JP2006297355A - Catalyst and its manufacturing method - Google Patents

Catalyst and its manufacturing method Download PDF

Info

Publication number
JP2006297355A
JP2006297355A JP2005127218A JP2005127218A JP2006297355A JP 2006297355 A JP2006297355 A JP 2006297355A JP 2005127218 A JP2005127218 A JP 2005127218A JP 2005127218 A JP2005127218 A JP 2005127218A JP 2006297355 A JP2006297355 A JP 2006297355A
Authority
JP
Japan
Prior art keywords
noble metal
water
reverse micelle
solution
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005127218A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
伸司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005127218A priority Critical patent/JP2006297355A/en
Publication of JP2006297355A publication Critical patent/JP2006297355A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which has excellent catalyst activity and durability by an inverse micelle method. <P>SOLUTION: The catalyst is formed by making the surface of a conductive carrier carry high dispersion compound noble metal particles having a composition of formula [Pt]<SB>a</SB>[Ir]<SB>b</SB>, wherein (a) is 0.7-0.99 atomic ratio of Pt, and (b) is 0.01-0.3 atomic ratio of Ir, and the sum of (a) and (b) is 1, and the average particle size is 3-8 nm. The compound noble metal particles are formed by adding reducing agents of water-soluble noble metal compounds into an inverse micelle solution formed by mixing an aqueous solution containing a water-soluble noble metal compound of platinum (Pt), and a water-soluble noble metal compound of iridium (Ir). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒およびその製造方法に関するものである。特に、本発明は、高い触媒活性、高い発電性能を有する電極触媒、特に燃料電池用電極触媒およびその製造方法に関するものである。   The present invention relates to a catalyst and a method for producing the same. In particular, the present invention relates to an electrode catalyst having high catalytic activity and high power generation performance, in particular, an electrode catalyst for a fuel cell and a method for producing the same.

近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動し高出力密度が得られる固体高分子型燃料電池が電気自動車用電源、定置型電源として注目されている。固体高分子型燃料電池は、フィルム状の固体高分子膜からなる電解質層を用いるのが特徴である。   In recent years, in response to social demands and trends against the background of energy and environmental issues, polymer electrolyte fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . The solid polymer fuel cell is characterized by using an electrolyte layer made of a film-like solid polymer membrane.

かような固体高分子型燃料電池では、電極触媒により、アノードでは燃料の水素ガスをプロトンに変え、カソードでは酸素を還元して電解質層を通ってきたプロトンと結びつき水となる。このようにして、固体高分子型燃料電池は、化学反応により得られた反応エネルギーから電気エネルギーを直接得るものである。   In such a polymer electrolyte fuel cell, the hydrogen gas of the fuel is converted into protons at the anode by the electrode catalyst, and oxygen is reduced at the cathode and combined with the protons that have passed through the electrolyte layer to become water. Thus, the polymer electrolyte fuel cell directly obtains electric energy from the reaction energy obtained by the chemical reaction.

燃料電池は高い発電性能を長期に亘って示すことが求められ、自動車用電源では5000時間、定置用電源では4万時間とも言われている。そのため、前記電極触媒には高い触媒活性および耐久性を有することが必要とされる。前記電極触媒としては、多孔質のカーボン粒子に貴金属、卑金属などの触媒金属を担持したものが用いられている。例えば、複数の貴金属を触媒金属としてカーボン粒子上に担持された電極触媒の製造方法としては、複数の貴金属化合物を含む水溶液にカーボン粒子を分散混合し、これに還元剤または沈殿剤などを添加することにより貴金属粒子をカーボン粒子上に形成した後、焼成する吸着法などが一般的に用いられている。   A fuel cell is required to exhibit high power generation performance over a long period of time, and is said to be 5000 hours for an automotive power source and 40,000 hours for a stationary power source. Therefore, the electrode catalyst is required to have high catalytic activity and durability. As the electrode catalyst, porous carbon particles carrying a catalyst metal such as a noble metal or base metal are used. For example, as a method for producing an electrode catalyst supported on carbon particles using a plurality of noble metals as catalyst metals, carbon particles are dispersed and mixed in an aqueous solution containing a plurality of noble metal compounds, and a reducing agent or a precipitating agent is added thereto. Thus, an adsorption method or the like in which precious metal particles are formed on carbon particles and then fired is generally used.

しかしながら、このような方法では、不溶化剤により形成された複数の貴金属粒子が他の貴金属粒子上及び担体表面上に無作為に吸着してしまう。このため、焼成によって合金化して形成された複合貴金属粒子の組成は不均一なものとなり、さらには、熱的エネルギーが加わることでシンタリングして粒子径の大きなものが形成される問題があった。従って、複合貴金属粒子の活性表面積が減少し、触媒活性が低くなるという問題もあった。さらに、吸着法を用いた場合には、電解液が十分に浸透しないカーボン粒子の微細孔内にも複合貴金属粒子が形成・担持されてしまうが、このように電解液と充分に接触できない複合貴金属粒子は、電極触媒の活性成分として働かないため、担持した複合貴金属粒子の有効利用率が低下する問題もあった。   However, in such a method, a plurality of noble metal particles formed by the insolubilizing agent are adsorbed randomly on other noble metal particles and on the surface of the support. For this reason, the composition of the composite noble metal particles formed by alloying by firing becomes non-uniform, and further, there is a problem that a large particle size is formed by sintering due to the addition of thermal energy. . Accordingly, there is a problem that the active surface area of the composite noble metal particles is reduced and the catalytic activity is lowered. Furthermore, when the adsorption method is used, composite noble metal particles are formed and supported in the fine pores of the carbon particles into which the electrolyte does not sufficiently permeate. Since the particles do not act as an active component of the electrode catalyst, there is a problem that the effective utilization rate of the supported composite noble metal particles is lowered.

これらの問題を解決するための方法として、逆ミセル法が用いられている。例えば、貴金属イオンを含む水溶液、または貴金属イオンを含む水溶液及び遷移金属イオンを含む水溶液から超微粒子状の液滴として存在する逆ミセルを調製し、前記貴金属イオン及び遷移金属イオンを沈殿もしくは還元して不溶化し、これに導電性担体(カーボン粒子)を分散・混合することにより、貴金属、または貴金属及び遷移金属を導電性担体表面に高分散担持させる方法が報告されている(例えば、特許文献1)。   The reverse micelle method is used as a method for solving these problems. For example, an aqueous solution containing noble metal ions, or an aqueous solution containing noble metal ions and an aqueous solution containing transition metal ions are prepared as reverse micelles present as ultrafine droplets, and the noble metal ions and transition metal ions are precipitated or reduced. A method has been reported in which a noble metal or a noble metal and a transition metal are supported in a highly dispersed manner on the surface of a conductive carrier by insolubilization and dispersing and mixing the conductive carrier (carbon particles) therein (for example, Patent Document 1). .

かような逆ミセル法によれば、担体上に貴金属などを高分散担持させることができる。さらに逆ミセルにより保護された貴金属などは、カーボン粒子の細孔内には担持され難いため、カーボン粒子表面に選択的に高分散担持させることが可能となる。
特開2005−34836号公報
According to such a reverse micelle method, a noble metal or the like can be supported in a highly dispersed manner on the carrier. Furthermore, since noble metals protected by reverse micelles are difficult to be supported in the pores of the carbon particles, they can be selectively and highly dispersed on the carbon particle surfaces.
JP-A-2005-34836

しかしながら、上記特許文献1に記載される方法では、吸着法に比べると組成が均一な複合貴金属粒子が製造できるものの、貴金属イオンを含む逆ミセルに還元剤を添加して貴金属イオンを貴金属粒子とする工程、及び遷移金属イオンを含む逆ミセル溶液に沈殿剤を添加して遷移金属イオンを遷移金属粒子とする工程を、それぞれ1回ずつしか行なっていないため、組成が十分均一とはいえず、十分均一な固溶体を得るのが困難であり、また、製造される複合貴金属粒子の粒径分布も広くなってしまう傾向にあった。上記問題に加えて、特許文献1では、貴金属と遷移金属との固溶体(複合金属粒子)を形成するために高温での熱処理(焼成処理)を必要とするが、このような焼成処理により固溶体の粒子径が増大して、比活性が低下してしまうという問題があった。さらに、白金に比べて強酸性下での腐食耐性に優れるイリジウム(Ir)を複合貴金属粒子に使用しようとすると、焼成処理により粒子の組成が不均一になり、腐食耐性を向上させるために、Ir含量を増加させると、発電性能が低下してしまうという問題が生じる。   However, although the method described in Patent Document 1 can produce composite noble metal particles having a uniform composition as compared to the adsorption method, a reducing agent is added to reverse micelles containing noble metal ions to make the noble metal ions noble metal particles. Since the process and the process of adding a precipitant to the reverse micelle solution containing transition metal ions to make the transition metal ions into transition metal particles are performed only once each, the composition is not sufficiently uniform and sufficient It was difficult to obtain a uniform solid solution, and the particle size distribution of the produced composite noble metal particles tended to be wide. In addition to the above problem, Patent Document 1 requires a high-temperature heat treatment (firing treatment) to form a solid solution (composite metal particles) of a noble metal and a transition metal. There has been a problem that the particle diameter increases and the specific activity decreases. Furthermore, when trying to use iridium (Ir), which is superior in corrosion resistance under strong acid compared to platinum, for the composite noble metal particles, the composition of the particles becomes non-uniform due to the firing treatment, so that Ir is improved. When the content is increased, there arises a problem that the power generation performance is lowered.

したがって、本発明は、上記事情を鑑みてなされたものであり、触媒活性がより優れた触媒、特に電極触媒を提供することを目的とし、特に均一な組成を有し、粒径分布の狭いPt/Ir系の複合貴金属粒子を使用することにより、高い触媒活性を示し、かつIrの組成比を少なくしても酸性電解質雰囲気下での安定性(耐酸性)に優れた触媒、特に電極触媒を提供することを目的する。   Accordingly, the present invention has been made in view of the above circumstances, and aims to provide a catalyst having a higher catalytic activity, particularly an electrode catalyst, and has a particularly uniform composition and a narrow particle size distribution. By using / Ir-based composite noble metal particles, a catalyst exhibiting high catalytic activity and excellent stability (acid resistance) in an acidic electrolyte atmosphere even when the composition ratio of Ir is reduced, particularly an electrode catalyst The purpose is to provide.

本発明の他の目的は、長期間にわたって頻発する起動/停止サイクル及び出力変動サイクルに対しても出力低下が抑制できる(発電性能を維持できる)耐久性に優れた触媒、特に電極触媒を提供することを目的とする。   Another object of the present invention is to provide a catalyst having excellent durability, particularly an electrode catalyst, capable of suppressing a decrease in output even with respect to start / stop cycles and output fluctuation cycles that occur frequently over a long period of time (maintaining power generation performance). For the purpose.

本発明の別の目的は、高温での熱処理(焼成処理)を施さなくても、均一なPt−Ir固溶体を形成できる触媒、特に電極触媒の製造方法を提供することである。   Another object of the present invention is to provide a method for producing a catalyst, particularly an electrode catalyst, which can form a uniform Pt—Ir solid solution without performing a heat treatment (firing treatment) at a high temperature.

本発明者は、上記目的を達成するために鋭意検討を行なった結果、逆ミセル法を複数回繰り返すことにより均一な原子組成(均一な固溶体)及び3〜8nmという狭い粒径分布を有するPt−Ir系複合金属微粒子が、高温での熱処理(焼成処理)を施さなくても、形成でき、かつこのようなPt−Ir系複合金属微粒子は従来よりも高い触媒活性を示すことを見出した。また、上記方法では、逆ミセル法を複数回繰り返しているため、Irの組成比を少なくしても組成の均一な触媒が製造でき、また、高温で熱処理しなくても、均一な組成で粒径分布の狭いPt−Ir複合金属粒子の固溶体が担体上にしっかりと形成(合金化)できるので、電位サイクルによっても微小Pt粒子(1nm以下)による初期のPt溶出が抑制され、経時劣化を抑制でき、さらに、Pt−Ir系複合金属粒子を3〜8nmという狭い粒径分布に制御できるので、粒子自体の表面エネルギーが低下し安定化するため、このようなPt−Ir複合金属粒子を用いた電極触媒を用いた燃料電池は長期間安定して高い発電性能を発揮することができることをも見出した。さらに、当該Pt−Ir複合金属粒子は、強酸性下での腐食耐性に優れるイリジウム(Ir)を使用しているので、このような粒子を導電性担体に担持した電極触媒は、酸性電解質雰囲気下での優れた安定性(耐酸性)をも発揮できることをも見出した。上記知見に基づいて、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has obtained a Pt- having a uniform atomic composition (uniform solid solution) and a narrow particle size distribution of 3 to 8 nm by repeating the reverse micelle method a plurality of times. It has been found that Ir-based composite metal fine particles can be formed without being subjected to heat treatment (baking treatment) at a high temperature, and such Pt—Ir-based composite metal fine particles exhibit higher catalytic activity than before. In the above method, since the reverse micelle method is repeated a plurality of times, a catalyst having a uniform composition can be produced even if the composition ratio of Ir is reduced. Since a solid solution of Pt-Ir composite metal particles with a narrow diameter distribution can be firmly formed (alloyed) on the support, initial Pt elution due to fine Pt particles (1 nm or less) is suppressed even by potential cycling, and deterioration with time is suppressed. In addition, since the Pt—Ir based composite metal particles can be controlled to have a narrow particle size distribution of 3 to 8 nm, the surface energy of the particles themselves is lowered and stabilized. Therefore, such Pt—Ir composite metal particles are used. It has also been found that a fuel cell using an electrode catalyst can stably exhibit high power generation performance for a long period of time. Further, since the Pt—Ir composite metal particles use iridium (Ir) which is excellent in corrosion resistance under strong acidity, the electrode catalyst having such particles supported on a conductive carrier is used in an acidic electrolyte atmosphere. It has also been found that excellent stability (acid resistance) can be exhibited. Based on the above findings, the present invention has been completed.

すなわち、上記目的は、式:[Pt][Ir](ただし、aは、Ptの原子比を表わし、0.7〜0.99であり、bは、Irの原子比を表わし、0.01〜0.3であり、この際、aとbの合計は1である)の組成を有し、かつ平均粒子径が3〜8nmである複合貴金属粒子が導電性担体の表面に高分散担持されてなり、前記複合貴金属粒子は、有機溶媒中に界面活性剤を溶解した溶液中において、白金(Pt)の水溶性貴金属化合物及びイリジウム(Ir)の水溶性貴金属化合物を含む水溶液を混合して形成した逆ミセル溶液に、該水溶性貴金属化合物の還元剤を添加することによって形成されることを特徴とする触媒、特に電極触媒によって達成される。 That is, the above object is obtained by the formula: [Pt] a [Ir] b (where a represents the atomic ratio of Pt, 0.7 to 0.99, b represents the atomic ratio of Ir, and 0 Composite noble metal particles having a composition of .01 to 0.3 (the sum of a and b is 1) and having an average particle diameter of 3 to 8 nm is highly dispersed on the surface of the conductive carrier. The composite noble metal particles are supported by mixing an aqueous solution containing a water-soluble noble metal compound of platinum (Pt) and a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. This is achieved by a catalyst, particularly an electrode catalyst, which is formed by adding a reducing agent of the water-soluble noble metal compound to the reverse micelle solution thus formed.

また、本発明の上記別の目的は、(a)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を、該水溶性貴金属化合物の還元剤または該還元剤を含む逆ミセル溶液(A’)と混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合する工程;(b)有機溶媒中に界面活性剤を溶解した溶液中で、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合する工程;及び(c)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合する工程からなる群から選択される工程を少なくとも2回、ならびに該(a)〜(c)の少なくとも一工程で得られる混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させた後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、触媒の製造方法
によって達成される。
Another object of the present invention is to provide a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) in a solution obtained by dissolving a surfactant in an organic solvent. After mixing with the reducing agent of the noble metal compound or the reverse micelle solution (A ′) containing the reducing agent, the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium (Ir) is added, and further the water-soluble noble metal A step of mixing a compound reducing agent or a reverse micelle solution (B ′) containing a reducing agent; (b) containing a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. After the reverse micelle solution (B) is mixed with the reducing agent of the water-soluble noble metal compound or the reverse micelle solution (B ′) containing the reducing agent, the reverse micelle solution (A) containing the water-soluble noble metal compound of platinum (Pt) (A) ) And the water-soluble A step of mixing a metal compound reducing agent or a reverse micelle solution (A ′) containing a reducing agent; and (c) in a solution in which a surfactant is dissolved in an organic solvent, platinum (Pt) and iridium (Ir) At least two steps selected from the group consisting of a step of mixing a reverse micelle solution (C) containing a water-soluble noble metal compound with a reducing agent of the water-soluble noble metal compound or a reverse micelle solution (C ′) containing a reducing agent. The conductive support is dispersed in the mixed solution obtained in at least one step of (a) to (c) and the composite noble metal particles are supported on the support, and then the support on which the composite noble metal particles are supported. It is achieved by a method for producing a catalyst, characterized by having a step of forming a catalyst in which composite noble metal particles are supported on a carrier surface in a highly dispersed state by separating, washing and drying.

また、本発明の上記別の目的は、(ア)有機溶媒中に界面活性剤を溶解した溶液中に、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;
(イ)有機溶媒中に界面活性剤を溶解した溶液中に、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;及び
(ウ)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程
からなる群から選択される工程を少なくとも2回繰返した後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、電極、特に電極触媒の製造方法によっても達成される。
Another object of the present invention is to provide (a) a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) in a solution obtained by dissolving a surfactant in an organic solvent. After mixing the reducing agent of the noble metal compound or the reverse micelle solution (A ′) containing the reducing agent, the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium (Ir) is added, and further the water-soluble noble metal compound A reducing agent or a reverse micelle solution (B ′) containing a reducing agent, and then dispersing a conductive carrier in the mixed solution to carry composite noble metal particles on the carrier;
(A) A reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) in a solution obtained by dissolving a surfactant in an organic solvent contains a reducing agent or a reducing agent for the water-soluble noble metal compound. After mixing the reverse micelle solution (B ′), a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added, and a reverse micelle solution containing a reducing agent or a reducing agent for the water-soluble noble metal compound. (A ′) is then mixed, and then a conductive support is dispersed in the mixed solution, and composite noble metal particles are supported on the support; and (c) a solution in which a surfactant is dissolved in an organic solvent. Then, the reverse micelle solution (C ′) containing the water-soluble noble metal compound of platinum (Pt) and iridium (Ir) is mixed with the reverse micelle solution (C ′) containing the reducing agent or the reducing agent of the water-soluble noble metal compound. And then into the mixture By repeating the step selected from the group consisting of the step of dispersing the conductive support and supporting the composite noble metal particles on the support at least twice, separating, washing and drying the support supported by the composite noble metal particles It is also achieved by a method for producing an electrode, particularly an electrode catalyst, characterized in that it has a step of forming a catalyst in which composite noble metal particles are highly dispersed and supported on the surface of the support.

本発明のPt−Ir合金系触媒は、高活性で優れた耐久性を発揮する。したがって、本発明の高活性な触媒を特にカソード電極触媒に使用することにより、カソード電極触媒層内に滞留する、反応生成水(酸素還元反応の生成水)や加湿水を、低電位下で電気分解し、活性種の周りから低減することができる。これによって、従来、活性種が高電位下で電気分解した酸素で、活性種の周りのカーボン担体の酸化的腐食が抑制でき、したがって、カーボン腐食に起因する電極構造の変形を著しく低減でき、ガス拡散性の低下や生成水の排水性低下を抑制し、濃度過電圧の増大を低減できる。   The Pt—Ir alloy catalyst of the present invention exhibits high activity and excellent durability. Therefore, by using the highly active catalyst of the present invention particularly as a cathode electrode catalyst, reaction product water (product water of oxygen reduction reaction) or humidified water staying in the cathode electrode catalyst layer can be electrolyzed at a low potential. It can be degraded and reduced from around the active species. As a result, oxygen that has been electrolyzed under high potential in the active species can suppress the oxidative corrosion of the carbon support around the active species, and thus can significantly reduce the deformation of the electrode structure caused by the carbon corrosion, A decrease in diffusibility and a decrease in drainage of generated water can be suppressed, and an increase in concentration overvoltage can be reduced.

また、本発明の方法によれば、均一な組成を有する白金およびイリジウムを含む複合貴金属粒子が、高温での熱処理(焼成処理)を施さなくても、形成できるので、微小Pt粒子(1nm以下)による初期のPt溶出が抑制され、経時劣化を抑制でき、耐久性に優れる。上記利点に加えて、本発明の方法によれば、Pt−Ir系複合貴金属粒子の平均粒子径を3〜8nmという狭い範囲に制御できるので、粒子自体の表面エネルギーが低下し安定化するため、長期間、安定かつ高い発電性能が達成できる。   Further, according to the method of the present invention, composite noble metal particles containing platinum and iridium having a uniform composition can be formed without being subjected to heat treatment at high temperature (firing treatment), so that fine Pt particles (1 nm or less) The initial Pt elution due to is suppressed, deterioration with time can be suppressed, and the durability is excellent. In addition to the above advantages, according to the method of the present invention, the average particle diameter of the Pt—Ir-based composite noble metal particles can be controlled in a narrow range of 3 to 8 nm, so that the surface energy of the particles themselves is reduced and stabilized. Stable and high power generation performance can be achieved for a long time.

本発明の第一は、式:[Pt][Ir](ただし、aは、Ptの原子比を表わし、0.7〜0.99であり、bは、Irの原子比を表わし、0.01〜0.3であり、この際、aとbの合計は1である)の組成を有し、かつ平均粒子径が3〜8nmである複合貴金属粒子が導電性担体の表面に高分散担持されてなり、前記複合貴金属粒子は、有機溶媒中に界面活性剤を溶解した溶液中において、白金(Pt)の水溶性貴金属化合物及びイリジウム(Ir)の水溶性貴金属化合物を含む水溶液を混合して形成した逆ミセル溶液に、該水溶性貴金属化合物の還元剤を添加することによって形成されることを特徴とする電極、特に電極触媒である。本発明によるPt−Ir系の複合金属微粒子は、均一な組成及び3〜8nmという狭い粒径分布を有するため、粒子自体の表面エネルギーが低下し安定化する。このため、当該粒子を使用した電極触媒は、電位サイクル後でも1nm以下の微小Pt粒子の溶出が抑えられるため、Ptの溶出による触媒活性の経時的劣化を抑制でき、発電性能の低下を有意に防止/抑制できる。さらに、Pt−Ir系の複合貴金属粒子は、強酸性下での腐食耐性に優れるイリジウム(Ir)を均質な組成で含むので、低いIr含量であっても、酸性電解質雰囲気下で優れた安定性(耐酸性)を発揮できる。したがって、このようなPt−Ir系の複合金属微粒子を含む電極触媒を用いた燃料電池は、長期間安定して高い発電性能を発揮でき、かつ耐久性によも優れる。 The first of the present invention is the formula: [Pt] a [Ir] b (wherein a represents an atomic ratio of Pt, 0.7 to 0.99, b represents an atomic ratio of Ir, Composite noble metal particles having a composition of 0.01 to 0.3 (the sum of a and b is 1) and having an average particle diameter of 3 to 8 nm are formed on the surface of the conductive support. The composite noble metal particles, which are dispersed and supported, are mixed with an aqueous solution containing a water-soluble noble metal compound of platinum (Pt) and a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. An electrode, particularly an electrocatalyst, which is formed by adding a reducing agent of the water-soluble noble metal compound to the reverse micelle solution thus formed. Since the Pt—Ir based composite metal fine particles according to the present invention have a uniform composition and a narrow particle size distribution of 3 to 8 nm, the surface energy of the particles themselves is lowered and stabilized. For this reason, the electrocatalyst using the particles can suppress the elution of fine Pt particles of 1 nm or less even after the potential cycle, so that the deterioration of the catalytic activity due to the elution of Pt over time can be suppressed, and the power generation performance is significantly reduced. Can be prevented / suppressed. Furthermore, since the composite noble metal particles based on Pt—Ir contain iridium (Ir), which has excellent corrosion resistance under strong acid, in a homogeneous composition, excellent stability in an acidic electrolyte atmosphere even at a low Ir content. (Acid resistance) can be demonstrated. Therefore, a fuel cell using an electrode catalyst containing such Pt—Ir-based composite metal fine particles can stably exhibit high power generation performance for a long period of time and has excellent durability.

本明細書において、「逆ミセル溶液」とは、有機溶媒に界面活性剤分子等の両親媒性物質を混合することにより該両親媒性物質が集合して形成されるミセルを含有し、かつ該ミセル内に貴金属イオン水溶液などを含有する溶液である。有機溶媒相内で疎水性基を外側すなわち有機溶媒相側に向け、親水性基を内側に向けて配向し、疎水性基と親水性基の配向が水性溶媒相の場合と逆であるため、逆ミセル溶液とする。逆ミセル溶液を模式的に示す図が図1である。このような逆ミセル溶液は、界面活性剤を有機溶媒に溶解した溶液に水溶液を加えて撹拌して調製することができる。親水性基が集まった部分には水などの極性分子を保持する能力がある。該水溶液は、直径数nm〜数10nm程度の極めて小さな水滴となって有機溶媒中に安定に分散するが、注入した水と界面活性剤のモル比によって逆ミセルの微細組織の大きさを制御することができる。   In the present specification, the “reverse micelle solution” includes micelles formed by assembling the amphiphile by mixing an amphiphile such as a surfactant molecule in an organic solvent, and A solution containing a noble metal ion aqueous solution or the like in a micelle. In the organic solvent phase, the hydrophobic group is oriented to the outside, that is, the organic solvent phase side, the hydrophilic group is oriented to the inside, and the orientation of the hydrophobic group and the hydrophilic group is opposite to that in the aqueous solvent phase. Use reverse micelle solution. FIG. 1 schematically shows the reverse micelle solution. Such a reverse micelle solution can be prepared by adding an aqueous solution to a solution obtained by dissolving a surfactant in an organic solvent and stirring the solution. The portion where the hydrophilic groups are gathered has the ability to retain polar molecules such as water. The aqueous solution becomes very small water droplets having a diameter of several nanometers to several tens of nanometers and is stably dispersed in the organic solvent. However, the size of the microstructure of the reverse micelle is controlled by the molar ratio of the injected water and the surfactant. be able to.

また、本明細書において、「複合貴金属粒子」とは、白金粒子、イリジウム粒子、及び必要であれば助触媒金属粒子との複合粒子、ならびに白金粒子、イリジウム粒子、及び必要であれば助触媒金属粒子との合金粒子双方を包含するが、触媒活性の観点からは、合金化された形態であることが好ましい。   In the present specification, “composite noble metal particles” means composite particles of platinum particles, iridium particles, and if necessary, promoter metal particles, and platinum particles, iridium particles, and if necessary, promoter metal. Although it includes both alloy particles and particles, an alloyed form is preferred from the viewpoint of catalytic activity.

本発明による複合貴金属粒子は、白金(Pt)及びイリジウム(Ir)を必須金属原子として含む、すなわち、式:[Pt][Ir]の組成を有する。このような組成によって、高い触媒活性及び優れた耐久性(特に、強酸性下での腐食耐性)が達成される。上記式において、aとbの合計は1である。また、aは、Ptの原子比を表わし、0.7〜0.99であり、bは、Irの原子比を表わし、0.01〜0.3である。この際、aが0.7未満であるまたはbが0.3を超えると、Ptに固溶しないIrが存在するため、複合貴金属粒子の触媒活性が低下する可能性があり、逆に、aが0.99を超えるまたはbが0.01未満であると、Irの含量が少なすぎて、複合貴金属粒子の耐久性(特に、強酸性下での腐食耐性)が低下する可能性がある。aは、0.8〜0.95であることが好ましく、bは、0.05〜0.2であることが好ましい。 The composite noble metal particles according to the present invention contain platinum (Pt) and iridium (Ir) as essential metal atoms, that is, have a composition of the formula: [Pt] a [Ir] b . With such a composition, high catalytic activity and excellent durability (particularly corrosion resistance under strong acidity) are achieved. In the above formula, the sum of a and b is 1. Moreover, a represents the atomic ratio of Pt, which is 0.7 to 0.99, and b represents the atomic ratio of Ir, which is 0.01 to 0.3. At this time, if a is less than 0.7 or b is more than 0.3, there is Ir which does not dissolve in Pt, so that the catalytic activity of the composite noble metal particles may be reduced. When the value exceeds 0.99 or b is less than 0.01, the content of Ir is too small, and the durability of the composite noble metal particles (particularly, corrosion resistance under strong acidity) may be reduced. a is preferably 0.8 to 0.95, and b is preferably 0.05 to 0.2.

また、本発明による複合貴金属粒子は、平均粒子径が3〜8nmであることが必須である。このように本発明による複合貴金属粒子は、粒径が小さくかつ粒径分布が狭いため、導電性担体表面に高分散でき、これにより電極反応に有効な活性表面積を増大でき、電極触媒、特に燃料電池用の電極触媒に使用した場合の性能を有意に向上できる。この際、複合貴金属粒子の平均粒子径が3nm未満であると、電位サイクルによる小さなPt粒子の溶出が起こり、触媒活性が経時的に低下する傾向にあり、逆に、8nmを超えると、導電性担体表面に分散した際の電極反応に有効な活性表面積が減少して、活性の低下が起こる可能性がある。複合貴金属粒子の平均粒子径は、好ましくは、4〜6nmである。   The composite noble metal particles according to the present invention must have an average particle diameter of 3 to 8 nm. Thus, since the composite noble metal particles according to the present invention have a small particle size and a narrow particle size distribution, they can be highly dispersed on the surface of the conductive support, thereby increasing the active surface area effective for the electrode reaction. The performance when used as an electrode catalyst for a battery can be significantly improved. At this time, if the average particle diameter of the composite noble metal particles is less than 3 nm, the elution of small Pt particles occurs due to the potential cycle, and the catalytic activity tends to decrease with time. There is a possibility that the active surface area effective for the electrode reaction when dispersed on the surface of the carrier is reduced, resulting in a decrease in activity. The average particle diameter of the composite noble metal particles is preferably 4 to 6 nm.

なお、本発明において白金、イリジウムなどの触媒金属の平均粒子径は、X線回析における金属微粒子の回析ピークの半値幅より求められる結晶子径や透過型電子顕微鏡より調べられる金属微粒子の平均粒子径の平均値で算出することができる。   In the present invention, the average particle diameter of the catalyst metal such as platinum or iridium is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the metal fine particles in X-ray diffraction or the average of the metal fine particles examined by a transmission electron microscope. The average particle size can be calculated.

本発明において、イリジウムの水溶性貴金属化合物としては、特に制限されないが、例えば、イリジウムの硝酸塩、ジニトロジアンミン塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、臭化物、塩化物などのハロゲン化物、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などの、水溶液中でイリジウムイオンになれる化合物が好ましく挙げられる。これらのうち、イリジウムのハロゲン化物、特に塩化イリジウム、硝酸塩、及びジニトロジアンミン塩が好ましく使用され、塩化イリジウムが特に好ましい。塩化イリジウムを用いることにより、従来では困難であったイリジウム粒子の析出をより容易に行うことができるからである。なお、本発明では、上記イリジウムの水溶性貴金属化合物は、単独であってもあるいは2種以上の混合物であってもよい。   In the present invention, the water-soluble noble metal compound of iridium is not particularly limited, and examples thereof include halogens such as iridium nitrate, dinitrodiammine salt, sulfate, ammonium salt, amine, carbonate, bicarbonate, bromide, and chloride. Preferred examples include compounds capable of forming iridium ions in an aqueous solution, such as inorganic salts such as chloride, nitrite and oxalic acid, carboxylates such as formate and hydroxides, alkoxides and oxides. Of these, iridium halides, particularly iridium chloride, nitrates, and dinitrodiammine salts are preferably used, and iridium chloride is particularly preferred. This is because by using iridium chloride, iridium particles, which have been difficult in the past, can be deposited more easily. In the present invention, the iridium water-soluble noble metal compound may be a single compound or a mixture of two or more.

また、白金の水溶性貴金属化合物としては、特に制限されないが、例えば、白金の硝酸塩、ジニトロジアンミン塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、臭化物、塩化物などのハロゲン化物、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などの、水溶液中で白金イオンになれる化合物が好ましく挙げられる。これらのうち、白金のハロゲン化物、特に白金の塩化物、硝酸塩、及びジニトロジアンミン塩が好ましく使用され、塩化白金が特に好ましい。塩化白金を用いることにより、白金粒子の析出が容易であるからである。なお、本発明では、上記白金の水溶性貴金属化合物は、単独であってもあるいは2種以上の混合物であってもよい。   The water-soluble noble metal compound of platinum is not particularly limited. For example, platinum nitrate, dinitrodiammine salt, sulfate, ammonium salt, amine, carbonate, bicarbonate, bromide, chloride and other halides, Preferable examples include inorganic salts such as nitrite and oxalic acid, carboxylates such as formate and hydroxides, alkoxides, oxides, and the like compounds capable of forming platinum ions in an aqueous solution. Of these, platinum halides, particularly platinum chlorides, nitrates, and dinitrodiammine salts are preferably used, and platinum chloride is particularly preferred. This is because platinum particles can be easily deposited by using platinum chloride. In the present invention, the water-soluble noble metal compound of platinum may be a single compound or a mixture of two or more.

本発明においては、複合貴金属金属粒子は、Pt及びIrの必須金属原子に加えて、助触媒金属を含むものであってもよい。この際、助触媒金属は、所望の特性に応じて適宜選択でき、特に制限されないが、クロム、マンガン、鉄、コバルト、ニッケル等の遷移金属、パラジウム、ロジウム等の卑金属などが好ましく挙げられる。遷移金属、卑金属などの助触媒金属を使用することによって、複合貴金属粒子の触媒活性や耐久性がさらに向上するからである。特に、遷移金属を使用すると、質量活性(金属の単位重量当りの活性)を向上させることができ、有利である。即ち、本発明による複合貴金属粒子は、式:[Pt][Ir][X]の組成を有するものであってもよい。aとbとcの合計は1である。また、Xは、Cr,Mn,Fe,Co,Ni,Pd,Rhからなる群より選ばれた少なくとも一種であり、aは、Ptの原子比を表わし、0.7〜0.99、好ましくは0.8〜0.95である。また、bは、Irの原子比を表わし、0.01〜0.29、好ましくは0.05〜0.2である。cは、Xの合計原子比を表わし、好ましくは、0.01〜0.29、より好ましくは0.05〜0.2である。なお、上記式において、触媒性能や耐久性を考慮すると、(b+c)/(a+b+c)が0.01〜0.3の範囲である。この際、a+b+c=1である。(b+c)/(a+b+c)は、好ましくは0.05〜0.2である。 In the present invention, the composite noble metal particles may contain a promoter metal in addition to the essential metal atoms of Pt and Ir. In this case, the promoter metal can be appropriately selected according to the desired properties, and is not particularly limited, but preferred examples include transition metals such as chromium, manganese, iron, cobalt and nickel, and base metals such as palladium and rhodium. This is because the catalytic activity and durability of the composite noble metal particles are further improved by using a promoter metal such as a transition metal and a base metal. In particular, when a transition metal is used, mass activity (activity per unit weight of metal) can be improved, which is advantageous. That is, the composite noble metal particles according to the present invention may have a composition of the formula: [Pt] a [Ir] b [X] c . The sum of a, b and c is 1. X is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni, Pd, and Rh, and a represents an atomic ratio of Pt, preferably 0.7 to 0.99, preferably 0.8 to 0.95. B represents the atomic ratio of Ir and is 0.01 to 0.29, preferably 0.05 to 0.2. c represents the total atomic ratio of X, preferably 0.01 to 0.29, more preferably 0.05 to 0.2. In the above formula, considering catalyst performance and durability, (b + c) / (a + b + c) is in the range of 0.01 to 0.3. At this time, a + b + c = 1. (B + c) / (a + b + c) is preferably 0.05 to 0.2.

なお、上記助触媒金属(式中の「X」)は、1種単独で用いてもよく、または2種以上を併用して用いてもよく、得られる複合貴金属粒子が所望する特性を有するように適宜選択して用いればよい。また、助触媒金属イオンの供給源としては特に限定されず、上記したような遷移金属イオンや卑金属イオンを含む化合物であればよく、例えば、硫酸塩、アンモニウム塩、ハロゲン化合物などが挙げられる。   The promoter metal (“X” in the formula) may be used alone or in combination of two or more, so that the resulting composite noble metal particles have desired characteristics. May be appropriately selected and used. Moreover, it does not specifically limit as a supply source of a promoter metal ion, What is necessary is just a compound containing an above-described transition metal ion or base metal ion, For example, a sulfate, ammonium salt, a halogen compound etc. are mentioned.

逆ミセル溶液を形成するのに使用される有機溶媒としては、特に制限されず、混合する貴金属PtやIr、あるいは助触媒金属の種類によって適宜選択でき、様々な物質が使用できる。例えば、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、ヘプタノール、オクタノール、ドデシルアルコール、セチルアルコール、イソオクタン、n−ヘプタン、n−ヘキサン、n−デカン、ベンゼン、トルエン、キシレン等が挙げられ、好ましくはシクロヘキサンである。これらの有機溶媒は、1種を単独で使用するほか、2種以上を併用することもできる。また、逆ミセル溶液中の水滴の大きさを調節する目的で、アルコール等を添加してもよい。この際使用できるアルコールとしては、メタノール、エタノール等が挙げられ、これらのアルコールは単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。さらに、上記有機溶媒は、イリジウムイオンを含む逆ミセル溶液の調製、白金イオンを含む逆ミセル溶液の調製、助触媒金属イオンを含む逆ミセル溶液の調製などを含む逆ミセル溶液の調製に同様にして使用することができ、更にイリジウムイオン、白金イオン、助触媒金属イオンの還元剤を逆ミセル溶液として供給する場合には、これらの溶液の調製にも使用することができる。この際、いずれかの逆ミセル溶液に使用する有機溶媒と他の逆ミセル溶液に使用する有機溶媒とは、同種のものであってもあるいは異種のものであってもよい。   The organic solvent used to form the reverse micelle solution is not particularly limited and can be appropriately selected depending on the kind of the precious metal Pt or Ir to be mixed or the promoter metal, and various substances can be used. Examples include cyclohexane, methylcyclohexane, cycloheptane, heptanol, octanol, dodecyl alcohol, cetyl alcohol, isooctane, n-heptane, n-hexane, n-decane, benzene, toluene, xylene, and preferably cyclohexane. These organic solvents can be used alone or in combination of two or more. Moreover, you may add alcohol etc. in order to adjust the magnitude | size of the water droplet in a reverse micelle solution. Examples of the alcohol that can be used in this case include methanol, ethanol, and the like, and these alcohols may be used alone or in the form of a mixture of two or more. Further, the organic solvent is prepared in the same manner as in the preparation of a reverse micelle solution including preparation of a reverse micelle solution containing iridium ions, preparation of a reverse micelle solution containing platinum ions, and preparation of a reverse micelle solution containing promoter metal ions. Further, when a reducing agent for iridium ions, platinum ions, and promoter metal ions is supplied as a reverse micelle solution, it can also be used for preparing these solutions. At this time, the organic solvent used for any reverse micelle solution and the organic solvent used for the other reverse micelle solution may be the same or different.

また、逆ミセル溶液を形成するのに使用される界面活性剤としては、特に制限されず、逆ミセル溶液を形成するのに一般的に使用されるのと同様の界面活性剤が使用できる。具体的には、ポリオキシエチレンノニルフェニルエーテル、ラウリン酸マグネシウム、カプリン酸亜鉛、ミリスチン酸亜鉛、ナトリウムフェニルステアレ−ト、アルミニウムジカプリレ−ト、テトライソアミルアンモニウムチオシアネ−ト、n−オクタデシルトリn−ブチルアンモニウム蟻酸塩、n−アミルトリn−ブチルアンモニウムヨウ化物、ナトリウムビス(2−エチルヘキシル)琥珀酸塩、ナトリウムジノニルナフタレンスルホネ−ト、カルシウムセチルサルフェート、ドデシルアミンオレイン酸塩、ドデシルアミンプロピオン酸塩、セチルトリメチルアンモニウムブロマイド、ステアリルトリメチルアンムニウムブロマイド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムブロマイド、オクタデシルトリメチルアンモニウムブロマイド、ドデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ジドデシルジメチルアンモニウムブロマイド、ジテトラデシルジメチルアンモニウムブロマイド、ジドデシルジメチルアンモニウムクロライド、ジテトラデシルジメチルアンモニウムクロライド、(2−オクチルオキシ−1−オクチルオキシメチル)ポリオキシエチレンエチルエーテル等を挙げることができる。これらのうち、前記界面活性剤は、ポリオキシエチレンノニルフェニルエーテルが好ましく使用される。これらの界面活性剤は、1種を単独で使用するほか、2種以上を併用することもできる。また、上記界面活性剤は、イリジウムイオンを含む逆ミセル溶液の調製、白金イオンを含む逆ミセル溶液の調製、助触媒金属イオンを含む逆ミセル溶液の調製などを含む逆ミセル溶液の調製に同様にして使用することができ、更にイリジウムイオン、白金イオン、助触媒金属イオンの還元剤を逆ミセル溶液として供給する場合には、これらの溶液の調製にも使用することができる。この際、いずれかの逆ミセル溶液に使用する界面活性剤と他の逆ミセル溶液に使用する界面活性剤とは、同種のものであってもあるいは異種のものであってもよい。   The surfactant used for forming the reverse micelle solution is not particularly limited, and the same surfactants that are generally used for forming the reverse micelle solution can be used. Specifically, polyoxyethylene nonyl phenyl ether, magnesium laurate, zinc caprate, zinc myristate, sodium phenyl stearate, aluminum dicaprylate, tetraisoamyl ammonium thiocyanate, n-octadecyl Tri-n-butylammonium formate, n-amyltri-n-butylammonium iodide, sodium bis (2-ethylhexyl) succinate, sodium dinonylnaphthalene sulfonate, calcium cetyl sulfate, dodecylamine oleate, dodecylamine Propionate, cetyltrimethylammonium bromide, stearyltrimethylammonium bromide, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, dodecylto Methylammonium bromide, octadecyltrimethylammonium bromide, dodecyltrimethylammonium chloride, octadecyltrimethylammonium chloride, didodecyldimethylammonium bromide, ditetradecyldimethylammonium bromide, didodecyldimethylammonium chloride, ditetradecyldimethylammonium chloride, (2-octyloxy -1-octyloxymethyl) polyoxyethylene ethyl ether and the like. Of these, polyoxyethylene nonylphenyl ether is preferably used as the surfactant. These surfactants can be used alone or in combination of two or more. In addition, the surfactant is used in the same manner as in the preparation of a reverse micelle solution including preparation of a reverse micelle solution containing iridium ions, preparation of a reverse micelle solution containing platinum ions, and preparation of a reverse micelle solution containing promoter metal ions. In addition, when a reducing agent for iridium ions, platinum ions, and promoter metal ions is supplied as a reverse micelle solution, it can also be used for preparing these solutions. In this case, the surfactant used for any reverse micelle solution and the surfactant used for the other reverse micelle solution may be the same or different.

この際、界面活性剤の添加量は、白金やイリジウムの水溶性貴金属化合物の逆ミセルが良好に形成できる量であれば特に制限されないが、有機溶媒100質量部に対して、好ましくは10〜300質量部、より好ましくは10〜150質量部である。この際、界面活性剤の量が10質量部を下回ると、逆ミセルの形成が困難となる恐れがあり、一方300質量部を超えると、ロッド状ミセルを形成し、複合貴金属粒子の粒径を本発明によるような3〜8nmという特定の大きさに制御できない恐れがある。   At this time, the addition amount of the surfactant is not particularly limited as long as it is an amount capable of satisfactorily forming a reverse micelle of a water-soluble noble metal compound such as platinum or iridium, but is preferably 10 to 300 with respect to 100 parts by mass of the organic solvent. Part by mass, more preferably 10 to 150 parts by mass. At this time, if the amount of the surfactant is less than 10 parts by mass, it may be difficult to form reverse micelles. On the other hand, if the amount exceeds 300 parts by mass, rod-like micelles are formed, and the particle size of the composite noble metal particles is reduced. There is a possibility that it cannot be controlled to a specific size of 3 to 8 nm as in the present invention.

本発明において使用できる導電性担体としては、特に制限されないが、電極触媒を始めとする触媒、特に燃料電池用電極触媒に一般的に使用されるのと同様の導電性担体が使用でき、導電性カーボン、酸化物ナノチューブが好ましく使用される。導電性カーボンとしては、集電体としての十分な電子伝導性と、複合貴金属粒子を高分散担持させるための十分な比表面積と、を有するものであれば特に限定されない。導電性カーボンの比表面積として、具体的には、80m/g以上、200m/g以上、好ましくは250〜1,600m/gのBET比表面積を有するものがよい。かような導電性カーボンとして、より具体的には、アセチレンブラック、バルカン、ケッチェンブラック、ブラックパール、黒鉛化アセチレンブラック、黒鉛化バルカン、黒鉛化ケッチェンブラック、黒鉛化カーボン、黒鉛化ブラックパール、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、及びカーボンフィブリルから選ばれる少なくとも一種を主成分として含むものなどが挙げられる。前記導電性カーボンは有機溶媒中において高度に分散されるため、逆ミセル溶液中でミセルをカーボン粒子表面に容易に付着させることができる点でも有利である。特に、BET比表面積が700〜1,400m/gのケッチェンブラック、BET比表面積が200〜600m/gのバルカンや高温で一部をグラファイト化したBET比表面積が100〜600m/gの黒鉛化(グラファイト化)ケッチェンブラック、BET比表面積が80〜200m/gの黒鉛化(グラファイト化)バルカンや黒鉛化(グラファイト化)ファーネスブラックと称される導電性カーボン粒子担体も好ましく使用できる。更に、導電性担体の形状は、特に限定されず、一般的な球状、略球状、楕円状だけでなく、直方体や板状、繊維のような直線形状、枝分かれした分岐形状なども用いることができるが、球状、略球状が好ましい。導電性担体が球状である場合の大きさは、特に制限されず公知の担体と同様の大きさが使用できるが、複合貴金属粒子を均一に存在させ、さらに該粒子を担持した担体表面と固体高分子電解質との接触状態を好適な状態にするため、担体の平均粒径は、1次粒子の大きさが30〜100nmであることが好ましいが、これら1次粒子が凝集して0.1〜1μmの粒子を形成していてもよい。なお、導電性カーボン粒子は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム溶液などのアルカリ溶液で、該担体表面の付着物を洗浄し製造過程などで付着した油分や混入した不純物などを除去してもよい。 The conductive carrier that can be used in the present invention is not particularly limited, but the same conductive carrier as that generally used for catalysts such as electrode catalysts, particularly electrode catalysts for fuel cells can be used. Carbon and oxide nanotubes are preferably used. The conductive carbon is not particularly limited as long as it has sufficient electronic conductivity as a current collector and a sufficient specific surface area for highly dispersing and supporting composite noble metal particles. As the specific surface area of conductive carbon, specifically, 80 m 2 / g or more, 200 meters 2 / g or more, preferably one having a BET specific surface area of 250~1,600m 2 / g. As such conductive carbon, more specifically, acetylene black, Vulcan, Ketjen black, black pearl, graphitized acetylene black, graphitized Vulcan, graphitized Ketjen black, graphitized carbon, graphitized black pearl, Examples thereof include those containing as a main component at least one selected from carbon nanotubes, carbon nanofibers, carbon nanohorns, and carbon fibrils. Since the conductive carbon is highly dispersed in an organic solvent, it is advantageous in that micelles can be easily attached to the surface of carbon particles in a reverse micelle solution. In particular, BET specific surface area of 700~1,400m 2 / g of Ketjen black, BET specific surface area of 200~600m 2 / BET specific surface area graphitized part in Balkan and hot g is 100~600m 2 / g Graphitized (graphitized) ketjen black, conductive carbon particle carrier called graphitized (graphitized) Vulcan or graphitized (graphitized) furnace black having a BET specific surface area of 80 to 200 m 2 / g is also preferably used it can. Further, the shape of the conductive carrier is not particularly limited, and not only a general spherical shape, a substantially spherical shape, and an elliptical shape, but also a rectangular parallelepiped shape, a plate shape, a linear shape such as a fiber, a branched branch shape, and the like can be used. However, spherical and substantially spherical are preferable. The size in the case where the conductive support is spherical is not particularly limited, and the same size as that of a known support can be used. However, the composite noble metal particles are present uniformly, and the surface of the support supporting the particles and the solid surface In order to bring the contact state with the molecular electrolyte into a suitable state, the average particle diameter of the carrier is preferably 30 to 100 nm in the size of the primary particles. 1 μm particles may be formed. The conductive carbon particles are washed with an alkaline solution such as sodium hydroxide, potassium hydroxide, or calcium hydroxide solution to remove the deposits on the surface of the carrier to remove oils adhering to the manufacturing process and impurities. May be.

本発明では、導電性カーボンは、比表面積が大きいものが望まれており、一般的には細孔を多く有するものが用いられている。特に燃料電池用などの電極触媒では、電極反応に寄与することができないため、細孔内に担持される触媒金属量をできる限り減らすことが望まれる。これに対して、本発明では、使用する溶媒や界面活性剤の種類、添加量によって逆ミセルのサイズを調整でき、前記導電性担体の表面のみにミセルを均等に付着させることができる。さらに、従来、一般的に用いられている吸着法では、白金や白金合金の凝集が発生し、粒子径や粒子分布を制御することが困難であったが、逆ミセル法によればこれらの制御が極めて簡便かつ確実に行え、導電性担体表面に粒子径が小さく、粒子径分布も小さい複合貴金属粒子を高分散担持させることができる。   In the present invention, it is desired that the conductive carbon has a large specific surface area, and generally, carbon having many pores is used. In particular, in an electrode catalyst for a fuel cell or the like, it is not possible to contribute to the electrode reaction. Therefore, it is desired to reduce the amount of catalytic metal supported in the pores as much as possible. On the other hand, in this invention, the size of a reverse micelle can be adjusted with the kind and addition amount of a solvent and surfactant to be used, and a micelle can adhere uniformly only to the surface of the said electroconductive support | carrier. Furthermore, in the conventional adsorption methods, aggregation of platinum and platinum alloys has occurred, and it has been difficult to control the particle size and particle distribution. The composite noble metal particles having a small particle size and a small particle size distribution can be highly dispersed and supported on the surface of the conductive support.

本発明によれば、担体表面のみに複合貴金属粒子を高分散でき、複合貴金属粒子の有効利用率が向上する。本発明によれば、担体表面に担持される複合貴金属粒子と担体細孔内に担持される複合貴金属粒子との比(担体表面に担持される複合貴金属粒子:担体細孔内に担持される複合貴金属粒子の質量比)を、1:1〜9:1とすることができ、吸着法など従来の1:9〜4:6に比して表面における複合貴金属粒子の担持量を増大することが可能である。   According to the present invention, the composite noble metal particles can be highly dispersed only on the surface of the carrier, and the effective utilization rate of the composite noble metal particles is improved. According to the present invention, the ratio of the composite noble metal particles supported on the support surface to the composite noble metal particles supported in the support pores (composite noble metal particles supported on the support surface: composite supported in the support pores). (Mass ratio of the noble metal particles) can be 1: 1 to 9: 1, and the amount of the composite noble metal particles supported on the surface can be increased as compared with the conventional 1: 9 to 4: 6 such as an adsorption method. Is possible.

なお、本発明の触媒において、導電性カーボンに担持させる複合貴金属粒子量は、白金及びイリジウムの合計量として、5〜70質量%、より好ましくは10〜50質量%である。複合貴金属粒子の坦持量が、触媒に対して5質量%未満では充分な活性や耐久性が得られない恐れがあり。また、70質量%を超えると均一に分散し難く、複合貴金属粒子の高分散坦持が困難となる恐れがある。また、助触媒金属をさらに含む場合には、白金、イリジウム、助触媒金属の合計量が上記範囲となればよい。   In the catalyst of the present invention, the amount of the composite noble metal particles supported on the conductive carbon is 5 to 70% by mass, more preferably 10 to 50% by mass, as the total amount of platinum and iridium. If the supported amount of the composite noble metal particles is less than 5% by mass relative to the catalyst, there is a possibility that sufficient activity and durability cannot be obtained. Moreover, when it exceeds 70 mass%, it is difficult to disperse | distribute uniformly and there exists a possibility that the high dispersion | distribution support of a composite noble metal particle may become difficult. Further, when the promoter metal is further included, the total amount of platinum, iridium, and promoter metal may be in the above range.

本発明の触媒は、下記に詳述するようないずれの用途に使用できるが、電極触媒、特に燃料電池用の電極触媒用途で使用されることが好ましい。燃料電池用に使用される場合には、電極触媒は、カソード側若しくはアノード側、またはカソード側及びアノード側の双方の側で使用されてもよいが、特にカソード側で使用されることが好ましい。これは、本発明による高活性なPt−Ir複合金属粒子系電極触媒をカソード電極触媒に使用することによって、カソード電極触媒層内に滞留する、反応生成水(酸素還元反応の生成水)や加湿水を低電位下で電気分解し、活性種の周りから低減することができるからである。これによって、従来、活性種が高電位下で電気分解した酸素による活性種の周りのカーボン担体の酸化的腐食が抑制でき、カーボン腐食に起因する電極構造の変形を著しく低減でき、ガス拡散性の低下や生成水の排水性低下を抑制し、濃度過電圧の増大を低減できるのである。   The catalyst of the present invention can be used for any application as described in detail below, but is preferably used for an electrode catalyst, particularly for an electrode catalyst for a fuel cell. When used for fuel cells, the electrocatalyst may be used on the cathode side or anode side, or on both the cathode side and anode side, but is preferably used on the cathode side. This is because reaction product water (oxygen reduction reaction product water) or humidification that stays in the cathode electrode catalyst layer by using the highly active Pt—Ir composite metal particle electrode catalyst according to the present invention as the cathode electrode catalyst. This is because water can be electrolyzed at a low potential and reduced from around the active species. As a result, the oxidative corrosion of the carbon support around the active species due to oxygen that has been electrolyzed at a high potential can be suppressed, and the deformation of the electrode structure caused by the carbon corrosion can be significantly reduced. It is possible to suppress the decrease and the drainage of the generated water and reduce the increase in concentration overvoltage.

従来の逆ミセル法では、イリジウムと白金が担持された触媒とするには、白金イオンおよびイリジウムイオンを含む水溶液を含有した逆ミセル溶液に、還元剤、沈殿剤などの不溶化剤を添加することでコロイド状の白金粒子およびイリジウム粒子を析出させ、これらを導電性担体上に担持させた後、焼成する方法で行われている。しかしながら、従来の方法では、白金粒子が多く析出し、イリジウム粒子はほとんど析出しない場合がある。また、イリジウム粒子を析出させるためにさらに不溶化剤を添加したとしても、イリジウム粒子の析出は生じず、さらには得られる触媒の活性を低下させる場合もある。かような理由としては、過剰に添加された不溶化剤により先に析出していた白金粒子が他の白金粒子と結合し、パールネックレスのように一直線状に連結した状態を形成するためではないかと考えられる。白金粒子が連結すると、有効反応面積が減少するため、触媒活性の低下を招くのである。したがって、従来では、ミセル内で白金およびイリジウムを均一な組成で析出するのが困難であり、担体上に担持される白金およびイリジウムの比率が安定せず、組成を均一にすることができなかった。上記問題に加えて、複合金属粒子化のために必要であった焼成処理によって、固溶体の粒子径が増大して、比活性が低下してしまうという問題もあった。   In the conventional reverse micelle method, in order to obtain a catalyst on which iridium and platinum are supported, an insolubilizing agent such as a reducing agent and a precipitant is added to a reverse micelle solution containing an aqueous solution containing platinum ions and iridium ions. Colloidal platinum particles and iridium particles are deposited, supported on a conductive carrier, and then fired. However, in the conventional method, a large amount of platinum particles may be precipitated, and iridium particles may hardly be precipitated. Even if an insolubilizing agent is further added to precipitate the iridium particles, the iridium particles are not precipitated, and the activity of the resulting catalyst may be lowered. The reason for this is that the platinum particles previously deposited by the excessively added insolubilizer are combined with other platinum particles to form a linearly connected state like a pearl necklace. Conceivable. When the platinum particles are connected, the effective reaction area is reduced, which leads to a decrease in catalytic activity. Therefore, in the past, it was difficult to deposit platinum and iridium with a uniform composition in the micelle, the ratio of platinum and iridium supported on the support was not stable, and the composition could not be made uniform. . In addition to the above problem, there was a problem that the particle size of the solid solution was increased and the specific activity was lowered by the firing treatment necessary for forming the composite metal particles.

これに鑑みて本発明者が種々の調製条件を検討した結果、触媒金属として白金およびイリジウムを用いた場合に、逆ミセル内で白金イオンおよびイリジウムイオンを析出するのに際して、(a)白金イオンを含む逆ミセル内で白金粒子を析出させた後、逆ミセル内にイリジウムイオンを添加してイリジウム粒子の析出を行なう工程;(b)イリジウムイオンを含む逆ミセル内でイリジウム粒子を析出させた後、逆ミセル内に白金イオンを添加して白金粒子の析出を行なう工程;または(c)白金イオン及びイリジウムイオンを含む逆ミセル内で白金粒子及びイリジウム粒子を析出させる工程の3種の工程のうち、少なくとも2工程を繰り返し行なうことにより、イリジウム粒子と白金粒子とを均一な組成で含む逆ミセルが得られ、得られる複合貴金属粒子は均一な組成で且つ平均粒子径が3〜8nmと非常に狭い粒径分布である上、焼成処理を伴わなくとも、複合貴金属粒子が導電性担体上に安定して高分散担持でき、さらに合金化が可能であることが判明した。または、(ア)白金イオンを含む逆ミセル内で白金粒子を析出させた後、逆ミセル内にイリジウムイオンを添加してイリジウム粒子を析出させ、さらに得られた複合貴金属粒子を導電性担体に担持させる工程;(b)イリジウムイオンを含む逆ミセル内でイリジウム粒子を析出させた後、逆ミセル内に白金イオンを添加して白金粒子を析出させ、さらに得られた複合貴金属粒子を導電性担体に担持させる工程;または(c)白金イオン及びイリジウムイオンを含む逆ミセル内で白金粒子及びイリジウム粒子を析出させ、さらに得られた複合貴金属粒子を導電性担体に担持させる工程の3種の工程のうち、少なくとも2工程を繰り返し行なうことにより、イリジウム粒子と白金粒子とを均一な組成で含む逆ミセルが得られ、得られる複合貴金属粒子は均一な組成で且つ平均粒子径が3〜8nmと非常に狭い粒径分布である上、焼成処理を伴わなくとも、複合貴金属粒子が導電性担体上に安定して高分散担持でき、さらに合金化が可能であることも判明した。このような方法によれば、白金とイリジウムとの比率が安定して均一な組成を有し、平均粒径が3〜8nmの複合貴金属粒子が、しっかりと導電性担体上に安定して高分散担持される。また、上記2方法によると、Irの組成比を少なくしても、Ir組成の均一な触媒が製造できる。したがって、上記2方法によれば、触媒活性及び耐久性などに優れた触媒、特に電極触媒が製造できる。   In view of this, the present inventors examined various preparation conditions. As a result, when platinum and iridium were used as catalytic metals, when depositing platinum ions and iridium ions in reverse micelles, (a) A step of depositing iridium particles by adding iridium ions in the reverse micelles after depositing platinum particles in the reverse micelles comprising; (b) after depositing iridium particles in the reverse micelles containing iridium ions; Of the three steps of adding platinum ions into the reverse micelles to deposit platinum particles; or (c) depositing platinum particles and iridium particles in reverse micelles containing platinum ions and iridium ions, By repeating at least two steps, reverse micelles containing iridium particles and platinum particles in a uniform composition are obtained, and the resulting composite micelles are obtained. The noble metal particles have a uniform composition and an average particle size of 3 to 8 nm and a very narrow particle size distribution, and the composite noble metal particles can be stably and highly dispersedly supported on the conductive support without firing treatment. Further, it has been found that alloying is possible. Alternatively, (a) after depositing platinum particles in reverse micelles containing platinum ions, iridium ions are added to the reverse micelles to precipitate iridium particles, and the resulting composite noble metal particles are supported on a conductive carrier. (B) After iridium particles are precipitated in reverse micelles containing iridium ions, platinum ions are added to the reverse micelles to precipitate platinum particles, and the resulting composite noble metal particles are used as a conductive carrier. A step of supporting; or (c) depositing platinum particles and iridium particles in a reverse micelle containing platinum ions and iridium ions, and further supporting the obtained composite noble metal particles on a conductive carrier. By repeating at least two steps, a reverse micelle containing iridium particles and platinum particles with a uniform composition is obtained, and the resulting composite noble metal The particles have a uniform composition and a very narrow particle size distribution with an average particle diameter of 3 to 8 nm, and the composite noble metal particles can be stably and highly dispersedly supported on the conductive support without any firing treatment. It has also been found that alloying is possible. According to such a method, the composite noble metal particles having a stable and uniform composition ratio of platinum and iridium and an average particle diameter of 3 to 8 nm are firmly and stably dispersed on the conductive support. Supported. Further, according to the above two methods, a catalyst having a uniform Ir composition can be produced even if the composition ratio of Ir is reduced. Therefore, according to the above two methods, a catalyst excellent in catalytic activity and durability, particularly an electrode catalyst can be produced.

したがって、本発明の第二は、(a)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を、該水溶性貴金属化合物の還元剤または該還元剤を含む逆ミセル溶液(A’)と混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合する工程;
(b)有機溶媒中に界面活性剤を溶解した溶液中で、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合する工程;及び
(c)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合する工程
からなる群から選択される工程を少なくとも2回、ならびに
該(a)〜(c)の少なくとも一工程で得られる混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させた後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、触媒の製造方法に関するものである。
Accordingly, the second aspect of the present invention is that (a) a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) in a solution in which a surfactant is dissolved in an organic solvent is treated with the water-soluble noble metal. After mixing with the compound reducing agent or the reverse micelle solution (A ′) containing the reducing agent, the reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) is added, and further the water-soluble noble metal compound Mixing the reducing agent or reverse micelle solution (B ′) containing the reducing agent;
(B) A reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent contains the water-soluble noble metal compound reducing agent or reducing agent. After mixing the reverse micelle solution (B ′), a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added, and a reverse micelle solution containing a reducing agent or a reducing agent for the water-soluble noble metal compound. A step of mixing (A ′); and (c) a reverse micelle solution (C) containing a water-soluble noble metal compound of platinum (Pt) and iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. And a step selected from the group consisting of the step of mixing the reducing agent of the water-soluble noble metal compound or the reverse micelle solution (C ′) containing the reducing agent, and at least one of the steps (a) to (c). Obtained in one step The conductive noble metal particles are dispersed in the resulting mixed liquid and the composite noble metal particles are supported on the carrier, and then the carrier supported by the composite noble metal particles is separated, washed, and dried, so that the composite noble metal particles can be The present invention relates to a method for producing a catalyst, comprising a step of forming a dispersion-supported catalyst.

本発明の第三は、(ア)有機溶媒中に界面活性剤を溶解した溶液中に、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;
(イ)有機溶媒中に界面活性剤を溶解した溶液中に、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;及び
(ウ)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程
からなる群から選択される工程を少なくとも2回繰返した後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、触媒、特に電極触媒の製造方法に関するものである。
The third aspect of the present invention is (a) a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) in a solution in which a surfactant is dissolved in an organic solvent. After mixing the reducing agent or the reverse micelle solution (A ′) containing the reducing agent, the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium (Ir) is added, and the reducing agent of the water-soluble noble metal compound or A step of mixing a reverse micelle solution (B ′) containing a reducing agent, and then dispersing a conductive support in the mixed solution to support composite noble metal particles on the support;
(A) A reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) in a solution obtained by dissolving a surfactant in an organic solvent contains a reducing agent or a reducing agent for the water-soluble noble metal compound. After mixing the reverse micelle solution (B ′), a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added, and a reverse micelle solution containing a reducing agent or a reducing agent for the water-soluble noble metal compound. (A ′) is then mixed, and then a conductive support is dispersed in the mixed solution, and composite noble metal particles are supported on the support; and (c) a solution in which a surfactant is dissolved in an organic solvent. Then, the reverse micelle solution (C ′) containing the water-soluble noble metal compound of platinum (Pt) and iridium (Ir) is mixed with the reverse micelle solution (C ′) containing the reducing agent or the reducing agent of the water-soluble noble metal compound. And then into the mixture By repeating the step selected from the group consisting of the step of dispersing the conductive support and supporting the composite noble metal particles on the support at least twice, separating, washing and drying the support supported by the composite noble metal particles The present invention relates to a method for producing a catalyst, particularly an electrode catalyst, comprising a step of forming a catalyst in which composite noble metal particles are supported in a highly dispersed state on a support surface.

本発明による工程を、特に上記(b)の工程ついて、詳細に説明する。まず、ミセル内部にイリジウムイオンを含む逆ミセル溶液にイリジウムイオンの還元剤を添加すると、ミセル中において還元反応が進行して安定な錯体が形成され、これを熟成することにより0.5〜5nm程度の微細なコロイド状の安定なイリジウム粒子が析出する。次に、これに、白金イオンを含む逆ミセル溶液を混合するとミセル同士が結合してイリジウム粒子および白金イオンが内包する逆ミセルが形成される。さらに、白金イオンの還元剤を添加することにより、ミセル内で還元反応により白金イオンを含む安定な錯体が形成され、これを熟成することにより、イリジウム粒子上に0.5〜5nm程度の微細なコロイド状の安定な白金粒子を析出させることができるのである。   The process according to the present invention will be described in detail particularly with respect to the process (b). First, when a reducing agent of iridium ions is added to a reverse micelle solution containing iridium ions inside the micelles, a reduction reaction proceeds in the micelles to form a stable complex, which is matured by about 0.5 to 5 nm. Of fine colloidal stable iridium particles. Next, when this is mixed with a reverse micelle solution containing platinum ions, the micelles are combined to form reverse micelles containing iridium particles and platinum ions. Furthermore, by adding a reducing agent of platinum ions, a stable complex containing platinum ions is formed by a reduction reaction in the micelle. By aging this, a fine complex of about 0.5 to 5 nm is formed on the iridium particles. Colloidal stable platinum particles can be deposited.

以下、本発明の第二及び第三の方法について詳述するが、白金(Pt)やイリジウム(Ir)の水溶性貴金属化合物、導電性担体などの重複部分については、特記しない限り、上記本発明の第一における説明と同様であるため、ここでは説明を省略する。   Hereinafter, the second and third methods of the present invention will be described in detail. The overlapping portions of platinum (Pt) and iridium (Ir), such as water-soluble noble metal compounds and conductive carriers, will be described above unless otherwise specified. Therefore, the description is omitted here.

本発明の第二では、(a)〜(c)の工程を少なくとも2回繰返すことを必須とし、本発明の第三では、(ア)〜(ウ)の工程を少なくとも2回繰返すことを必須とする。このように白金及びイリジウムの析出工程を少なくとも2回繰り返すことによって、従来担体への安定担持及び合金化に必要であった熱処理(例えば、不活性ガス雰囲気下で600℃〜1100℃での焼成処理)を行なわなくとも、組成が均一(均一な固溶体)でかつ粒子径分布の狭い複合貴金属粒子(Pt−Ir合金粒子)をカーボン担体上に安定して担持する/合金化することが可能である。一般に、Ir合金は、Pt合金に比べ強酸性下での腐食耐性は優れる一方、発電性能が非常に低いという欠点があるが、本発明の方法によれば、Irが均一に存在する複合貴金属粒子を形成することができるため、Irの組成比を少なくすることができ、このような粒子を用いた電極触媒は、酸性電解質雰囲気下での優れた安定性(耐酸性)を発揮すると同時に、従来より高い発電性能を発揮することができる。   In the second of the present invention, it is essential to repeat the steps (a) to (c) at least twice, and in the third of the present invention, it is essential to repeat the steps (a) to (c) at least twice. And By repeating the platinum and iridium precipitation steps at least twice as described above, heat treatment (for example, firing at 600 ° C. to 1100 ° C. in an inert gas atmosphere) required for stable support on the carrier and alloying is conventionally performed. ), It is possible to stably support / alloy composite noble metal particles (Pt—Ir alloy particles) having a uniform composition (uniform solid solution) and a narrow particle size distribution on a carbon support. . In general, the Ir alloy is superior in corrosion resistance under strong acidity to the Pt alloy, but has the disadvantage that the power generation performance is very low. According to the method of the present invention, the composite noble metal particles in which Ir is present uniformly Therefore, the composition ratio of Ir can be reduced, and the electrode catalyst using such particles exhibits excellent stability (acid resistance) in an acidic electrolyte atmosphere, and at the same time, Higher power generation performance can be exhibited.

本発明の第二の方法は、上記(a)〜(c)の少なくとも2回、ならびに(d)該(a)〜(c)の少なくとも一工程で得られる混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させた後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有するものであるが、上記(d)の複合貴金属粒子の担持工程は、上記(a)〜(c)の工程すべてを行なった後、行なわれても、あるいは上記(a)〜(c)の工程間に行なわれてもよいが、好ましくは、上記(a)〜(c)の工程間に行なわれる。これは、本発明によると、貴金属イオン(あるいは遷移金属元素イオン)を含む逆ミセル溶液中に還元剤を天下すると、逆ミセル内に貴金属粒子が形成するが、この状態を複数回繰り返して、貴金属粒子を長期間攪拌・保持すると、貴金属粒子を含有する逆ミセル同士が衝突して、徐々に貴金属粒子が凝集することがある。これに対して、後者の方法によると、途中で導電性担体を逆ミセル中に分散しているため、貴金属粒子の凝集が起こる前に、該担体に高分散担持することができるためである。   In the second method of the present invention, the conductive carrier is dispersed in the mixed solution obtained in at least two steps (a) to (c) and (d) at least one step of (a) to (c). Then, after the composite noble metal particles are supported on the carrier, the carrier on which the composite noble metal particles are supported is separated, washed, and dried, thereby forming a catalyst in which the composite noble metal particles are highly supported on the surface of the carrier. However, the step (d) for supporting the composite noble metal particles may be performed after all the steps (a) to (c) are performed, or the steps (a) to (c). However, it is preferably performed between the steps (a) to (c). According to the present invention, when a reducing agent is placed in a reverse micelle solution containing noble metal ions (or transition metal element ions), noble metal particles are formed in the reverse micelles, and this state is repeated several times. When the particles are stirred and held for a long time, the reverse micelles containing the noble metal particles collide with each other, and the noble metal particles may gradually aggregate. On the other hand, according to the latter method, the conductive support is dispersed in the reverse micelles on the way, so that it can be highly dispersed and supported on the support before aggregation of the noble metal particles occurs.

本発明の第二において、(a)〜(c)の工程は、2〜10回、より好ましくは2〜5回、最も好ましくは2回繰り返すことが好ましい。特に2回繰り返す場合には、(a)→(a)、(a)→(c)、(b)→(b)、(b)→(c)、(c)→(c)の順番が好ましいが、(a),(b),(c)工程を任意に組合せることもできる。なお、上述したように、上記(d)の担持工程は、上記(a)〜(c)の工程を2工程繰り返した後、行なわれてもよいが、好ましくは2工程間に行なわれることが特に好ましい。   In the second of the present invention, the steps (a) to (c) are preferably repeated 2 to 10 times, more preferably 2 to 5 times, and most preferably 2 times. In particular, when repeating twice, the order of (a) → (a), (a) → (c), (b) → (b), (b) → (c), (c) → (c) Although it is preferable, the steps (a), (b), and (c) can be arbitrarily combined. As described above, the supporting step (d) may be performed after the steps (a) to (c) are repeated two times, but is preferably performed between the two steps. Particularly preferred.

本発明の第三において、(ア)〜(ウ)の工程は、2〜10回、より好ましくは2〜5回、最も好ましくは2回繰り返すことが好ましい。特に2回繰り返す場合には、(ア)→(ア)、(ア)→(ウ)、(イ)→(イ)、(イ)→(ウ)、(ウ)→(ウ)の順番が好ましいが、(ア),(イ),(ウ)工程を任意に組合せることもできる。   In the third aspect of the present invention, the steps (a) to (c) are preferably repeated 2 to 10 times, more preferably 2 to 5 times, and most preferably 2 times. In particular, when repeating twice, (a) → (a), (a) → (c), (b) → (b), (b) → (c), (c) → (c) Although preferred, the steps (a), (b), and (c) can be arbitrarily combined.

本発明において、白金の水溶性貴金属化合物を含む逆ミセル溶液(A)において、白金の水溶性貴金属化合物の逆ミセル溶液(A)中の量は、白金微粒子が効率よくミセル内に形成されるような量であればよく、下記に詳述するイリジウムの水溶性貴金属化合物の量や場合によっては助触媒金属の水溶性貴金属化合物の量に応じて適宜変化する。好ましくは、白金イオンの濃度が、逆ミセル溶液(A)中、金属換算で、0.01〜50質量%、より好ましくは0.1〜30質量%程度となるような量である。   In the present invention, in the reverse micelle solution (A) containing the water-soluble noble metal compound of platinum, the amount of platinum water-soluble noble metal compound in the reverse micelle solution (A) is such that platinum fine particles are efficiently formed in the micelle. The amount may vary as appropriate depending on the amount of the water-soluble noble metal compound of iridium and the amount of the water-soluble noble metal compound of the promoter metal. Preferably, the amount is such that the concentration of platinum ions is 0.01 to 50% by mass, more preferably about 0.1 to 30% by mass in terms of metal in the reverse micelle solution (A).

また、本発明では、逆ミセル溶液(A)を、白金の水溶性貴金属化合物の還元剤または該還元剤を含む逆ミセル溶液(A’)と混合して、ミセル内に白金粒子をコロイド状に分散する。この際使用できる還元剤としては、特に制限されず、公知の還元剤が使用できる。具体的には、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。ヒドラジン等の水溶液として調製し得るものは、0.1〜40質量%の濃度の水溶液として直接逆ミセル溶液に添加してもよいが、該溶液を用いて還元剤を含む逆ミセル溶液を調製して逆ミセル溶液(A’)として、逆ミセル溶液(A)に添加してもよい。0.1〜40質量%の濃度の水溶液であれば、ミセル内で白金イオンが白金粒子となった場合でもコロイド状にミセル内に分散できる。なお、ホウ素化水素ナトリウムなどの粉末状の物質は、そのまま供給することができる。水素などの常温でガス状の物質は、バブリングで供給することもできる。これらのうち、ヒドラジン(水溶液を含む)、ホウ素化ナトリウム、水素が好ましく挙げられ、なかでもホウ素化ナトリウム、水素が好ましく挙げられる。安定したイリジウム粒子を析出させることができ、ミセル内の組成を調整しやすくなるからである。ホウ素化ナトリウムによる還元は水との反応により発生した水素による還元であることから、本発明において水素による還元が行われるものであれば、有効的に用いられる。また、白金粒子の還元速度が速すぎると、析出した白金粒子の凝集が生じる恐れがあるが、上記したような還元剤を用いることにより、白金が容易に析出し、適した還元速度により白金粒子の凝集を防止することができる。   In the present invention, the reverse micelle solution (A) is mixed with a reducing agent of a water-soluble noble metal compound of platinum or a reverse micelle solution (A ′) containing the reducing agent, so that platinum particles are colloidally formed in the micelle. scatter. The reducing agent that can be used in this case is not particularly limited, and a known reducing agent can be used. Specific examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . What can be prepared as an aqueous solution of hydrazine or the like may be added directly to the reverse micelle solution as an aqueous solution having a concentration of 0.1 to 40% by mass, but a reverse micelle solution containing a reducing agent is prepared using the solution. The reverse micelle solution (A ′) may be added to the reverse micelle solution (A). The aqueous solution having a concentration of 0.1 to 40% by mass can be dispersed in the micelle in a colloidal form even when platinum ions become platinum particles in the micelle. Note that a powdered substance such as sodium borohydride can be supplied as it is. A gaseous substance at room temperature such as hydrogen can be supplied by bubbling. Of these, hydrazine (including an aqueous solution), sodium boride, and hydrogen are preferable, and sodium boride and hydrogen are particularly preferable. This is because stable iridium particles can be precipitated, and the composition in the micelle can be easily adjusted. The reduction with sodium boride is a reduction with hydrogen generated by the reaction with water, so that any reduction with hydrogen can be used effectively in the present invention. In addition, if the reduction rate of the platinum particles is too high, the precipitated platinum particles may be aggregated. However, by using a reducing agent as described above, platinum is easily precipitated, and the platinum particles can be obtained at an appropriate reduction rate. Aggregation can be prevented.

白金の水溶性貴金属化合物の還元剤の添加量は、白金イオンから白金粒子が十分形成できる量であれば特に制限されないが、白金イオンのモル数に対して、1〜10モル倍、好ましくは3〜6モル倍とするのがよい。これにより、0.5〜5nm、好ましくは0.5〜3nmの平均粒径を有する白金粒子を形成することができるため好ましい。   The amount of addition of the reducing agent for the water-soluble noble metal compound of platinum is not particularly limited as long as platinum particles can be sufficiently formed from platinum ions, but it is 1 to 10 moles, preferably 3 times the number of moles of platinum ions. It should be ˜6 mole times. This is preferable because platinum particles having an average particle diameter of 0.5 to 5 nm, preferably 0.5 to 3 nm can be formed.

本発明において、イリジウムの水溶性貴金属化合物を含む逆ミセル溶液(B)において、イリジウムの水溶性貴金属化合物の逆ミセル溶液(B)中の量は、イリジウム微粒子が効率よくミセル内に形成されるような量であればよく、下記に詳述する白金の水溶性貴金属化合物の量や場合によっては助触媒金属の水溶性貴金属化合物の量に応じて適宜変化する。好ましくは、イリジウムイオンの濃度が、逆ミセル溶液(B)、金属換算で、0.01〜50質量%、より好ましくは0.1〜20質量%程度となるような量である。   In the present invention, in the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium, the amount of the water-soluble noble metal compound of iridium in the reverse micelle solution (B) is such that the iridium fine particles are efficiently formed in the micelle. The amount may vary as appropriate depending on the amount of the water-soluble noble metal compound of platinum and the amount of the water-soluble noble metal compound of the promoter metal as described below. Preferably, the amount is such that the concentration of iridium ions is about 0.01 to 50% by mass, more preferably about 0.1 to 20% by mass in terms of the reverse micelle solution (B) and metal.

また、本発明では、逆ミセル溶液(B)を、イリジウムの水溶性貴金属化合物の還元剤または該還元剤を含む逆ミセル溶液(B’)と混合して、ミセル内にイリジウム粒子をコロイド状にミセル内に分散する。この際使用できる還元剤としては、特に制限されず、公知の還元剤が使用できる。具体的には、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。ヒドラジン等の水溶液として調製し得るものは、0.1〜40質量%の濃度の水溶液として直接逆ミセル溶液に添加してもよいが、該溶液を用いて還元剤を含む逆ミセル溶液を調製して逆ミセル溶液(B’)として、逆ミセル溶液(B)に添加してもよい。0.1〜40質量%の濃度の水溶液であれば、ミセル内でイリジウムイオンがイリジウム粒子となった場合でもコロイド状にミセル内に分散できる。なお、ホウ素化水素ナトリウムなどの粉末状の物質は、そのまま供給することができる。水素などの常温でガス状の物質は、バブリングで供給することもできる。これらのうち、ヒドラジン(水溶液を含む)、ホウ素化ナトリウム、水素が好ましく挙げられ、なかでもホウ素化ナトリウム、水素が好ましく挙げられる。安定したイリジウム粒子を析出させることができ、ミセル内の組成を調整しやすくなるからである。ホウ素化ナトリウムによる還元は水との反応により発生した水素による還元であることから、本発明において水素による還元が行われるものであれば、有効的に用いられる。また、イリジウム粒子の還元速度が速すぎると、析出したイリジウム粒子の凝集が生じる恐れがあるが、上記したような還元剤を用いることにより、イリジウムが容易に析出し、適した還元速度によりイリジウム粒子の凝集を防止することができる。   In the present invention, the reverse micelle solution (B) is mixed with the reducing agent of the water-soluble noble metal compound of iridium or the reverse micelle solution (B ′) containing the reducing agent, so that the iridium particles are colloidally formed in the micelle. Disperse within the micelle. The reducing agent that can be used in this case is not particularly limited, and a known reducing agent can be used. Specific examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . What can be prepared as an aqueous solution of hydrazine or the like may be added directly to the reverse micelle solution as an aqueous solution having a concentration of 0.1 to 40% by mass, but a reverse micelle solution containing a reducing agent is prepared using the solution. The reverse micelle solution (B ′) may be added to the reverse micelle solution (B). An aqueous solution having a concentration of 0.1 to 40% by mass can be dispersed in the micelle in a colloidal form even when iridium ions become iridium particles in the micelle. Note that a powdered substance such as sodium borohydride can be supplied as it is. A gaseous substance at room temperature such as hydrogen can be supplied by bubbling. Of these, hydrazine (including an aqueous solution), sodium boride, and hydrogen are preferable, and sodium boride and hydrogen are particularly preferable. This is because stable iridium particles can be precipitated, and the composition in the micelle can be easily adjusted. The reduction with sodium boride is a reduction with hydrogen generated by the reaction with water, so that any reduction with hydrogen can be used effectively in the present invention. Further, if the reduction rate of the iridium particles is too high, the precipitated iridium particles may be aggregated. However, by using the reducing agent as described above, the iridium is easily precipitated, and the iridium particles are obtained at a suitable reduction rate. Aggregation can be prevented.

イリジウムの水溶性貴金属化合物の還元剤の添加量は、イリジウムイオンからイリジウム粒子が十分形成できる量であれば特に制限されないが、イリジウムイオンのモル数に対して、1〜10モル倍、好ましくは3〜6モル倍とするのがよい。これにより、0.5〜5nm、好ましくは0.5〜3nmの平均粒径を有する白金粒子を形成することができるため好ましい。   The amount of the reducing agent added to the water-soluble noble metal compound of iridium is not particularly limited as long as iridium particles can be sufficiently formed from iridium ions, but it is 1 to 10 moles, preferably 3 times the number of moles of iridium ions. It should be ˜6 mole times. This is preferable because platinum particles having an average particle diameter of 0.5 to 5 nm, preferably 0.5 to 3 nm can be formed.

従来法では、イリジウムイオン、白金イオンの不溶化剤として、還元剤の他にアンモニアなどの沈殿剤も用いられていたが、これにより沈殿されたアンモニウム錯体などの沈殿物は、以降の工程で溶解する恐れがある。このため、不溶化剤として還元剤を用いることで、後の工程においても安定した複合貴金属粒子を析出させることができるのである。   In the conventional method, a precipitating agent such as ammonia is used in addition to the reducing agent as an insolubilizing agent for iridium ions and platinum ions. However, precipitates such as ammonium complexes precipitated thereby dissolve in the subsequent steps. There is a fear. For this reason, by using a reducing agent as an insolubilizing agent, stable composite noble metal particles can be deposited even in a later step.

また、上述したように、本発明の複合貴金属粒子は、イリジウム、白金の他に、助触媒金属を含んでもよい、即ち、本発明の方法は、クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、及びロジウムからなる群より選ばれる少なくとも一種の助触媒金属を導電性担体表面に担持する工程を少なくとも1回さらに有してもよい。このような場合には、助触媒金属を添加する工程を、本発明による(a)〜(c)、(ア)〜(ウ)のいずれかの工程の前後、あるいは工程間に、挿入する。好ましくは、複合貴金属粒子を担体に担持する工程の前に挿入することが好ましい。すなわち、本発明の第二の場合には、(d)有機溶媒中に界面活性剤を溶解した溶液中で、クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、及びロジウムからなる群より選ばれた少なくとも一種の助触媒金属の水溶性貴金属化合物を含有する逆ミセル溶液(D)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(D’)を混合した後、逆ミセル溶液(A’)及び逆ミセル溶液(B’)、または逆ミセル溶液(C’)を混合する工程を少なくとも一回、上記(a)〜(c)のうちの少なくとも一回の工程と組み合わせる。また、本発明の第三の場合には、(エ)有機溶媒中に界面活性剤を溶解した溶液中で、クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、及びロジウムからなる群より選ばれた少なくとも一種の助触媒金属の水溶性貴金属化合物を含有する逆ミセル溶液(D)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(D’)を混合した後、逆ミセル溶液(A’)及び逆ミセル溶液(B’)、または逆ミセル溶液(C’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程を少なくとも一回、上記(ア)〜(ウ)のうちの少なくとも一回の工程と組み合わせる。   Further, as described above, the composite noble metal particles of the present invention may contain a promoter metal in addition to iridium and platinum, that is, the method of the present invention includes chromium, manganese, iron, cobalt, nickel, palladium, And at least one step of supporting at least one promoter metal selected from the group consisting of rhodium on the surface of the conductive support. In such a case, the step of adding the promoter metal is inserted before or after any of the steps (a) to (c) and (a) to (c) according to the present invention. It is preferable to insert the composite noble metal particles before the step of supporting the composite noble metal particles on the carrier. That is, in the second case of the present invention, (d) selected from the group consisting of chromium, manganese, iron, cobalt, nickel, palladium, and rhodium in a solution in which a surfactant is dissolved in an organic solvent. The reverse micelle solution (D) containing the water-soluble noble metal compound of at least one promoter metal is mixed with the reverse micelle solution (D ′) containing the reducing agent of the water-soluble noble metal compound or the reducing agent, and then the reverse micelle solution. The step of mixing (A ′) and the reverse micelle solution (B ′) or the reverse micelle solution (C ′) is combined with at least one of the steps (a) to (c) at least once. In the third case of the present invention, (d) selected from the group consisting of chromium, manganese, iron, cobalt, nickel, palladium, and rhodium in a solution in which a surfactant is dissolved in an organic solvent. The reverse micelle solution (D) containing the water-soluble noble metal compound of at least one promoter metal is mixed with the reverse micelle solution (D ′) containing the reducing agent of the water-soluble noble metal compound or the reducing agent, and then the reverse micelle solution. (A ′) and reverse micelle solution (B ′) or reverse micelle solution (C ′) are mixed, and then a conductive support is dispersed in the mixture to support composite noble metal particles on the support. Is combined at least once with at least one of the steps (a) to (c) above.

上記(d)または(エ)の工程において、助触媒金属を添加する順序は、特に限定されないが、例えば、イリジウム粒子および白金粒子を析出させた後、助触媒金属イオンを添加し、これを析出させる方法、すなわち、(i)ミセル内部にイリジウムイオンを含む逆ミセル溶液(A)に、イリジウムイオンの還元剤を添加し、次いで前記溶液に白金イオンを含む逆ミセル溶液(B)を混合し、白金イオンの還元剤を添加し、更に前記溶液に助触媒金属イオンを含む逆ミセル溶液(C)を混合し、助触媒金属イオンの還元剤を添加する方法が使用できる。または、(ii)ミセル内部にイリジウムイオンを含む逆ミセル溶液(A)に、イリジウムイオンの還元剤を添加し、次いで前記溶液に助触媒金属イオンを含む逆ミセル溶液(C)を混合し、助触媒金属イオンの還元剤を添加し、更に前記溶液に白金イオンを含む逆ミセル溶液(B)を混合し、白金イオンの還元剤を添加する方法、(iii)ミセル内部に助触媒金属イオンを含む逆ミセル溶液(C)に、助触媒金属イオンの還元剤を添加し、次いで前記溶液にイリジウムイオンを含む逆ミセル溶液(A)を混合し、イリジウムイオンの還元剤を添加し、更に前記溶液に白金イオンを含む逆ミセル溶液(B)を混合し、白金イオンの還元剤を添加する方法などを使用してもよい。   In the step (d) or (d), the order in which the promoter metal is added is not particularly limited. For example, after depositing iridium particles and platinum particles, the promoter metal ions are added and precipitated. (I) adding a reducing agent of iridium ions to the reverse micelle solution (A) containing iridium ions inside the micelles, and then mixing the reverse micelle solution (B) containing platinum ions into the solution; A method of adding a reducing agent for platinum ions, mixing a reverse micelle solution (C) containing promoter metal ions with the solution, and adding a reducing agent for promoter metal ions can be used. Or (ii) adding a reducing agent of iridium ions to the reverse micelle solution (A) containing iridium ions inside the micelles, and then mixing the reverse micelle solution (C) containing promoter metal ions into the solution, A method in which a reducing agent for catalytic metal ions is added, a reverse micelle solution (B) containing platinum ions is further mixed with the solution, and a reducing agent for platinum ions is added; (iii) a promoter metal ion is contained inside the micelles A reverse micelle solution (C) is added with a promoter metal ion reducing agent, then mixed with the reverse micelle solution (A) containing iridium ions, added with an iridium ion reducing agent, and further added to the solution. A method of mixing a reverse micelle solution (B) containing platinum ions and adding a platinum ion reducing agent may be used.

次に、本発明の方法において、ミセル内で前記複合貴金属粒子を形成させた後、これに導電性担体を分散混合させることで、前記担体上に複合貴金属粒子を担持させる。   Next, in the method of the present invention, the composite noble metal particles are formed in micelles, and then the conductive noble metal particles are dispersed and mixed in the micelles, thereby supporting the composite noble metal particles on the carrier.

この際使用できる導電性担体の分散手段としては、特に制限されず、公知の分散手段が使用できる。具体的には、超音波、ホモジナイザーなどの公知の攪拌装置を用い、逆ミセル溶液に導電性担体を分散混合した後に、該溶液を混合・撹拌し、70〜100℃、3〜12時間反応させて複合貴金属粒子を導電性担体に担持させることが好ましい。この条件によれば、焼成処理を行わなくとも、担体表面への複合貴金属粒子の担持が確実に行える。   The means for dispersing the conductive carrier that can be used at this time is not particularly limited, and known dispersing means can be used. Specifically, using a known stirring device such as an ultrasonic wave or a homogenizer, the conductive carrier is dispersed and mixed in the reverse micelle solution, and then the solution is mixed and stirred and reacted at 70 to 100 ° C. for 3 to 12 hours. The composite noble metal particles are preferably supported on a conductive carrier. According to these conditions, the composite noble metal particles can be reliably supported on the surface of the carrier without performing the firing treatment.

前記導電性担体を分散させた後に、メタノールやエタノールなどのアルコール類を添加するのが好ましい。これにより、ミセルを破壊し、複合貴金属粒子が担体表面に担持されるのを促進することができる。また、導電性担体外表面上に均一付着できるミセルの数に限界があるので、アルコールでミセルを壊しながら複合貴金属粒子を担持すると、高担持量を高分散状態で得ることができる。   It is preferable to add an alcohol such as methanol or ethanol after dispersing the conductive carrier. Thereby, a micelle can be destroyed and it can accelerate | stimulate that a composite noble metal particle is carry | supported by the support | carrier surface. Further, since there is a limit to the number of micelles that can be uniformly deposited on the outer surface of the conductive carrier, a high loading amount can be obtained in a highly dispersed state by loading composite noble metal particles while breaking the micelles with alcohol.

導電性担体に担持させる白金とイリジウムとの比は、原子比で0.7:0.99〜0.01:0.3となるような割合である。   The ratio of platinum to iridium supported on the conductive carrier is such that the atomic ratio is 0.7: 0.99 to 0.01: 0.3.

本発明の方法において、担体表面に複合貴金属粒子を担持(付着)させた後は、該担体を溶液から分離し、該担体を洗浄・乾燥する。この際洗浄に使用できる洗浄液としては、特に制限されないが、界面活性剤を効果的に除去するため、メタノールやエタノールなどの有機溶剤および純水が使用できる。また、乾燥方法は、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーター、噴霧乾燥機、ドラムドライヤーによる乾燥などを用いることができる。乾燥時間は、使用する方法に応じて適宜選択すればよいが、乾燥時間としては、複合貴金属粒子の調製量などにより異なるため特に限定されないが、180〜720分程度で十分である。   In the method of the present invention, after the composite noble metal particles are supported (attached) on the surface of the support, the support is separated from the solution, and the support is washed and dried. In this case, the cleaning liquid that can be used for cleaning is not particularly limited, but an organic solvent such as methanol and ethanol and pure water can be used to effectively remove the surfactant. As the drying method, for example, natural drying, evaporation to dryness, rotary evaporator, spray dryer, drying with a drum dryer, or the like can be used. The drying time may be appropriately selected according to the method to be used, but the drying time is not particularly limited because it varies depending on the amount of composite noble metal particles prepared, but about 180 to 720 minutes is sufficient.

本発明の方法によれば、導電性担体に担持された複合貴金属粒子は、所定の粒子径を有し、粒子径分布が狭く、任意に調整でき、かつ、均一な組成を有し、また、焼成処理なしで、複合貴金属粒子を導電性担体に確実に高分散担持できる。したがって、高温での熱処理(焼成処理)を行なわずに、上記乾燥によって、均一な原子組成(均一な固溶体)及び3〜8nmという狭い粒径分布を有するPt−Ir合金系微粒子が導電性担体に安定してかつしっかりと担持できる。また、このようにして得られた触媒、特に電極触媒は、長期間安定して高い発電性能を発揮でき、かつ酸性電解質雰囲気下での安定性(耐酸性)に優れる。   According to the method of the present invention, the composite noble metal particles supported on the conductive support have a predetermined particle size, a narrow particle size distribution, can be arbitrarily adjusted, and have a uniform composition. The composite noble metal particles can be reliably and highly supported on the conductive support without firing. Therefore, the Pt—Ir alloy fine particles having a uniform atomic composition (uniform solid solution) and a narrow particle size distribution of 3 to 8 nm are formed on the conductive carrier by the above drying without performing a heat treatment (firing treatment) at a high temperature. It can be supported stably and firmly. Further, the catalyst thus obtained, particularly an electrode catalyst, can stably exhibit high power generation performance for a long period of time and is excellent in stability (acid resistance) in an acidic electrolyte atmosphere.

得られる触媒、特に電極触媒は、上述した方法において使用する還元剤種や調製順序を変えるなどすることで、3〜8nmの平均粒径を有する複合貴金属粒子が得られる。平均粒径をこの範囲とすることにより、触媒活性に十分な表面積を確保でき、金属の単位質量当たりの触媒活性量を増大させることができる。   The obtained catalyst, particularly the electrode catalyst, can be obtained by changing the type of reducing agent used in the above-described method and the order of preparation to obtain composite noble metal particles having an average particle diameter of 3 to 8 nm. By setting the average particle size within this range, a surface area sufficient for catalyst activity can be secured, and the amount of catalyst activity per unit mass of metal can be increased.

上述した通り、本発明の方法によれば、均一な組成でかつ狭い粒径分布を有する複合貴金属粒子が担体上に確実に高分散担持された触媒が得られる。従って、かような触媒は、高い触媒活性を長期に亘って示すことができる。かような電極触媒の用途としては、特に限定されないが、燃料電池などの電極用触媒などが挙げられる。特に、燃料電池のカソードにおいては、強酸性電解質中で0.7V以上という貴電位状態となり、担体表面に坦持された複合貴金属粒子が遊離してシンタリングを起こし易く、燃料電池の効率を妨げる場合がある。しかし、本発明の方法により得られた触媒は、上述した各種特性を有することから、かようなカソードに特に好適に用いられる。   As described above, according to the method of the present invention, it is possible to obtain a catalyst in which composite noble metal particles having a uniform composition and a narrow particle size distribution are supported on a support in a highly dispersed manner. Accordingly, such a catalyst can exhibit high catalytic activity over a long period of time. The application of such an electrode catalyst is not particularly limited, and examples thereof include electrode catalysts for fuel cells. In particular, the cathode of a fuel cell is in a noble potential state of 0.7 V or higher in a strongly acidic electrolyte, and the composite noble metal particles supported on the surface of the carrier are easily released and cause sintering, which hinders the efficiency of the fuel cell. There is a case. However, since the catalyst obtained by the method of the present invention has the above-mentioned various characteristics, it is particularly suitably used for such a cathode.

上述した本発明の触媒の用途は一実施形態を示したにすぎず、これらに限定されるものではない。すなわち、本発明の方法により得られた触媒が有効に利用されるのであれば、いかなる用途にも適用し得る。   The use of the catalyst of the present invention described above is only an embodiment and is not limited thereto. That is, as long as the catalyst obtained by the method of the present invention is effectively used, it can be applied to any application.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited only to these Examples.

実施例1
界面活性剤としてポリオキシエチレン(5)ノニルフェニルエーテル22gを用い、シクロへキサンを加えて1.0L(0.05mol/L)とし、これを混合および撹拌した。これに塩化白金水溶液(Pt濃度25質量%)7.15gを加えて透明になるまで1時間攪拌して逆ミセル溶液Aを調製した。
Example 1
Using 22 g of polyoxyethylene (5) nonylphenyl ether as a surfactant, cyclohexane was added to 1.0 L (0.05 mol / L), and this was mixed and stirred. To this, 7.15 g of an aqueous platinum chloride solution (Pt concentration: 25% by mass) was added and stirred for 1 hour until it became transparent to prepare a reverse micelle solution A.

界面活性剤としてポリオキシエチレン(5)ノニルフェニルエーテル22gを用い、シクロへキサンを加えて1.0L(0.05mol/L)とし、混合して撹拌した。これに塩化イリジウム水溶液(Ir濃度5質量%)6.2gを加えて1時間攪拌して逆ミセル溶液Bを調製した。   Using 22 g of polyoxyethylene (5) nonylphenyl ether as a surfactant, cyclohexane was added to 1.0 L (0.05 mol / L), mixed and stirred. To this was added 6.2 g of an iridium chloride aqueous solution (Ir concentration 5 mass%), and the mixture was stirred for 1 hour to prepare a reverse micelle solution B.

逆ミセル溶液Aに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Bを加えさらに1時間攪拌した。   To reverse micelle solution A, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. To this, reverse micelle solution B was added and further stirred for 1 hour.

次いで、この逆ミセル溶液AとBの混合溶液に、カーボンブラック(ケッチェン・ブラック・インターナショナル社製 ケッチェンブラックEC:BET比表面積=800m/g)を4.2g混合して1時間攪拌した後、水素化ホウ素ナトリウム(NaBH)0.5gを加えて1時間攪拌した。 Next, 4.2 g of carbon black (Ketjen Black EC: Ketjen Black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) was mixed with the mixed solution of the reverse micelle solutions A and B and stirred for 1 hour. Then, 0.5 g of sodium borohydride (NaBH 4 ) was added and stirred for 1 hour.

所定時間攪拌後、さらに逆ミセル溶液Aを加えて1時間攪拌した後、水素化ホウ素ナトリウム(NaBH)0.5gを加えて1時間攪拌した。 After stirring for a predetermined time, reverse micelle solution A was further added and stirred for 1 hour, and then 0.5 g of sodium borohydride (NaBH 4 ) was added and stirred for 1 hour.

さらに逆ミセル溶液Bを加えて1時間攪拌した後、水素化ホウ素ナトリウム(NaBH)0.5gを加えて1時間攪拌した。 Further, reverse micelle solution B was added and stirred for 1 hour, and then 0.5 g of sodium borohydride (NaBH 4 ) was added and stirred for 1 hour.

この逆ミセル溶液Aと逆ミセル溶液Bとカーボンブラックの混合溶液に、さらに水素化ホウ素ナトリウム1.4gを加えて1時間攪拌した。   To this mixed solution of reverse micelle solution A, reverse micelle solution B and carbon black, 1.4 g of sodium borohydride was further added and stirred for 1 hour.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例2
実施例1と同様にして、逆ミセル溶液A及びBを調製した。
Example 2
Reverse micelle solutions A and B were prepared in the same manner as in Example 1.

界面活性剤としてポリオキシエチレン(5)ノニルフェニルエーテル44gを用い、シクロへキサンを加えて1.0L(0.05mol/L)とし、これを混合および撹拌した。これに塩化白金水溶液(Pt濃度25質量%)7.15g及び塩化イリジウム水溶液(Ir濃度5質量%)6.2gを加えて透明になるまで1時間攪拌して逆ミセル溶液Cを調製した。   Using 44 g of polyoxyethylene (5) nonylphenyl ether as a surfactant, cyclohexane was added to 1.0 L (0.05 mol / L), and this was mixed and stirred. To this, 7.15 g of an aqueous platinum chloride solution (Pt concentration: 25% by mass) and 6.2 g of an iridium chloride aqueous solution (Ir concentration: 5% by mass) were added and stirred for 1 hour until it became transparent to prepare a reverse micelle solution C.

逆ミセル溶液Aに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Bを加えてさらに1時間攪拌した。   To reverse micelle solution A, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. The reverse micelle solution B was added to this and further stirred for 1 hour.

この逆ミセル溶液AとBの混合溶液に、カーボンブラック(ケッチェン・ブラック・インターナショナル社製 ケッチェンブラックEC:BET比表面積=800m/g)を4.2g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.5gを加えて、さらに1時間撹拌した。 Carbon black (Ketjen Black International Ketjen Black EC: BET specific surface area = 800 m 2 / g) 4.2 g was mixed with the mixed solution of reverse micelle solutions A and B, and the mixture was stirred for 1 hour. Sodium borohydride 0.5g was added and it stirred for further 1 hour.

所定時間攪拌後、さらに逆ミセル溶液C及び水素化ホウ素ナトリウム(NaBH)1.4gを加えて、さらに24時間撹拌および熟成した。 After stirring for a predetermined time, reverse micelle solution C and 1.4 g of sodium borohydride (NaBH 4 ) were further added, and the mixture was further stirred and aged for 24 hours.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例3
実施例1と同様にして、逆ミセル溶液A及びBを調製した。
Example 3
Reverse micelle solutions A and B were prepared in the same manner as in Example 1.

逆ミセル溶液Bに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Aを加えてさらに1時間攪拌した。   To reverse micelle solution B, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. Reverse micelle solution A was added thereto, and the mixture was further stirred for 1 hour.

この逆ミセル溶液AとBの混合溶液に、カーボンブラック(Cabot社製 VulcanXC−72:BET表面積=280m/g)を4.2g混合して1時間攪拌した後、さらに水素化ホウ素ナトリウム0.5gを加え1時間撹拌した。 After 4.2 g of carbon black (Vulcan XC-72: BET surface area = 280 m 2 / g manufactured by Cabot) was mixed in the mixed solution of reverse micelle solutions A and B and stirred for 1 hour, sodium borohydride was further added in an amount of 0. 5 g was added and stirred for 1 hour.

所定時間攪拌後、さらに逆ミセル溶液B及び水素化ホウ素ナトリウム(NaBH)0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Aを加えてさらに1時間攪拌した後、水素化ホウ素ナトリウム1.4gを加えて、さらに24時間撹拌および熟成した。 After stirring for a predetermined time, 0.5 g of reverse micelle solution B and sodium borohydride (NaBH 4 ) were further added and stirred for 1 hour until it became transparent. The reverse micelle solution A was added thereto and stirred for another hour, then 1.4 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例4
実施例1と同様にして、逆ミセル溶液A及びBを調製し、実施例2と同様にして逆ミセル溶液Cを調製した。
Example 4
Reverse micelle solutions A and B were prepared in the same manner as in Example 1, and reverse micelle solution C was prepared in the same manner as in Example 2.

逆ミセル溶液Bに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Aを加えてさらに1時間攪拌した後、この逆ミセル溶液AとBの混合溶液に、カーボンブラック(Cabot社製 Acetylenblack:BET表面積=120m/g)を4.2g混合して1時間攪拌した後、水素化ホウ素ナトリウム(NaBH)0.5gを加えて1時間攪拌した。 To reverse micelle solution B, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. The reverse micelle solution A was added thereto, and the mixture was further stirred for 1 hour, and then 4.2 g of carbon black (Acetlenblack: BET surface area = 120 m 2 / g manufactured by Cabot) was mixed with the mixed solution of the reverse micelle solutions A and B. After stirring for 1 hour, 0.5 g of sodium borohydride (NaBH 4 ) was added and stirred for 1 hour.

所定時間攪拌後、さらに逆ミセル溶液Cを加えて1時間攪拌した後、この逆ミセル溶液A、B、Cの混合溶液に、さらに水素化ホウ素ナトリウム1.4gを加えて、さらに24時間撹拌および熟成した。   After stirring for a predetermined time, the reverse micelle solution C was further added and stirred for 1 hour, and then 1.4 g of sodium borohydride was further added to the mixed solution of the reverse micelle solutions A, B and C, and the mixture was further stirred for 24 hours. Aged.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例5
実施例2と同様にして逆ミセル溶液Cを調製した。
Example 5
Reverse micelle solution C was prepared in the same manner as in Example 2.

逆ミセル溶液Cに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。この溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を4.2g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.5gを加えて、さらに1時間撹拌した。
これに逆ミセル溶液Cを再度加えてさらに1時間攪拌した後、水素化ホウ素ナトリウム1.4gを加えて、さらに24時間撹拌および熟成した。
To reverse micelle solution C, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. Graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) was graphitized at 2,500 to 2,800 ° C. (Processed Ketjenblack: BET surface area = 125 m 2 / g) 4.2 g was mixed and stirred for 1 hour, 0.5 g of sodium borohydride was added, and the mixture was further stirred for 1 hour.
The reverse micelle solution C was added again thereto and stirred for another hour, then 1.4 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例6
実施例2と同様にして逆ミセル溶液Cを調製した。
Example 6
Reverse micelle solution C was prepared in the same manner as in Example 2.

逆ミセル溶液Cに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Cを再度加えてさらに1時間攪拌した。   To reverse micelle solution C, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. The reverse micelle solution C was added again thereto, and the mixture was further stirred for 1 hour.

この逆ミセル溶液Cの混合溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を4.2g混合して1時間攪拌した後、水素化ホウ素ナトリウム1.4gを加えて、さらに24時間撹拌および熟成した。 To this mixed solution of reverse micelle solution C, graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) at 2,500 to 2,800 ° C. Graphite-treated graphitized Ketjenblack: BET surface area = 125 m 2 / g) was mixed and stirred for 1 hour, and then added with 1.4 g of sodium borohydride, and further stirred and aged for 24 hours.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例7
実施例1と同様にして、逆ミセル溶液A及びBを調製した。
Example 7
Reverse micelle solutions A and B were prepared in the same manner as in Example 1.

逆ミセル溶液Aに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Bを加えてさらに1時間攪拌した。   To reverse micelle solution A, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. The reverse micelle solution B was added to this and further stirred for 1 hour.

この逆ミセル溶液A、Bの混合溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 To the mixed solution of the reverse micelle solutions A and B, graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) After mixing 2.1 g of graphitized Ketjenblack: BET surface area = 125 m 2 / g) graphitized at ° C. and stirring for 1 hour, 0.7 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours. .

次に、逆ミセル溶液A及び水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した後、逆ミセル溶液Bを加えてさらに1時間攪拌した。   Next, reverse micelle solution A and 0.5 g of sodium borohydride were added and stirred for 1 hour until it became transparent, then reverse micelle solution B was added and stirred for another hour.

この逆ミセル溶液A、Bの混合溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 To the mixed solution of the reverse micelle solutions A and B, graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) After mixing 2.1 g of graphitized Ketjenblack: BET surface area = 125 m 2 / g) graphitized at ° C. and stirring for 1 hour, 0.7 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours. .

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例8
実施例1と同様にして、逆ミセル溶液A及びBを調製した。
Example 8
Reverse micelle solutions A and B were prepared in the same manner as in Example 1.

逆ミセル溶液Bに水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した。これに逆ミセル溶液Aを加えてさらに1時間攪拌した。   To reverse micelle solution B, 0.5 g of sodium borohydride was added and stirred for 1 hour until it became transparent. Reverse micelle solution A was added thereto, and the mixture was further stirred for 1 hour.

この逆ミセル溶液A、Bの混合溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 To the mixed solution of the reverse micelle solutions A and B, graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) After mixing 2.1 g of graphitized Ketjenblack: BET surface area = 125 m 2 / g) graphitized at ° C. and stirring for 1 hour, 0.7 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours. .

次に、逆ミセル溶液B及び水素化ホウ素ナトリウム0.5gを加えて透明になるまで1時間攪拌した後、逆ミセル溶液Aを加えてさらに1時間攪拌した。   Next, reverse micelle solution B and 0.5 g of sodium borohydride were added and stirred for 1 hour until it became transparent, then reverse micelle solution A was added and stirred for another 1 hour.

この逆ミセル溶液A、Bの混合溶液に、黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 To the mixed solution of the reverse micelle solutions A and B, graphitized carbon black (graphitized ketjen black EC: BET specific surface area = 800 m 2 / g manufactured by Ketjen Black International Co., Ltd.) After mixing 2.1 g of graphitized Ketjenblack: BET surface area = 125 m 2 / g) graphitized at ° C. and stirring for 1 hour, 0.7 g of sodium borohydride was added, and the mixture was further stirred and aged for 24 hours. .

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。 Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried under reduced pressure at 85 ° C. for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt 0.85 Ir 0.15 ).

実施例9
実施例2と同様にして逆ミセル溶液Cを調製した。
Example 9
Reverse micelle solution C was prepared in the same manner as in Example 2.

逆ミセル溶液Cに水素化ホウ素ナトリウム0.5gを加えて1時間攪拌し、これに黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 0.5 g of sodium borohydride was added to the reverse micelle solution C and stirred for 1 hour, and graphitized carbon black (graphitized ketjen black EC manufactured by Ketjen Black International Co., Ltd .: BET specific surface area = 800 m 2 / g was graphitized at 2,500 to 2,800 ° C., 2.1 g of graphitized Ketjenblack (BET surface area = 125 m 2 / g) was mixed and stirred for 1 hour, and then 0.7 g of sodium borohydride was added. In addition, the mixture was further stirred and aged for 24 hours.

次に、これに逆ミセル溶液C及び水素化ホウ素ナトリウム0.5gを再度加えて1時間攪拌し、これに黒鉛化処理カーボンブラック(ケッチェン・ブラック・インターナショナル社製黒鉛化処理ケッチェンブラックEC:BET比表面積=800m/gを、2,500〜2,800℃で黒鉛化処理した黒鉛化処理Ketjenblack:BET表面積=125m/g)を2.1g混合して1時間攪拌した後、水素化ホウ素ナトリウム0.7gを加えて、さらに24時間撹拌および熟成した。 Next, reverse micelle solution C and 0.5 g of sodium borohydride were added again thereto, and the mixture was stirred for 1 hour. Graphitized carbon black (graphitized ketjen black EC: BET manufactured by Ketjen Black International Co., Ltd.) was added thereto. Specific surface area = 800 m 2 / g, graphitized at 2,500 to 2,800 ° C. Graphitized Ketjenblack: BET surface area = 125 m 2 / g) was mixed and stirred for 1 hour, then hydrogenated Sodium boron (0.7 g) was added, and the mixture was further stirred and aged for 24 hours.

その後、遠心分離機(日立製作所製 CENTRIFUGE05P-20B)を用いて6時間遠心分離を行い、沈殿を分離した後にこれをエタノール及び水で洗浄した。得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、電極触媒(Pt0.85Ir0.15)を得た。   Then, it centrifuged for 6 hours using the centrifuge (Hitachi CENTRIFUGE05P-20B), and isolate | separated precipitation, Then, this was wash | cleaned with ethanol and water. The obtained solid was dried at 85 ° C. under reduced pressure for 12 hours and pulverized in a mortar to obtain an electrode catalyst (Pt0.85Ir0.15).

比較例1
0.4質量%のPtを含んだ塩化白金酸水溶液250gに導電性カーボンブラックカーボンブラック(ケッチェン・ブラック・インターナショナル社製 ケッチェンブラックEC:BET比表面積=800m/g)1.0gを加え、ホモジナイザを用いて十分に分散させた後、これにクエン酸ナトリウム3gを加え、還流反応装置を用いて80℃に加熱し、Ptの還元担持を行った。そして、室温まで放冷した後、Ptが担持されたカーボンを濾別することにより、カーボン担持Pt(Pt担持量50質量%)の電極触媒を得た。
Comparative Example 1
To 250 g of chloroplatinic acid aqueous solution containing 0.4% by mass of Pt, 1.0 g of conductive carbon black carbon black (Ketjen Black International Co., Ltd .: Ketjen Black EC: BET specific surface area = 800 m 2 / g) is added, After sufficiently dispersing using a homogenizer, 3 g of sodium citrate was added thereto, and the mixture was heated to 80 ° C. using a reflux reactor to carry out reduction loading of Pt. And after standing to cool to room temperature, the carbon by which Pt was carry | supported was separated by filtration, and the electrode catalyst of carbon carrying | support Pt (Pt carrying amount 50 mass%) was obtained.

比較例2
0.4質量%のPtを含んだ塩化白金酸水溶液250gに導電性カーボンブラック(Cabot社製 VulcanXC-72,BET表面積=280m/g)1.0gを加え、ホモジナイザを用いて十分に分散させた後、これにクエン酸ナトリウム3gを加え、還流反応装置を用いて80℃に加熱し、Ptの還元担持を行った。そして、室温まで放冷した後、Ptが担持されたカーボンを濾別することにより、カーボン担持Pt(Pt担持量50質量%)の電極触媒を得た。
Comparative Example 2
Add conductive carbon black (Cabot's VulcanXC-72, BET surface area = 280 m 2 / g) 1.0 g to 250 g of chloroplatinic acid aqueous solution containing 0.4% by mass of Pt, and thoroughly disperse using a homogenizer. Thereafter, 3 g of sodium citrate was added thereto, and the mixture was heated to 80 ° C. using a reflux reactor to carry out reduction loading of Pt. And after standing to cool to room temperature, the carbon by which Pt was carry | supported was separated by filtration, and the electrode catalyst of carbon carrying | support Pt (Pt carrying amount 50 mass%) was obtained.

実験1:電極触媒の性能評価
実施例1〜9および比較例1、2で得た電極触媒をそれぞれカソード触媒として用いたMEA(Membrane Electrode Assembly:膜−電極接合体)を作製し、燃料電池単セルの性能測定を行った。
Experiment 1: Performance Evaluation of Electrocatalyst MEA (Membrane Electrode Assembly) using each of the electrode catalysts obtained in Examples 1 to 9 and Comparative Examples 1 and 2 as a cathode catalyst was prepared. The cell performance was measured.

MEAの作製は、以下の手順で行った。   The MEA was produced according to the following procedure.

1.アノード触媒の調製
導電性炭素材料としてカーボンブラック(ケッチェン・ブラック・インターナショナル社製ケッチェンブラックTMEC、BET表面積=800m/g)4.0gを準備し、これにジニトロジアンミン白金水溶液(Pt濃度1.0%)400gを加えて1時間撹拌した。さらに、還元剤としてメタノール50gを混合し、1時間攪拌した。その後、30分で80℃まで加温し、80℃で6時間撹拌した後、1時間で室温まで降温した。沈殿物を濾過した後、得られた固形物を減圧下85℃において12時間乾燥し、乳鉢で粉砕し、触媒a1(Pt粒子の平均粒径2.6nm、Pt担持濃度45.7質量%)を得た。
1. Preparation of Anode Catalyst As a conductive carbon material, 4.0 g of carbon black (Ketjen Black TMEC manufactured by Ketjen Black International Co., Ltd., BET surface area = 800 m 2 / g) was prepared, and dinitrodiammine platinum aqueous solution (Pt concentration: 1. 0%) was added and stirred for 1 hour. Furthermore, 50 g of methanol was mixed as a reducing agent and stirred for 1 hour. Thereafter, the mixture was heated to 80 ° C. in 30 minutes, stirred at 80 ° C. for 6 hours, and then cooled to room temperature in 1 hour. After filtering the precipitate, the obtained solid was dried under reduced pressure at 85 ° C. for 12 hours, pulverized in a mortar, and catalyst a1 (average particle diameter of Pt particles 2.6 nm, Pt supported concentration 45.7% by mass) Got.

2.アノード電極触媒層の作製
上記1.で作製したアノード触媒(a1)の質量に対して、5倍量の精製水を加え、減圧脱泡操作を5分間加えた。これに、0.5倍量のn−プロピルアルコールを加え、さらにプロトン伝導性高分子電解質を含む溶液(DuPont社製20wt%Nafion(登録商標)含有)を加えた。溶液中の高分子電解質の含有量は、電極触媒(a1)のカーボン質量に対する固形分質量比が、Carbon/Ionomer=1.0/0.9であるものを用いた。
2. Preparation of anode electrode catalyst layer 5 times the amount of purified water was added with respect to the mass of the anode catalyst (a1) produced in Step 1, and a vacuum degassing operation was added for 5 minutes. To this, 0.5 times the amount of n-propyl alcohol was added, and a solution containing a proton conductive polymer electrolyte (containing 20 wt% Nafion (registered trademark) manufactured by DuPont) was added. The content of the polymer electrolyte in the solution was such that the mass ratio of the solid content to the carbon mass of the electrode catalyst (a1) was Carbon / Ionomer = 1.0 / 0.9.

得られた混合スラリーを超音波ホモジナイザーでよく分散させ、減圧脱泡操作を加えることによって触媒スラリーを作製した。これをポリテトラフルオロエチレンシートの片面にスクリーン印刷法によって、所望の厚さに応じた量の触媒スラリーを印刷し、60℃で24時間乾燥させた。形成されるアノード触媒層のサイズは、5cm×5cmとした。また、ポリテトラフルオロエチレンシート上の塗布層は、Pt量が0.1mg/cmとなるように調整した。 The obtained mixed slurry was well dispersed with an ultrasonic homogenizer, and a catalyst slurry was prepared by applying a vacuum degassing operation. An amount of the catalyst slurry corresponding to the desired thickness was printed on one side of the polytetrafluoroethylene sheet by screen printing and dried at 60 ° C. for 24 hours. The size of the formed anode catalyst layer was 5 cm × 5 cm. Further, the coating layer on the polytetrafluoroethylene sheet was adjusted so that the amount of Pt was 0.1 mg / cm 2 .

3.カソード電極触媒層の作製
実施例1〜9および比較例1、2で得られた各電極触媒(c1)の質量に対して、それぞれ、5倍量の精製水を加え、減圧脱泡操作を5分間加えた。これに、0.5倍量のn−プロピルアルコールを加え、さらにプロトン伝導性高分子電解質を含む溶液(DuPont社製20wt%Nafion(登録商標)含有)を加えた。溶液中の高分子電解質の含有量は、電極触媒(c1)のカーボン質量に対する固形分質量比が、Carbon/Ionomer=1.0/0.9であるものを用いた。
3. Preparation of Cathode Electrocatalyst Layer 5 times the amount of purified water was added to the mass of each electrode catalyst (c1) obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and vacuum degassing operation was performed 5 times. Added for a minute. To this, 0.5 times the amount of n-propyl alcohol was added, and a solution containing a proton conductive polymer electrolyte (containing 20 wt% Nafion (registered trademark) manufactured by DuPont) was added. The content of the polymer electrolyte in the solution was such that the solid content mass ratio with respect to the carbon mass of the electrode catalyst (c1) was Carbon / Ionomer = 1.0 / 0.9.

得られた混合スラリーを超音波ホモジナイザーでよく分散させ、減圧脱泡操作を加えることによって触媒スラリーを作製した。これをポリテトラフルオロエチレンシートの片面にスクリーン印刷法によって、所望の厚さに応じた量の触媒スラリーを印刷し、60℃で24時間乾燥させた。形成されるカソード触媒層のサイズは、5cm×5cmとした。また、ポリテトラフルオロエチレンシート上の塗布層は、Pt量が0.4mg/cmとなるように調整した。 The obtained mixed slurry was well dispersed with an ultrasonic homogenizer, and a catalyst slurry was prepared by applying a vacuum degassing operation. An amount of the catalyst slurry corresponding to the desired thickness was printed on one side of the polytetrafluoroethylene sheet by screen printing and dried at 60 ° C. for 24 hours. The size of the formed cathode catalyst layer was 5 cm × 5 cm. Further, the coating layer on the polytetrafluoroethylene sheet was adjusted so that the amount of Pt was 0.4 mg / cm 2 .

4.固体高分子電解質膜との接合
固体高分子電解質膜としてNafionTM 111(膜厚25μm)と、先に作製したポリテトラフルオロエチレンシート上に形成された電極触媒層とを重ね合わせた。その際には、アノード触媒層、固体高分子電解質膜、カソード触媒層を、この順序で積層させた。その後、130℃、2.0MPaで、10分間ホットプレスを行った。
4). Bonding with a solid polymer electrolyte membrane As a solid polymer electrolyte membrane, Nafion 111 (film thickness 25 µm) and an electrode catalyst layer formed on the previously prepared polytetrafluoroethylene sheet were superposed. At that time, the anode catalyst layer, the solid polymer electrolyte membrane, and the cathode catalyst layer were laminated in this order. Thereafter, hot pressing was performed at 130 ° C. and 2.0 MPa for 10 minutes.

なお、カソード触媒層は、厚さが約10μm、Pt担持量は、見かけの電極面積1cmあたり0.4mg、電極面積は25cmとした。アノード触媒層は、厚さが約2μm、Pt担持量は、見かけの電極面積1cmあたり0.1mg、電極面積は25cmとした。 The cathode catalyst layer had a thickness of about 10 μm, the Pt loading was 0.4 mg per 1 cm 2 apparent electrode area, and the electrode area was 25 cm 2 . The anode catalyst layer had a thickness of about 2 μm, the amount of Pt supported was 0.1 mg per 1 cm 2 apparent electrode area, and the electrode area was 25 cm 2 .

5.MEAの性能評価
触媒層および固体高分子電解質膜を接合した後、その外部にガス拡散層(GDL)を配置し、膜電極接合体(MEA)を作製した。MEAの両面にガス流路付きガスセパレータを配置し、さらに金メッキしたステンレス製集電板で挟持して、評価用単セルとした。評価用単セルの、アノード側に燃料として水素を供給し、カソード側には酸化剤として空気を供給した。両ガスとも供給圧力は大気圧とし、水素は58.6℃および相対湿度60%、空気は54.8℃および相対湿度50%、セル温度は70℃に設定した。また、水素利用率は67%、空気利用率は40%とした。この条件下で、電流密度1.0A/cmで発電させた際のセル電圧を初期セル電圧として測定した。
5. MEA Performance Evaluation After joining the catalyst layer and the solid polymer electrolyte membrane, a gas diffusion layer (GDL) was placed outside thereof to produce a membrane electrode assembly (MEA). A gas separator with a gas flow path was disposed on both surfaces of the MEA, and was further sandwiched between gold-plated stainless steel current collector plates to form a single cell for evaluation. In the evaluation unit cell, hydrogen was supplied as a fuel to the anode side, and air was supplied as an oxidant to the cathode side. The supply pressure of both gases was atmospheric pressure, hydrogen was set to 58.6 ° C. and relative humidity 60%, air was set to 54.8 ° C. and relative humidity 50%, and the cell temperature was set to 70 ° C. The hydrogen utilization rate was 67% and the air utilization rate was 40%. Under this condition, the cell voltage when power was generated at a current density of 1.0 A / cm 2 was measured as the initial cell voltage.

続いて、60秒間発電した後、発電を停止した。停止後、水素及び空気の供給を停止し、空気で単セルを置換し50秒間待機した。その後、10秒間アノード側に水素ガスを上記利用率の1/5で供給した。その後、アノード側に水素ガス、カソード側に空気を上記と同様の条件で供給し、再度、1.0A/cmの電流密度で60秒間発電した。また、この時の負荷電流は30秒間で0A/cmから1A/cmに増大させた。この発電・停止動作を実施し、セル電圧を測定して、発電性能を評価した。1.0A/cmの電流密度でのセル電圧が0.45Vになったときのサイクル数を、耐久性の評価値として用いた。 Subsequently, after generating power for 60 seconds, power generation was stopped. After stopping, the supply of hydrogen and air was stopped, the single cell was replaced with air, and the system was on standby for 50 seconds. Thereafter, hydrogen gas was supplied to the anode side for 10 seconds at 1/5 of the above utilization rate. Thereafter, hydrogen gas was supplied to the anode side and air was supplied to the cathode side under the same conditions as described above, and power was generated again at a current density of 1.0 A / cm 2 for 60 seconds. The load current at this time was increased from 0 A / cm 2 to 1 A / cm 2 in 30 seconds. This power generation / stop operation was performed, the cell voltage was measured, and the power generation performance was evaluated. The number of cycles when the cell voltage at a current density of 1.0 A / cm 2 was 0.45 V was used as the durability evaluation value.

これらの結果を、下記表1に示す。   These results are shown in Table 1 below.

Figure 2006297355
Figure 2006297355

上記表1の結果から、本発明の電極触媒は、耐久性に非常に優れることが示される。   From the results of Table 1 above, it is shown that the electrode catalyst of the present invention is very excellent in durability.

Claims (15)

式:[Pt][Ir](ただし、aは、Ptの原子比を表わし、0.7〜0.99であり、bは、Irの原子比を表わし、0.01〜0.3であり、この際、aとbの合計は1である)の組成を有し、かつ平均粒子径が3〜8nmである複合貴金属粒子が導電性担体の表面に高分散担持されてなり、前記複合貴金属粒子は、有機溶媒中に界面活性剤を溶解した溶液中において、白金(Pt)の水溶性貴金属化合物及びイリジウム(Ir)の水溶性貴金属化合物を含む水溶液を混合して形成した逆ミセル溶液に、該水溶性貴金属化合物の還元剤を添加することによって形成されることを特徴とする触媒。 Formula: [Pt] a [Ir] b (wherein, a represents an atomic ratio of Pt and is 0.7 to 0.99, b represents an atomic ratio of Ir, and 0.01 to 0.3 Wherein the total of a and b is 1), and the composite noble metal particles having an average particle diameter of 3 to 8 nm are highly dispersed and supported on the surface of the conductive support, The composite noble metal particle is a reverse micelle solution formed by mixing an aqueous solution containing a water-soluble noble metal compound of platinum (Pt) and a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. And a catalyst formed by adding a reducing agent for the water-soluble noble metal compound. 該イリジウム(Ir)の水溶性貴金属化合物は、イリジウムの塩化物、硝酸塩及びジニトロジアンミン塩からなる群より選ばれる少なくとも一種である、請求項1に記載の触媒。   2. The catalyst according to claim 1, wherein the water-soluble noble metal compound of iridium (Ir) is at least one selected from the group consisting of iridium chloride, nitrate and dinitrodiammine salt. 該白金(Pt)の水溶性貴金属化合物は、白金の塩化物、硝酸塩及びジニトロジアンミン塩からなる群より選ばれる少なくとも一種である、請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the water-soluble noble metal compound of platinum (Pt) is at least one selected from the group consisting of platinum chloride, nitrate and dinitrodiammine salt. 該導電性担体は、アセチレンブラック、バルカン、ケッチェンブラック、ブラックパール、黒鉛化アセチレンブラック、黒鉛化バルカン、黒鉛化ケッチェンブラック、黒鉛化ブラックパール、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、及びカーボンフィブリルからなる群より選ばれる少なくとも一種を主成分として含む、請求項1〜3のいずれか1項に記載の触媒。   The conductive carrier is acetylene black, vulcan, ketjen black, black pearl, graphitized acetylene black, graphitized vulcan, graphitized ketjen black, graphitized black pearl, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon. The catalyst according to any one of claims 1 to 3, comprising as a main component at least one selected from the group consisting of fibrils. 該導電性担体は、アセチレンブラック、バルカン、ケッチェンブラック、及びブラックパールからなる群より選ばれる少なくとも一種を主成分として含む、請求項4に記載の触媒。   The catalyst according to claim 4, wherein the conductive carrier contains at least one selected from the group consisting of acetylene black, vulcan, ketjen black, and black pearl as a main component. 該複合貴金属粒子は、クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、及びロジウムからなる群より選ばれる少なくとも一種の助触媒金属をさらに含む、請求項1〜5のいずれか1項に記載の触媒。   The catalyst according to any one of claims 1 to 5, wherein the composite noble metal particles further include at least one promoter metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, palladium, and rhodium. . 該複合貴金属粒子は、式:[Pt][Ir][X](ただし、Xは、Cr,Mn,Fe,Co,Ni,Pd,Rhからなる群より選ばれる少なくとも一種であり、aは、Ptの原子比を表わし、bは、Irの原子比を表わし、cは、Xの合計原子比を表わし、この際、(b+c)/(a+b+c)は、0.01〜0.3であり、a+b+c=1である)の組成を有する、請求項6に記載の触媒。 The composite noble metal particles have the formula: [Pt] a [Ir] b [X] c (where X is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni, Pd, Rh, a represents an atomic ratio of Pt, b represents an atomic ratio of Ir, and c represents a total atomic ratio of X, where (b + c) / (a + b + c) is 0.01 to 0.3. And a + b + c = 1). 7. The catalyst of claim 6 having a composition of: 該複合貴金属粒子の平均粒子径が4〜6nmである、請求項1〜7のいずれか1項に記載の触媒。   The catalyst according to any one of claims 1 to 7, wherein the composite noble metal particles have an average particle size of 4 to 6 nm. (a)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を、該水溶性貴金属化合物の還元剤または該還元剤を含む逆ミセル溶液(A’)と混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合する工程;
(b)有機溶媒中に界面活性剤を溶解した溶液中で、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合する工程;及び
(c)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合する工程
からなる群から選択される工程を少なくとも2回、ならびに
該(a)〜(c)の少なくとも一工程で得られる混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させた後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、触媒の製造方法。
(A) In a solution in which a surfactant is dissolved in an organic solvent, a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added to the water-soluble noble metal compound reducing agent or the reducing agent. After mixing with the reverse micelle solution (A ′) containing, the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium (Ir) is added, and the reverse micelle further containing the reducing agent or reducing agent of the water-soluble noble metal compound Mixing the solution (B ′);
(B) A reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent contains the water-soluble noble metal compound reducing agent or reducing agent. After mixing the reverse micelle solution (B ′), a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added, and a reverse micelle solution containing a reducing agent or a reducing agent for the water-soluble noble metal compound. A step of mixing (A ′); and (c) a reverse micelle solution (C) containing a water-soluble noble metal compound of platinum (Pt) and iridium (Ir) in a solution in which a surfactant is dissolved in an organic solvent. And a step selected from the group consisting of the step of mixing the reducing agent of the water-soluble noble metal compound or the reverse micelle solution (C ′) containing the reducing agent, and at least one of the steps (a) to (c). Obtained in one step The conductive noble metal particles are dispersed in the resulting mixed liquid and the composite noble metal particles are supported on the carrier, and then the carrier supported by the composite noble metal particles is separated, washed, and dried, so that the composite noble metal particles can be A method for producing a catalyst, comprising a step of forming a dispersion-supported catalyst.
(ア)有機溶媒中に界面活性剤を溶解した溶液中に、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合した後、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;
(イ)有機溶媒中に界面活性剤を溶解した溶液中に、イリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(B)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(B’)を混合した後、白金(Pt)の水溶性貴金属化合物を含有する逆ミセル溶液(A)を加え、さらに該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(A’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程;及び
(ウ)有機溶媒中に界面活性剤を溶解した溶液中で、白金(Pt)及びイリジウム(Ir)の水溶性貴金属化合物を含有する逆ミセル溶液(C)に、該水溶性貴金属化合物の還元剤あるいは還元剤を含む逆ミセル溶液(C’)を混合し、次いで、該混合液中に導電性担体を分散して、複合貴金属粒子を該担体に担持させる工程
からなる群から選択される工程を少なくとも2回繰返した後、複合貴金属粒子が担持した担体を分離、洗浄、乾燥することにより、複合貴金属粒子が担体表面に高分散担持した触媒を形成する工程を有することを特徴とする、触媒の製造方法。
(A) A reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) in a solution in which a surfactant is dissolved in an organic solvent contains the water-soluble noble metal compound reducing agent or reducing agent. After mixing the reverse micelle solution (A ′), the reverse micelle solution (B) containing the water-soluble noble metal compound of iridium (Ir) is added, and the water-soluble noble metal compound reducing agent or the reverse micelle solution containing the reducing agent is further added. (B ′) is mixed, and then a conductive support is dispersed in the mixed solution to support composite noble metal particles on the support;
(A) A reverse micelle solution (B) containing a water-soluble noble metal compound of iridium (Ir) in a solution obtained by dissolving a surfactant in an organic solvent contains a reducing agent or a reducing agent for the water-soluble noble metal compound. After mixing the reverse micelle solution (B ′), a reverse micelle solution (A) containing a water-soluble noble metal compound of platinum (Pt) is added, and a reverse micelle solution containing a reducing agent or a reducing agent for the water-soluble noble metal compound. (A ′) is then mixed, and then a conductive support is dispersed in the mixed solution, and composite noble metal particles are supported on the support; and (c) a solution in which a surfactant is dissolved in an organic solvent. Then, the reverse micelle solution (C ′) containing the water-soluble noble metal compound of platinum (Pt) and iridium (Ir) is mixed with the reverse micelle solution (C ′) containing the reducing agent or the reducing agent of the water-soluble noble metal compound. And then into the mixture By repeating the step selected from the group consisting of the step of dispersing the conductive support and supporting the composite noble metal particles on the support at least twice, separating, washing and drying the support supported by the composite noble metal particles A method for producing a catalyst, comprising the step of forming a catalyst in which composite noble metal particles are supported in a highly dispersed state on a support surface.
該イリジウム(Ir)の水溶性貴金属化合物が、イリジウムの塩化物、硝酸塩及びジニトロジアンミン塩からなる群より選ばれる少なくとも一種である、請求項9または10に記載の方法。   The method according to claim 9 or 10, wherein the water-soluble noble metal compound of iridium (Ir) is at least one selected from the group consisting of iridium chloride, nitrate and dinitrodiammine salt. 該白金(Pt)の水溶性貴金属化合物が、白金の塩化物、硝酸塩及びジニトロジアンミン塩からなる群より選ばれる少なくとも一種である、請求項9〜11のいずれか1項に記載の方法。   The method according to any one of claims 9 to 11, wherein the water-soluble noble metal compound of platinum (Pt) is at least one selected from the group consisting of platinum chloride, nitrate and dinitrodiammine salt. 該導電性担体は、アセチレンブラック、バルカン、ケッチェンブラック、ブラックパール、黒鉛化アセチレンブラック、黒鉛化バルカン、黒鉛化ケッチェンブラック、黒鉛化ブラックパール、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、及びカーボンフィブリルからなる群より選ばれる少なくとも一種を主成分として含む、請求項9〜12のいずれか1項に記載の方法。   The conductive carrier is acetylene black, vulcan, ketjen black, black pearl, graphitized acetylene black, graphitized vulcan, graphitized ketjen black, graphitized black pearl, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon. The method of any one of Claims 9-12 containing at least 1 type chosen from the group which consists of fibrils as a main component. 該導電性担体は、アセチレンブラック、バルカン、ケッチェンブラック、及びブラックパールからなる群より選ばれる少なくとも一種を主成分として含む、請求項13に記載の方法。   The method according to claim 13, wherein the conductive carrier contains at least one selected from the group consisting of acetylene black, vulcan, ketjen black, and black pearl as a main component. クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、及びロジウムからなる群より選ばれる少なくとも一種の助触媒金属を導電性担体表面に担持する工程を少なくとも1回さらに有する、請求項9〜14のいずれか1項に記載の方法。   The method according to any one of claims 9 to 14, further comprising at least one step of supporting at least one promoter metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, palladium, and rhodium on the surface of the conductive support. 2. The method according to item 1.
JP2005127218A 2005-04-25 2005-04-25 Catalyst and its manufacturing method Pending JP2006297355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127218A JP2006297355A (en) 2005-04-25 2005-04-25 Catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127218A JP2006297355A (en) 2005-04-25 2005-04-25 Catalyst and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006297355A true JP2006297355A (en) 2006-11-02

Family

ID=37466079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127218A Pending JP2006297355A (en) 2005-04-25 2005-04-25 Catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006297355A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138269A1 (en) * 2007-05-10 2008-11-20 Nanjing University A carbon nitride nanotube loaded with platinum and ruthenium nanoparticles electrode catalyst and its preparation
US7569509B2 (en) * 2004-04-28 2009-08-04 Nissan Motor Co., Ltd. Method for producing catalyst for fuel cell
KR101067783B1 (en) 2005-06-14 2011-09-28 어드반스트 커패시터 테크놀로지즈 가부시키가이샤 Carbon material manufacturing method
CN101641816B (en) * 2007-12-04 2012-05-23 韩华石油化学株式会社 Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
CN102989450A (en) * 2012-12-03 2013-03-27 中国科学院大连化学物理研究所 Preparation method, structural feature and application of carrying type nanometer electrocatalyst
CN104707597A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Metal nanowire network/mesoporous silica core-shell structure catalyst preparation method
JP2017018909A (en) * 2015-07-13 2017-01-26 日産自動車株式会社 Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell
KR20170018690A (en) * 2015-08-10 2017-02-20 삼성에스디아이 주식회사 Catalyst for fuel cell, and electrode, membrane-electrode assembly and fuel cell system and fuel cell system including same
JP2020202056A (en) * 2019-06-07 2020-12-17 株式会社豊田中央研究所 Electrode catalyst
CN114792816A (en) * 2021-01-25 2022-07-26 中国科学院理化技术研究所 Platinum-based alloy catalyst and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569509B2 (en) * 2004-04-28 2009-08-04 Nissan Motor Co., Ltd. Method for producing catalyst for fuel cell
KR101067783B1 (en) 2005-06-14 2011-09-28 어드반스트 커패시터 테크놀로지즈 가부시키가이샤 Carbon material manufacturing method
WO2008138269A1 (en) * 2007-05-10 2008-11-20 Nanjing University A carbon nitride nanotube loaded with platinum and ruthenium nanoparticles electrode catalyst and its preparation
CN101641816B (en) * 2007-12-04 2012-05-23 韩华石油化学株式会社 Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
CN102989450A (en) * 2012-12-03 2013-03-27 中国科学院大连化学物理研究所 Preparation method, structural feature and application of carrying type nanometer electrocatalyst
CN104707597A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Metal nanowire network/mesoporous silica core-shell structure catalyst preparation method
JP2017018909A (en) * 2015-07-13 2017-01-26 日産自動車株式会社 Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell
KR20170018690A (en) * 2015-08-10 2017-02-20 삼성에스디아이 주식회사 Catalyst for fuel cell, and electrode, membrane-electrode assembly and fuel cell system and fuel cell system including same
KR102391251B1 (en) * 2015-08-10 2022-04-26 삼성에스디아이 주식회사 Catalyst for fuel cell, and electrode, membrane-electrode assembly and fuel cell system and fuel cell system including same
JP2020202056A (en) * 2019-06-07 2020-12-17 株式会社豊田中央研究所 Electrode catalyst
JP7152987B2 (en) 2019-06-07 2022-10-13 株式会社豊田中央研究所 Electrocatalyst
CN114792816A (en) * 2021-01-25 2022-07-26 中国科学院理化技术研究所 Platinum-based alloy catalyst and preparation method and application thereof
CN114792816B (en) * 2021-01-25 2024-02-20 中国科学院理化技术研究所 Platinum-based alloy catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4590937B2 (en) Electrode catalyst and method for producing the same
JP5082187B2 (en) Method for producing electrode catalyst particles for polymer electrolyte fuel cell
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP2006297355A (en) Catalyst and its manufacturing method
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
JP2007123195A (en) Method of manufacturing catalyst
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
JP2005034779A (en) Electrode catalyst and its production method
JP2005149742A (en) Catalyst-carrying electrode for fuel cell and its manufacturing method
JP2005100713A (en) Electrode catalyst for fuel cell and manufacturing method thereof
JP2005216772A (en) Electrode catalyst, electrode and mea carrying the same
JP4539086B2 (en) ELECTRODE CATALYST, CATALYST CARRIER ELECTRODE, MEA FOR FUEL CELL AND FUEL CELL
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP2007237182A (en) Catalyst material for fuel cell
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
JP2005196972A (en) Manufacturing method of electrode catalyst
JP2006012691A (en) Electrode catalyst and its method of manufacture
JP2005174755A (en) Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
JP2005317467A (en) Electrode for fuel cell and mea for fuel cell using the same
JP2005270687A (en) Catalyst-carrying carbon material and its production method
JP2005193182A (en) Catalyst and its production method
WO2022158395A1 (en) Fuel cell electrode catalyst
JP2005190726A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell
US20230163319A1 (en) Catalyst, electrode, membrane electrode assembly, fuel cell, and method for manufacturing catalyst