JP5530270B2 - Cobalt powder and method for producing the same - Google Patents

Cobalt powder and method for producing the same Download PDF

Info

Publication number
JP5530270B2
JP5530270B2 JP2010147013A JP2010147013A JP5530270B2 JP 5530270 B2 JP5530270 B2 JP 5530270B2 JP 2010147013 A JP2010147013 A JP 2010147013A JP 2010147013 A JP2010147013 A JP 2010147013A JP 5530270 B2 JP5530270 B2 JP 5530270B2
Authority
JP
Japan
Prior art keywords
cobalt
powder
ppm
oxalate
cobalt powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010147013A
Other languages
Japanese (ja)
Other versions
JP2012012619A (en
Inventor
仁 佐藤
淳之輔 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010147013A priority Critical patent/JP5530270B2/en
Publication of JP2012012619A publication Critical patent/JP2012012619A/en
Application granted granted Critical
Publication of JP5530270B2 publication Critical patent/JP5530270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、コバルト粉末及びその製造方法であり、アルカリ金属元素、アルカリ土類金属元素、硫黄、酸素、炭素のガス成分(ガス化する成分を含む。)等の不純物が少なく、粒径の細かいコバルト粉末、磁性材を製造するためのスパッタリングターゲットに有用であるコバルト粉末及びその製造方法に関する。   The present invention relates to a cobalt powder and a method for producing the same, and has a small particle size with few impurities such as alkali metal elements, alkaline earth metal elements, sulfur, oxygen, and carbon gas components (including gasifying components). The present invention relates to a cobalt powder useful for a sputtering target for producing a magnetic material and a method for producing the same.

近年、半導体の飛躍的な進歩に端を発して様々な電子機器が生まれ、さらにその性能の向上と新しい機器の開発が日々刻々なされている。
このような中で、電子、デバイス機器がより微小化し、かつ集積度が高まる方向にある。これら多くの製造工程の中で多数の薄膜が形成されるが、コバルトは強磁性体として良く知られた材料である。そして、その特異な金属的性質からコバルト膜、コバルト合金膜、コバルト酸化膜、他の金属元素又は酸化物との混合物膜、コバルトシリサイド膜などとして、多くの電子機器薄膜の形成に利用されている。特に、金属及び酸化物系の磁性材ターゲットに用いられている。
In recent years, various electronic devices have been born from dramatic progress in semiconductors, and further improvements in performance and new devices are being developed every day.
Under such circumstances, electronics and device equipment are becoming smaller and the degree of integration is increasing. Although many thin films are formed in many of these manufacturing processes, cobalt is a well-known material as a ferromagnetic material. And because of its unique metallic properties, it is used for the formation of many electronic equipment thin films such as cobalt films, cobalt alloy films, cobalt oxide films, mixed films with other metal elements or oxides, cobalt silicide films, etc. . In particular, it is used for metal and oxide-based magnetic material targets.

このようなコバルト、コバルト合金及びコバルト酸化物を利用した薄膜は、コバルトターゲットをアルゴン中でスパッタすることにより形成される。
スパッタリング法による薄膜の形成方法は、陰極に設置したターゲットに、Arなどの正イオンを物理的に衝突させてターゲットを構成する金属原子をその衝突エネルギーで放出させる手法であり、コバルト若しくはその合金又はコバルトシリサイド等のターゲットを使用し、アルゴンガス雰囲気中でスパッタリングすることによって形成するものである。
Such a thin film using cobalt, a cobalt alloy, and a cobalt oxide is formed by sputtering a cobalt target in argon.
A thin film forming method by sputtering is a technique in which positive ions such as Ar + are physically collided with a target placed on a cathode, and metal atoms constituting the target are released by the collision energy, and cobalt or an alloy thereof Alternatively, it is formed by sputtering in a argon gas atmosphere using a target such as cobalt silicide.

一方、このようなコバルト(合金、化合物を含む)の薄膜を形成する場合に、注意を要することは、半導体デバイスに有害な金属不純物が極めて少ない、すなわちそれ自体が極めて高い純度を必要とすることである。すなわち、スパッタリング後に形成される電極又は配線等が信頼性のある半導体動作性能を保証するためには、次のことが必要である。
(1)Na、K等のアルカリ金属元素、Ca等のアルカリ土類金属元素
(2)C、O等のガス成分
(3)硫黄
等の不純物をできるだけ含まないようにすることである。
Na、K等のアルカリ金属、Ca等のアルカリ土類金属は、ゲート絶縁膜中を容易に移動し、MOS−LSI界面特性の劣化の原因となり、また、C、O等のガス成分は、後述するように、スパッタリングの際のパーティクル発生の原因となるため好ましくない不純物である。
On the other hand, when forming such a thin film of cobalt (including alloys and compounds), it is necessary to pay attention to the fact that metal impurities harmful to semiconductor devices are extremely small, that is, they themselves require extremely high purity. It is. That is, in order to ensure reliable semiconductor operation performance of the electrodes or wirings formed after sputtering, the following is necessary.
(1) Alkali metal elements such as Na and K and alkaline earth metal elements such as Ca (2) Gas components such as C and O (3) Impurities such as sulfur should be contained as little as possible.
Alkaline metals such as Na and K and alkaline earth metals such as Ca easily move in the gate insulating film and cause deterioration of the MOS-LSI interface characteristics, and gas components such as C and O are described later. Thus, it is an undesirable impurity because it causes generation of particles during sputtering.

磁性材用コバルトターゲット、特に金属コバルト+酸化物系ターゲットには、粒径の細かいコバルト粉末が必要である。また、このコバルト粉末にNa、K、Ca、Sなどの不純物が含まれると、ターゲットのスパッタ特性やスパッタ膜の特性に悪影響を与えるため、これらの不純物を出来るだけ低い濃度とすることが必要である。   Cobalt targets for magnetic materials, particularly metal cobalt + oxide targets, require fine cobalt powder. In addition, if impurities such as Na, K, Ca, and S are included in this cobalt powder, the sputtering characteristics of the target and the characteristics of the sputtered film are adversely affected. Therefore, it is necessary to make these impurities as low as possible. is there.

一方、コバルト粉末の製造方法には、(1)溶液を中和して水酸化物を得、これを還元する方法、(2)溶液をpH調整しながら炭酸ガスを通じることにより炭酸コバルトを得、これを還元する方法などが知られている。
これらの方法で、溶液のpH調整のためにNaOH、KOH、Ca(OH)を用いると、これら元素が不純物として高濃度に混入することが避けられない。そのためアンモニア等が用いられるが、アンモニアを用いる場合はコバルトとアンミン錯体を形成して再溶解するために、収率が悪いという問題があった。
On the other hand, the cobalt powder production method includes (1) a method in which a solution is neutralized to obtain a hydroxide and reduced, and (2) cobalt carbonate is obtained by passing carbon dioxide gas while adjusting the pH of the solution. A method of reducing this is known.
In these methods, when NaOH, KOH, or Ca (OH) 2 is used to adjust the pH of the solution, it is inevitable that these elements are mixed as impurities at a high concentration. Therefore, ammonia or the like is used. However, when ammonia is used, there is a problem in that the yield is poor because it forms an ammine complex with cobalt and redissolves it.

半導体装置等に使用される薄膜は一層薄くかつ短小化される方向にあり、相互間の距離が極めて小さく集積密度が向上しているために、薄膜を構成する物質あるいはその薄膜に含まれる不純物が隣接する薄膜に拡散するという問題が発生する。これにより、自膜及び隣接膜の構成物質のバランスが崩れ、本来所有していなければならない膜の機能が低下するという大きな問題が起こる。
このような薄膜の製造工程において、数百度に加熱される場合があり、また半導体装置を組み込んだ電子機器の使用中にも温度が上昇する。このような温度上昇は前記物質(不純物)の拡散をさらに促進し、拡散による電子機器の機能低下に大きな問題を生ずることとなる。
Thin films used in semiconductor devices and the like are in the direction of being thinner and shorter, and the distance between them is extremely small and the integration density is improved. The problem of diffusing into adjacent thin films arises. As a result, the balance between the constituent materials of the self-membrane and the adjacent membrane is lost, and a serious problem arises that the function of the membrane that must originally be owned is reduced.
In the manufacturing process of such a thin film, it may be heated to several hundred degrees, and the temperature rises even during use of an electronic device incorporating a semiconductor device. Such a temperature increase further promotes the diffusion of the substance (impurities), and causes a serious problem in the function deterioration of the electronic device due to the diffusion.

また、スパッタリング膜の形成に際して、コバルト(合金・化合物)ターゲットに不純物が存在すると、これらに起因してスパッタチャンバ内に浮遊する粗大化した粒子が基板上に付着して薄膜回路を短絡させるといったように、薄膜の突起物の原因となるパーティクルの発生量が増し、またガス成分である酸素、炭素、水素、窒素等が多量に存在すると、スパッタリング中にガスによる突発が原因と考えられる異常放電を起こし、均一な膜が形成されないという問題が発生する。   In addition, when the sputtering film is formed, if there are impurities in the cobalt (alloy / compound) target, coarse particles floating in the sputtering chamber due to these adhere to the substrate and short circuit the thin film circuit. In addition, the amount of particles that cause projections on the thin film increases, and if there are a large amount of gas components such as oxygen, carbon, hydrogen, nitrogen, etc., abnormal discharge, which is thought to be caused by gas bursts, is generated during sputtering. This causes a problem that a uniform film cannot be formed.

このようなことから、不純物となるアルカリ金属元素、アルカリ土類金属元素、硫黄、さらに酸素等のガス成分が低減された高純度のコバルトの製造が望まれる。さらにはFe及びNi等の遷移金属元素、放射性元素も同様に減少させることが望まれていた。
しかしながら、一方では粒径の細かいコバルト粉末が必要であるが、上記のような不純物を低減しようとした場合には、製造条件に制限があり、製造コストの増大を招くという問題を生じた。
For this reason, it is desired to produce high-purity cobalt in which gas components such as alkali metal elements, alkaline earth metal elements, sulfur, and oxygen that are impurities are reduced. Further, it has been desired to reduce the transition metal elements such as Fe and Ni and the radioactive elements as well.
However, on the other hand, cobalt powder having a small particle size is necessary, but when trying to reduce the impurities as described above, the production conditions are limited, resulting in an increase in production cost.

先行技術文献を見ると、下記特許文献1には、硬質金属およびダイヤモンド工具の製造に用いるコバルト粉末及びその製造方法が記載されている。この文献1に記載されている結晶粒径は0.7〜1.1μm、不純物濃度がNa<50ppm、Ca<30ppm、S<30ppmであり、粒径とNa,Ca,S含有量については、本願発明の目的に合っているが、酸素と炭素の含有量が異常に多く、特許文献1の実施例によれば最低でも、合計で0.8wt%含む。これは硬質金属及びダイヤモンド工具の製造に用いるコバルト粉末であるが故に許される不純物と考えられるが、本願発明の目的には適合しない。   Looking at the prior art documents, Patent Document 1 listed below describes cobalt powder used in the production of hard metals and diamond tools and the production method thereof. The crystal grain size described in this document 1 is 0.7 to 1.1 μm, the impurity concentration is Na <50 ppm, Ca <30 ppm, S <30 ppm, and the grain size and Na, Ca, S content are as follows: Although meeting the purpose of the present invention, the contents of oxygen and carbon are abnormally high, and according to the example of Patent Document 1, the total content is at least 0.8 wt%. This is considered a permissible impurity because it is a cobalt powder used in the manufacture of hard metals and diamond tools, but is not suitable for the purposes of the present invention.

下記特許文献2には、電解を用いてコバルトの微粉末を製造する方法に関し、コバルトの水溶液系を電解液とし、交流による電解をすることで微粉を製造することが記載され、実施例では1μm以下の微粉を得ているが、製造工程が煩雑であるという点と不純物レベルの問題が存在し、これも本願発明の目的には適合しない。   Patent Document 2 described below relates to a method for producing a fine powder of cobalt using electrolysis, and describes that a fine powder is produced by electrolysis by alternating current using an aqueous solution system of cobalt as an electrolytic solution. Although the following fine powder is obtained, there is a problem that the manufacturing process is complicated and there is a problem of impurity level, which is also not suitable for the purpose of the present invention.

下記特許文献3には、コバルトのシュウ酸塩を焙焼後、気相中に分散させた状態で水素還元してCo粉を得る方法が記載されているが、コバルトのシュウ酸塩ありきの焙焼技術に関する発明であって、肝心の製造法については、製造工程と不純物レベルの問題については記載がなく、これも本願発明の目的には適合しない。   Patent Document 3 below describes a method in which cobalt oxalate is roasted and then reduced by hydrogen in a state dispersed in the gas phase to obtain Co powder. It is an invention related to roasting technology, and there is no description about the manufacturing process and the problem of impurity level in the essential manufacturing method, which also does not meet the object of the present invention.

下記特許文献4には、シュウ酸塩の難溶性を利用してCoの回収を行う方法が記載されており、二次電池廃材から油を含む液でコバルトを抽出した後、水系の液で逆抽出し、この液に対してシュウ酸を用いることが記載されている。
しかし、後述する本願発明のように硫酸に富む液からSの少ないコバルトを回収する手法とは目的が異なる。
Patent Document 4 listed below describes a method for recovering Co by utilizing the insolubility of oxalate. After extracting cobalt from a secondary battery waste material with a liquid containing oil, it is reversed with an aqueous liquid. Extraction and use of oxalic acid for this liquid is described.
However, the purpose is different from the method of recovering cobalt with a small amount of S from a liquid rich in sulfuric acid as in the present invention described later.

下記特許文献5には、シュウ酸コバルトの難溶性を利用してコバルトの除去を行う方法が記載されている。コバルトを含有するシクロヘキサンから水相へコバルトを抽出後、シュウ酸を加えてコバルトを除去するというものであるが、前記文献4と同様に、本願発明とは目的が異なる。   Patent Document 5 listed below describes a method for removing cobalt by utilizing the poor solubility of cobalt oxalate. Cobalt is extracted from cyclohexane containing cobalt into an aqueous phase, and then oxalic acid is added to remove cobalt. Similar to the above-mentioned document 4, the object of the present invention is different.

下記特許文献6には、純度の悪いコバルト金属から高純度の硫酸コバルトを製造する方法及びこの水溶液を用いた水酸化物の製造方法が記載されている。
高純度硫酸コバルト溶液の製造に関しては、酸化とpH調整によりFeとSiを、硫化によりNiを除くとしている。水酸化物の製造方法は、得られた高純度の硫酸コバルト溶液にNaOHを加えて水酸化コバルトを沈殿させるものである。Naの含有の問題が存在し、これも本願発明の目的には適合しない。
Patent Document 6 listed below describes a method for producing high-purity cobalt sulfate from poor-purity cobalt metal and a method for producing a hydroxide using this aqueous solution.
Regarding the production of a high purity cobalt sulfate solution, Fe and Si are removed by oxidation and pH adjustment, and Ni is removed by sulfuration. In the method for producing hydroxide, NaOH is added to the obtained high-purity cobalt sulfate solution to precipitate cobalt hydroxide. There is a problem of containing Na, which is also not suitable for the purpose of the present invention.

特開平9−125109号公報JP-A-9-125109 特開平11−61210号公報JP-A-11-61210 特開2004−99979号公報JP 2004-99979 A 特開平09−111360号公報JP 09-111360 A 特開平09−313951号公報JP 09-313951 A 特開2006−8463号公報JP 2006-8463 A

本発明は、上記の諸問題点の解決、特にアルカリ金属元素、アルカリ土類金属元素、硫黄及び酸素、炭素等のガス成分を極力低減させたコバルト粉末であり、かつ微細な粉末を安定してかつ容易に製造できる方法を開発し、薄膜を構成する物質の相互拡散に起因する汚染物質の抑制及びパーティクルや異常放電現象が生じないスパッタリングターゲット等に有効であるコバルト粉末を低コストで提供することを目的としたものである。
具体的には、Na、K、Caなどの不純物の混入を避けつつ、同時に収率が高いコバルト粉末の製造方法であって、さらに微細な粉末を収率よく得ることを目的とする。
The present invention is a cobalt powder in which gas components such as alkali metal elements, alkaline earth metal elements, sulfur, oxygen, and carbon are reduced as much as possible, and a fine powder can be stably stabilized. To develop a method that can be easily manufactured, and to provide low-cost cobalt powder that is effective for the suppression of pollutants caused by mutual diffusion of materials that make up a thin film and for sputtering targets that do not generate particles or abnormal discharge phenomena. It is aimed at.
Specifically, it is a method for producing a cobalt powder having a high yield while avoiding the mixing of impurities such as Na, K, and Ca, and an object is to obtain a finer powder with a high yield.

上記問題点を解決するための技術的な手段は、高純度の硫酸コバルトを原料とし、これとシュウ酸と反応させて、微細なシュウ酸コバルトを製造することであり、これを利用して目的とする不純物を低減させ、微細なコバルト粉末を得ることができるとの知見を得た。なお、以下に記載する本願発明の%、ppm等の単位は、全て質量(mass)の表示である。
この知見に基づき、本発明は、
1)Sが100ppm以下、Na、K、Caがそれぞれ20ppm以下であり、平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあることを特徴とするコバルト粉末
2)磁性材ターゲットの製造に用いることを特徴とする上記1)に記載のコバルト粉末、を提供する。
The technical means for solving the above problems is to produce fine cobalt oxalate by using high purity cobalt sulfate as a raw material and reacting it with oxalic acid. As a result, it was found that a fine cobalt powder can be obtained. In addition, units such as% and ppm in the present invention described below are all expressed in mass.
Based on this finding, the present invention
1) S is 100 ppm or less, Na, K, and Ca are each 20 ppm or less, the average particle size is 1 μm or more and 5 μm or less, and 90% or more of the particle size is in the range of 0.3 μm to 10 μm. 2. Cobalt powder characterized in 2) Cobalt powder described in 1) above, which is used for producing a magnetic material target.

また、本発明は、
3)硫酸コバルト水溶液に、液温を35°C以上、80°C以下に保持した状態でシュウ酸を添加し反応させて、シュウ酸コバルトとして沈殿させ、これを分取及び還元してコバルト粉末とすることを特徴とするコバルト粉末の製造方法
4)硫酸コバルト水溶液に、液温を35°C以上、80°C以下に保持した状態でシュウ酸を添加し反応させて、シュウ酸を反応させてシュウ酸コバルトとして沈殿させ、これを分取及び還元して上記1)〜2)のいずれか一項に記載のコバルト粉末とすることを特徴とするコバルト粉末の製造方法
5)反応させるときの液温を60°C以上、80°C以下に保持することを特徴とする上記3)〜4)のいずれか一項に記載のコバルト粉末の製造方法
6)硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lであることを特徴とする上記3)〜5)のいずれか一項に記載のコバルト粉末の製造方法、を提供する。
The present invention also provides:
3) Add oxalic acid to a cobalt sulfate aqueous solution while maintaining the liquid temperature at 35 ° C. or higher and 80 ° C. or lower to cause it to precipitate as cobalt oxalate. 4) Cobalt powder manufacturing method characterized in that 4) Oxalic acid is added to a cobalt sulfate aqueous solution while the liquid temperature is maintained at 35 ° C. or higher and 80 ° C. or lower to react, thereby causing oxalic acid to react. Then, it is precipitated as cobalt oxalate, and this is fractionated and reduced to obtain the cobalt powder according to any one of the above 1) to 2). The method for producing a cobalt powder according to any one of 3) to 4) above, wherein the liquid temperature is maintained at 60 ° C. or higher and 80 ° C. or lower. 6) The cobalt concentration of the aqueous cobalt sulfate solution is 10 g / L ~ 1 The method of producing cobalt powder according to any one of the above 3) to 5), which is a 0 g / L, to provide.

上記の通り、本発明は、特にアルカリ金属元素、アルカリ土類金属元素、硫黄及び酸素、炭素等のガス成分を極力低減させたコバルト粉末であり、かつ微細な粉末を安定してかつ容易に製造できる方法であり、薄膜を構成する物質の相互拡散に起因する汚染物質の抑制及びパーティクルや異常放電現象が生じないスパッタリングターゲットの製造に有効である微細な粉末を収率よく得ることができるという著しい効果を有する。   As described above, the present invention is a cobalt powder in which gas components such as alkali metal elements, alkaline earth metal elements, sulfur, oxygen, and carbon are reduced as much as possible, and a fine powder is stably and easily produced. It is a method that can reduce the amount of contaminants caused by interdiffusion of substances constituting the thin film and that it is possible to obtain a fine powder that is effective for producing a sputtering target that does not cause particles or abnormal discharge phenomenon with high yield. Has an effect.

また、本発明のコバルト粉末を用いて製造したターゲットにより成膜したスパッタリング膜は、ゲート絶縁膜中を移動しMOS−LSI界面特性の劣化の原因となるNa、K等のアルカリ金属元素、Ca等のアルカリ土類金属元素、および硫黄が減少し、素子のソフトエラーがなくなり、界面接合部のトラブルが減少し、薄膜を構成する物質あるいはその薄膜に含まれる不純物が隣接する薄膜に拡散するという問題がなくなるので、自膜及び隣接膜の構成物質のバランスを崩すことがなく、本来所有する膜の機能が低下するという問題もなくなる効果を有する。スパッタリング後に形成される電極又は配線等が信頼性のある半導体動作性を十分に保証することができるという優れた効果を有する。   Moreover, the sputtering film formed by the target manufactured using the cobalt powder of the present invention moves through the gate insulating film and causes deterioration of the MOS-LSI interface characteristics, such as alkali metal elements such as Na and K, Ca, etc. The problem is that the alkaline earth metal elements and sulfur are reduced, the soft error of the element is eliminated, the trouble at the interface junction is reduced, and the substances constituting the thin film or impurities contained in the thin film diffuse into the adjacent thin film Therefore, the balance between the constituent materials of the self-film and the adjacent film is not lost, and the problem that the function of the originally owned film is reduced is eliminated. An electrode or wiring formed after sputtering has an excellent effect that reliable semiconductor operability can be sufficiently ensured.

さらに、このスパッタリング膜の形成に際して、コバルト(合金・化合物)ターゲット中の不純物が減少、特にガス成分である酸素、炭素が減少しているので、スパッタチャンバ内に浮遊する粗大化した粒子が基板上に付着して薄膜回路を短絡させるようなことがなくなり、また薄膜の突起物の原因となるパーティクルの発生量も減少する。さらにスパッタリング中に、ガスによる突発が原因と考えられる異常放電を起こすこともなくなり、コバルト成膜の電気抵抗も小さいという著しい特徴を有する。   Furthermore, during the formation of this sputtering film, impurities in the cobalt (alloy / compound) target are reduced, especially oxygen and carbon, which are gas components, are reduced, so that coarse particles floating in the sputtering chamber are formed on the substrate. This prevents the thin film circuit from being short-circuited due to adhesion, and also reduces the amount of particles that cause thin film protrusions. Furthermore, there is no remarkable discharge during the sputtering, which causes abnormal discharge which is considered to be caused by gas, and the electric resistance of the cobalt film formation is small.

本発明で使用するコバルト粉末の原料は、コバルト塩水溶液であり、特に硫酸コバルトを使用する。原料としては高純度の硫酸コバルト水溶液が廃液として発生しているため、これを利用するのが望ましい。コバルトを硫酸に溶解することによっても得ることができ、原料がコバルト塩水溶液(硫酸コバルト)であれば、特に制限はない。   The raw material of the cobalt powder used in the present invention is a cobalt salt aqueous solution, and particularly cobalt sulfate is used. As a raw material, since a high-purity cobalt sulfate aqueous solution is generated as a waste liquid, it is desirable to use this. It can also be obtained by dissolving cobalt in sulfuric acid, and there is no particular limitation as long as the raw material is a cobalt salt aqueous solution (cobalt sulfate).

加温しつつコバルト塩(硫酸コバルト)とシュウ酸とを反応させてシュウ酸コバルトを得ること、これを還元し、粉砕してコバルト粉末とすることにより、不純物濃度が少なく、粒径の小さいコバルト粉末を得ることができる。
具体的には、濃度1g/L〜飽和濃度の範囲の硫酸コバルト水溶液を用意する。硫酸コバルト水溶液を35°C〜80°C、好ましくは60°C〜80°Cの範囲に加熱して攪拌しつつ、シュウ酸2水和物の粉末を加え、シュウ酸コバルトを沈殿、乾燥させ、シュウ酸コバルト2水和物を得る。
Cobalt oxalate is obtained by reacting cobalt salt (cobalt sulfate) and oxalic acid while heating, and this is reduced and pulverized to obtain cobalt powder. A powder can be obtained.
Specifically, an aqueous cobalt sulfate solution having a concentration of 1 g / L to a saturated concentration is prepared. While heating and stirring the cobalt sulfate aqueous solution in the range of 35 ° C to 80 ° C, preferably 60 ° C to 80 ° C, the powder of oxalic acid dihydrate is added to precipitate and dry the cobalt oxalate. To obtain cobalt oxalate dihydrate.

還元方法としては、シュウ酸コバルト粉末を焙焼して得た酸化物粉末を、たとえば気相中に分散させた状態で加熱して水素還元し、そのまま単分散の微細金属粒子を得ることができる。
この還元方法は既に知られている技術であり、本発明のシュウ酸コバルトの還元方法には制限はないが、シュウ酸コバルトを一旦焙焼して酸化物を経由し、還元雰囲気で加熱処理することで金属に還元し、それをボールミルなどで粉砕することが、量産性等を考慮すると好ましい。
いずれにしても、本発明のシュウ酸コバルト粉末を中間原料とすることにより、粒径が細かく、かつ粒径分布が狭いコバルト粉末を得ることができる。
As a reduction method, oxide powder obtained by roasting cobalt oxalate powder is heated and reduced in hydrogen, for example, in a state dispersed in a gas phase, and monodispersed fine metal particles can be obtained as they are. .
This reduction method is a known technique, and the method for reducing cobalt oxalate according to the present invention is not limited. However, the cobalt oxalate is once roasted and then heated in a reducing atmosphere via an oxide. In view of mass productivity, it is preferable to reduce it to a metal and pulverize it with a ball mill or the like.
In any case, by using the cobalt oxalate powder of the present invention as an intermediate raw material, a cobalt powder having a fine particle size and a narrow particle size distribution can be obtained.

シュウ酸コバルトの還元は、例えば以下の手順で行う。大気中で350°C〜1000°Cで焙焼し、酸化コバルトとし、粉砕して酸化コバルト粉末とする。このとき、高温になると酸化コバルト粒子が成長して粗大化し、目的の粒径を満たすことが難しくなるため、できれば350°C〜500°C程度が好ましい。この酸化コバルト粉末を水素雰囲気で500〜800°Cで2時間〜24時間還元する。あるいは、シュウ酸コバルトをそのまま水素雰囲気で、500〜800°Cで2時間〜24時間還元してもよい。   The reduction of cobalt oxalate is performed, for example, by the following procedure. It is roasted at 350 ° C. to 1000 ° C. in the atmosphere to form cobalt oxide, and pulverized to obtain cobalt oxide powder. At this time, when the temperature becomes high, the cobalt oxide particles grow and become coarse, and it becomes difficult to satisfy the target particle size. The cobalt oxide powder is reduced at 500 to 800 ° C. for 2 to 24 hours in a hydrogen atmosphere. Alternatively, cobalt oxalate may be reduced as it is in a hydrogen atmosphere at 500 to 800 ° C. for 2 to 24 hours.

ここで、硫酸コバルト水溶液の濃度が低い場合は収率が低くなり、濃度が高い場合は温度変化などによって飽和溶解度を超えて硫酸コバルト自体の沈殿が発生しやすくなる。したがって、好ましくはコバルト濃度が10g/L〜110g/L、より好ましくは50〜110g/Lの範囲で行うのが望ましい。
なお、焙焼温度、水素還元温度が高いほど、処理時間が長いほど、Sなどの不純物が抜けやすく、かつ結晶性が高くなって粉砕しやすい。逆に粒径分布は広くなる傾向がある。
Here, when the concentration of the aqueous cobalt sulfate solution is low, the yield is low, and when the concentration is high, precipitation of cobalt sulfate itself easily occurs exceeding the saturation solubility due to temperature change or the like. Accordingly, the cobalt concentration is preferably 10 g / L to 110 g / L, more preferably 50 to 110 g / L.
The higher the roasting temperature and the hydrogen reduction temperature, the longer the treatment time, the easier it is for impurities such as S to escape and the higher the crystallinity and the easier the pulverization. Conversely, the particle size distribution tends to be broad.

上記の条件でシュウ酸コバルトを生成させることにより、シュウ酸コバルトの粒径を細かくできるため、シュウ酸コバルト粉を還元することにより、結果として得られるコバルト粉末の粒径が細かく、かつ粒径分布が狭い粉末を得ることができる。   By generating cobalt oxalate under the above conditions, the particle size of cobalt oxalate can be made finer. By reducing the cobalt oxalate powder, the resulting cobalt powder has a fine particle size and a particle size distribution. A narrow powder can be obtained.

上記の工程を採用することにより、微細なコバルト粉末を得ることができ、これをまとめると、次のようになる。
(1)シュウ酸塩としてコバルトを沈殿させることで、粒径の細かい塩が得られる。これを(いったん酸化物を経由する場合を含め)水素還元し、粉砕することで粒径の細かいコバルト粉とすることができる。シュウ酸コバルト塩が細かいため、酸化後の粉砕及び還元後の粉砕がより簡単なものとなる。
(2)シュウ酸塩としてコバルトを沈殿させることで、中和剤を用いたpH調整をしなくてもコバルトを回収することが可能である。また、シュウ酸塩は不純物の巻き込みも少ないため、溶液成分からの不純物残留も少ない。さらに、加熱しながらの反応により、不純物の巻き込みをより低減できる。
(3)シュウ酸塩としてコバルトを沈殿させることで、シュウ酸コバルトは難溶性のため、水酸化物と比べてコバルト回収率が良い。
By adopting the above steps, a fine cobalt powder can be obtained, which is summarized as follows.
(1) By precipitating cobalt as an oxalate, a salt with a fine particle size can be obtained. This can be reduced to hydrogen (including once via an oxide) and pulverized to obtain fine cobalt powder. Since the cobalt oxalate is fine, pulverization after oxidation and pulverization after reduction become easier.
(2) By precipitating cobalt as an oxalate, it is possible to recover cobalt without adjusting the pH using a neutralizing agent. In addition, since oxalate has a small amount of impurities, there are few impurities remaining from solution components. Furthermore, the entrainment of impurities can be further reduced by the reaction while heating.
(3) By precipitating cobalt as an oxalate, cobalt oxalate is poorly soluble and therefore has a higher cobalt recovery rate than hydroxide.

以上の操作により製造した高純度コバルト粉を、焼結してスパッタリング用ターゲットとする。このようにして製造したコバルトターゲット中には、不純物含有量が少なく、半導体製造用又は磁性材のターゲットとして、好ましい材料が得られる。すなわち、Na、K等のアルカリ金属元素及びCa等のアルカリ土類金属元素がそれぞれ20ppm以下、硫黄(S)が100ppm、好ましくは40ppm以下、酸素(O)が5000ppm以下、炭素(C)が100ppm以下であるコバルト粉末を得ることができる。
また、平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあるコバルト粉末を得ることが可能となる。
The high-purity cobalt powder produced by the above operation is sintered to obtain a sputtering target. The cobalt target thus produced has a low impurity content, and a preferable material can be obtained for semiconductor production or as a magnetic material target. That is, alkali metal elements such as Na and K and alkaline earth metal elements such as Ca are each 20 ppm or less, sulfur (S) is 100 ppm, preferably 40 ppm or less, oxygen (O) is 5000 ppm or less, and carbon (C) is 100 ppm. The following cobalt powder can be obtained.
In addition, it is possible to obtain a cobalt powder having an average particle diameter of 1 μm or more and 5 μm or less and 90% or more of the particle diameter in the range of 0.3 μm to 10 μm.

このコバルト粉から製造したターゲットを用いてスパッタリング成膜したコバルト膜は、ゲート絶縁膜中を移動しMOS−LSI界面特性の劣化の原因となるNa、K等のアルカリ金属、Ca等のアルカリ土類金属が減少し、界面接合部のトラブルが減少する。
さらに、薄膜を構成する物質あるいはその薄膜に含まれる不純物が隣接する薄膜に拡散するという問題がなくなり、自膜及び隣接膜の構成物質のバランスを崩すことがなく、本来所有する膜の機能が低下するという問題もなくなる。
したがって、スパッタリング後に形成される磁性材、電極又は配線等が信頼性のある半導体動作性を十分に保証することができる。
A cobalt film formed by sputtering using a target manufactured from this cobalt powder moves in the gate insulating film and causes deterioration of MOS-LSI interface characteristics, and alkali metals such as Na and K, and alkaline earth metals such as Ca. The metal is reduced and the trouble at the interface junction is reduced.
Furthermore, there is no problem of diffusion of substances constituting the thin film or impurities contained in the thin film into the adjacent thin film, and the function of the originally owned film is reduced without losing the balance between the constituent materials of the self film and the adjacent film. The problem of doing is also eliminated.
Therefore, the magnetic material, electrode or wiring formed after sputtering can sufficiently ensure reliable semiconductor operability.

さらに、このスパッタリング膜の形成に際して、コバルト(合金・化合物)ターゲット中の不純物、特にガス成分である酸素、炭素等が減少しているので、スパッタチャンバ内に浮遊する粗大化した粒子が基板上に付着して薄膜回路を短絡させるようなことがなくなり、また薄膜の突起物の原因となるパーティクルの発生量が減少し、さらにスパッタリング中に、ガスによる突発が原因と考えられる異常放電を起こすこともなくなる。   Further, when forming the sputtering film, impurities in the cobalt (alloy / compound) target, particularly oxygen and carbon as gas components are reduced, so that coarse particles floating in the sputtering chamber are formed on the substrate. There is no longer a short circuit on the thin film circuit due to adhesion, and the amount of particles that cause thin film protrusions is reduced. In addition, abnormal discharge that may be caused by gas bursts may occur during sputtering. Disappear.

次に、本発明の実施例について説明する。なお、本実施例はあくまで1例であり、この例に制限されるものではない。すなわち、本発明の技術思想に含まれる本実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all the aspects or modifications other than the present Example included in the technical idea of the present invention are included.

(実施例1)
コバルト濃度100g/Lの硫酸コバルト水溶液を35°Cに加熱して攪拌しつつ、シュウ酸2水和物粉末を加え、シュウ酸コバルト沈殿を得た。これを乾燥させて得られたシュウ酸コバルト2水和物の、Coの含有量と不純物濃度の分析結果は表1の通りである。また、このときのコバルトの回収率は91.0%であった。
この実施例1では、表1に示すように、Co32%、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量は、30ppmであり、本願発明の目的を達成するための十分な低減効果が得られた。
なお、本実施例1ではコバルト濃度100g/Lの硫酸コバルト水溶液を用いたが、硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lの範囲にある場合にも、同等の結果が得られた。
Example 1
While heating and stirring an aqueous cobalt sulfate solution having a cobalt concentration of 100 g / L to 35 ° C., oxalic acid dihydrate powder was added to obtain a cobalt oxalate precipitate. Table 1 shows the analysis results of Co content and impurity concentration of cobalt oxalate dihydrate obtained by drying this. Moreover, the recovery rate of cobalt at this time was 91.0%.
In Example 1, as shown in Table 1, Co 32%, Na, K, and Ca are all less than 10 ppm, and the content of sulfur (S) is 30 ppm. In order to achieve the object of the present invention, A sufficient reduction effect was obtained.
In Example 1, a cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was used, but the same result was obtained when the cobalt concentration of the cobalt sulfate aqueous solution was in the range of 10 g / L to 110 g / L. .

Figure 0005530270
Figure 0005530270

得られたシュウ酸コバルト2水和物を大気中500°Cで焙焼し、酸化コバルトを得た。この酸化コバルトをボールミルで2時間粉砕し、酸化コバルト粉末とし、これを650°C、水素雰囲気でコバルト金属まで還元し、さらにボールミルで2時間粉砕してコバルト粉末とした。得られたコバルト粉末の不純物濃度分析結果は表2の通りである。
また、コバルト粉末の平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあった。
表2に示すように、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量は、90ppmであり、本願発明の目的を達成するための十分な低減効果が得られた。
The obtained cobalt oxalate dihydrate was roasted at 500 ° C. in the atmosphere to obtain cobalt oxide. The cobalt oxide was pulverized with a ball mill for 2 hours to obtain cobalt oxide powder, which was reduced to cobalt metal at 650 ° C. in a hydrogen atmosphere, and further pulverized with a ball mill for 2 hours to obtain cobalt powder. Table 2 shows the impurity concentration analysis results of the obtained cobalt powder.
Further, the average particle diameter of the cobalt powder was 1 μm or more and 5 μm or less, and 90% or more of the particle diameter was in the range of 0.3 μm to 10 μm.
As shown in Table 2, Na, K, and Ca are all less than 10 ppm, the content of sulfur (S) is 90 ppm, and a sufficient reduction effect for achieving the object of the present invention was obtained. .

Figure 0005530270
Figure 0005530270

(実施例2)
コバルト濃度100g/Lの硫酸コバルト水溶液を60°Cに加熱して攪拌しつつ、シュウ酸2水和物粉末を加え、シュウ酸コバルト沈殿を得た。これを乾燥させて得られたシュウ酸コバルト2水和物のCoの含有量と不純物濃度分析結果は表1の通りである。また、このときのコバルト回収率は90.3%であった。
この実施例2では、表1に示すように、Co31.9%、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量も、10ppm未満であった。いずれも、本願発明の目的を達成するための十分な低減効果が得られた。
なお、本実施例2ではコバルト濃度100g/Lの硫酸コバルト水溶液を用いたが、硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lの範囲にある場合にも、同等の結果が得られた。
(Example 2)
While heating and stirring an aqueous cobalt sulfate solution having a cobalt concentration of 100 g / L at 60 ° C., oxalic acid dihydrate powder was added to obtain a cobalt oxalate precipitate. Table 1 shows the Co content and impurity concentration analysis results of cobalt oxalate dihydrate obtained by drying this. Moreover, the cobalt recovery rate at this time was 90.3%.
In Example 2, as shown in Table 1, Co 31.9%, Na, K, and Ca were all less than 10 ppm, and the content of sulfur (S) was also less than 10 ppm. In any case, a sufficient reduction effect for achieving the object of the present invention was obtained.
In Example 2, a cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was used, but the same result was obtained when the cobalt concentration of the cobalt sulfate aqueous solution was in the range of 10 g / L to 110 g / L. .

得られたシュウ酸コバルト2水和物を大気中500°Cで焙焼し、酸化コバルトを得た。この酸化コバルトをボールミルで2時間粉砕し、酸化コバルト粉末とし、これを650°C、水素雰囲気でコバルト金属まで還元し、さらにボールミルで2時間粉砕してコバルト粉末とした。得られたコバルト粉末の不純物濃度分析結果は表2の通りである。また、コバルト粉末の平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあった。
表2に示すように、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量は、60ppmであり、本願発明の目的を達成するための十分な低減効果が得られた。
The obtained cobalt oxalate dihydrate was roasted at 500 ° C. in the atmosphere to obtain cobalt oxide. The cobalt oxide was pulverized with a ball mill for 2 hours to obtain cobalt oxide powder, which was reduced to cobalt metal at 650 ° C. in a hydrogen atmosphere, and further pulverized with a ball mill for 2 hours to obtain cobalt powder. Table 2 shows the impurity concentration analysis results of the obtained cobalt powder. Further, the average particle diameter of the cobalt powder was 1 μm or more and 5 μm or less, and 90% or more of the particle diameter was in the range of 0.3 μm to 10 μm.
As shown in Table 2, Na, K, and Ca are all less than 10 ppm, the content of sulfur (S) is 60 ppm, and a sufficient reduction effect for achieving the object of the present invention was obtained. .

(実施例3)
コバルト濃度100g/Lの硫酸コバルト水溶液を80°Cに加熱して攪拌しつつ、シュウ酸2水和物粉末を加え、シュウ酸コバルト沈殿を得た。これを乾燥させて得られたシュウ酸コバルト2水和物の不純物濃度分析結果は、表1のとおりである。また、このときのコバルト回収率は89.8%であった。
この実施例3では、表1に示すように、Co32.0%、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量も、10ppm未満であった。いずれも、本願発明の目的を達成するための十分な低減効果が得られた。
なお、本実施例3ではコバルト濃度100g/Lの硫酸コバルト水溶液を用いたが、硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lの範囲にある場合にも、同等の結果が得られた。
(Example 3)
While heating and stirring an aqueous cobalt sulfate solution having a cobalt concentration of 100 g / L at 80 ° C., oxalic acid dihydrate powder was added to obtain a cobalt oxalate precipitate. The results of impurity concentration analysis of cobalt oxalate dihydrate obtained by drying this are shown in Table 1. Moreover, the cobalt recovery rate at this time was 89.8%.
In Example 3, as shown in Table 1, Co 32.0%, Na, K, and Ca were all less than 10 ppm, and the content of sulfur (S) was also less than 10 ppm. In any case, a sufficient reduction effect for achieving the object of the present invention was obtained.
In Example 3, a cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was used, but the same result was obtained when the cobalt concentration of the cobalt sulfate aqueous solution was in the range of 10 g / L to 110 g / L. .

得られたシュウ酸コバルト2水和物を大気中500°Cで焙焼し、酸化コバルトを得た。この酸化コバルトをボールミルで2時間粉砕し、酸化コバルト粉末とし、これを650°C、水素雰囲気でコバルト金属まで還元し、さらにボールミルで2時間粉砕してコバルト粉末とした。得られたコバルト粉末の不純物濃度分析結果は表2の通りである。
また、コバルト粉末の平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあった。
表2に示すように、Na、K、Caはいずれも10ppm未満であり、硫黄(S)の含有量は、32ppmであり、本願発明の目的を達成するための十分な低減効果が得られた。
The obtained cobalt oxalate dihydrate was roasted at 500 ° C. in the atmosphere to obtain cobalt oxide. The cobalt oxide was pulverized with a ball mill for 2 hours to obtain cobalt oxide powder, which was reduced to cobalt metal at 650 ° C. in a hydrogen atmosphere, and further pulverized with a ball mill for 2 hours to obtain cobalt powder. Table 2 shows the impurity concentration analysis results of the obtained cobalt powder.
Further, the average particle diameter of the cobalt powder was 1 μm or more and 5 μm or less, and 90% or more of the particle diameter was in the range of 0.3 μm to 10 μm.
As shown in Table 2, Na, K, and Ca are all less than 10 ppm, and the content of sulfur (S) is 32 ppm, and a sufficient reduction effect for achieving the object of the present invention was obtained. .

(比較例1)
コバルト濃度100g/Lの硫酸コバルト水溶液を室温で攪拌しつつ、シュウ酸2水和物粉末を加え、シュウ酸コバルト沈殿を得た。これを乾燥させて得られたシュウ酸コバルト2水和物の不純物濃度分析結果は表1のとおりである。このときのコバルト回収率は91.6%であった。
表1に示すように、Co32.4%、Na、K、Caはいずれも10ppm未満であったが、硫黄(S)の含有量は、310ppmと増加した。いずれも、本願発明の目的を達成することはできなかった。
なお、本比較例1ではコバルト濃度100g/Lの硫酸コバルト水溶液を用いたが、硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lの範囲にある場合にも、同等の結果となった。
(Comparative Example 1)
While stirring an aqueous cobalt sulfate solution having a cobalt concentration of 100 g / L at room temperature, oxalic acid dihydrate powder was added to obtain a cobalt oxalate precipitate. The results of impurity concentration analysis of cobalt oxalate dihydrate obtained by drying this are shown in Table 1. The cobalt recovery rate at this time was 91.6%.
As shown in Table 1, Co 32.4%, Na, K, and Ca were all less than 10 ppm, but the content of sulfur (S) increased to 310 ppm. In either case, the object of the present invention could not be achieved.
In Comparative Example 1, a cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was used, but the same result was obtained when the cobalt concentration of the cobalt sulfate aqueous solution was in the range of 10 g / L to 110 g / L.

得られたシュウ酸コバルト2水和物を大気中500°Cで焙焼し、酸化コバルトを得た。この酸化コバルトをボールミルで2時間粉砕し、酸化コバルト粉末とし、これを650°C、水素雰囲気でコバルト金属まで還元し、さらにボールミルで2時間粉砕してコバルト粉末とした。得られたコバルト粉末の不純物濃度分析結果は表2の通りである。
表2に示すように、Na、K、Caはいずれも10ppm未満であったが、硫黄(S)の含有量は、1000ppmであり、本願発明の目的を達成するための十分な低減効果が得られなかった。
また、Sはコバルトが粉砕できそうな温度(700°C)で水素還元しても除去しきれなかった。
The obtained cobalt oxalate dihydrate was roasted at 500 ° C. in the atmosphere to obtain cobalt oxide. The cobalt oxide was pulverized with a ball mill for 2 hours to obtain cobalt oxide powder, which was reduced to cobalt metal at 650 ° C. in a hydrogen atmosphere, and further pulverized with a ball mill for 2 hours to obtain cobalt powder. Table 2 shows the impurity concentration analysis results of the obtained cobalt powder.
As shown in Table 2, Na, K, and Ca were all less than 10 ppm, but the content of sulfur (S) was 1000 ppm, and a sufficient reduction effect for achieving the object of the present invention was obtained. I couldn't.
Further, S could not be completely removed by hydrogen reduction at a temperature (700 ° C.) at which cobalt could be crushed.

(比較例2)
コバルト濃度100g/Lの硫酸コバルト水溶液をアンモニア水でpH=8に中和して水酸化コバルトを得た。水酸化コバルトの不純物濃度分析結果は表1の通りである。このときのコバルト回収率は60.5%であった。
表1に示すように、Co59.8%、Na、K、Caはいずれも10ppm未満であったが、硫黄(S)の含有量は、55000ppmと著しく増加した。いずれも、本願発明の目的を達成することはできなかった。
なお、本比較例2ではコバルト濃度100g/Lの硫酸コバルト水溶液を用いたが、硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lの範囲にある場合にも、同等の結果となった。
(Comparative Example 2)
A cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was neutralized with ammonia water to pH = 8 to obtain cobalt hydroxide. The results of impurity concentration analysis of cobalt hydroxide are shown in Table 1. The cobalt recovery rate at this time was 60.5%.
As shown in Table 1, Co 59.8%, Na, K, and Ca were all less than 10 ppm, but the content of sulfur (S) was remarkably increased to 55000 ppm. In either case, the object of the present invention could not be achieved.
In Comparative Example 2, a cobalt sulfate aqueous solution having a cobalt concentration of 100 g / L was used, but the same result was obtained when the cobalt concentration of the cobalt sulfate aqueous solution was in the range of 10 g / L to 110 g / L.

得られた水酸化コバルトを大気中500°Cで焙焼し、酸化コバルトを得た。この酸化コバルトをボールミルで2時間粉砕し、酸化コバルト粉末とし、これを650°C、水素雰囲気でコバルト金属まで還元し、さらにボールミルで2時間粉砕してコバルト粉末とした。得られたコバルト粉末の不純物濃度分析結果は表2の通りである。
表2に示すように、Na、K、Caはいずれも10ppm未満であったが、硫黄(S)の含有量は、33000ppmと著しく増大し、本願発明の目的を達成するための十分な低減効果が得られなかった。
また、Sはコバルトが粉砕できそうな温度(700°C)で水素還元しても除去しきれなかった。
The obtained cobalt hydroxide was roasted at 500 ° C. in the atmosphere to obtain cobalt oxide. The cobalt oxide was pulverized with a ball mill for 2 hours to obtain cobalt oxide powder, which was reduced to cobalt metal at 650 ° C. in a hydrogen atmosphere, and further pulverized with a ball mill for 2 hours to obtain cobalt powder. Table 2 shows the impurity concentration analysis results of the obtained cobalt powder.
As shown in Table 2, Na, K, and Ca were all less than 10 ppm, but the content of sulfur (S) was remarkably increased to 33000 ppm, which was a sufficient reduction effect to achieve the object of the present invention. Was not obtained.
Further, S could not be completely removed by hydrogen reduction at a temperature (700 ° C.) at which cobalt could be crushed.

次に、実施例1、実施例2、比較例1のコバルト粉と高純度の白金粉、クロム粉、二酸化珪素粉を用いて、さらに1100°C、1.5hrでホットプレスし、コバルト−クロム−白金−二酸化珪素系磁性材ターゲットとした。
混合比は、52.26wt.%Co‐8.21wt.%Cr‐33.18wt.%Pt‐6.35wt.%SiOである。これらのターゲットを使用してスパッタリングによる成膜のパーティクルの発生個数を比較した。
このとき、パーティクルの発生個数が、比較例1では100ケ/ウエハーで、著しく多いのに対し、実施例1及び実施例2ではそれぞれ8ケ/ウエハー、10ケ/ウエハーであり、いずれも低く本発明の方が優れていた。
このように本発明の純度が向上したことにより、電気抵抗が減少し、またスパッタリング時のパーティクルの発生個数も著しく減少しているのが分かる。
Next, using the cobalt powder of Example 1, Example 2, and Comparative Example 1 and high-purity platinum powder, chromium powder, and silicon dioxide powder, hot pressing was further performed at 1100 ° C. for 1.5 hours to obtain cobalt-chromium. A platinum-silicon dioxide magnetic material target was used.
The mixing ratio was 52.26 wt.% Co-8.21 wt. % Cr-33.18 wt. % Pt-6.35 wt. % SiO 2 . Using these targets, the number of particles generated by sputtering was compared.
At this time, the number of particles generated was 100 / wafer in Comparative Example 1, which was remarkably large, whereas in Examples 1 and 2, 8 / wafer and 10 / wafer, respectively. The invention was superior.
Thus, it can be seen that the improvement in the purity of the present invention results in a decrease in electrical resistance and a significant decrease in the number of particles generated during sputtering.

上記の通り、本発明は、特にアルカリ金属元素、アルカリ土類金属元素、硫黄及び酸素、炭素等のガス成分を極力低減させたコバルト粉末であり、かつ微細な粉末を安定してかつ容易に製造できる方法であり、薄膜を構成する物質の相互拡散に起因する汚染物質の抑制及びパーティクルや異常放電現象が生じないスパッタリングターゲットの製造に有効である微細な粉末を収率よく得ることできるという著しい効果を有するので、特に磁性材ターゲット用コバルト粉末として有用である。   As described above, the present invention is a cobalt powder in which gas components such as alkali metal elements, alkaline earth metal elements, sulfur, oxygen, and carbon are reduced as much as possible, and a fine powder is stably and easily produced. It is a method that can reduce the amount of contaminants caused by interdiffusion of substances that make up the thin film, and that it is possible to obtain fine powders that are effective for producing sputtering targets that are free from particles and abnormal discharge phenomena. Therefore, it is particularly useful as a cobalt powder for a magnetic material target.

Claims (6)

Sが100ppm以下、Na、K、Caがそれぞれ20ppm以下であり、平均粒径が1μm以上、5μm以下であって、粒径の90%以上が0.3μmから10μmの範囲にあることを特徴とするコバルト粉末。 S is 100 ppm or less, Na, K, and Ca are each 20 ppm or less , the average particle size is 1 μm or more and 5 μm or less, and 90% or more of the particle size is in the range of 0.3 μm to 10 μm. Cobalt powder. 磁性材ターゲットの製造に用いることを特徴とする請求項1に記載のコバルト粉末。 The cobalt powder according to claim 1 , which is used for manufacturing a magnetic material target. 硫酸コバルト水溶液に、液温を35°C以上、80°C以下に保持した状態でシュウ酸を添加し反応させて、シュウ酸コバルトとして沈殿させ、これを分取及び還元してコバルト粉末とすることを特徴とするコバルト粉末の製造方法。 Oxalic acid is added to and reacted with a cobalt sulfate aqueous solution while maintaining the liquid temperature at 35 ° C. or higher and 80 ° C. or lower to precipitate cobalt cobalt oxalate, which is fractionated and reduced to obtain cobalt powder. A method for producing cobalt powder, wherein 硫酸コバルト水溶液に、液温を35°C以上、80°C以下に保持した状態でシュウ酸を添加し反応させて、シュウ酸を反応させてシュウ酸コバルトとして沈殿させ、これを分取及び還元して請求項1〜2のいずれか一項に記載のコバルト粉末とすることを特徴とするコバルト粉末の製造方法。 Oxalic acid is added to and reacted with a cobalt sulfate aqueous solution while maintaining the liquid temperature at 35 ° C. or higher and 80 ° C. or lower, and oxalic acid is reacted to precipitate cobalt oxalate, which is fractionated and reduced. And it is set as the cobalt powder as described in any one of Claims 1-2 , The manufacturing method of the cobalt powder characterized by the above-mentioned. 反応させるときの液温を60°C以上、80°C以下に保持することを特徴とする請求項3〜4のいずれか一項に記載のコバルト粉末の製造方法。 The method for producing cobalt powder according to any one of claims 3 to 4, wherein a liquid temperature at the time of reaction is maintained at 60 ° C or higher and 80 ° C or lower. 硫酸コバルト水溶液のコバルト濃度が10g/L〜110g/Lであることを特徴とする請求項3〜5のいずれか一項に記載のコバルト粉末の製造方法。 The method for producing a cobalt powder according to any one of claims 3 to 5 , wherein the cobalt concentration of the aqueous cobalt sulfate solution is 10 g / L to 110 g / L.
JP2010147013A 2010-06-29 2010-06-29 Cobalt powder and method for producing the same Active JP5530270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147013A JP5530270B2 (en) 2010-06-29 2010-06-29 Cobalt powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147013A JP5530270B2 (en) 2010-06-29 2010-06-29 Cobalt powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012012619A JP2012012619A (en) 2012-01-19
JP5530270B2 true JP5530270B2 (en) 2014-06-25

Family

ID=45599404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147013A Active JP5530270B2 (en) 2010-06-29 2010-06-29 Cobalt powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5530270B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311899A1 (en) * 2012-01-25 2014-10-23 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target
JP6020971B2 (en) * 2015-03-23 2016-11-02 住友金属鉱山株式会社 Method for producing cobalt powder
JP6800413B2 (en) * 2015-12-28 2020-12-16 国立大学法人山形大学 Oxalate degradation methods and complex compounds for oxalate degradation
JP7198081B2 (en) * 2018-12-27 2022-12-28 Jx金属株式会社 Valuable metal recovery method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247638A (en) * 1992-03-03 1993-09-24 Mitsubishi Materials Corp Sputtering target and manufacture therefore
DE4214723C2 (en) * 1992-05-04 1994-08-25 Starck H C Gmbh Co Kg Finely divided metal powder
DE19822663A1 (en) * 1998-05-20 1999-12-02 Starck H C Gmbh Co Kg Sintered metal and alloy powders for powder metallurgical applications and processes for their production and their use
JP2001081507A (en) * 1999-09-14 2001-03-27 Nikko Materials Co Ltd High purity cobalt powder and method of producing the same
JP4691241B2 (en) * 2000-09-29 2011-06-01 ソニー株式会社 Method for producing high purity cobalt and method for purifying cobalt chloride
JP2003138322A (en) * 2001-10-31 2003-05-14 Nikko Materials Co Ltd Method of manufacturing high-purity metal, high-purity metal, sputtering target consisting of this high-purity metal and thin film formed by this sputtering target
DE102006057004A1 (en) * 2006-12-02 2008-06-05 H.C. Starck Gmbh metal powder

Also Published As

Publication number Publication date
JP2012012619A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
US7534283B2 (en) Method of producing copper powder and copper powder
JP2013256443A (en) High purity zinc oxide powder, method for producing the same, and high purity zinc oxide target and high purity zinc oxide thin film
TWI588282B (en) A tungsten sintered sputtering target and a tungsten film forming using the target
JP5530270B2 (en) Cobalt powder and method for producing the same
JP2003277053A (en) Tin oxide powder and method for manufacturing the same, and method for manufacturing high-density indium tin oxide target using the same
JP2012001750A (en) METHOD FOR PRODUCING Co-CONTAINING SOLUTION
TW201944647A (en) Process for the recovery of lithium and transition metal using heat
CN111945000A (en) Metal purification method
JPWO2002079092A1 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
WO2013103034A1 (en) Method for producing gallium hydroxide, method for producing gallium oxide powder, gallium oxide powder, gallium oxide sintered compact and sputtering target formed from sintered compact
JP6365395B2 (en) Method for producing nickel sulfate
JP4188381B2 (en) Recovery method of rhodium
JP2007197836A (en) Nickel powder
JP2016153361A (en) Stannous oxide powder, and manufacturing method of stannous oxide powder
JP2014058712A (en) Method of producing tantalum particles
JP4455654B2 (en) Method for producing ruthenium powder from ammonium hexachlororuthenate
JP5651544B2 (en) Method for recovering indium tin oxide and method for producing indium tin oxide target
JP4649536B1 (en) Gallium oxide powder
JP3945740B2 (en) Nickel powder
Biswal et al. Recovery of Co metal and electrolytic manganese dioxide (EMD) from Co–Mn sludge
JP2017206751A (en) Manufacturing method of nickel powder
TWI615482B (en) Platinum-alloy target
JP2016222976A (en) Method for purifying aqueous cobalt chloride solution
JP6258222B2 (en) Niobium capacitor anode chemical and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250