powder having nickel as main component, method for manufacturing the powder, conductive paste and laminated ceramic capacitor
JP4399799B2 (en) Method for producing highly crystalline flaky silver powder
EP1151815B1 (en) Method for preparation of nickel powder
JP2008024969A (en) Nickel-coated copper fine particle and production method therefor, dispersion liquid using the same and production method therefor, and paste using the same
JP5843819B2 (en) Method for producing surface-treated metal powder
JP4100244B2 (en) Nickel powder and method for producing the same
JP5206246B2 (en) Nickel powder and method for producing the same
JP4940520B2 (en) Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
JP4061462B2 (en) Composite fine particles, conductive paste and conductive film
JP5942791B2 (en) Method for producing nickel powder
TWI544977B (en) Copper powder for conductive paste and method for producing same
CN113348045A (en) Surface-treated metal powder and conductive composition
JP7069311B2 (en) How to make silver powder and conductive paste containing silver powder
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP4059035B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP2015160988A (en) Method of producing nickel powder
JP2015163726A (en) Method of producing nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5519938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250