JPH05156324A - Production of superfine nickel aggregated powder - Google Patents

Production of superfine nickel aggregated powder

Info

Publication number
JPH05156324A
JPH05156324A JP3324523A JP32452391A JPH05156324A JP H05156324 A JPH05156324 A JP H05156324A JP 3324523 A JP3324523 A JP 3324523A JP 32452391 A JP32452391 A JP 32452391A JP H05156324 A JPH05156324 A JP H05156324A
Authority
JP
Japan
Prior art keywords
nickel
powder
palladium
formate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324523A
Other languages
Japanese (ja)
Inventor
Toshio Hidaka
敏雄 日高
Takamasa Kawakami
殷正 川上
Akira Makinose
暁 牧之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3324523A priority Critical patent/JPH05156324A/en
Priority to US07/862,218 priority patent/US5250101A/en
Priority to EP92303131A priority patent/EP0508757A1/en
Publication of JPH05156324A publication Critical patent/JPH05156324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a superfine nickel aggregated powder having an extremely small primary particle diameter and a large specific surface at a relatively low temp. by decomposing nickel formate in the presence of palladium. CONSTITUTION:Nickel formate is thermally decomposed in the presence of palladium to produce a nickel powder. Anhydrous nickel formate having a low content of impurities and having <=100-mesh size is preferably used. Palladium acetate is used as the salt and incorporated into the crystal when the nickel formate is produced, and the amt. is appropriately controlled to 100-200ppm by weight. The decomposition should be carried out at 20-160 deg.C in an oxidizing atmosphere or at 160-300 deg.C in a nonoxidizing atmosphere or in vacuum. A superfine nickel aggregated powder having 10-200m<2>/g specific surface of the nickel powder and <=5000nm aggregated powder diameter is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蟻酸ニッケルを分解し
てニッケル粉を製造する方法の改良であり、より低温で
ニッケル粉を製造することを可能とし、一次粒子径が極
めて小さく、比表面積が大きいニッケル凝集粉を製造す
るものである。本発明のニッケル粉は導電性フィラー、
磁性合金、超硬合金のバインダーや粉末冶金、触媒など
の分野において好適に使用できるものである。
FIELD OF THE INVENTION The present invention is an improvement of a method for producing nickel powder by decomposing nickel formate, which makes it possible to produce nickel powder at a lower temperature, has an extremely small primary particle size and a specific surface area. To produce a nickel agglomerated powder having a large size. The nickel powder of the present invention is a conductive filler,
It can be suitably used in the fields of magnetic alloy and cemented carbide binders, powder metallurgy, catalysts and the like.

【0002】[0002]

【従来の技術】微細ニッケル粉の製造法としては、粉
砕、アトマイズ法、ニッケルカルボニルの熱分解、有機
酸のニッケル塩の熱分解或いはガス中蒸発法などがあ
る。これら方法のうち、機械的粉砕やアトマイズ法では
得られるニッケル粉の粒子径が大きく、微細化や生産性
の点に課題があった。
2. Description of the Related Art As a method for producing fine nickel powder, there are pulverization, atomization, thermal decomposition of nickel carbonyl, thermal decomposition of nickel salt of organic acid, vaporization in gas and the like. Among these methods, the mechanical pulverization and atomization methods have a large particle size of nickel powder, and have problems in miniaturization and productivity.

【0003】また、ニッケルカルボニルの熱分解では比
較的微細なニッケル粉が得られるが取り扱いが極めて困
難な化合物を使用する点が問題であった。ガス中蒸発法
では粒子径の揃った微細なニッケル粉の製造が可能であ
るが、製造設備が高価で生産性が低いものであった。
Further, there has been a problem in that a relatively fine nickel powder can be obtained by thermal decomposition of nickel carbonyl, but a compound that is extremely difficult to handle is used. The in-gas evaporation method can produce fine nickel powder with a uniform particle size, but the production equipment is expensive and the productivity is low.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は先に、無
水蟻酸ニッケルの熱分解により微細な粒の揃ったニッケ
ル粉を製造する簡便な方法を提案した。しかし、より低
温での熱分解や特に触媒用途等に好適な極めて粒子径の
小さい或いは比表面積が20m2/gを超えるような大きいニ
ッケル微粉を製造することは困難であった。本発明は、
この点を解決する方法を鋭意検討した結果、パラジウム
を使用する方法を見いだし、それに基づいて完成させ
た。
The inventors of the present invention have previously proposed a simple method for producing nickel powder in which fine particles are uniform by thermal decomposition of anhydrous nickel formate. However, it has been difficult to produce a fine nickel powder having a very small particle size or a large specific surface area of more than 20 m 2 / g, which is suitable for thermal decomposition at a lower temperature and especially for catalyst applications. The present invention is
As a result of diligent studies on a method for solving this point, a method using palladium was found and completed based on the method.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、蟻
酸ニッケルを熱分解してニッケル粉を製造する方法にお
いて、パラジウムの共存下に蟻酸ニッケルの分解を行う
ことを特徴とする極微細ニッケル凝集粉の製造法であ
り、該パラジウムが蟻酸ニッケル結晶中に混入させてな
るものであること、該パラジウムの蟻酸ニッケル結晶中
の混入重量が 100〜2,000 ppm の範囲であることであ
る。
Means for Solving the Problems That is, according to the present invention, in a method for thermally decomposing nickel formate to produce nickel powder, nickel formate is decomposed in the presence of palladium. It is a method for producing powder, in which the palladium is mixed in the nickel formate crystal, and the weight of the palladium mixed in the nickel formate crystal is in the range of 100 to 2,000 ppm.

【0006】また、本発明は、該蟻酸ニッケルの分解
が、酸化性雰囲気下、温度 20〜160℃である酸化ニッ
ケルを含んだ極微細ニッケル凝集粉の製造法であるこ
と、または該蟻酸ニッケルの分解が、非酸化性雰囲気下
または減圧下、温度 160〜300 ℃である極微細ニッケル
凝集粉の製造法である。また、得られる該ニッケル粉の
比表面積が10〜200m2/g であること、凝集粒子径が 5,0
00nm以下であることである。
The present invention also provides that the decomposition of the nickel formate is a method for producing an ultrafine nickel agglomerate containing nickel oxide at a temperature of 20 to 160 ° C. in an oxidizing atmosphere, or the nickel formate is decomposed. Decomposition is a method for producing ultrafine nickel agglomerate powder at a temperature of 160 to 300 ° C under a non-oxidizing atmosphere or under reduced pressure. Further, the specific surface area of the obtained nickel powder is 10 to 200 m 2 / g, and the aggregate particle size is 5,0
It is to be 00 nm or less.

【0007】更に、本発明は、パラジウムの共存下に蟻
酸ニッケルを非酸化性雰囲気下または減圧下、温度 160
〜300 ℃で熱分解して得たニッケル粉を、下記(1) (2)
(3)の工程にて精製することから成る極微細ニッケル凝
集粉の製造法である。 (1) 分散溶媒中にて攪拌してスラリーとし、ニッケル粉
の凝集を解砕し、かつニッケル以外の不純物を分散溶媒
中に溶出させる工程 (2) 該スラリーを濾過し、洗浄してニッケル粉ケーキを
得る工程 (3) 該ニッケル粉ケーキを還元性ガス雰囲気中で還元す
る工程
Further, according to the present invention, nickel formate is coexistent with palladium in a non-oxidizing atmosphere or under reduced pressure at a temperature of 160 ° C.
Nickel powder obtained by pyrolyzing at ~ 300 ℃, the following (1) (2)
It is a method for producing ultrafine nickel agglomerated powder, which comprises refining in the step (3). (1) A step of stirring in a dispersion solvent to form a slurry, crushing the agglomeration of nickel powder and eluting impurities other than nickel into the dispersion solvent (2) filtering the slurry and washing it to obtain nickel powder Step of obtaining cake (3) Step of reducing the nickel powder cake in a reducing gas atmosphere

【0008】以下、本発明について説明する。本発明の
蟻酸ニッケルは、無水蟻酸ニッケル、蟻酸ニッケル二水
和物或いはこれらの混合物でもよいが、特に無水蟻酸ニ
ッケルが好ましい。また、蟻酸ニッケルは、分解して得
られるニッケル粉の凝集粒子径をより小さいものとする
面から 100メッシュ以下の粉末であることが好ましく、
さらに、得られるニッケル粉中の不純物をより少なくす
る点から、ナトリウム、カリウムその他の不純物は少な
いもの程好適である。
The present invention will be described below. The nickel formate of the present invention may be anhydrous nickel formate, nickel formate dihydrate or a mixture thereof, but anhydrous nickel formate is particularly preferable. Further, nickel formate is preferably a powder of 100 mesh or less from the viewpoint of reducing the aggregate particle size of the nickel powder obtained by decomposition,
Further, from the viewpoint of reducing the impurities in the obtained nickel powder, it is preferable that the impurities such as sodium, potassium and the like are small.

【0009】また、蟻酸ニッケルは、ニッケル源として
炭酸ニッケル、水酸化ニッケル、酸化ニッケル又は塩化
ニッケルなどを用い、これらニッケル化合物と蟻酸或い
は蟻酸メチルを反応させる方法によって製造されるもの
が工業的に実施する場合の原料として好適である。
The nickel formate is industrially manufactured by a method in which nickel carbonate, nickel hydroxide, nickel oxide, nickel chloride or the like is used as a nickel source, and these nickel compounds are reacted with formic acid or methyl formate. It is suitable as a raw material for the case.

【0010】このパラジウムは、通常、パラジウム塩の
形で使用する。パラジウム塩としては、塩化パラジウ
ム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム
などが挙げられ、ハロゲン、硫黄、その他の不純物を残
留させない面からは酢酸パラジウムなどの比較的低温で
分解する有機酸塩が好適である。
This palladium is usually used in the form of a palladium salt. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, and the like. From the viewpoint of not leaving halogen, sulfur, and other impurities, an organic acid salt such as palladium acetate that decomposes at a relatively low temperature is preferable. is there.

【0011】上記において、パラジウムを共存させる方
法としては、機械的に混合して分散或いは付着させる方
法、本発明の蟻酸ニッケルの製造工程中にパラジウム塩
を添加し、結晶中にパラジウムが内包されたものとして
用いる方法が挙げられる。より少量のパラジウムでより
良好な熱分解特性、より微細なニッケル粉を得る面か
ら、結晶中にパラジウムを含有させるのが好ましく、好
適にはパラジウムを重量で 100〜2,000 ppm の範囲で含
むものが好ましい。なお、パラジウムの含有量が 2,000
ppm を超えたものも当然に使用可能であるが、この無水
蟻酸ニッケルは酸素が存在する雰囲気中では室温でも分
解を開始するものであり、不活性ガス中で取り扱う必要
がある。
In the above, as a method of making palladium coexist, a method of mechanically mixing and dispersing or adhering, and a palladium salt was added during the production process of the nickel formate of the present invention, and palladium was included in the crystal. The method used as a thing is mentioned. From the viewpoint of obtaining better thermal decomposition characteristics with a smaller amount of palladium and obtaining a finer nickel powder, it is preferable to include palladium in the crystal, and it is preferable to contain palladium in the range of 100 to 2,000 ppm by weight. preferable. The palladium content is 2,000
Naturally, those exceeding ppm can also be used, but this anhydrous nickel formate will start to decompose even at room temperature in an atmosphere containing oxygen, and must be handled in an inert gas.

【0012】好適に使用可能なパラジウムを結晶中に含
む無水蟻酸ニッケルの製造法としては、例えば、塩基性
炭酸ニッケルにメタノールを加えスラリー状とし、この
スラリーに所定量の酢酸パラジムウムを含むアセトン/
メタノール(80/20 容量比)溶液を加える。このスラリ
ーに88%蟻酸溶液を滴下した後、65℃で30分間反応させ
た溶液から無水蟻酸ニッケルを晶析させ回収する方法が
例示される。
As a method for producing anhydrous nickel formate containing palladium which can be suitably used in the crystal, for example, methanol is added to basic nickel carbonate to form a slurry, and this slurry is mixed with acetone / predetermined amount of parazium acetate.
Add methanol (80/20 by volume) solution. An example is a method of dropping 88% formic acid solution into this slurry and then crystallizing and recovering nickel formate anhydrous from the solution reacted at 65 ° C. for 30 minutes.

【0013】また、本発明において好適に使用可能なパ
ラジウムを結晶中に含む無水蟻酸ニッケルの熱分解特性
を TG/DTA にて昇温速度 2℃/min、不活性ガス(N2 気流
下)で測定した一例を下記の表1に示した。この結果か
ら、パラジウムを含まない試料1の無水蟻酸ニッケルに
比較して主分解温度(ピーク温度)、分解終了温度にお
いてパラジウムを結晶中に含む無水蟻酸ニッケルがより
低温側に移動したものであることが明瞭である。
The thermal decomposition characteristics of anhydrous nickel formate containing palladium in the crystal which can be preferably used in the present invention are measured by TG / DTA at a heating rate of 2 ° C./min at an inert gas (under N 2 flow). An example of the measurement is shown in Table 1 below. From this result, it was found that the anhydrous nickel formate containing palladium in the crystal moved to a lower temperature side at the main decomposition temperature (peak temperature) and the decomposition end temperature as compared with anhydrous nickel formate of sample 1 containing no palladium. Is clear.

【0014】[0014]

【表1】 表 1(熱分解特性) 試料番号 バラジウム含有量 熱分解温度(℃) (重量 ppm) 開始 ピーク 終了 1 0 241 242 246 2 200 − 233 239 3 600 − 219 226 4 1100 − 207 213 [Table 1] Table 1 (Pyrolysis characteristics) Sample number Valladium content Pyrolysis temperature (° C) (ppm by weight) Start Peak End 10 241 242 246 2 200 -233 239 3 600 -219 226 4 1100 -207 213

【0015】本発明の蟻酸ニッケルの分解は、酸化ニッ
ケルをできるだけ少量としたものを製造する場合、非酸
化性雰囲気中或いは減圧下に、昇温速度 0.5〜20℃/min
(?)で、保持温度 300℃以下、好ましくは 160〜280 ℃
の範囲である。また、酸化ニッケルを含んでもよい場合
には、酸素存在雰囲気下に、昇温速度0.5〜20℃/min、
保持温度 200℃以下、好ましくは20〜100℃の範囲であ
る。
The decomposition of nickel formate according to the present invention is carried out in a non-oxidizing atmosphere or under reduced pressure to produce nickel formate containing as little nickel oxide as possible at a heating rate of 0.5 to 20 ° C./min.
(?), Holding temperature 300 ℃ or less, preferably 160 ~ 280 ℃
The range is. Further, when it may contain nickel oxide, under an atmosphere in which oxygen is present, the temperature rising rate is 0.5 to 20 ° C./min,
Holding temperature is 200 ° C or lower, preferably 20 to 100 ° C.

【0016】以上の方法による本発明のニッケル粉は、
通常、一次粒子径の極めて小さいニッケル粉が凝集した
比表面積 10〜200m2/g の範囲のニッケル粉である。非
酸化性雰囲気中或いは減圧下に得られたこのニッケル粉
は、極めて活性に富んだものである。このため、室温下
においても空気中では発火、燃焼する場合がある。空気
中での安定的な取扱いのためには予め粒子表面を極薄の
酸化皮膜で被覆しておくことが不可欠である。このため
には、通常、酸素を微量(1,000〜2,000 ppm)含む窒素気
流で徐酸化処理を施すこと等を行うことが好ましい。
The nickel powder of the present invention obtained by the above method is
Usually, nickel powder having a specific surface area of 10 to 200 m 2 / g in which nickel powder having an extremely small primary particle size is aggregated. This nickel powder obtained in a non-oxidizing atmosphere or under reduced pressure is extremely active. For this reason, it may ignite and burn in the air even at room temperature. For stable handling in air, it is essential to coat the surface of the particles with an ultrathin oxide film in advance. For this purpose, it is usually preferable to perform gradual oxidation treatment in a nitrogen stream containing a small amount of oxygen (1,000 to 2,000 ppm).

【0017】また、不純物を低減したニッケル粉として
使用することか必要な場合には、上記で得たニッケル粉
を精製処理することにが好適である。具体的には、 (1) 分散溶媒中にて攪拌してスラリーとし、ニッケル粉
の凝集を解砕し、かつニッケル以外の不純物を分散溶媒
中に溶出させる工程 (2) 該スラリーを濾過し、洗浄してニッケル粉ケーキを
得る工程 (3) 該ニッケル粉ケーキを還元性ガス雰囲気中で還元す
る工程 にて処理するのが好ましい。
If it is necessary or necessary to use the nickel powder with reduced impurities, it is preferable to purify the nickel powder obtained above. Specifically, a step of (1) stirring in a dispersion solvent to form a slurry, crushing agglomeration of nickel powder and eluting impurities other than nickel into the dispersion solvent (2) filtering the slurry, Step of Washing to Obtain Nickel Powder Cake (3) The nickel powder cake is preferably treated in the step of reducing in a reducing gas atmosphere.

【0018】なお、上記において、分散溶媒或いは洗浄
溶媒としては、水、アルカリ性或いは酸性の水溶液、有
機溶剤などが例示され、適宜、複数種類を順次或いは混
合して使用することにより不純物の除去効率を向上させ
るのがよい。また、還元性ガスとしては、水素、ヒドラ
ジン、その他の還元性化合物などやこれらを含む不活性
ガスが挙げられる。
In the above, examples of the dispersion solvent or the washing solvent include water, an alkaline or acidic aqueous solution, an organic solvent, etc., and a plurality of kinds may be used sequentially or in combination to improve the efficiency of removing impurities. Good to improve. Further, examples of the reducing gas include hydrogen, hydrazine, other reducing compounds and the like, and an inert gas containing these.

【0019】[0019]

【実施例】以下, 実施例などによって本発明をさらに具
体的に説明する。 実施例1 塩基性炭酸ニッケル 50gに、200ml(ミリリットル) のメタノー
ル、0.15g の酢酸パラジウムを含むアセトン/メタノー
ル (容量比80/20)溶液 100mlを加え攪拌してスラリー状
とした。このスラリーに88%蟻酸 80gにメタノール 100
mlを加えた均一溶液を攪拌下に滴下した。ついで、温度
65 ℃で30分間の反応を行った。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 To 50 g of basic nickel carbonate, 100 ml of an acetone / methanol solution (volume ratio 80/20) containing 200 ml (milliliter) of methanol and 0.15 g of palladium acetate was added and stirred to form a slurry. Add 88 g of 80% formic acid to 100 g of methanol in this slurry.
The homogeneous solution containing ml was added dropwise with stirring. Then temperature
The reaction was carried out at 65 ° C for 30 minutes.

【0020】ついで、該温度を保ったまま、濾過し、得
られたケーキを50mlのメタノールで3回洗浄した後、温
度80℃で 2時間減圧乾燥した。窒素ガスを導入して常圧
とし、室温まで冷却してパラジウムを含有する無水蟻酸
ニッケル 60g を得た。得られた無水蟻酸ニッケル中の
パラジウムは、IPC 分析によれば 600ppm であった。
Then, while maintaining the temperature, the mixture was filtered, the obtained cake was washed three times with 50 ml of methanol, and then dried under reduced pressure at a temperature of 80 ° C. for 2 hours. Nitrogen gas was introduced to normal pressure and cooled to room temperature to obtain 60 g of anhydrous nickel formate containing palladium. The palladium in the obtained anhydrous nickel formate was found to be 600 ppm by IPC analysis.

【0021】上記で得たパラジウムを含有する無水蟻酸
ニッケル 5g を減圧乾燥機中に入れ、1mmHg の減圧下、
2℃/minの昇温速度で250 ℃まで昇温し、該温度で30分
間保持した。ついで、室温まで冷却した後、2,000ppmの
酸素を含む窒素ガス気流下で2時間徐酸化処理した後、
乾燥機から取り出して 1.9g の粉末を得た。この粉末を
X線回折分析したところ、金属ニッケルであり、BET法
による比表面積は 120m2/g、レーザー方式による凝集粒
子径は 1,400nmであった。
5 g of the palladium-containing anhydrous nickel formate obtained above was placed in a vacuum dryer, and the pressure was reduced to 1 mmHg.
The temperature was raised to 250 ° C. at a heating rate of 2 ° C./min, and the temperature was maintained for 30 minutes. Then, after cooling to room temperature, after a gradual oxidation treatment for 2 hours in a nitrogen gas stream containing 2,000 ppm oxygen,
It was taken out of the dryer to obtain 1.9 g of powder. X-ray diffraction analysis of this powder revealed that it was metallic nickel, the specific surface area by the BET method was 120 m 2 / g, and the aggregate particle size by the laser method was 1,400 nm.

【0022】実施例2 実施例1で得たパラジウムを含有する無水蟻酸ニッケル
5g を減圧乾燥機中に入れ、1mmHg の減圧下、 2℃/min
の昇温速度で 60 ℃まで昇温した。ついで、銅温度にて
空気を導入し、常圧で15分間保持した後、乾燥機から取
り出し、2.4gの粉末を得た。この粉末は、一部酸化ニッ
ケルを含み、BET 法による比表面積は 15m2/g 、レーザ
ー方式による凝集粒子径は 3,000nmであった。
Example 2 Anhydrous nickel formate containing palladium obtained in Example 1
Put 5g in a vacuum dryer and under a reduced pressure of 1mmHg, 2 ℃ / min.
The temperature was raised up to 60 ° C. Then, air was introduced at the copper temperature, and the mixture was kept at normal pressure for 15 minutes and then taken out from the dryer to obtain 2.4 g of powder. This powder partially contained nickel oxide, had a specific surface area of 15 m 2 / g by the BET method, and had an aggregate particle diameter of 3,000 nm by the laser method.

【0023】比較例1 実施例1に準じた方法にて、パラジウムを含まない無水
蟻酸ニッケルを製造し、これを用いる他は実施例1と同
様にした。この結果得られたニッケル粉は、BET 法によ
る比表面積は 6m2/g、レーザー方式による凝集粒子径は
3,000nmであった。
Comparative Example 1 By the method according to Example 1, anhydrous nickel formate containing no palladium was produced, and the same procedure as in Example 1 was carried out except that this was used. The nickel powder obtained as a result has a specific surface area of 6 m 2 / g by the BET method and an aggregate particle size by the laser method.
It was 3,000 nm.

【0024】実施例3 実施例1に準じた方法にて、パラジウムを 1,100ppm 含
む無水蟻酸ニッケルを製造し、これを用いる他は実施例
1と同様にした。この結果得られたニッケル粉は、BET
法による比表面積は 160m2/g、レーザー方式による凝集
粒子径は 4,000nmであった。
Example 3 By a method similar to that of Example 1, anhydrous nickel formate containing 1,100 ppm of palladium was produced, and the same procedure as in Example 1 was carried out except that this was used. The nickel powder obtained as a result is BET
The specific surface area by the method was 160 m 2 / g, and the aggregate particle size by the laser method was 4,000 nm.

【0025】[0025]

【発明の効果】以上、発明の詳細な説明、実施例、比較
例から明瞭なように、本発明のニッケル粉の製造法によ
れば、比表面積が10〜200m2/g と大きく、凝集粒子径も
5,000nm以下のニッケル粉が容易に製造可能であり、ニ
ッケル粉を工業的に生産する実用的な新規方法を提供す
るものでありその意義は極めて大きいものである。
As is clear from the detailed description of the invention, Examples and Comparative Examples, according to the method for producing nickel powder of the present invention, the specific surface area is as large as 10 to 200 m 2 / g, and the agglomerated particles are large. Diameter too
The nickel powder of 5,000 nm or less can be easily produced, and it provides a practical new method for industrially producing the nickel powder, and its significance is extremely great.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 蟻酸ニッケルを熱分解してニッケル粉を
製造する方法において、パラジウムの共存下に蟻酸ニッ
ケルの分解を行うことを特徴とする極微細ニッケル凝集
粉の製造法
1. A method for producing nickel powder by thermally decomposing nickel formate, which comprises decomposing nickel formate in the presence of palladium, and producing a very fine agglomerated nickel powder.
【請求項2】 該パラジウムが蟻酸ニッケル結晶中に混
入させてなるものである請求項1記載の極微細ニッケル
凝集粉の製造法
2. The method for producing an ultrafine nickel agglomerated powder according to claim 1, wherein the palladium is mixed in a nickel formate crystal.
【請求項3】 該パラジウムの蟻酸ニッケル結晶中の混
入重量が 100〜2000ppmの範囲である請求項2記載の極
微細ニッケル凝集粉の製造法
3. The method for producing an ultrafine nickel agglomerated powder according to claim 2, wherein the mixing weight of the palladium in the nickel formate crystal is in the range of 100 to 2000 ppm.
【請求項4】 該蟻酸ニッケルの分解が、酸化性雰囲気
下、温度 20〜160℃である請求項1記載の酸化ニッケ
ルを含んだ極微細ニッケル凝集粉の製造法
4. The method for producing an ultrafine nickel agglomerated powder containing nickel oxide according to claim 1, wherein the decomposition of nickel formate is carried out at a temperature of 20 to 160 ° C. in an oxidizing atmosphere.
【請求項5】 該蟻酸ニッケルの分解が、非酸化性雰囲
気下または減圧下、温度 160〜300 ℃である請求項1記
載の極微細ニッケル凝集粉の製造法
5. The method for producing an ultrafine nickel agglomerated powder according to claim 1, wherein the decomposition of the nickel formate is carried out at a temperature of 160 to 300 ° C. in a non-oxidizing atmosphere or under reduced pressure.
【請求項6】 該ニッケル粉の比表面積が10〜200m2/g
である請求項1記載の極微細ニッケル凝集粉の製造法
6. The specific surface area of the nickel powder is 10 to 200 m 2 / g.
The method for producing an ultrafine nickel aggregate powder according to claim 1.
【請求項7】 該ニッケル粉の凝集粒子径が 5,000nm以
下である請求項1記載の極微細ニッケル凝集粉の製造法
7. The method for producing an ultrafine nickel aggregate powder according to claim 1, wherein the aggregate particle size of the nickel powder is 5,000 nm or less.
【請求項8】 パラジウムの共存下に蟻酸ニッケルを非
酸化性雰囲気下または減圧下、温度 160〜300 ℃で熱分
解して得たニッケル粉を、下記(1) (2) (3)の工程にて
精製することから成る極微細ニッケル凝集粉の製造法 (1) 分散溶媒中にて攪拌してスラリーとし、ニッケル粉
の凝集を解砕し、かつニッケル以外の不純物を分散溶媒
中に溶出させる工程 (2) 該スラリーを濾過し、洗浄してニッケル粉ケーキを
得る工程 (3) 該ニッケル粉ケーキを還元性ガス雰囲気中で還元す
る工程
8. A nickel powder obtained by thermally decomposing nickel formate in the presence of palladium in a non-oxidizing atmosphere or under reduced pressure at a temperature of 160 to 300 ° C. is used to carry out steps (1), (2) and (3) below. Method for producing ultrafine nickel agglomerated powder consisting of refining in (1) Stir in a dispersion solvent to make a slurry, crush the agglomeration of nickel powder, and elute impurities other than nickel into the dispersion solvent Step (2) Step of filtering the slurry and washing to obtain a nickel powder cake (3) Step of reducing the nickel powder cake in a reducing gas atmosphere
JP3324523A 1991-04-08 1991-12-09 Production of superfine nickel aggregated powder Pending JPH05156324A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3324523A JPH05156324A (en) 1991-12-09 1991-12-09 Production of superfine nickel aggregated powder
US07/862,218 US5250101A (en) 1991-04-08 1992-04-02 Process for the production of fine powder
EP92303131A EP0508757A1 (en) 1991-04-08 1992-04-08 Process for the production of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324523A JPH05156324A (en) 1991-12-09 1991-12-09 Production of superfine nickel aggregated powder

Publications (1)

Publication Number Publication Date
JPH05156324A true JPH05156324A (en) 1993-06-22

Family

ID=18166753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324523A Pending JPH05156324A (en) 1991-04-08 1991-12-09 Production of superfine nickel aggregated powder

Country Status (1)

Country Link
JP (1) JPH05156324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917898A (en) * 1982-07-22 1984-01-30 Canon Inc Control system for stepping motor
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
JP2007197836A (en) * 2007-03-06 2007-08-09 Mitsui Mining & Smelting Co Ltd Nickel powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917898A (en) * 1982-07-22 1984-01-30 Canon Inc Control system for stepping motor
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
US6743395B2 (en) 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
US6871773B2 (en) 2000-03-22 2005-03-29 Ebara Corp. Composite metallic ultrafine particles and process for producing the same
JP2007197836A (en) * 2007-03-06 2007-08-09 Mitsui Mining & Smelting Co Ltd Nickel powder

Similar Documents

Publication Publication Date Title
US5250101A (en) Process for the production of fine powder
Ayyappan et al. Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts
US7758668B1 (en) Process of manufacturing metallic nano-scale powders
JPH03134106A (en) Microcrystalline amorphous metal and/or alloy powder and metal and/or alloy dissolved in organic solvent in the absence of protective colloid
CN109759133B (en) Atom dispersed composite material, preparation method and application thereof
CN112452315B (en) Application of high-temperature sintering-resistant catalyst
CN112403461A (en) High-temperature sintering-resistant catalyst and synthesis method thereof
CN1103257C (en) Process for preparing superfine powder by thermolyzing metal complex
JPH03100109A (en) Manufacture of fine copper powder
JPH0557324B2 (en)
JPH05156324A (en) Production of superfine nickel aggregated powder
JP3516734B2 (en) Method for producing platinum-supported catalyst
CN113500202A (en) Preparation method of high-purity hexagonal Cu nanocrystalline
JPH05179317A (en) Production of high purity fine copper powder
JP2017095303A (en) Layering silicon composite material, manufacturing method therefor and precipitation method of metal
CN112642469A (en) Catalyst for preparing ethylene glycol by hydrogenating oxalate, preparation method and application thereof, and method for preparing ethylene glycol
JPH05156325A (en) Production of fine metal powder
JPH05156326A (en) Production of fine silver powder
Glavee et al. Preparation of magnetic fine particles by borohydride reduction
Şişman et al. Surfactant-assisted polyol preparation of nickel powders with different morphologies
JPH0693316A (en) Production of extremely fine copper powder
KR100426824B1 (en) Preparation of mono-dispersed fine cobalt powder
CN114100649B (en) High-heat-conductivity Fe-based catalyst, preparation method thereof and application thereof in Fischer-Tropsch synthesis reaction
CN114471580B (en) Synthesis and application method of supported nickel-gallium catalyst
JP6163021B2 (en) Method for producing composite fine particles