JPH08246001A - Nickel superfine powder for multilayer ceramic capacitor - Google Patents

Nickel superfine powder for multilayer ceramic capacitor

Info

Publication number
JPH08246001A
JPH08246001A JP7050905A JP5090595A JPH08246001A JP H08246001 A JPH08246001 A JP H08246001A JP 7050905 A JP7050905 A JP 7050905A JP 5090595 A JP5090595 A JP 5090595A JP H08246001 A JPH08246001 A JP H08246001A
Authority
JP
Japan
Prior art keywords
particle size
nickel
average particle
powder
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7050905A
Other languages
Japanese (ja)
Other versions
JP3197454B2 (en
Inventor
Hiroyuki Ishikawa
博之 石川
Kenichi Otsuka
研一 大塚
Shuetsu Ogasawara
修悦 小笠原
Hisao Hamada
尚夫 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12871784&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08246001(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawatetsu Mining Co Ltd, Kawasaki Steel Corp filed Critical Kawatetsu Mining Co Ltd
Priority to JP05090595A priority Critical patent/JP3197454B2/en
Publication of JPH08246001A publication Critical patent/JPH08246001A/en
Application granted granted Critical
Publication of JP3197454B2 publication Critical patent/JP3197454B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles

Abstract

PURPOSE: To obtain a nickel powder as a low-resistance electrode material which is hardly cracked or released in the process for producing a ceramic capacitor. CONSTITUTION: This nickel superfine powder for a multilayer ceramic capacitor has 0.1-1.0μm average grain diameter and has a tap density satisfying the conditions expressed by expression 1. The geometrical standard deviation of the grain size is preferably controlled to <=2.0 and the average crystallite diameter to >=0.2 times the average grain diameter. The nickel superfine powder is more preferably produced by hydrogen reduction in the phase of nickel chloride vapor. In this case, tap density >=-2.5 × (average grain diameter)<3> + 7.0 × (average grain diameter) + 0.6 as shown in expression 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層セラミックコンデ
ンサーの内部電極にも用いられるニッケル超微粉に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine nickel powder which is also used as an internal electrode of a monolithic ceramic capacitor.

【0002】[0002]

【従来の技術】積層セラミックスコンデンサーは、セラ
ミックス誘電体と内部電極とを交互に層状に重ねて圧着
し、これを焼成して一体化したものであり、近年電子部
品として急速に成長している。この積層セラミックスコ
ンデンサーの内部電極としては卑金属であるニッケルが
用いられつつある。
2. Description of the Related Art A laminated ceramic capacitor is one in which ceramic dielectrics and internal electrodes are alternately laminated in layers and pressure-bonded, and these are fired to be integrated, and have rapidly grown as electronic parts in recent years. Nickel, which is a base metal, is being used for the internal electrodes of the multilayer ceramic capacitor.

【0003】特開平1-136910号公報には、純度99%以
上、粒径 0.1〜 0.3μm のニッケル粉を湿式法で製造す
る方法が開示されているが、実際にペーストを試作して
電子部品の電極に使用したという記述はない。しかしな
がら、本発明者らの調査では、従来の湿式法によるニッ
ケル粉をペーストにして積層セラミックコンデンサーの
電極とする場合、焼成時に体積変化が大きくデラミネー
ションやクラックの発生が多発しやすいことが判明し
た。これは、ニッケル粉の製造温度が低温(< 100℃)
のため結晶が大きく成長しないこと(微細な1次粒子の
集合体)により過焼結が発生しやすいため、あるいは焼
成時に酸化膨張するためと考えられる。
Japanese Unexamined Patent Publication No. 1-136910 discloses a method of manufacturing nickel powder having a purity of 99% or more and a particle size of 0.1 to 0.3 μm by a wet method. However, a paste is actually manufactured as a trial product to produce an electronic component. There is no description that it was used for the electrode. However, in the investigation by the present inventors, it has been found that when nickel powder by a conventional wet method is used as a paste to form an electrode of a multilayer ceramic capacitor, the volume change is large during firing and delamination and cracks are likely to occur frequently. . This is because the manufacturing temperature of nickel powder is low (<100 ℃).
Therefore, it is considered that over-sintering is likely to occur due to the fact that crystals do not grow large (aggregates of fine primary particles), or that the crystals expand due to oxidation during firing.

【0004】また、特開昭64-80007号公報には、平均粒
径 1.0μm 、純度99.9%のニッケル粉末を用いた磁器コ
ンデンサー用電極ペーストが開示されており、焼成時の
クラックや剥離を防止することを目的として、ペースト
に炭化物粉末を添加することが示されている。しかしな
がら、クラックの発生等に及ぼすニッケル粉自体の特性
の影響については示されていない。
Further, JP-A-64-80007 discloses an electrode paste for porcelain capacitors which uses nickel powder having an average particle size of 1.0 μm and a purity of 99.9%, and prevents cracks and peeling during firing. For the purpose of doing so, it has been shown to add carbide powder to the paste. However, the influence of the characteristics of the nickel powder itself on the occurrence of cracks is not shown.

【0005】焼成時のクラックや剥離の発生を防止する
ことが積層セラミックコンデンサー製造に要求される重
要な技術であり、クラックや剥離が発生しにくい、低抵
抗な電極材料としてのニッケル粉の開発が望まれてい
た。
Preventing cracks and peeling during firing is an important technique required for manufacturing a monolithic ceramic capacitor, and the development of nickel powder as a low-resistance electrode material in which cracks and peeling hardly occur Was wanted.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の問題点に鑑み、積層セラミックコンデンサー
製造工程におけるクラックや剥離が発生しにくい、低抵
抗な電極材料としてのニッケル粉を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the present invention provides nickel powder as a low resistance electrode material in which cracks and peeling are less likely to occur in the manufacturing process of a laminated ceramic capacitor. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明は、平均粒径が
0.1〜 1.0μm で、かつタップ密度が(1)式で表され
る条件を満足する積層セラミックコンデンサー用ニッケ
ル超微粉であり、その粒度分布の幾何標準偏差が 2.0以
下、かつ平均結晶子径が平均粒径の 0.2倍以上であるの
が望ましく、さらには塩化ニッケル蒸気の気相水素還元
方法によって製造されるのが望ましい。
According to the present invention, the average particle size is
Nickel ultra-fine powder for laminated ceramic capacitors that has a tap density of 0.1 to 1.0 μm and that satisfies the condition expressed by equation (1), and has a geometric standard deviation of 2.0 or less and an average crystallite size of average. The particle size is preferably 0.2 times or more of the particle size, and more preferably manufactured by the vapor phase hydrogen reduction method of nickel chloride vapor.

【0008】 タップ密度≧−2.5 ×(平均粒径)2+ 7.0×(平均粒径)+ 0.6 ・・・ (1)式 なお、前記した塩化ニッケル蒸気の気相水素還元方法
は、蒸発るつぼを有する蒸発部と、この蒸発部から不活
性ガスで搬送される塩化ニッケル蒸気と供給された水素
とを所定の温度で接触させる反応部と、反応部からの発
生ニッケル粉を含む反応ガスを間接冷却する冷却部と
を、連続配置した反応器を用いるのが望ましい。
Tap density ≧ −2.5 × (average particle size) 2 + 7.0 × (average particle size) +0.6 (1) Equation (1) In addition, the vapor phase hydrogen reduction method of nickel chloride vapor described above uses an evaporation crucible. The vaporizing part which has, the reaction part for contacting the supplied hydrogen chloride and the supplied hydrogen chloride with the inert gas from this vaporizing part at a predetermined temperature, and the indirect cooling of the reaction gas containing the nickel powder generated from the reaction part It is desirable to use a reactor in which the cooling section and the cooling section are continuously arranged.

【0009】[0009]

【作用】本発明者らが種々のニッケル粉について実験し
た結果、積層セラミックコンデンサー製造工程における
クラックや剥離の発生しにくい低抵抗な電極材料とし
て、ニッケル微粉に要求される特性は次ぎのとおりであ
った。まず、平均粒径が 0.1〜 1.0μm の範囲に限定さ
れる。平均粒径が 0.1μm 未満では、積層セラミックス
コンデンサー焼成時にニッケル層が過焼結により収縮し
ポーラスなものとなって電気抵抗が高くなり、あるいは
デラミネーションやクラックを発生するので望ましくな
い。一方、 1.0μm 超では、積層セラミックスコンデン
サーの電極層の薄層化が困難なばかりでなく、表面の凹
凸が大きくなりクラックの原因となる。なお、平均粒径
は電子顕微鏡写真を画像解析して求めた個数基準の粒度
分布における50%粒子径(d50)である。
As a result of experiments conducted by the present inventors on various nickel powders, the following characteristics are required for nickel fine powders as a low-resistance electrode material that is unlikely to cause cracks or peeling in the manufacturing process of multilayer ceramic capacitors. It was First, the average particle size is limited to the range of 0.1 to 1.0 μm. If the average particle size is less than 0.1 μm, the nickel layer shrinks due to oversintering during firing of the multilayer ceramic capacitor to become porous, resulting in high electrical resistance, or delamination or cracks are generated, which is not desirable. On the other hand, if it exceeds 1.0 μm, not only is it difficult to reduce the thickness of the electrode layer of the multilayer ceramic capacitor, but also unevenness on the surface becomes large, which causes cracks. The average particle size is the 50% particle size (d50) in the number-based particle size distribution obtained by image analysis of electron micrographs.

【0010】次に、粉末の充填性を示す指標であるタッ
プ密度が(1)式で表される条件を満足することが、積
層セラミックコンデンサー焼成時にデラミネーションや
クラックを防止し電極の低抵抗化、長寿命化の必須条件
であることがわかった。 タップ密度≧−2.5 ×(平均粒径)2+ 7.0×(平均粒径)+ 0.6 ・・・ (1)式 なお、タップ密度は、ホソカワミクロン(株)製パウダ
ーテスター(カップ容量100ml 、50φ×51mm)により、
タップリフト18mm、タッピング回数 180回の条件で測定
した値である。
Next, it is necessary that the tap density, which is an index showing the filling property of the powder, satisfies the condition represented by the formula (1) so that delamination and cracks can be prevented during firing of the multilayer ceramic capacitor to lower the resistance of the electrode. , It was found to be an essential condition for extending the life. Tap density ≥ -2.5 x (average particle size) 2 + 7.0 x (average particle size) + 0.6 (1) Formula Note that the tap density is a powder tester manufactured by Hosokawa Micron Co., Ltd. (cup volume 100 ml, 50φ x 51 mm). ),
The values are measured under the conditions of tap lift 18 mm and tapping frequency 180 times.

【0011】図1はセラミックスグリーンシートに電極
材を印刷して焼成試験したときのクラック、デラミネー
ション発生率を、タップ密度と平均粒径との関係で示し
たものである。(1)式を満足する領域ではクラック、
デラミネーション発生率が10%以下である。また、タッ
プ密度が(2)式を満たすのが好ましく、この場合のク
ラック、デラミネーション発生率は5%以下となってい
る。
FIG. 1 shows the crack and delamination occurrence rates when the electrode material was printed on a ceramic green sheet and subjected to a firing test, as a relationship between the tap density and the average particle diameter. Cracks in the area that satisfies the formula (1),
Delamination occurrence rate is 10% or less. Further, it is preferable that the tap density satisfies the expression (2), and the crack and delamination occurrence rates in this case are 5% or less.

【0012】 タップ密度≧−2.5 ×(平均粒径)2+ 7.0×(平均粒径)+ 0.8 ・・・ (2)式 さらには、タップ密度が(3)式を満たすのがより好ま
しく、クラック、デラミネーション発生率は1%以下と
なっている。 タップ密度≧−2.5 ×(平均粒径)2+ 7.0×(平均粒径)+ 1.0 ・・・ (3)式 さらに、粒度分布の幾何標準偏差が 2.0以下、かつ平均
結晶子径が平均粒径の0.2倍以上であることが好まし
い。粒度分布の幾何標準偏差が 2.0を超えると粗大な粒
子が混入するので、膜厚が不均一となってクラックの原
因となり好ましくない。結晶子径は結晶性を意味し、粒
子の焼結の難易と関係する。すなわち、結晶子径が小さ
いほど粒子は焼結しやすく、積層セラミックスコンデン
サーの焼成時、結晶子径が小さいニッケル粉を電極層と
して用いた場合、ニッケル層が過焼結により収縮してし
まうのである。発明者らは、許容結晶子径を求めるべく
実験を繰り返した結果、平均粒径が 0.1〜 1.0μm の範
囲で粒度分布の幾何標準偏差が 2.0以下、かつ平均結晶
子径が平均粒径の 0.2倍以上であれば、焼成時にデラミ
ネーションやクラックが発生しないことを見い出した。
ここで、粒度分布の幾何標準偏差は個数基準の粒度分布
における50%粒子径(d50)と積算ふるい下84.3%径
(d84.3)の比(d84.3/d50)で求められ、平均結晶
子径はX線回折ピークの半値巾から求められる。
Tap density ≧ −2.5 × (average particle size) 2 + 7.0 × (average particle size) +0.8 Equation (2) Furthermore, it is more preferable that the tap density satisfies Equation (3), and cracks The delamination rate is less than 1%. Tap density ≥ -2.5 × (average particle size) 2 + 7.0 × (average particle size) + 1.0 (3) Formula Furthermore, the geometric standard deviation of the particle size distribution is 2.0 or less, and the average crystallite size is the average particle size. It is preferably 0.2 times or more. When the geometric standard deviation of the particle size distribution exceeds 2.0, coarse particles are mixed in, and the film thickness becomes nonuniform, which is a cause of cracks, which is not preferable. The crystallite size means crystallinity and is related to the difficulty of sintering particles. That is, the smaller the crystallite size, the easier the particles are to sinter, and when nickel powder with a small crystallite size is used as the electrode layer during firing of the multilayer ceramic capacitor, the nickel layer shrinks due to oversintering. . As a result of repeated experiments to find an allowable crystallite size, the inventors have found that the geometric standard deviation of the particle size distribution is 2.0 or less and the average crystallite size is 0.2 of the average particle size in the range of the average particle size of 0.1 to 1.0 μm. It has been found that if it is more than twice, delamination and cracks do not occur during firing.
Here, the geometric standard deviation of the particle size distribution is calculated by the ratio (d84.3 / d50) of the 50% particle size (d50) in the number-based particle size distribution and the 84.3% size under the cumulative sieving (d84.3), and the average crystal The child diameter can be obtained from the half width of the X-ray diffraction peak.

【0013】なお、ニッケル純度は99.5重量%以上が好
ましく、99.5重量%未満では焼成時にデラミネーション
やクラックが発生しやすいだけでなく、電極としての特
性が低下(比抵抗が大きくなる)する。このような特徴
を持つニッケル粉の製造方法としては,塩化ニッケルの
気相水素還元法が挙げられる。従来の湿式法は、ニッケ
ル粉の製造温度が低温(< 100℃)であるのに対し、塩
化ニッケルの気相水素還元法は、製造温度が高温(1000
℃付近)であるため、結晶が大きく成長(微細な1次粒
子の集合体でない)することによって焼成時にの過焼結
が発生しにくい。また、気相水素還元法では、粒形状が
球状となり、純度99.5重量%以上のものが得やすい有利
な点もある。上記特徴を持つニッケル粉を効率よく製造
するために、反応器を用いて塩化ニッケル蒸気と水素を
化学反応させる方法が適している。具体的には、塩化ニ
ッケル蒸気濃度(分圧)を0.05〜 0.3とし、かつ塩化ニ
ッケル蒸気と水素を1004℃(1277K)〜1453℃(1726
K)の温度で化学反応させる。
The nickel purity is preferably 99.5% by weight or more, and if it is less than 99.5% by weight, not only delamination and cracks are likely to occur during firing, but also the characteristics as an electrode deteriorate (the specific resistance increases). As a method for producing nickel powder having such characteristics, there is a vapor phase hydrogen reduction method of nickel chloride. In the conventional wet method, the production temperature of nickel powder is low (<100 ° C), whereas in the vapor phase hydrogen reduction method of nickel chloride, the production temperature is high (1000
Since the temperature is around 0 ° C.), the crystals grow large (not the aggregate of fine primary particles), so that oversintering at the time of firing hardly occurs. In addition, the gas-phase hydrogen reduction method has an advantage in that the particles have a spherical shape and a purity of 99.5% by weight or more is easily obtained. In order to efficiently produce the nickel powder having the above characteristics, a method of chemically reacting nickel chloride vapor with hydrogen using a reactor is suitable. Specifically, the nickel chloride vapor concentration (partial pressure) is 0.05 to 0.3, and the nickel chloride vapor and hydrogen are 1004 ° C (1277K) to 1453 ° C (1726 ° C).
The chemical reaction is carried out at the temperature of K).

【0014】[0014]

【実施例】【Example】

実施例1 図2に示すような反応器1を用い,蒸発部2のルツボ3
に原料の塩化ニッケルを入れ、10リットル/分のアルゴ
ンガス4中に濃度(分圧)が 8.0×10-2なるように加
熱、蒸発させた。この原料混合ガスを蒸発部2の下流に
位置する1050℃(1323K)に設定した反応部5へ輸送
し、反応部5の中央ノズル6から下向きに5リットル/
分の割合で供給される水素7と接触・混合させて反応を
起こさせた。発生したニッケル粉はガスとともに冷却部
9を通過させた後、図示省略した捕集装置で回収した。
なお、図中、8は熱電対を示す。
Example 1 Using a reactor 1 as shown in FIG. 2, a crucible 3 in an evaporation section 2 was used.
Nickel chloride as a raw material was put in, and the mixture was heated and evaporated in argon gas 4 at 10 l / min so that the concentration (partial pressure) was 8.0 × 10 -2 . This raw material mixed gas is transported to the reaction section 5 located at the downstream of the evaporation section 2 and set at 1050 ° C. (1323 K), and the central nozzle 6 of the reaction section 5 delivers 5 liter / down.
The reaction was caused by contacting and mixing with hydrogen 7 supplied at a rate of min. The generated nickel powder was passed through the cooling unit 9 together with the gas, and then collected by a collector (not shown).
In the figure, 8 indicates a thermocouple.

【0015】この生成粉の比表面積は 2.7m2/g、電子
顕微鏡観察による平均粒径0.25μm、粒度分布のバラツ
キを示す幾何標準偏差 1.4の粒度が揃った微粉末である
ことが確認された。また、このニッケル粉のX線回折パ
ターンから算出した平均結晶子径は 0.2μm であり、平
均粒径と比較すると、単結晶あるいは数個の結晶からな
る結晶性に優れた多結晶であることが示された。
It was confirmed that the produced powder had a specific surface area of 2.7 m 2 / g, an average particle size of 0.25 μm as observed by an electron microscope, and a uniform particle size with a geometric standard deviation of 1.4 indicating variations in particle size distribution. . The average crystallite size calculated from the X-ray diffraction pattern of this nickel powder was 0.2 μm, and compared with the average particle size, it was a single crystal or a polycrystal consisting of several crystals with excellent crystallinity. Was shown.

【0016】酸素含有量 0.3重量%を含む以外はほとん
ど不純物を含まず、純度99.5重量%以上であった。ま
た、タップ密度は2.5g/cm3 であり、平均粒径は0.25μ
m であることから(1)式を満たしている。 実施例2 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
1.0×10-1、反応部1070℃(1343K)とした以外は同じ
条件でニッケル粉を製造した。
Almost no impurities were contained except that the oxygen content was 0.3% by weight, and the purity was 99.5% by weight or more. The tap density is 2.5 g / cm 3 and the average particle size is 0.25μ.
Since it is m, Equation (1) is satisfied. Example 2 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions, except that the reaction zone was 1070 ° C (1343K) at 1.0 x 10 -1 .

【0017】この生成粉の比表面積は 1.7m2/g、平均
粒径 0.4μm 、粒度分布の幾何標準偏差は 1.5であり,
形状はほぼ完全な球状であった。図3に電子顕微鏡によ
り撮影したニッケル超微粉の粒子構造を示す。なお、純
度は99.5重量%であった。また、平均結晶子径は 0.2μ
m であり、単結晶あるいは数個の結晶からなる結晶性に
優れた多結晶であることが示された。
The specific surface area of this product powder is 1.7 m 2 / g, the average particle size is 0.4 μm, and the geometric standard deviation of the particle size distribution is 1.5.
The shape was almost perfect sphere. FIG. 3 shows the particle structure of ultrafine nickel powder photographed by an electron microscope. The purity was 99.5% by weight. The average crystallite size is 0.2μ
It was m 2 and was shown to be a single crystal or a polycrystal composed of several crystals with excellent crystallinity.

【0018】タップ密度は3.7g/cm3 であり、平均粒径
0.4μm であることから(1)式を満たしている。 実施例3 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
1.0×10-1、反応部1100℃(1373K)とした以外は同じ
条件でニッケル粉を製造した。
The tap density is 3.7 g / cm 3 , and the average particle size is
Since it is 0.4 μm, it satisfies the formula (1). Example 3 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction zone was set to 1.0 × 10 −1 and the reaction zone was set to 1100 ° C. (1373 K).

【0019】この生成粉の比表面積は0.85m2/g、平均
粒径 0.8μm 、粒度分布の幾何標準偏差は 1.7であり、
形状はほぼ球状であった。また、平均結晶子径は0.25μ
m であり、純度99.5重量%であった。タップ密度は4.6g
/cm3 であり、平均粒径0.8μm であることから(1)
式を満たしている。
The specific surface area of this product powder was 0.85 m 2 / g, the average particle size was 0.8 μm, and the geometric standard deviation of the particle size distribution was 1.7.
The shape was almost spherical. The average crystallite size is 0.25μ.
m 2 and the purity was 99.5% by weight. Tap density is 4.6g
/ Cm 3 and average particle size of 0.8 μm (1)
Meets the formula.

【0020】実施例4 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
2.0×10-1、反応部1010℃(1283K)とした以外は同じ
条件でニッケル粉を製造した。この生成粉の比表面積は
1.0m2/g、平均粒径 0.6μm 、粒度分布の幾何標準偏
差は 1.5であり、形状はほぼ完全な球状であった。
Example 4 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction zone was 1010 ° C. (1283 K) at 2.0 × 10 −1 . The specific surface area of this product powder is
The particle size was 1.0 m 2 / g, the average particle size was 0.6 μm, the geometric standard deviation of the particle size distribution was 1.5, and the shape was almost perfect.

【0021】また、平均結晶子径は 0.2μm であり、純
度は99.5重量%であった。タップ密度は4.2g/cm3 であ
り、平均粒径 0.6μm であることから(1)式を満たし
ている。 実施例5 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
1.2×10-1、反応部1020℃(1293K)とした以外は同じ
条件でニッケル粉を製造した。
The average crystallite size was 0.2 μm and the purity was 99.5% by weight. Since the tap density is 4.2 g / cm 3 and the average particle size is 0.6 μm, the formula (1) is satisfied. Example 5 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction zone was 1.2 × 10 −1 and the reaction zone was 1020 ° C. (1293 K).

【0022】この生成粉の比表面積は 1.5m2/g、平均
粒径0.45μm 、粒度分布の幾何標準偏差は 1.6であり、
形状はほぼ球状であった。また、平均結晶子径は0.15μ
m であり、純度99.5重量%以上であった。タップ密度は
4.0g/cm3 であり、平均粒径0.45μm であることから
(1)式を満たしている。
The specific surface area of this product powder is 1.5 m 2 / g, the average particle size is 0.45 μm, and the geometric standard deviation of the particle size distribution is 1.6.
The shape was almost spherical. The average crystallite size is 0.15μ
m 2, and the purity was 99.5% by weight or more. Tap density is
Since it is 4.0 g / cm 3 and the average particle size is 0.45 μm, the formula (1) is satisfied.

【0023】実施例6 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
5.0×10-2、反応部1015℃(1333K)とした以外は同じ
条件でニッケル粉を製造した。この生成粉の比表面積は
3.2m2/g、電子顕微鏡観察による平均粒径0.15μm、
平均結晶子径 0.1μm であり、純度99.5重量%の粉末で
あった。
Example 6 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
5.0 × 10 -2, except that a reaction section 1015 ℃ (1333K) to produce nickel powder under the same conditions. The specific surface area of this product powder is
3.2 m 2 / g, average particle size 0.15 μm by electron microscope observation,
The powder had an average crystallite size of 0.1 μm and a purity of 99.5% by weight.

【0024】タップ密度は2.0g/cm3 であり、平均粒径
0.15μm であることから(1)式を満たしている。 実施例7 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
2.2×10-1、反応部1110℃(1383K)とした以外は同じ
条件でニッケル粉を製造した。
The tap density is 2.0 g / cm 3 , and the average particle size is
Since it is 0.15 μm, it satisfies the equation (1). Example 7 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction zone was 1110 ° C. (1383 K) at 2.2 × 10 −1 .

【0025】この生成粉の比表面積は0.75m2/g、平均
粒径 1.0μm 、粒度分布の幾何標準偏差は2.1 、平均結
晶子径は 0.2μm であり、純度99.5重量%以上であっ
た。タップ密度は5.15g/cm3 であり、平均粒径 1.0μm
であることから(1)式を満たしている。 実施例8 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
1.4×10-1、反応部1170℃(1433K)とした以外は同じ
条件でニッケル粉を製造した。
The product powder had a specific surface area of 0.75 m 2 / g, an average particle size of 1.0 μm, a geometric standard deviation of the particle size distribution of 2.1, an average crystallite size of 0.2 μm, and a purity of 99.5% by weight or more. Tap density was 5.15 g / cm 3, average particle diameter 1.0μm
Therefore, the expression (1) is satisfied. Example 8 In Example 1, the nickel chloride vapor concentration (partial pressure) was
Nickel powder was produced under the same conditions except that the reaction zone was 1.4 × 10 −1 and the reaction zone was 1170 ° C. (1433 K).

【0026】この生成粉の比表面積は0.75m2/g、平均
粒径 0.9μm 、粒度分布の幾何標準偏差は1.9 、平均結
晶子径は0.09μm であり、純度99.5重量%以上であっ
た。タップ密度は4.9g/cm3 であり、平均粒径 0.9μm
であることから(1)式を満たしている。 比較例1 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
5.0×10-2、反応部 950℃(1333K)とした以外は同じ
条件でニッケル粉を製造した。
The product powder had a specific surface area of 0.75 m 2 / g, an average particle size of 0.9 μm, a geometric standard deviation of particle size distribution of 1.9, an average crystallite size of 0.09 μm, and a purity of 99.5% by weight or more. Tap density is 4.9g / cm 3 , average particle size is 0.9μm
Therefore, the expression (1) is satisfied. Comparative Example 1 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction section was 950 ° C. (1333 K) at 5.0 × 10 -2 .

【0027】この生成粉の比表面積は 3.3m2/g、電子
顕微鏡観察による平均粒径0.15μmの立方体、八面体等
の晶癖を有する粉末であった。タップ密度は 1.45g/cm
3 であり、平均粒径0.15μm であることから(1)式を
満たしていない。 比較例2 実施例1において、塩化ニッケルの蒸気濃度(分圧)が
4.0×10-1、反応部1110℃(1333K)とした以外は同じ
条件でニッケル粉を製造した。
The produced powder had a specific surface area of 3.3 m 2 / g and was a powder having a crystal habit such as a cubic or octahedron having an average particle size of 0.15 μm as observed by an electron microscope. Tap density is 1.45g / cm
Since the average particle size is 3 and the average particle size is 0.15 μm, the formula (1) is not satisfied. Comparative Example 2 In Example 1, the vapor concentration (partial pressure) of nickel chloride was
Nickel powder was produced under the same conditions except that the reaction zone was set to 4.0 × 10 -1 , 1110 ° C (1333K).

【0028】この生成粉の比表面積は 0.9m2/g、電子
顕微鏡観察による平均粒径 1.1μm、粒度分布の幾何標
準偏差は 2.2であり、数μm の異常成長粒子が混在して
いた。タップ密度は5.3g/cm3 であり、平均粒径 1.1μ
m であることから(1)式を満たしている。
The produced powder had a specific surface area of 0.9 m 2 / g, an average particle size of 1.1 μm as observed by an electron microscope, a geometric standard deviation of particle size distribution of 2.2, and several μm of abnormal growth particles were mixed. Tap density was 5.3 g / cm 3, an average particle diameter of 1.1μ
Since it is m, Equation (1) is satisfied.

【0029】比較例3 硫酸ニッケルを水に溶かしたニッケル濃度2.5mol/l 、
pH 9.0の溶液に還元剤として水素化ホウ素ナトリウムを
0.05mol /l 添加し、得られた沈殿物を真空中で乾燥し
ニッケル粉末を作製した。この生成粉の比表面積は 2.0
m2/g、電子顕微鏡観察による平均粒径 0.4μm、ほぼ
球状に近い形状を示した。粒度分布の幾何標準偏差は
1.6であり、平均結晶子径は0.04μm であった。
Comparative Example 3 Nickel sulfate was dissolved in water to obtain a nickel concentration of 2.5 mol / l,
Sodium borohydride as a reducing agent in a solution of pH 9.0
0.05 mol / l was added, and the obtained precipitate was dried in vacuum to prepare a nickel powder. The specific surface area of this product powder is 2.0
The particle size was m 2 / g, the average particle size was 0.4 μm as observed by an electron microscope, and the shape was almost spherical. Geometric standard deviation of particle size distribution is
The average crystallite size was 1.6 and the average crystallite size was 0.04 μm.

【0030】タップ密度は2.5g/cm3 であり、平均粒径
0.4μm であることから(1)式を満たしていない。 比較例4 比較例3と同様に湿式法によりニッケル粉を製造した。
ニッケル濃度3.0mol/l 、pH 9.0の溶液に還元剤として
水素化ホウ素ナトリウムを0.05mol /l 添加し、得られ
た沈殿物を大気中で乾燥しニッケル粉末を作製した。
The tap density is 2.5 g / cm 3 , and the average particle size is
Since it is 0.4 μm, equation (1) is not satisfied. Comparative Example 4 Nickel powder was produced by a wet method in the same manner as in Comparative Example 3.
0.05 mol / l of sodium borohydride as a reducing agent was added to a solution having a nickel concentration of 3.0 mol / l and a pH of 9.0, and the obtained precipitate was dried in the air to prepare a nickel powder.

【0031】この生成粉の比表面積は 3.1m2/g、電子
顕微鏡観察による平均粒径 0.5μm、ほぼ球状に近い形
状を示した。粒度分布の幾何標準偏差は 1.8であり、平
均結晶子径は0.08μm 、純度は97重量%(酸素 1.8重量
%)であった。タップ密度は2.9g/cm3 であり、平均粒
径 0.5μm であることから(1)式を満たしていない。
The produced powder had a specific surface area of 3.1 m 2 / g, an average particle size of 0.5 μm as observed by an electron microscope, and had a nearly spherical shape. The geometric standard deviation of the particle size distribution was 1.8, the average crystallite size was 0.08 μm, and the purity was 97% by weight (oxygen 1.8% by weight). Since the tap density is 2.9 g / cm 3 and the average particle size is 0.5 μm, the formula (1) is not satisfied.

【0032】実施例1〜8、比較例1〜4で得られたそ
れぞれのニッケル粉のペーストを用いて積層セラミック
スコンデンサーを作製し、焼成時のデラミネーションの
発生の有無を調べた。ペースト化にはニッケル粉 100重
量部に対し、バインダとしてエチルセルロース 2.5重量
部、溶媒としてテレピネオール10重量部を添加し、3本
ロールミルで混練した。このペーストを、誘電体の厚さ
が約30μm のグリーンシート上に厚みが4μm になるよ
うに印刷した。電極と誘電体層を交互に30層積み重ねて
圧着したのち切断して、乾燥、脱バインダー後、1200℃
の水素−窒素混合ガス中で焼成した。得られた積層コン
デンサーの大きさは、縦 3.2×横 2.5×厚さ0.9mm であ
った。
A laminated ceramic capacitor was manufactured using the nickel powder pastes obtained in Examples 1 to 8 and Comparative Examples 1 to 4, and the occurrence of delamination during firing was examined. To form a paste, 2.5 parts by weight of ethyl cellulose as a binder and 10 parts by weight of terpineol as a solvent were added to 100 parts by weight of nickel powder, and the mixture was kneaded by a three-roll mill. This paste was printed on a green sheet having a dielectric thickness of about 30 μm to a thickness of 4 μm. Alternately, 30 layers of electrodes and dielectric layers are stacked, pressure-bonded, cut, dried, debindered, and 1200 ℃
It was fired in a hydrogen-nitrogen mixed gas of. The size of the obtained multilayer capacitor was 3.2 × 2.5 (horizontal) × 0.9 mm (thick).

【0033】得られた積層コンデンサーのクラックやデ
ラミネーションの有無を30個について調べた結果を表1
に示した。
The results of examining the presence or absence of cracks and delamination of 30 of the obtained multilayer capacitors are shown in Table 1.
It was shown to.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例に示すように、本発明の特性を満足
するニッケル粉を用いた場合にはクラックやデラミネー
ションは見られなかった。一方、比較例では本発明の特
性のいずれかが満足しないためにクラックやデラミネー
ションが発生している。
As shown in the examples, when nickel powder satisfying the characteristics of the present invention was used, neither crack nor delamination was observed. On the other hand, in Comparative Example, cracks and delamination occur because any of the characteristics of the present invention is not satisfied.

【0036】[0036]

【発明の効果】本発明により、内部電極の薄層化、低抵
抗化、ならびに焼成時のデラミネーションやクラックの
発生を低下させることが達成できた。
According to the present invention, it is possible to achieve a thin internal electrode, a low resistance, and a reduction in delamination and cracking during firing.

【図面の簡単な説明】[Brief description of drawings]

【図1】クラック、デラミネーションの発生率を、タッ
プ密度、平均粒径との関係で示すグラフである。
FIG. 1 is a graph showing the rate of occurrence of cracks and delamination as a function of tap density and average particle size.

【図2】本発明によるニッケル超微粉を得るのに有利な
反応器の概略説明図である。
FIG. 2 is a schematic illustration of a reactor advantageous for obtaining ultrafine nickel powder according to the present invention.

【図3】本発明のニッケル超微粉の粒子構造を示す電子
顕微鏡写真である。
FIG. 3 is an electron micrograph showing the particle structure of the nickel ultrafine powder of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 蒸発部 3 ルツボ 5 反応部 7 水素 9 冷却部 1 Reactor 2 Evaporator 3 Crucible 5 Reaction 7 Hydrogen 9 Cooling

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 研一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 小笠原 修悦 東京都港区芝公園2丁目4番1号 川鉄鉱 業株式会社内 (72)発明者 濱田 尚夫 東京都港区芝公園2丁目4番1号 川鉄鉱 業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Otsuka, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Laboratory, Kawasaki Steel Co., Ltd. No. Kawakawa Mining Co., Ltd. (72) Inventor Nao Hamada 2-4-1 Shiba Koen, Minato-ku, Tokyo No. Kawakawa Mining Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が 0.1〜 1.0μm で、かつタッ
プ密度が(1)式で表される条件を満足する積層セラミ
ックコンデンサー用ニッケル超微粉。 タップ密度≧−2.5 ×(平均粒径)2+ 7.0×(平均粒径)+ 0.6 ・・・ (1)式
1. An ultrafine nickel powder for a multilayer ceramic capacitor, which has an average particle size of 0.1 to 1.0 μm and a tap density satisfying the condition represented by the formula (1). Tap density ≥ -2.5 x (average particle size) 2 + 7.0 x (average particle size) + 0.6 (1) Formula
【請求項2】 粒度分布の幾何標準偏差が 2.0以下、か
つ平均結晶子径が平均粒径の 0.2倍以上であることを特
徴とする請求項1記載の積層セラミックコンデンサー用
ニッケル超微粉。
2. The nickel ultrafine powder for a multilayer ceramic capacitor according to claim 1, wherein the geometric standard deviation of the particle size distribution is 2.0 or less, and the average crystallite size is 0.2 times or more the average particle size.
【請求項3】 塩化ニッケル蒸気の気相水素還元方法に
よって製造されたことを特徴とする請求項1または2記
載の積層セラミックコンデンサー用ニッケル超微粉。
3. The ultrafine nickel powder for a monolithic ceramic capacitor according to claim 1, which is produced by a vapor phase hydrogen reduction method of nickel chloride vapor.
JP05090595A 1995-03-10 1995-03-10 Ultra fine nickel powder for multilayer ceramic capacitors Ceased JP3197454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05090595A JP3197454B2 (en) 1995-03-10 1995-03-10 Ultra fine nickel powder for multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05090595A JP3197454B2 (en) 1995-03-10 1995-03-10 Ultra fine nickel powder for multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH08246001A true JPH08246001A (en) 1996-09-24
JP3197454B2 JP3197454B2 (en) 2001-08-13

Family

ID=12871784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05090595A Ceased JP3197454B2 (en) 1995-03-10 1995-03-10 Ultra fine nickel powder for multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP3197454B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106351A (en) * 1996-09-30 1998-04-24 Kyocera Corp Conductive paste
WO1998024577A1 (en) * 1996-12-02 1998-06-11 Toho Titanium Co., Ltd. Process for the production of metal powder and equipment therefor
EP0925861A2 (en) * 1997-12-25 1999-06-30 Kawatetsu Mining Co., LTD. Nickel ultrafine powder
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
JPH11339554A (en) * 1998-03-19 1999-12-10 Toray Ind Inc Conductive powder, conductive paste, plasma display and substrate therefor
WO2000003823A1 (en) * 1998-07-15 2000-01-27 Toho Titanium Co., Ltd. Metal powder
WO2000006326A1 (en) * 1998-07-27 2000-02-10 Toho Titanium Co., Ltd. Metal nickel powder
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
WO2000074881A1 (en) * 1999-06-08 2000-12-14 Toho Titanium Co., Ltd. Method for preparing ultra fine nickel powder
WO2001015838A1 (en) * 1999-08-31 2001-03-08 Toho Titanium Co., Ltd. Nickel powder for monolithic ceramic capacitor
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
WO2001057885A1 (en) * 2000-01-31 2001-08-09 Toho Titanium Co., Ltd. Nickel power dispersion, method of producing nickel power dispersion and method of producing conductive paste
US6343002B1 (en) 1999-09-30 2002-01-29 Murata Manufacturing Co., Ltd. Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same
WO2004080629A1 (en) * 2003-03-12 2004-09-23 Jfe Mineral Company, Ltd. Nickel based ultrafine powder
WO2005023461A1 (en) * 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. Nickel powder and process for producing the same
JP2005251752A (en) * 2000-09-29 2005-09-15 Jsr Corp Conductive metal particle, conductive compound metal particle, and applied product using them
US7001539B2 (en) 2000-06-15 2006-02-21 Tdk Corporation Composite substance containing metal particles, conductive paste and manufacturing method thereof
JP2006156838A (en) * 2004-11-30 2006-06-15 Tdk Corp Method for estimating sintering temperature of element body for laminated electronic component
JP2006183076A (en) * 2004-12-27 2006-07-13 Nippon Atomized Metal Powers Corp Atomizing gold powder, electrically conductive gold paste using the same and gold clay for decoration
US7182977B2 (en) 2001-08-21 2007-02-27 Tdk Corporation Composite substance containing metal particles, conductive paste and manufacturing method thereof
JP2007197836A (en) * 2007-03-06 2007-08-09 Mitsui Mining & Smelting Co Ltd Nickel powder
US7261761B2 (en) 2002-08-28 2007-08-28 Toho Titanium Co., Ltd. Metallic nickel powder and process for production thereof
WO2008001741A1 (en) * 2006-06-27 2008-01-03 Ishihara Sangyo Kaisha, Ltd. Nickel fine particle, method for producing the same, and fluid composition using the same
JP2008525640A (en) * 2004-12-28 2008-07-17 成都▲開▼▲飛▼高能化学工▲業▼有限公司 High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
DE102008012710A1 (en) 2007-03-12 2008-10-09 Chisso Corporation Method and device for producing a solid product
US7658995B2 (en) 2004-06-16 2010-02-09 Toho Titanium Co., Ltd. Nickel powder comprising sulfur and carbon, and production method therefor
CN102189252A (en) * 2010-03-19 2011-09-21 住友金属矿山株式会社 Nickel micro powder and manufacturing method thereof
JP2018070951A (en) * 2016-10-28 2018-05-10 住友金属鉱山株式会社 Powder for conductive paste and production method of conductive layer
KR20180101504A (en) 2016-01-12 2018-09-12 도호 티타늄 가부시키가이샤 Nickel powder
US11376658B2 (en) 2016-03-18 2022-07-05 Sumitomo Metal Mining Co., Ltd. Nickel powder, method for manufacturing nickel powder, internal electrode paste using nickel powder, and electronic component

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106351A (en) * 1996-09-30 1998-04-24 Kyocera Corp Conductive paste
WO1998024577A1 (en) * 1996-12-02 1998-06-11 Toho Titanium Co., Ltd. Process for the production of metal powder and equipment therefor
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
EP0925861A2 (en) * 1997-12-25 1999-06-30 Kawatetsu Mining Co., LTD. Nickel ultrafine powder
US6312496B1 (en) 1997-12-25 2001-11-06 Kawatetsu Mining Co., Ltd. Nickel ultrafine powder
EP0925861B1 (en) * 1997-12-25 2007-07-11 Kawatetsu Mining Co., LTD. Nickel ultrafine powder
US6235077B1 (en) 1998-02-20 2001-05-22 Toho Titanium Co., Ltd. Process for production of nickel powder
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
JPH11339554A (en) * 1998-03-19 1999-12-10 Toray Ind Inc Conductive powder, conductive paste, plasma display and substrate therefor
WO2000003823A1 (en) * 1998-07-15 2000-01-27 Toho Titanium Co., Ltd. Metal powder
WO2000006326A1 (en) * 1998-07-27 2000-02-10 Toho Titanium Co., Ltd. Metal nickel powder
US6391084B1 (en) 1998-07-27 2002-05-21 Toho Titanium Co., Ltd. Metal nickel powder
WO2000074881A1 (en) * 1999-06-08 2000-12-14 Toho Titanium Co., Ltd. Method for preparing ultra fine nickel powder
US6500227B1 (en) 1999-06-08 2002-12-31 Toho Titanium Co., Ltd. Process for production of ultrafine nickel powder
WO2001015838A1 (en) * 1999-08-31 2001-03-08 Toho Titanium Co., Ltd. Nickel powder for monolithic ceramic capacitor
US6454830B1 (en) * 1999-08-31 2002-09-24 Toho Titanium Co., Ltd. Nickel powder for multilayer ceramic capacitors
US6343002B1 (en) 1999-09-30 2002-01-29 Murata Manufacturing Co., Ltd. Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
KR100480866B1 (en) * 1999-11-10 2005-04-07 미츠이 긴조쿠 고교 가부시키가이샤 Nickel powder, method for preparation thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
US6494931B1 (en) 1999-11-12 2002-12-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
US6620220B2 (en) 2000-01-31 2003-09-16 Toho Titanium Co., Ltd. Nickel powder dispersion, method of producing nickel power dispersion and method of producing conductive paste
EP1195773A4 (en) * 2000-01-31 2009-01-28 Toho Titanium Co Ltd Nickel power dispersion, method of producing nickel power dispersion and method of producing conductive paste
WO2001057885A1 (en) * 2000-01-31 2001-08-09 Toho Titanium Co., Ltd. Nickel power dispersion, method of producing nickel power dispersion and method of producing conductive paste
EP1195773A1 (en) * 2000-01-31 2002-04-10 Toho Titanium Co., Ltd. Nickel power dispersion, method of producing nickel power dispersion and method of producing conductive paste
US7001539B2 (en) 2000-06-15 2006-02-21 Tdk Corporation Composite substance containing metal particles, conductive paste and manufacturing method thereof
JP2005251752A (en) * 2000-09-29 2005-09-15 Jsr Corp Conductive metal particle, conductive compound metal particle, and applied product using them
US7182977B2 (en) 2001-08-21 2007-02-27 Tdk Corporation Composite substance containing metal particles, conductive paste and manufacturing method thereof
CN100454444C (en) * 2001-08-21 2009-01-21 Tdk株式会社 Conductive paste composition, conductive paste and its preparation
US7261761B2 (en) 2002-08-28 2007-08-28 Toho Titanium Co., Ltd. Metallic nickel powder and process for production thereof
KR101064384B1 (en) * 2003-03-12 2011-09-14 제이에프이미네라르 가부시키가이샤 Nickel based ultrafine powder
WO2004080629A1 (en) * 2003-03-12 2004-09-23 Jfe Mineral Company, Ltd. Nickel based ultrafine powder
US7186289B2 (en) 2003-08-29 2007-03-06 Sunitomo Metal Mining Co., Ltd. Nickel powder and production method therefor
WO2005023461A1 (en) * 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. Nickel powder and process for producing the same
US7658995B2 (en) 2004-06-16 2010-02-09 Toho Titanium Co., Ltd. Nickel powder comprising sulfur and carbon, and production method therefor
JP2006156838A (en) * 2004-11-30 2006-06-15 Tdk Corp Method for estimating sintering temperature of element body for laminated electronic component
JP2006183076A (en) * 2004-12-27 2006-07-13 Nippon Atomized Metal Powers Corp Atomizing gold powder, electrically conductive gold paste using the same and gold clay for decoration
JP2008525640A (en) * 2004-12-28 2008-07-17 成都▲開▼▲飛▼高能化学工▲業▼有限公司 High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
JP4837675B2 (en) * 2004-12-28 2011-12-14 成都▲開▼▲飛▼高能化学工▲業▼有限公司 High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
JP5294851B2 (en) * 2006-06-27 2013-09-18 石原産業株式会社 Method for producing nickel fine particles
WO2008001741A1 (en) * 2006-06-27 2008-01-03 Ishihara Sangyo Kaisha, Ltd. Nickel fine particle, method for producing the same, and fluid composition using the same
JP2007197836A (en) * 2007-03-06 2007-08-09 Mitsui Mining & Smelting Co Ltd Nickel powder
US7553468B2 (en) 2007-03-12 2009-06-30 Chisso Corporation Method for producing solid product
DE102008012710A1 (en) 2007-03-12 2008-10-09 Chisso Corporation Method and device for producing a solid product
CN102189252A (en) * 2010-03-19 2011-09-21 住友金属矿山株式会社 Nickel micro powder and manufacturing method thereof
KR20180101504A (en) 2016-01-12 2018-09-12 도호 티타늄 가부시키가이샤 Nickel powder
US11376658B2 (en) 2016-03-18 2022-07-05 Sumitomo Metal Mining Co., Ltd. Nickel powder, method for manufacturing nickel powder, internal electrode paste using nickel powder, and electronic component
US11772160B2 (en) 2016-03-18 2023-10-03 Sumitomo Metal Mining Co., Ltd. Nickel powder, method for manufacturing nickel powder, internal electrode paste using nickel powder, and electronic component
JP2018070951A (en) * 2016-10-28 2018-05-10 住友金属鉱山株式会社 Powder for conductive paste and production method of conductive layer

Also Published As

Publication number Publication date
JP3197454B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JPH08246001A (en) Nickel superfine powder for multilayer ceramic capacitor
US7261761B2 (en) Metallic nickel powder and process for production thereof
JP3640511B2 (en) Nickel super fine powder
US5853451A (en) Ultrafine spherical nickel powder for use as an electrode of laminated ceramic capacitors
US6447571B1 (en) Metal powder
JP4978785B2 (en) Method for producing nickel powder
KR20040023767A (en) Method for manufacturing metal powder
KR100414552B1 (en) Multilayer ceramic electronic part
EP0925861B1 (en) Nickel ultrafine powder
JP3812359B2 (en) Method for producing metal powder
KR940009339B1 (en) Method of manufacturing nikel powder
JP5310462B2 (en) Nickel powder and method for producing the same
JP2005281712A (en) Metal powder, and method and device for producing the same
JP3474170B2 (en) Nickel powder and conductive paste
JP3945740B2 (en) Nickel powder
JP4540364B2 (en) Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
JP6738459B1 (en) Method for producing copper powder
JP2001254109A (en) Method of producing metallic particulate powder
JPH1088205A (en) Production of metallic nickel powder
JP2002294311A (en) Method for producing metal grain powder
JP2000336408A (en) Production of nickel powder for multilayer ceramic capacitor electrode and device for producing it
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
JP2024018489A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder
JP5060227B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RVOP Cancellation by post-grant opposition