JP2006008473A - Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode - Google Patents

Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode Download PDF

Info

Publication number
JP2006008473A
JP2006008473A JP2004190825A JP2004190825A JP2006008473A JP 2006008473 A JP2006008473 A JP 2006008473A JP 2004190825 A JP2004190825 A JP 2004190825A JP 2004190825 A JP2004190825 A JP 2004190825A JP 2006008473 A JP2006008473 A JP 2006008473A
Authority
JP
Japan
Prior art keywords
aggregate
columnar
cold cathode
substrate
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190825A
Other languages
Japanese (ja)
Inventor
Masao Someya
昌男 染谷
Takashi Fujii
尊 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004190825A priority Critical patent/JP2006008473A/en
Publication of JP2006008473A publication Critical patent/JP2006008473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cylindrical aggregate obtained by patterning an oriented carbon nanotube (CNT) and to provide a method for manufacturing a field emission type cold cathode using the aggregate and capable of emitting an electron uniformly at a low voltage. <P>SOLUTION: The cylindrical aggregate obtained by patterning the oriented CNT is manufactured by forming the cylindrical aggregate constituted by aggregating the oriented CNT on catalyst carrier films by a step of forming a plurality of the catalyst carrier films in pattern on a base substrate surface at optional positions, a step of burning and carrying a metal element or compound having a catalytic action on the base substrate surface containing the catalyst carrier films, and a step of supplying and pyrolyzing a carbon compound on the base substrate surface. The field emission type cold cathode is manufactured by a step (1) of manufacturing the cylindrical aggregate, a step (2) of forming a conductive binder on an electrode substrate surface, and a step (3) of transferring the cylindrical aggregate to the electrode substrate by peeling the base substrate while remaining the cylindrical aggregate bonded to the conductive binder after the tip of the cylindrical aggregate is bonded to the surface of the conductive binder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配向性カーボンナノチューブ(以下、CNT)の柱形状集合体をパターン形成する方法および、該配向性CNTのパターン化された柱形状集合体を電極上に形成させることにより、低電圧で均一な強度の電界電子放出が得られる冷陰極の製造法に関する。本技術は例えばフィールド・エミッション・ディスプレイ(以下、FED)などの薄型画像表示装置に応用できる。   The present invention provides a method for patterning a columnar aggregate of oriented carbon nanotubes (hereinafter referred to as CNT) and a method for forming a patterned columnar aggregate of oriented CNTs on an electrode at a low voltage. The present invention relates to a method of manufacturing a cold cathode capable of obtaining field electron emission with uniform intensity. The present technology can be applied to a thin image display device such as a field emission display (hereinafter referred to as FED).

CNTは、1991年に飯島澄男氏によって発見されたもので(非特許文献1参照)、一般的な形状は、直径0.5〜100nm、長さ1〜100μmであり、非常に細長い中空のチューブ状の炭素材料である。近年、CNTは電界電子放出型の電子源としての応用において期待されている。電界電子放出型の電子源が並んだ電極には負の電圧がかかり、さらに熱を放出しないため、冷陰極と呼ばれる。特に、FEDなどの画像表示装置の電子源としてCNTを用いる場合は、一本のCNTからでは電子放出量が不足なため、多数本が必要である。さらに、FEDの各画素を光らせる固有の電子源が必要なため、各々の電子源を絶縁させて制御回路に通電させる必要がある。   CNT was discovered by Sumio Iijima in 1991 (see Non-Patent Document 1). The general shape is 0.5-100 nm in diameter and 1-100 μm in length, and is a very elongated hollow tube. Carbon material. In recent years, CNTs are expected to be applied as field electron emission type electron sources. A negative voltage is applied to the electrode on which the field electron emission type electron sources are arranged, and further heat is not emitted, so it is called a cold cathode. In particular, when CNT is used as an electron source of an image display device such as an FED, a large number of electrons are required because the amount of emitted electrons is insufficient from one CNT. Furthermore, since a unique electron source for illuminating each pixel of the FED is required, it is necessary to insulate each electron source and energize the control circuit.

CNTを用いた電界電子放出型冷陰極の製造には様々な方法が知られており、電極に直接CNTを成長させる方法と、別途調製したCNTを電極に付着させる方法とがある。前者は、製造工程が短くなる利点があるものの、CNTの製造条件が、電極基板の性質で制限されるため、製造できるCNT形状が制限される可能性がある。後者は、製造工程が長くなるものの、CNT製造条件に制約が無いため、種々の形状、パターニングのCNTが製造でき、また大面積の電極作製にも有利である。   Various methods are known for manufacturing a field electron emission cold cathode using CNT, and there are a method of growing CNT directly on an electrode and a method of attaching separately prepared CNT to an electrode. The former has the advantage of shortening the manufacturing process, but the CNT manufacturing conditions are limited by the properties of the electrode substrate, so that the CNT shapes that can be manufactured may be limited. Although the latter requires a long manufacturing process, there are no restrictions on the CNT manufacturing conditions. Therefore, CNTs with various shapes and patterns can be manufactured, and it is advantageous for manufacturing a large-area electrode.

電極に直接CNTを成長させる方法としては、電極基板表面の所定の位置に触媒を付着させCVDを行うことで、電極に垂直配向したCNTを成長させる方法がある(例えば、特許文献1、2参照)。しかし、これらの方法で用いられる電極基板は、高温の炭素析出条件下に曝されるため、電極基板の材質が劣化する場合がある。   As a method of directly growing CNTs on an electrode, there is a method of growing CNTs vertically aligned on an electrode by attaching a catalyst to a predetermined position on the electrode substrate surface and performing CVD (see, for example, Patent Documents 1 and 2). ). However, since the electrode substrate used in these methods is exposed to high temperature carbon deposition conditions, the material of the electrode substrate may deteriorate.

また、別途調製したCNTを電極に付着させる方法としては、CNTを導電性ペーストと混ぜ、スクリーン印刷で電極にパターン形成する方法(例えば、特許文献3参照)、CNTを溶剤やバインダーと混ぜ、滴下、塗布、または噴霧させることによって電極上にCNT層を形成する方法(例えば、特許文献4参照)、CNTを溶剤やバインダーと混ぜ、金属メッシュを通して電極上に押し出す方法(例えば、非特許文献2参照)がある。これらは、電極とCNTとの密着力を強くし電気的にも良く導通させるという方法ではある。しかしながらCNTのようなナノスケールの物質は他の流動性物質と混ぜようとしても凝集し易く、均一に混合させるのは難しい。CNTと他の流動性物質とが不均一に混ざったままの状態で電極に付着させると、電極上の各電子源に含まれるCNTの密度が一定でなく、また電子源の表面に凹凸が生じてしまうので画像表示装置としてはむらのある画像になってしまう。ここで、なるべく均一に混ざるように溶剤の比率を増やすという手段もあるが、電極に溶剤が残存すると、高真空中で電界電子放出を行う際の妨げとなるので、溶剤の使用は極力少なくすることが望ましい。バインダーを用いない方法としては、CNT懸濁液をフィルターに通すことでフィルター表面にCNT層を形成させ、該CNT層を電極に転写する方法がある(例えば、非特許文献3参照)。しかしながら、フィルター上のCNT集合体を直に電極であるテフロン(登録商標)シートに付着させているため、パターン形成には不向きである。また、電極とCNTとの密着力にも問題がある。   In addition, as a method of attaching separately prepared CNT to the electrode, a method of mixing CNT with a conductive paste and patterning the electrode by screen printing (for example, refer to Patent Document 3), mixing CNT with a solvent or a binder, dropping A method of forming a CNT layer on an electrode by applying or spraying (for example, see Patent Document 4), a method of mixing CNT with a solvent or a binder, and extruding the electrode through a metal mesh (for example, see Non-Patent Document 2) ) These are methods in which the adhesion between the electrodes and the CNTs is strengthened and electrically conductive. However, nanoscale substances such as CNTs tend to aggregate even if mixed with other fluid substances, and it is difficult to mix them uniformly. If CNT and other fluid substances are attached to the electrode in an unevenly mixed state, the density of CNT contained in each electron source on the electrode is not constant, and irregularities are generated on the surface of the electron source. As a result, the image display device becomes uneven. Here, there is a means of increasing the ratio of the solvent so that it is mixed as uniformly as possible. However, if the solvent remains in the electrode, it becomes a hindrance when performing field electron emission in a high vacuum, so use of the solvent is minimized. It is desirable. As a method not using a binder, there is a method in which a CNT layer is formed on the surface of a filter by passing a CNT suspension through a filter, and the CNT layer is transferred to an electrode (for example, see Non-Patent Document 3). However, since the CNT aggregate on the filter is directly attached to the Teflon (registered trademark) sheet as an electrode, it is not suitable for pattern formation. There is also a problem with the adhesion between the electrode and the CNT.

上述の非特許文献3に類する転写法としては、電界電子放出型冷陰極の製造方法には触れていないが、基板上に配向性のあるCNT集合体を成長させ、該配向性CNT集合体を第二の基板に転写する方法も開示されている(例えば、特許文献5参照)。また、CNT成長用基体をフォトレジストマスクで覆い、現像、溶解によりパターニングし、CNTをパターニング成長させ、これを第二の基板に転写する方法も開示されている(特許文献6)。しかし、転写の際に残留フォトレジスト層を溶解する必要もあり、工程が長くなる上に、CNTの汚染も懸念される。   As a transfer method similar to the above-mentioned Non-Patent Document 3, although a manufacturing method of a field electron emission type cold cathode is not mentioned, an oriented CNT aggregate is grown on a substrate, and the oriented CNT aggregate is A method of transferring to the second substrate is also disclosed (see, for example, Patent Document 5). Also disclosed is a method in which a CNT growth substrate is covered with a photoresist mask, patterned by development and dissolution, CNT is grown by patterning, and transferred to a second substrate (Patent Document 6). However, it is necessary to dissolve the residual photoresist layer at the time of transfer, and the process becomes longer and there is a concern about contamination of CNTs.

ここで、電界電子放出型冷陰極用のCNTとしては、1本1本がより細い方が、より良い電界放出能を有することが知られている。また、CNT集合体としては、電極基板に対し垂直方向に配向していること、および密度がより低いあるいはCNT集合体の面積がより小さい方が、より良い電界放出能を有することが知られている。本発明者らは、上記の如き現状に鑑み、高さ10μm以上、管径10nm以下のCNTからなる配向性CNT集合体の製造に成功しており(特許文献7参照)、該配向性CNT集合体からの電子放出にも成功した。   Here, as CNTs for field electron emission type cold cathodes, it is known that the thinner each one has better field emission capability. In addition, it is known that the CNT aggregate is oriented in the direction perpendicular to the electrode substrate, and that the lower the density or the smaller the area of the CNT aggregate, the better the field emission ability. Yes. In view of the current situation as described above, the present inventors have succeeded in producing an aligned CNT aggregate composed of CNTs having a height of 10 μm or more and a tube diameter of 10 nm or less (see Patent Document 7). He also succeeded in emitting electrons from the body.

配向性CNT集合体をμmオーダの微小な面積に位置選択的に成長させる方法としては、触媒金属をマスク法でパターニング配置する方法(特許文献1)、触媒金属をマスク法でパターニング蝕刻する(特許文献8)、CNT成長用基体をフォトレジストマスクで覆い、現像、溶解によりパターニングする方法(特許文献6)がある。しかし、これらの方法で製造したCNTは管径が10nm以上と太めである。
特表2002−530805号公報 特開2001−15077号公報 特開平11−260249号公報 特開2000−340098号公報 特表2003−500325号公報 特表2003−500324号公報 特開2002−338221号公報 特開2001−020071号公報 S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) W.B.Choiら, "Fully sealed high-brightness carbon-nanotube field-emission display",Applied Physics Letters, 75, 20, p3129-3131 (1999) W.A.de Heerら, "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)
As a method for selectively growing an oriented CNT aggregate in a minute area on the order of μm, a method of patterning and arranging a catalytic metal by a mask method (Patent Document 1), and a patterning etching of the catalytic metal by a mask method (Patent Document 1) There is a method (Patent Document 6) in which a substrate for CNT growth is covered with a photoresist mask and patterned by development and dissolution. However, the CNTs manufactured by these methods have a large tube diameter of 10 nm or more.
Special Table 2002-530805 gazette JP 2001-15077 A JP-A-11-260249 JP 2000-340098 A Special table 2003-500325 gazette Special table 2003-500324 gazette JP 2002-338221 A JP 2001-020071 A S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) WBChoi et al., "Fully sealed high-brightness carbon-nanotube field-emission display", Applied Physics Letters, 75, 20, p3129-3131 (1999) WAde Heer et al., "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)

電界電子放出型冷陰極を用いた画像表示装置を作動させるには、なるべく低電圧で、かつ均一な強度の電子放出をさせる方が有利である。そのため電界電子放出型冷陰極に用いられる各CNTはなるべく管径の細いほうが望ましい。ただし、単層CNTは強度的に課題があるため、2層以上の多層CNTが望ましい。   In order to operate an image display apparatus using a field electron emission type cold cathode, it is advantageous to emit electrons with as low a voltage and uniform intensity as possible. Therefore, it is desirable that each CNT used in the field electron emission type cold cathode has as small a tube diameter as possible. However, since single-walled CNT has a problem in strength, a multilayered CNT having two or more layers is desirable.

電界電子放出型冷陰極に用いられるCNT集合体としては、多数のCNTが電極に対して垂直方向に配向し、高さが一定である配向性CNT集合体が好ましい。垂直配向していれば、多数本から成るCNT電子源の総和として垂直方向に最大の電子放出強度が得られる。また、表面の高さが一定であれば、平面方向に対して均一な電子放出が得られる。さらに、電界電子放出の場合、CNTの先端と陽極との距離が近いほど電子を引き出す電圧を低くできるため、電子源の高さが一定であれば、電子源の表面近くに陽極を近接させても距離の均一性を保つことが可能で、同じ電子放出強度を得るのに引き出し電圧を低くできる。   As the CNT aggregate used for the field electron emission type cold cathode, an oriented CNT aggregate in which a large number of CNTs are oriented in a direction perpendicular to the electrodes and the height is constant is preferable. If it is vertically aligned, the maximum electron emission intensity can be obtained in the vertical direction as the sum of a plurality of CNT electron sources. Moreover, if the height of the surface is constant, uniform electron emission can be obtained in the planar direction. Furthermore, in the case of field electron emission, the closer the distance between the tip of the CNT and the anode, the lower the voltage for extracting electrons. Therefore, if the height of the electron source is constant, the anode is placed close to the surface of the electron source. However, the uniformity of the distance can be maintained, and the extraction voltage can be lowered to obtain the same electron emission intensity.

さらに、電界電子放出型冷陰極に用いられる配向性CNT集合体は、その面積がより小さい方が好ましい。配向性CNT集合体の面積がより小さければ、先端に強く電界集中するため、電界放出能も大きいと期待される。また、配向性CNT集合体の面積をより小さくすることにより、一画素あたり、あるいは単位面積あたりに、より多数の配向性CNT集合体電子源を配置することができるため、より大きな電界放出能が期待できる。   Further, the oriented CNT aggregate used for the field electron emission type cold cathode preferably has a smaller area. If the area of the oriented CNT aggregate is smaller, the electric field concentrates more strongly at the tip, so that the field emission capability is expected to be large. In addition, by reducing the area of the oriented CNT aggregate, a larger number of oriented CNT aggregate electron sources can be arranged per pixel or per unit area. I can expect.

本発明は上記に鑑み、垂直配向性があり、高さが一定であり、管径の細いCNTからなる、面積の小さな配向性CNT集合体、つまり配向性CNTの柱形状集合体をパターン形成する方法、および該CNT集合体を電極基板へ転写することにより、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法を提供することを目的とする。   In view of the above, the present invention patterns an oriented CNT aggregate having a small area, that is, a columnar aggregate of oriented CNTs, which is composed of CNTs having a vertical orientation, a constant height, and a small tube diameter. It is an object of the present invention to provide a method and a method for producing a field emission cold cathode that enables uniform electron emission at a low voltage by transferring the CNT aggregate to an electrode substrate.

本発明者らは、電界放出型冷陰極の製造方法について鋭意研究を重ねた結果、基礎基板表面上に複数個の触媒担体被膜を1個の被膜面積0.01mm以下で任意の位置にパターン形成し、該触媒担体被膜を含む該基礎基板表面に触媒作用を持つ金属元素または化合物を含浸法、浸漬法、またはゾルゲル法で焼成担持させ、該基礎基板表面上で炭素化合物を熱分解することにより、該基礎基板表面上の該触媒担体被膜上に、垂直配向性があり高さが一定であり管径10nm以下であるCNTからなる面積0.01mm以下の配向性CNT集合体、つまり配向性CNTの柱形状集合体をパターン形成でき、また、これを電極基板へ転写することにより、低電圧で均一な電子放出を可能とする、容易な電界放出型冷陰極の製造方法を見いだし本発明に到達した。
すなわち、本発明の第一は、基礎基板表面上に複数個の触媒担体被膜を1個の被膜面積0.01mm以下で任意の位置にパターン形成する工程と、該触媒担体被膜を含む該基礎基板表面に触媒作用を持つ金属元素あるいは化合物を含浸法、浸漬法、あるいはゾルゲル法で焼成担持する工程と、該基礎基板表面上で炭素化合物を供給し熱分解する工程を経ることにより、該触媒担体被膜上に配向性カーボンナノチューブが集合してなる柱形状の集合体を形成させることを特徴とする、配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法である。
また、本発明の第二は、電界電子放出型冷陰極の作製の方法であって、電極基板表面に配向性カーボンナノチューブのパターン化された柱形状集合体を形成させる電界放出型冷陰極の製造方法において、本発明の第一の方法により基礎基板表面上に配向性カーボンナノチューブのパターン化された柱形状集合体を作製する工程(1)と、電極基板表面に導電性バインダー形成させる工程(2)と、該柱形状集合体の先端と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した柱形状集合体を残して、該基礎基板を剥離して柱形状集合体を電極基板に転写する工程(3)を含む、電界放出型冷陰極の製造方法に関するものである。
また、工程(1)と工程(2)の間に、該柱形状集合体の先端と、接着と剥離の可能な表面を有する可撓性基板の表面とを接着後、該可撓性基板表面と接着した柱形状集合体を残して、該基礎基板を剥離して柱形状集合体を可撓性基板に転写する工程(4)を介在することもできる。
さらに、工程(4)を複数回行い、第一の接着と剥離の可能な表面を有する可撓性基板から第二、第三の接着と剥離の可能な表面を有する可撓性基板の表面に転写することも可能である。
As a result of intensive research on a method for manufacturing a field emission cold cathode, the present inventors have patterned a plurality of catalyst carrier coatings on a base substrate surface at an arbitrary position with a coating area of 0.01 mm 2 or less. Forming and supporting a catalytic metal element or compound on the surface of the base substrate including the catalyst support coating by an impregnation method, a dipping method, or a sol-gel method, and thermally decomposing the carbon compound on the base substrate surface Thus, an oriented CNT aggregate having an area of 0.01 mm 2 or less consisting of CNTs having a vertical orientation, a constant height, and a tube diameter of 10 nm or less on the catalyst support coating on the base substrate surface, that is, orientation We have found an easy method for manufacturing a field emission type cold cathode that can form a pattern of columnar aggregates of conductive CNTs and transfer them to an electrode substrate to enable uniform electron emission at a low voltage. Invention has been reached.
That is, the first aspect of the present invention is the step of patterning a plurality of catalyst carrier coatings on the surface of the base substrate at an arbitrary position with one coating area of 0.01 mm 2 or less, and the foundation including the catalyst carrier coatings. By passing through a step of firing and supporting a metal element or compound having a catalytic action on the substrate surface by an impregnation method, a dipping method, or a sol-gel method, and a step of supplying a carbon compound on the base substrate surface and thermally decomposing the catalyst, A method for producing a patterned columnar aggregate of oriented carbon nanotubes, characterized in that a columnar aggregate formed by assembling oriented carbon nanotubes is formed on a carrier film.
The second aspect of the present invention is a method for producing a field electron emission cold cathode, in which a columnar aggregate of oriented carbon nanotubes is formed on the electrode substrate surface. In the method, a step (1) of producing a patterned columnar aggregate of oriented carbon nanotubes on the base substrate surface by the first method of the present invention, and a step of forming a conductive binder on the electrode substrate surface (2 ) And the tip of the columnar aggregate and the surface of the conductive binder, and then leaving the columnar aggregate bonded to the conductive binder, peeling the base substrate to form the columnar aggregate as an electrode. The present invention relates to a method for manufacturing a field emission cold cathode, which includes a step (3) of transferring to a substrate.
In addition, between the step (1) and the step (2), after bonding the tip of the columnar assembly and the surface of the flexible substrate having a surface that can be bonded and peeled off, the surface of the flexible substrate The step (4) of peeling the base substrate and transferring the columnar aggregate to a flexible substrate may be interposed, leaving the columnar aggregate bonded to the substrate.
Further, the step (4) is performed a plurality of times, from the flexible substrate having the first bondable and peelable surface to the surface of the flexible substrate having the second and third bondable and peelable surfaces. It is also possible to transfer.

本発明の電界放出型冷陰極の製造方法によれば、垂直配向性があり高さおよび密度が均一の配向性カーボンナノチューブが集合してなる、柱形状の集合体を単位とした電子源を有する電界放出型冷陰極の製造を大面積で容易に作製しうる。本発明の方法により製造された陰極を用いて、低電圧で作動し、均一な輝度の画像表示装置を得ることができる。   According to the method for manufacturing a field emission cold cathode of the present invention, the electron source having a columnar aggregate as a unit, which is composed of aligned carbon nanotubes having vertical alignment and uniform height and density, is provided. A field emission cold cathode can be easily manufactured in a large area. By using the cathode manufactured by the method of the present invention, it is possible to obtain an image display device that operates at a low voltage and has uniform luminance.

本実施形態において、本発明の第一である配向性CNTのパターン化された柱形状集合体の製造法は、基礎基板表面上に複数個の触媒担体被膜を1個の被膜面積0.01mm以下で任意の位置にパターン形成し、該触媒担体被膜を含む該基礎基板表面に触媒作用を持つ金属元素または化合物を含浸法、浸漬法、またはゾルゲル法で焼成担持させ、該基礎基板表面上で炭素化合物を供給し熱分解することにより、該基礎基板表面上の該触媒担体被膜上に、垂直配向性があり高さが一定であり管径10nm以下であるCNTからなる面積0.01mm以下の配向性CNT集合体、つまり配向性CNTの柱形状集合体をパターン形成させる方法である。 In this embodiment, the method for producing a patterned columnar aggregate of oriented CNTs, which is the first of the present invention, comprises a plurality of catalyst carrier coatings on the surface of a base substrate, and a coating area of 0.01 mm 2. A pattern is formed at an arbitrary position below, and a metal element or compound having a catalytic action is baked and supported by an impregnation method, an immersion method, or a sol-gel method on the surface of the base substrate including the catalyst carrier coating, By supplying a carbon compound and pyrolyzing, an area of 0.01 mm 2 or less made of CNT having a vertical orientation, a constant height, and a tube diameter of 10 nm or less is formed on the catalyst carrier coating on the base substrate surface. This is a method of forming a pattern of oriented CNT aggregates, that is, columnar aggregates of oriented CNTs.

本発明における配向性CNTのパターン化された柱形状集合体の製造の基礎基板には、シリカ、シリカアルミナ、アルミナ、陽極酸化アルミナ、アルミニウム、銅、シリコン、酸化シリコン、ステンレス、ソーダガラス、石英ガラス等が挙げられる。好ましくはシリカ、シリカアルミナ、アルミナ、陽極酸化アルミナ等のセラミックス板、より好ましくは、熱および酸、アルカリに安定であるシリカアルミナが用いられる。本発明に用いられるセラミックス板は、多孔質であることが好ましい。多孔質であることにより、触媒の担持を容易にし、また、担持量を多くすることが可能になる。   The base substrate for producing the patterned columnar aggregate of oriented CNTs in the present invention includes silica, silica alumina, alumina, anodized alumina, aluminum, copper, silicon, silicon oxide, stainless steel, soda glass, and quartz glass. Etc. Preferably, ceramic plates such as silica, silica alumina, alumina, anodized alumina, etc., more preferably silica alumina that is stable to heat, acid, and alkali are used. The ceramic plate used in the present invention is preferably porous. By being porous, the catalyst can be easily supported and the amount supported can be increased.

上述の多孔質セラミックス板は、基板調製前に空気中で加熱乾燥することが好ましい。これにより、吸着水分を脱離させ、さらには、微量付着有機物が存在しても気化又は燃焼除去される。そのため、基板調製工程中の元素による被覆を安定的に行うことができる。この時の加熱乾燥温度は、100〜1000℃、好ましくは300〜800℃である。温度が低いと、有機物の燃焼分解が生じず、また、高すぎると多孔質セラミックス板の焼成が進んでしまう。   The porous ceramic plate described above is preferably heat-dried in air before preparing the substrate. As a result, the adsorbed moisture is desorbed, and further, even if a small amount of adhering organic matter is present, it is vaporized or burned off. Therefore, the covering with the element during the substrate preparation process can be performed stably. The heating and drying temperature at this time is 100 to 1000 ° C, preferably 300 to 800 ° C. If the temperature is low, combustion decomposition of organic matter does not occur, and if it is too high, firing of the porous ceramic plate proceeds.

本発明において、上述の基礎基板表面上に、触媒担体を1個の面積0.01mm以下で任意の位置に被覆することにより、触媒担体被膜をパターン形成する。ここで、本発明に用いられる触媒担体には、周期律表のIVa、Va、IIIb、およびIVb族の元素が用いられる。これらの元素は単独で用いても良く、二種類以上の混合物で用いても良い。また、これらの元素の一部あるいは全部が酸化されていても良い。好ましい元素としては、アルミニウム、ゲルマニウム、それらの酸化物または混合物であり、特に好ましくはアルミニウムである。これらの元素、それらの酸化物または二種類以上の混合物だけでは、炭素化合物の分解によってCNTを生じさせる触媒作用はない。 In the present invention, the catalyst carrier coating is patterned on the surface of the base substrate by coating the catalyst carrier at an arbitrary position with an area of 0.01 mm 2 or less. Here, elements of groups IVa, Va, IIIb, and IVb in the periodic table are used for the catalyst carrier used in the present invention. These elements may be used alone or in a mixture of two or more. Further, some or all of these elements may be oxidized. Preferable elements are aluminum, germanium, oxides or mixtures thereof, and aluminum is particularly preferable. Only these elements, their oxides, or a mixture of two or more of them do not have a catalytic action to generate CNTs by decomposition of carbon compounds.

上述の触媒担体を1個の面積0.01mm以下で任意の位置に被覆する方法の一つは、マスク法である。マスク法とは、あらかじめ開口部をパターニングしたマスク板を準備し、これを基礎基板上に密着して重ねた状態で、触媒担体を位置選択的に被覆する方法である。 One of the methods for coating the above-mentioned catalyst carrier at an arbitrary position with an area of 0.01 mm 2 or less is a mask method. The mask method is a method in which a mask plate in which openings are patterned in advance is prepared, and the catalyst carrier is selectively coated on the base substrate in a state where the mask plate is closely adhered to the base substrate.

マスク板の材質としては、金属板、プラスチック板等が上げられるが、特に金属板が好ましい。金属板であれば、加工がしやすく、変形しにくく、熱的にも比較的安定である。中でも、ニッケルおよびニッケル/コバルトが好適に用いられる。   Examples of the material of the mask plate include a metal plate and a plastic plate, and a metal plate is particularly preferable. If it is a metal plate, it is easy to process, it is hard to deform | transform, and it is comparatively stable thermally. Among these, nickel and nickel / cobalt are preferably used.

マスク板の個々の開口部の面積は0.01mm以下とする。この開口部の面積が後の工程で生成する柱形状のCNT集合体の面積と関係する。そのため、開口部の径としては、100μm以下が好ましく、50μm以下がより好ましい。ただし、1μm以下についてはマスク板の製造が困難となる。 The area of each opening of the mask plate is 0.01 mm 2 or less. The area of the opening is related to the area of the columnar CNT aggregate generated in a later step. Therefore, the diameter of the opening is preferably 100 μm or less, and more preferably 50 μm or less. However, it is difficult to manufacture the mask plate for 1 μm or less.

上述のマスク板を基礎基板上に密着して重ねた状態で、触媒担体を被覆することにより、触媒担体の位置選択的な被覆を行い、触媒担体被膜をパターン形成する。触媒担体の被覆方法としては、真空蒸着法、電析法、またはスパッタリング法等が挙げられる。中でも、被覆量を容易に安定的に行う方法として、真空蒸着法が好ましい。また、被覆量は、厚さで0.01〜1μmが好ましく、0.05〜0.5μmがより好ましい。   The catalyst carrier is coated in a state where the above-described mask plate is closely adhered to the base substrate, whereby the catalyst carrier is selectively coated to form a pattern of the catalyst carrier film. Examples of the method for coating the catalyst carrier include a vacuum deposition method, an electrodeposition method, and a sputtering method. Among these, a vacuum deposition method is preferable as a method for easily and stably performing the coating amount. The coating amount is preferably 0.01 to 1 μm, more preferably 0.05 to 0.5 μm in terms of thickness.

触媒担体を任意の位置に被覆するもう一つの方法として、基礎基板表面を触媒担体で全面あるいは一部を被覆した後に、担体をエッチングする方法がある。このようなパターニングには公知の光や電子線などによるリソグラフィー、転写や噴霧などによる印刷、各種の機械加工などを用いることが可能である。   As another method of coating the catalyst carrier at an arbitrary position, there is a method of etching the carrier after coating the entire surface or a part of the base substrate surface with the catalyst carrier. For such patterning, it is possible to use known lithography using light or electron beam, printing by transfer or spraying, various machining processes, and the like.

本発明においては、上述の触媒担体担持後に、担体が酸化される場合もあるが、この場合も本発明に含まれる。   In the present invention, the support may be oxidized after the above-described catalyst support is supported. This case is also included in the present invention.

ここで、電界電子放出能において、各々の配向性CNTの柱形状集合体の面積は大きく影響を与える。面積が大きいと、大面積の配向性CNT集合体と電界放出能に差が少ないが、面積を小さくするほど電界放出能は向上する。より良い電界放出能のためにも、面積は0.01mm以下が好ましい。より好ましくは0.0025mm以下である。 Here, the area of each columnar aggregate of oriented CNTs has a great influence on the field electron emission ability. When the area is large, there is little difference between the field emission ability and the oriented CNT aggregate having a large area, but the field emission ability is improved as the area is reduced. For better field emission performance, the area is preferably 0.01 mm 2 or less. More preferably, it is 0.0025 mm 2 or less.

上述の、触媒担体被膜を面積0.01mm以下で任意の位置にパターニングした基礎基板に、CNT成長用の触媒を担持することにより、柱形状の配向性CNTを成長させる触媒のパターニングが行える。ここで用いられる触媒としては、CNTを形成する触媒であればいずれでも良く、例えば鉄、コバルト、ニッケル、モリブデン、またはこれらの化合物が用いられる。これらの触媒は単独または混合物として用いることができる。触媒の担持法としては、担体に触媒を担持させる方法であればいずれでも良く、含浸法、浸漬法、ゾルゲル法等が挙げられる。また、触媒を担持後に、基礎基板を加熱する場合も、本発明に含まれる。このようにして配向性CNTを生成する触媒が基礎基板上に面積0.01mm以下でパターン配置される。なお、触媒担体被膜が配置されなかった場所は、配向性CNTが成長しない。 The catalyst for growing the columnar oriented CNTs can be patterned by supporting the catalyst for CNT growth on the base substrate on which the catalyst carrier coating is patterned at an arbitrary position with an area of 0.01 mm 2 or less. The catalyst used here may be any catalyst that forms CNTs, and for example, iron, cobalt, nickel, molybdenum, or a compound thereof is used. These catalysts can be used alone or as a mixture. Any catalyst loading method may be used as long as the catalyst is supported on a carrier, and examples thereof include an impregnation method, an immersion method, and a sol-gel method. Further, the case where the base substrate is heated after supporting the catalyst is also included in the present invention. In this way, the catalyst for producing the oriented CNTs is arranged in a pattern with an area of 0.01 mm 2 or less on the base substrate. Note that oriented CNT does not grow in places where the catalyst carrier coating is not disposed.

上述の触媒担体被膜を1個の面積0.01mm以下で任意の位置にパターン形成し、触媒を担持した該基礎基板を用いて炭素化合物を分解することにより、配向性CNTのパターン化された柱形状集合体が生成する。使用される炭素化合物は、適当な触媒の存在下で、CNTを生じさせるものなら何でも良く、例えば、メタン、エタン、プロパンなどの飽和炭化水素化合物、エチレン、プロピレン、アセチレンなどの不飽和炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素化合物、メタノール、エタノール、アセトンなどの含酸素炭化水素化合物などが挙げられ、好ましくは、メタン、エチレン、プロピレン、アセチレン、メタノール、エタノール、プロパノールである。該炭素化合物の導入形態としては、ガス状のまま導入しても良いし、アルゴンのような不活性ガスと混合して導入しても良いし、あるいは不活性ガス中の飽和蒸気として導入しても良い。また、ナノチューブに組み込まれるホウ素、窒素などのヘテロ元素を含む化合物を混ぜることで、ヘテロ元素含有ナノチューブとすることも可能である。 The above-described catalyst support coating was patterned at an arbitrary position with an area of 0.01 mm 2 or less, and the carbon substrate was decomposed using the base substrate carrying the catalyst, whereby the oriented CNT was patterned. A columnar aggregate is generated. Any carbon compound may be used as long as it generates CNTs in the presence of a suitable catalyst, for example, saturated hydrocarbon compounds such as methane, ethane, and propane, and unsaturated hydrocarbon compounds such as ethylene, propylene, and acetylene. , Aromatic hydrocarbon compounds such as benzene and toluene, and oxygen-containing hydrocarbon compounds such as methanol, ethanol, and acetone, preferably methane, ethylene, propylene, acetylene, methanol, ethanol, and propanol. The carbon compound may be introduced in the form of a gas, mixed with an inert gas such as argon, or introduced as a saturated vapor in the inert gas. Also good. Further, a hetero element-containing nanotube can be obtained by mixing a compound containing a hetero element such as boron or nitrogen incorporated into the nanotube.

該炭素化合物の分解反応としては、熱分解が最も一般的で、好ましい反応温度は400〜1100℃、より好ましくは500〜900℃、好ましい反応圧力は1kPa〜1MPa、より好ましくは0.01〜0.12MPaである。本実施形態において、触媒粒子は、CNTの生成後には各CNTの先端部分すなわち配向性CNT集合体の先端側に内包されていることが多い。本発明の製造方法によると、高さ1〜100μm、個々の面積0.01mm以下の配向性CNTのパターン化された柱形状集合体を基礎基板上に一様に生成させることができる。この時、個々のCNTの外径は1〜10nmの範囲で製造できる。 As the decomposition reaction of the carbon compound, thermal decomposition is the most common, and a preferable reaction temperature is 400 to 1100 ° C, more preferably 500 to 900 ° C, and a preferable reaction pressure is 1 kPa to 1 MPa, more preferably 0.01 to 0. .12 MPa. In the present embodiment, the catalyst particles are often included in the tip portion of each CNT, that is, the tip side of the oriented CNT aggregate after the CNTs are generated. According to the production method of the present invention, a patterned columnar aggregate of oriented CNTs having a height of 1 to 100 μm and individual areas of 0.01 mm 2 or less can be uniformly formed on a base substrate. At this time, the outer diameter of each CNT can be manufactured in the range of 1 to 10 nm.

上述の方法で製造した配向性CNTのパターン化された柱形状集合体を電極基板へ転写することにより、本発明の第二である電界放出型冷陰極を製造する。転写前に位置選択的に製造した配向性CNTの柱形状集合体のパターンが、転写後は冷陰極の画素パターンとなる。   The field emission type cold cathode according to the second aspect of the present invention is manufactured by transferring the patterned columnar aggregate of oriented CNTs manufactured by the above-described method onto an electrode substrate. The columnar aggregate pattern of oriented CNTs produced position-selectively before transfer becomes a cold cathode pixel pattern after transfer.

まず、配向性CNTのパターン化された柱形状集合体と電極基板とを接着させる物質として、導電性バインダーが用いられる。導電性バインダーとしては、電極とCNTとを機械的に接着させて、さらに電気的に通じさせる機能が必要である。また、電界放出型冷陰極は高真空下で電子を放出し、真空度が低下すると電子放出の機能も下がる。そのため、導電性バインダーとしては揮発成分を含まないものが好ましい。あるいは揮発成分を含んだとしても、電極とCNTとを接着させた後は、乾燥、加熱または洗浄等の方法によってなるべく除去することが望ましい。ここで、上述の接着力と電気導電性、さらには種々の形状に塗布できる流動性等を考えあわせると、導電性バインダーとしては導電性ペーストが好ましい。導電性バインダーの塗布法としてはスクリーン印刷法が最も簡便な方法である。導電性ペーストは通常、電気伝導性を担う導電性フィラーと接着性を担う高分子樹脂、流動性を担う揮発性溶剤とで構成されている。導電性フィラーに用いられる材質によって導電性ペーストが類別される。本発明には、金、銀、銅などの金属、あるいはカーボンの導電性ペーストが適している。また、揮発成分を全く含まない導電性バインダーとして、融点500℃以下の低融点金属または合金も用いられる。500℃以上の加熱は、CNTや電極基板等の熱劣化が懸念されるため、現実的ではない。該低融点金属としては、インジウム、スズ、鉛、亜鉛、またはこれら金属の一種以上を含む合金であることが好ましい。   First, a conductive binder is used as a substance for bonding the patterned columnar aggregate of oriented CNTs and the electrode substrate. The conductive binder needs to have a function of mechanically bonding the electrode and the CNT and further electrically connecting them. In addition, the field emission cold cathode emits electrons under a high vacuum, and the function of electron emission decreases when the degree of vacuum decreases. Therefore, the conductive binder preferably does not contain a volatile component. Or even if it contains a volatile component, after bonding an electrode and CNT, it is desirable to remove as much as possible by methods, such as drying, heating, or washing. Here, in consideration of the above-described adhesive strength and electrical conductivity, as well as fluidity that can be applied in various shapes, a conductive paste is preferable as the conductive binder. Screen coating is the simplest method for applying the conductive binder. The conductive paste is usually composed of a conductive filler responsible for electrical conductivity, a polymer resin responsible for adhesion, and a volatile solvent responsible for fluidity. The conductive paste is classified according to the material used for the conductive filler. For the present invention, a conductive paste of metal such as gold, silver or copper, or carbon is suitable. In addition, a low melting point metal or alloy having a melting point of 500 ° C. or lower is also used as the conductive binder containing no volatile component. Heating at 500 ° C. or higher is not practical because there is concern about thermal degradation of CNTs and electrode substrates. The low melting point metal is preferably indium, tin, lead, zinc, or an alloy containing one or more of these metals.

導電性バインダーは、電極基板の表面上に所望の位置に塗布させる。塗布形状は、公知の印刷方法等により任意に形成させることができ、互いに絶縁したブロック状とすることが好ましい。導電性バインダーとして導電性ペーストを用いる場合は、流動性がある状態で該電極基板表面に塗布し、先述の製造法で作製した該柱形状集合体の先端と接触させ、該導電性ペーストの硬化特性に応じて、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着する。導電性バインダーとして低融点金属を用いる場合は、予め該低融点金属を所定の大きさに切り出し、該電極表面に配置し、先述の製造法で作製した該柱形状集合体の先端と接触させ、熱圧着を施して接触面を接着する。   The conductive binder is applied to a desired position on the surface of the electrode substrate. The coating shape can be arbitrarily formed by a known printing method or the like, and is preferably a block shape insulated from each other. When a conductive paste is used as the conductive binder, it is applied to the surface of the electrode substrate in a fluid state, is brought into contact with the tip of the columnar assembly prepared by the above-described manufacturing method, and the conductive paste is cured. Depending on the characteristics, the contact surface is bonded by drying, pressure bonding, heating, or thermocompression bonding. When using a low-melting-point metal as a conductive binder, the low-melting-point metal is previously cut into a predetermined size, placed on the surface of the electrode, and brought into contact with the tip of the columnar assembly produced by the above-described manufacturing method, Bond the contact surface by thermocompression bonding.

本発明において製造される電界放出型冷陰極をFEDのような画像表示装置の電子源として使用する場合、電極基板としては絶縁性の板の表面に予め導電性の回路を形成させた板を用いるのが好ましい。絶縁性の板としては大面積でも安価なガラスが好ましい。さらに、電極基板の表面上で、予め形成した回路の端末に導電性バインダーを塗布させておけば、次の工程で柱形状集合体を導電性バインダーに接着させるので、パターン化された柱形状集合体が各々の導電性の回路の端末に通電させることができる。これに対し配向性CNT集合体を電極基板に貼り付けた後で、パターン形成した各々の配向性CNT集合体に通電するよう回路を形成する方法は非常に煩雑である。   When the field emission cold cathode manufactured in the present invention is used as an electron source of an image display device such as an FED, a plate in which a conductive circuit is previously formed on the surface of an insulating plate is used as the electrode substrate. Is preferred. As the insulating plate, glass which is inexpensive even in a large area is preferable. Furthermore, if the conductive binder is applied to the terminal of the circuit formed in advance on the surface of the electrode substrate, the columnar aggregate is adhered to the conductive binder in the next step, so the patterned columnar aggregate The body can energize the terminal of each conductive circuit. On the other hand, a method of forming a circuit so as to energize each patterned CNT aggregate after the alignment CNT aggregate is attached to the electrode substrate is very complicated.

続いて、先述の方法で作製した配向性CNTのパターン化された柱形状集合体を、表面に導電性バインダーを塗布した電極基板上に貼り付ける。貼り付ける方法としては、該柱形状集合体の先端と該導電性バインダーの表面とを接触させて、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着させた後、該柱形状集合体を作製した基礎基板から剥がすことで行う。柱形状集合体は物理的に基礎基板に乗っているだけなので、簡単に剥離することができる。   Subsequently, the patterned columnar aggregate of oriented CNTs produced by the above-described method is attached onto an electrode substrate having a conductive binder applied to the surface. As a method of pasting, the tip of the columnar aggregate is brought into contact with the surface of the conductive binder, and the contact surface is bonded by drying, pressure bonding, heating, or thermocompression bonding, and then the columnar aggregate is This is done by peeling off the body from the base substrate. Since the columnar aggregate is only physically on the base substrate, it can be easily peeled off.

ここで、基礎基板表面に成長した配向性CNTの柱形状集合体のすべてが導電性バインダーに接触する場合は、上述した方法で転写が行える。しかしながら、該成長用の基礎基板は通常セラミックスや石英など変形不可能な材料を基材としている。ゆえに、電極基板表面が湾曲するなどの形状の場合は、該導電性バインダーの表面全体に先述の方法で得られた該柱形状集合体のすべてを接触させることは難しい。これを補う手段として、変形可能なシート上に転写した配向性CNTの柱形状集合体を用いる。すなわち、基礎基板表面上に配向性CNTのパターン化された柱形状集合体を作製する工程と、電極基板表面に導電性バインダー形成させる工程の間に、該柱形状集合体の先端を、接着と剥離の可能な表面を有する可撓性基板の表面に接着後、該接着と剥離の可能な表面と接着した柱形状集合体を残して、該基礎基板を剥離して柱形状集合体を転写する工程を介在させる方法も好ましい。当工程の実施方法としては、成長用の基礎基板表面に成長させた配向性CNTの柱形状集合体の先端を変形可能なシートからなる可撓性基板の表面と接触させ、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着し、該柱形状集合体を該基礎基板から剥離することにより、該可撓性基板シート上に配向性CNTの柱形状集合体を作製する。   Here, when all the columnar aggregates of oriented CNT grown on the surface of the base substrate come into contact with the conductive binder, transfer can be performed by the method described above. However, the basic substrate for growth is usually made of a non-deformable material such as ceramics or quartz. Therefore, when the electrode substrate surface is curved or the like, it is difficult to bring all the columnar aggregates obtained by the above-described method into contact with the entire surface of the conductive binder. As a means for compensating for this, a columnar aggregate of oriented CNT transferred onto a deformable sheet is used. That is, the tip of the columnar aggregate is bonded between the step of producing a patterned columnar aggregate of oriented CNTs on the base substrate surface and the step of forming a conductive binder on the electrode substrate surface. After bonding to the surface of a flexible substrate having a peelable surface, the columnar assembly is transferred by peeling the base substrate, leaving the columnar assembly bonded to the surface that can be bonded and peeled off. A method of interposing a process is also preferable. As a method for carrying out this step, the tip of the columnar aggregate of oriented CNTs grown on the growth base substrate surface is brought into contact with the surface of a flexible substrate made of a deformable sheet, followed by drying, pressure bonding, and heating. Alternatively, the contact surfaces are bonded by thermocompression bonding, and the columnar aggregate is peeled from the base substrate to produce a columnar aggregate of oriented CNTs on the flexible substrate sheet.

ここで使用する可撓性基板シートとしては、接着と剥離の可能な表面を有する可撓性基板が使用できる。接着と剥離の可能な表面とは、その表面に弱い粘着性または接着性があれば良く、粘着剤または接着剤がシートに全面的またはパターンに合わせて部分的に塗布される。特に、EVA系またはアクリル系の粘着剤を印刷したシートが好ましい。その他、通常の環境下では接着性や粘着性がないシートでも、湿潤雰囲気や高温など特殊な環境下で接着性や粘着性を発現するシートも使用できる。   As the flexible substrate sheet used here, a flexible substrate having a surface that can be bonded and peeled can be used. The surface that can be bonded and peeled may be weakly sticky or adhesive on the surface, and the pressure-sensitive adhesive or adhesive is applied to the sheet entirely or in a pattern. In particular, a sheet printed with an EVA or acrylic adhesive is preferred. In addition, even a sheet that does not have adhesiveness or tackiness under a normal environment, or a sheet that exhibits adhesiveness or tackiness under a special environment such as a humid atmosphere or high temperature can be used.

可撓性基板材料としては、電極基板に押圧した際に変形しうるシートが使用でき、接着性樹脂、熱硬化性樹脂、熱可塑性樹脂あるいは水溶性樹脂からなる単独または多層構造のシートが使用できる。変形可能なシートを使用することによって、可撓性基板に転写された該柱形状集合体の先端と該導電性バインダーの表面とを接着する際に柱形状集合体を導電性バインダーに完全に密着させることができ、電極基板に良好に接着することができる。   As the flexible substrate material, a sheet that can be deformed when pressed against the electrode substrate can be used, and a single or multilayer sheet made of an adhesive resin, a thermosetting resin, a thermoplastic resin, or a water-soluble resin can be used. . By using a deformable sheet, the columnar assembly is completely adhered to the conductive binder when the tip of the columnar assembly transferred to the flexible substrate is bonded to the surface of the conductive binder. And can be well bonded to the electrode substrate.

具体的な可撓性基板としては、熱可塑性樹脂からなる単層シート、粘着性アクリル樹脂/熱可塑性樹脂の二層構造シートまたは粘着性EVA/熱可塑性樹脂の接着性二層構造シートが挙げられる。熱可塑性樹脂としてはポリオレフィン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミドが例示される。また、エポキシ樹脂、フェノール樹脂に例示される熱硬化性樹脂からなるシート、ポリビニルアルコールに例示される水溶性樹脂からなるシートも使用できる。導電性バインダーとして熱硬化性導電性ペーストを用いる場合は、その硬化処理温度に耐えられるシートであることが好ましい。これら接着と剥離の可能な表面を有する二層以上からなる多層シートも使用できる。   Specific examples of the flexible substrate include a single-layer sheet made of a thermoplastic resin, a two-layer structure sheet of an adhesive acrylic resin / thermoplastic resin, or an adhesive two-layer structure sheet of an adhesive EVA / thermoplastic resin. . Examples of the thermoplastic resin include polyolefin, polyester, polycarbonate, polyamide, and polyimide. Moreover, the sheet | seat which consists of a thermosetting resin illustrated by an epoxy resin and a phenol resin, and the sheet | seat which consists of water-soluble resin illustrated by polyvinyl alcohol can also be used. When a thermosetting conductive paste is used as the conductive binder, it is preferably a sheet that can withstand the curing temperature. A multilayer sheet composed of two or more layers having a surface capable of bonding and peeling can also be used.

また、第一の可撓性基板に転写された該柱形状集合体の先端と、第二の接着と剥離の可能な表面を有する可撓性基板の表面とを接着後、該接着と剥離の可能な表面と接着した柱形状集合体を残して、第一の可撓性基板を剥離して柱形状集合体を第二の可撓性基板表面に転写する工程を介在させる方法も好ましい。   Further, after adhering the tip of the columnar aggregate transferred to the first flexible substrate and the surface of the flexible substrate having a surface that can be bonded and peeled off, the bonding and peeling are performed. A method of interposing a step of transferring the columnar aggregate to the surface of the second flexible substrate by separating the first flexible substrate while leaving the columnar aggregate bonded to the possible surface is also preferable.

第一及び第二の接着と剥離の可能な表面を有する可撓性基板としては、前記の接着と剥離の可能な表面を有する可撓性基板と同様のシートが使用でき、柱形状集合体との接着性に差をつけて転写性を高くするために、異なる種類のシートを用いることが好ましい。また、第二の接着と剥離の可能な表面を有する可撓性基板は、後の工程で導電性バインダーとして熱硬化性導電性ペーストを用いる場合は、その硬化温度に耐えられる耐熱性シートであることが好ましい。   As the flexible substrate having the first and second adhesive and peelable surfaces, the same sheet as the flexible substrate having the adhesive and peelable surface can be used. It is preferable to use different types of sheets in order to increase the transferability by making a difference in the adhesiveness. The flexible substrate having a surface that can be peeled off and bonded is a heat-resistant sheet that can withstand the curing temperature when a thermosetting conductive paste is used as a conductive binder in a later step. It is preferable.

上述した方法で電極基板上に形成した柱形状集合体の先端面は、電極表面に対して平行で平滑であり、高さは一定である。また、該柱形状集合体を構成するCNTの密度は一定、各CNTの外径は10nm以下であり、電界電子放出に有利である。   The front end surface of the columnar aggregate formed on the electrode substrate by the method described above is parallel and smooth to the electrode surface, and the height is constant. Further, the density of the CNTs constituting the columnar aggregate is constant, and the outer diameter of each CNT is 10 nm or less, which is advantageous for field electron emission.

以下に実施例をあげて本発明の方法を更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
基礎基板として、シリカ25%、アルミナ75%の組成で、厚さ2mm、一辺30mmの角型シリカアルミナ板を用いた。また、マスク板として、電鋳加工により20μm径の開口部を多数開けたものを用いた。このマスク板を基礎基板上に密着させて重ね、真空蒸着法にてアルミニウムを0.13μmの厚みで被覆した。次いで、濃度0.2mol/lの硝酸コバルト水溶液に10分間浸漬した。基板を引き上げた後、400℃、3時間空気中で焼成し、基礎基板を得た。焼成後、アルミニウム蒸着側を水平上向きにして、基礎基板を石英管状炉内に設置した。水平方向にアルゴンを360ml/minで送気しながら管状炉を700℃まで昇温した。続いて、700℃に保持したまま、360ml/minのアルゴンにプロピレンを120ml/minで混合させて管状炉内に送気した。プロピレン/アルゴン混合ガスを8分間送気した後、再びアルゴンのみに切り替えて送気しながら、管状炉の加熱を止めて、室温まで放冷した。反応終了後、基礎基板表面を走査型電子顕微鏡(SEM)観察した結果、基礎基板上側に高さ30μm、直径20μmの円柱形状で、配向性CNTのパターン化された柱形状集合体が形成されたことが確認できた。該配向性CNTを構成する個々のCNTの外径は5〜8nmであった。
次に、配向性CNTの柱形状集合体の先端と、予め30℃湿度80%雰囲気下で2時間湿潤させたポリビニルアルコールから成る水溶性シート(第一の可撓性基板)の表面とを接触させ、プレス機で2Kg/cmかけて圧着した。圧着、乾燥後、水溶性シートを引っ張り、配向性CNTの柱形状集合体を残して基礎基板を剥離することにより、水溶性シートの表面に配向性CNTの柱形状集合体を転写により作製した。さらに、水溶性シートに転写された配向性CNTの柱形状集合体の先端を、粘着性アクリル樹脂/ポリオレフィンから成る接着性シート(第二の可撓性基板)の表面に接触させ、プレス機で2Kg/cmかけて圧着した。圧着後、試料全体を湿度90%雰囲気下に1時間置き、水溶性シートを湿潤させて配向性CNTの柱形状集合体から剥離することにより、接着性シート表面に配向性CNTの柱形状集合体を転写により作製した。
別途、ガラス板に導電層を形成した電極基板を準備し、導電層表面に導電性銀ペーストを15μmの厚みにスクリーン印刷した。ここで、接着性シート上に前記作製した配向性CNTの柱形状集合体の先端とスクリーン印刷した前記導電性銀ペーストを接触させ、アルゴン雰囲気下で150℃まで加熱した。冷却後、導電性銀ペーストに接着した配向性CNTの柱形状集合体を残して接着性シートを剥離することにより、配向性CNTのパターン化された柱形状集合体が転写された電界放出型冷陰極を得た。
陰極として電界電子放出測定を行った結果を図5に示した。横軸に電界V/μm、縦軸に電流密度mA/cmを表した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A square silica alumina plate having a composition of 25% silica and 75% alumina, a thickness of 2 mm, and a side of 30 mm was used as the base substrate. Further, a mask plate having a large number of 20 μm diameter openings by electroforming was used. This mask plate was closely adhered to the base substrate, and was covered with aluminum to a thickness of 0.13 μm by vacuum deposition. Next, it was immersed in a cobalt nitrate aqueous solution having a concentration of 0.2 mol / l for 10 minutes. After raising the substrate, the substrate was baked in air at 400 ° C. for 3 hours to obtain a basic substrate. After firing, the base substrate was placed in a quartz tube furnace with the aluminum deposition side facing up horizontally. The temperature of the tubular furnace was increased to 700 ° C. while supplying argon at 360 ml / min in the horizontal direction. Subsequently, while maintaining the temperature at 700 ° C., propylene was mixed at a rate of 120 ml / min with 360 ml / min of argon, and the mixture was fed into the tubular furnace. After the propylene / argon mixed gas was supplied for 8 minutes, the heating of the tubular furnace was stopped while switching to only argon and supplying the air, and the mixture was allowed to cool to room temperature. After completion of the reaction, the surface of the basic substrate was observed with a scanning electron microscope (SEM). As a result, a columnar aggregate of oriented CNTs was formed in a cylindrical shape with a height of 30 μm and a diameter of 20 μm on the upper side of the basic substrate. I was able to confirm. The outer diameter of each CNT constituting the oriented CNT was 5 to 8 nm.
Next, the tip of the columnar aggregate of oriented CNTs is brought into contact with the surface of a water-soluble sheet (first flexible substrate) made of polyvinyl alcohol that has been previously wetted in an atmosphere of 30 ° C. and 80% humidity for 2 hours. And press-bonded with a press machine at 2 kg / cm 2 . After the pressure bonding and drying, the water-soluble sheet was pulled, and the base substrate was peeled off while leaving the columnar aggregate of oriented CNTs, thereby preparing the columnar aggregate of oriented CNTs on the surface of the water-soluble sheet. Further, the tip of the columnar aggregate of oriented CNTs transferred to the water-soluble sheet is brought into contact with the surface of the adhesive sheet (second flexible substrate) made of adhesive acrylic resin / polyolefin, and is pressed with a press. The pressure was applied over 2 kg / cm 2 . After crimping, the entire sample is placed in a 90% humidity atmosphere for 1 hour, and the water-soluble sheet is moistened and peeled off from the columnar aggregate of oriented CNTs. Was prepared by transcription.
Separately, an electrode substrate having a conductive layer formed on a glass plate was prepared, and a conductive silver paste was screen-printed to a thickness of 15 μm on the surface of the conductive layer. Here, the tip of the column-shaped aggregate of oriented CNTs produced above was brought into contact with the screen-printed conductive silver paste on an adhesive sheet, and heated to 150 ° C. in an argon atmosphere. After cooling, the adhesive sheet is peeled off while leaving the columnar aggregate of oriented CNT adhered to the conductive silver paste, thereby transferring the field-emission-type cold to which the patterned columnar aggregate of oriented CNT has been transferred. A cathode was obtained.
The result of field electron emission measurement as a cathode is shown in FIG. The horizontal axis represents the electric field V / μm, and the vertical axis represents the current density mA / cm 2 .

実施例2
基礎基板にアルミニウムを真空蒸着する工程で、マスクとして50μm径の開口部を多数空けたものを用いた他は、実施例1と同様にして電界放出型冷陰極を得た。
陰極として電界電子放出測定を行った結果を図5に示した。
Example 2
A field emission cold cathode was obtained in the same manner as in Example 1 except that in the step of vacuum-depositing aluminum on the base substrate, a mask having a large number of openings having a diameter of 50 μm was used.
The result of field electron emission measurement as a cathode is shown in FIG.

実施例3
基礎基板にアルミニウムを真空蒸着する工程で、マスクとして100μm径の開口部を多数空けたものを用いた他は、実施例1と同様にして電界放出型冷陰極を得た。
陰極として電界電子放出測定を行った結果を図5に示した。
Example 3
A field emission cold cathode was obtained in the same manner as in Example 1 except that in the step of vacuum-depositing aluminum on the base substrate, a mask having a large number of openings of 100 μm diameter was used.
The result of field electron emission measurement as a cathode is shown in FIG.

比較例1
基礎基板にアルミニウムを真空蒸着する工程で、マスクを使用せず、全面均一にアルミニウム蒸着した他は、実施例1と同様にして電界放出型冷陰極を得た。
陰極として実施例1〜3と同様な電界電子放出測定を行った結果を図5に示した。
Comparative Example 1
A field emission type cold cathode was obtained in the same manner as in Example 1 except that aluminum was vacuum-deposited on the base substrate in a vacuum deposition process without using a mask and uniformly depositing aluminum over the entire surface.
The results of field electron emission measurements similar to those of Examples 1 to 3 as the cathode are shown in FIG.

各実施例では、比較的低い印加電圧で一定の電界電子放出が均一に得られた。一方、比較例では、一定の電界電子放出を得るためには比較的高い印加電圧を要した。   In each example, constant field electron emission was uniformly obtained with a relatively low applied voltage. On the other hand, in the comparative example, a relatively high applied voltage was required to obtain constant field electron emission.

配向性CNTのパターン化された柱形状集合体および電界放出型冷陰極の製造方法Method for producing patterned columnar aggregate of oriented CNT and field emission cold cathode 第一の可撓性基板を経由する電界放出型冷陰極の製造方法Method of manufacturing field emission cold cathode via first flexible substrate 第二の可撓性基板を経由する電界放出型冷陰極の製造方法Method of manufacturing field emission cold cathode via second flexible substrate 配向性CNTのパターン化された柱形状集合体のSEM写真SEM photograph of patterned columnar aggregate of oriented CNT 電界電子放出測定結果Field electron emission measurement results

符号の説明Explanation of symbols

1 多孔質セラミック板
2 触媒担体
3 配向性CNTの柱形状集合体
4 電極基板
5 第一の可撓性基板
6 第二の可撓性基板
DESCRIPTION OF SYMBOLS 1 Porous ceramic board 2 Catalyst support 3 Column-shaped aggregate | assembly of orientation CNT 4 Electrode substrate 5 1st flexible substrate 6 2nd flexible substrate

Claims (19)

基礎基板表面上に複数個の触媒担体被膜を1個の被膜面積が0.01mm以下で任意の位置にパターン形成する工程と、該触媒担体被膜を含む該基礎基板表面に触媒作用を持つ金属元素または化合物を含浸法、浸漬法またはゾルゲル法で焼成担持する工程と、該基礎基板表面上で炭素化合物を供給し熱分解する工程を経ることにより、該触媒担体被膜上に配向性カーボンナノチューブが集合してなる柱形状の集合体を形成させることを特徴とする、配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。 A step of patterning a plurality of catalyst support coatings on the surface of the base substrate at an arbitrary position with a coating area of 0.01 mm 2 or less, and a metal having a catalytic action on the surface of the base substrate including the catalyst support coating An oriented carbon nanotube is formed on the catalyst carrier coating by performing a step of firing and supporting an element or a compound by an impregnation method, a dipping method or a sol-gel method, and a step of supplying and thermally decomposing a carbon compound on the surface of the base substrate. A method for producing a patterned columnar aggregate of oriented carbon nanotubes, characterized by forming an aggregate of columnar aggregates. 触媒担体被膜の1個の被膜面積が0.0025mm以下であることを特徴とする請求項1記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。 The method for producing a patterned columnar aggregate of oriented carbon nanotubes according to claim 1, wherein the area of one coating of the catalyst carrier coating is 0.0025 mm 2 or less. 触媒担体被膜を任意の位置にパターン形成する方法が、マスク法であることを特徴とする請求項1または2記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The method for producing a patterned columnar aggregate of oriented carbon nanotubes according to claim 1 or 2, wherein the method of patterning the catalyst support film at an arbitrary position is a mask method. 触媒担体被膜を任意の位置にパターン形成する方法が、マスクをした基礎基板に、真空蒸着法、電析法またはスパッタリング法で担体を被覆する方法であることを特徴とする請求項1〜3のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   4. The method of patterning a catalyst carrier coating at an arbitrary position is a method of coating a carrier on a masked basic substrate by a vacuum deposition method, an electrodeposition method or a sputtering method. A method for producing a patterned columnar aggregate of oriented carbon nanotubes according to any one of the above. 触媒担体被膜を任意の位置にパターン形成する方法が、基礎基板表面の全面または一部を被覆した担体被膜をリソグラフィー法で任意の位置をエッチングする方法であることを特徴とする請求項1または2記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   3. The method of patterning a catalyst carrier film at an arbitrary position is a method of etching an arbitrary position by a lithography method on a carrier film covering the entire surface or a part of the surface of a base substrate. A method for producing a patterned columnar aggregate of oriented carbon nanotubes as described. 基礎基板が多孔質のシリカアルミナ、多孔質のシリカ、または多孔質のアルミナであることを特徴とする請求項1〜5のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The patterned columnar aggregate of oriented carbon nanotubes according to any one of claims 1 to 5, wherein the base substrate is porous silica alumina, porous silica, or porous alumina. Manufacturing method. 触媒担体被膜が、アルミニウム、ゲルマニウム、それらの酸化物または混合物であることを特徴とする請求1〜6のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The method for producing a patterned columnar aggregate of oriented carbon nanotubes according to any one of claims 1 to 6, wherein the catalyst support coating is aluminum, germanium, an oxide or a mixture thereof. 触媒金属が、鉄、コバルト、ニッケル、モリブデン、それらの化合物またはそれらの混合物であることを特徴とする請求項1〜7のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The patterned columnar aggregate of oriented carbon nanotubes according to any one of claims 1 to 7, wherein the catalytic metal is iron, cobalt, nickel, molybdenum, a compound thereof, or a mixture thereof. Manufacturing method. 配向性カーボンナノチューブの柱形状集合体を構成するカーボンナノチューブの外径が10nm以下である、請求項1〜8のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The method for producing a patterned columnar aggregate of oriented carbon nanotubes according to any one of claims 1 to 8, wherein the carbon nanotube constituting the columnar aggregate of oriented carbon nanotubes has an outer diameter of 10 nm or less. . 炭素化合物が、飽和炭化水素化合物、不飽和炭化水素化合物、芳香族炭化水素化合物、および含酸素炭化水素化合物からなる群から選ばれる1種または2種以上の混合物であることを特徴とする、請求項1〜9のいずれかに記載の配向性カーボンナノチューブのパターン化された柱形状集合体の製造方法。   The carbon compound is one or a mixture of two or more selected from the group consisting of a saturated hydrocarbon compound, an unsaturated hydrocarbon compound, an aromatic hydrocarbon compound, and an oxygen-containing hydrocarbon compound, Item 10. A method for producing a patterned columnar aggregate of oriented carbon nanotubes according to any one of Items 1 to 9. 電極基板表面に配向性カーボンナノチューブのパターン化された柱形状集合体を形成させる電界放出型冷陰極の製造方法において、請求項1〜10のいずれかに記載の方法で基礎基板表面上に配向性カーボンナノチューブのパターン化された柱形状集合体を作製する工程(1)と、電極基板表面に導電性バインダーを形成させる工程(2)と、該柱形状集合体の先端と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した柱形状集合体を残して、電極基板でない方の基板を剥離して、柱形状集合体を電極基板に転写する工程(3)を含む、電界放出型冷陰極の製造方法。   In the manufacturing method of the field emission type cold cathode which forms the column-shaped aggregate | assembly of an orientation carbon nanotube on the electrode substrate surface, it is orientation on a base substrate surface by the method in any one of Claims 1-10. A step (1) of producing a patterned columnar aggregate of carbon nanotubes, a step (2) of forming a conductive binder on the surface of the electrode substrate, a tip of the columnar aggregate, and a surface of the conductive binder And (3) including the step (3) of transferring the columnar assembly to the electrode substrate by peeling off the substrate that is not the electrode substrate, leaving the columnar assembly bonded to the conductive binder. Type cold cathode manufacturing method. 前記工程(1)と工程(2)の間に、該柱形状集合体の先端と、接着と剥離の可能な表面を有する第一の可撓性基板の表面とを接着後、該可撓性基板表面と接着した柱形状集合体を残して、基礎基板を剥離して柱形状集合体を可撓性基板に転写する工程(4)を介在させる、請求項11記載の電界放出型冷陰極の製造方法。   Between the step (1) and the step (2), after bonding the tip of the columnar aggregate and the surface of the first flexible substrate having a surface that can be bonded and peeled off, the flexibility 12. The field emission cold cathode according to claim 11, wherein a step (4) of separating the base substrate and transferring the columnar aggregate to a flexible substrate is interposed, leaving the columnar aggregate bonded to the substrate surface. Production method. さらに、前記工程(4)に続き、該可撓性基板に転写された該柱形状集合体の先端と、接着と剥離の可能な表面を有する第二の可撓性基板の表面とを接着後、該第二の可撓性基板表面と接着した柱形状集合体を残して、該第一の可撓性基板を剥離して柱形状集合体を第二の可撓性基板に転写する工程(5)を介在させる請求項12記載の電界放出型冷陰極の製造方法。   Further, following the step (4), after bonding the tip of the columnar aggregate transferred to the flexible substrate and the surface of the second flexible substrate having a surface that can be bonded and peeled off , Leaving the columnar aggregate adhered to the surface of the second flexible substrate, peeling the first flexible substrate and transferring the columnar aggregate to the second flexible substrate ( The method for producing a field emission cold cathode according to claim 12, wherein 5) is interposed. 前記工程(5)を繰り返し、別の可撓性基板の表面に順次転写していく、請求項13記載の電界放出型冷陰極の製造方法。   The method of manufacturing a field emission cold cathode according to claim 13, wherein the step (5) is repeated and sequentially transferred onto the surface of another flexible substrate. 導電性バインダーが導電性ペーストである、請求項11〜14のいずれかに記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to any one of claims 11 to 14, wherein the conductive binder is a conductive paste. 導電性ペーストが、導電性銀ペースト、導電性金ペースト、導電性カーボンペースト、または導電性銅ペーストである、請求項15記載の電界放出型冷陰極の製造方法。   The method of manufacturing a field emission cold cathode according to claim 15, wherein the conductive paste is a conductive silver paste, a conductive gold paste, a conductive carbon paste, or a conductive copper paste. 導電性バインダーが融点500℃以下の低融点金属または合金であることを特徴とする、請求項11〜14のいずれかに記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to any one of claims 11 to 14, wherein the conductive binder is a low melting point metal or alloy having a melting point of 500 ° C or lower. 低融点金属が、インジウム、スズ、鉛、亜鉛、またはこれら金属の一種以上を含む合金であることを特徴とする、請求項17記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to claim 17, wherein the low melting point metal is indium, tin, lead, zinc, or an alloy containing one or more of these metals. 接着と剥離の可能な表面を有する可撓性基板が、粘着剤を表面に塗布した樹脂シートである、請求項12〜14のいずれかに記載の電界放出型冷陰極の製造方法。   The manufacturing method of the field emission type cold cathode in any one of Claims 12-14 whose flexible substrate which has the surface which can adhere | attach and peel is a resin sheet which apply | coated the adhesive to the surface.
JP2004190825A 2004-06-29 2004-06-29 Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode Pending JP2006008473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190825A JP2006008473A (en) 2004-06-29 2004-06-29 Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190825A JP2006008473A (en) 2004-06-29 2004-06-29 Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode

Publications (1)

Publication Number Publication Date
JP2006008473A true JP2006008473A (en) 2006-01-12

Family

ID=35776121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190825A Pending JP2006008473A (en) 2004-06-29 2004-06-29 Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode

Country Status (1)

Country Link
JP (1) JP2006008473A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116706A1 (en) * 2006-03-27 2007-10-18 Hitachi Zosen Corporation Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same
WO2008035730A1 (en) * 2006-09-22 2008-03-27 Otsuka Chemical Co., Ltd. Metal oxide particles carrying carbon nanotubes and granular carbon nanotubes
US7357691B2 (en) * 2003-03-27 2008-04-15 Tsinghua University Method for depositing carbon nanotubes on a substrate of a field emission device using direct-contact transfer deposition
WO2008133299A1 (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube, and method for production thereof
JP2009537339A (en) * 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
JPWO2008102813A1 (en) * 2007-02-20 2010-05-27 独立行政法人産業技術総合研究所 Beam-like body made of carbon nanotube and method for producing the same
US7811149B2 (en) 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
JP2010244737A (en) * 2009-04-02 2010-10-28 Toppan Printing Co Ltd Tripolar-structure field electron emission type lamp, and manufacturing method thereof
JP2012072495A (en) * 2010-08-31 2012-04-12 Kagoshima Univ Aluminum thin film, method for producing the same, electrolytic capacitor, catalytic metal film, and separation element
KR101410929B1 (en) * 2008-01-17 2014-06-23 삼성전자주식회사 Method of transferring carbon nanotube
WO2015064481A1 (en) * 2013-10-30 2015-05-07 日立造船株式会社 Method for producing carbon nanotube sheet
JP2015086094A (en) * 2013-10-30 2015-05-07 日立造船株式会社 Production method of carbon nanotube sheet
JP2015098418A (en) * 2013-11-20 2015-05-28 日立造船株式会社 Production method of carbon nanotube sheet
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
WO2021079990A1 (en) * 2019-10-26 2021-04-29 国立大学法人山形大学 Carbonaceous structure forming method and substrate having carbonaceous structure
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN114171359A (en) * 2021-12-06 2022-03-11 国家纳米科学中心 Carbon nanotube cold cathode electron source and alignment welding method thereof
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2001015077A (en) * 1999-06-15 2001-01-19 Cheol Jin Lee White light source and manufacture thereof
JP2002530805A (en) * 1998-11-12 2002-09-17 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Self-oriented bundle of carbon nanotubes and method for producing the same
JP2002338221A (en) * 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
JP2003286017A (en) * 2002-03-28 2003-10-07 Mitsubishi Gas Chem Co Inc Method for transferring aligned carbon nanotube film
WO2003084865A2 (en) * 2001-06-14 2003-10-16 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
JP2004055158A (en) * 2002-07-16 2004-02-19 Hitachi Zosen Corp Electrode material for electron emission element using carbon nanotube and its manufacturing method
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2002530805A (en) * 1998-11-12 2002-09-17 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Self-oriented bundle of carbon nanotubes and method for producing the same
JP2001015077A (en) * 1999-06-15 2001-01-19 Cheol Jin Lee White light source and manufacture thereof
JP2002338221A (en) * 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
WO2003084865A2 (en) * 2001-06-14 2003-10-16 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
JP2003286017A (en) * 2002-03-28 2003-10-07 Mitsubishi Gas Chem Co Inc Method for transferring aligned carbon nanotube film
JP2004055158A (en) * 2002-07-16 2004-02-19 Hitachi Zosen Corp Electrode material for electron emission element using carbon nanotube and its manufacturing method
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357691B2 (en) * 2003-03-27 2008-04-15 Tsinghua University Method for depositing carbon nanotubes on a substrate of a field emission device using direct-contact transfer deposition
US7811149B2 (en) 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
JP5178509B2 (en) * 2006-03-27 2013-04-10 日立造船株式会社 Method for producing conductive material using carbon nanotube, and electric double layer capacitor using conductive material
WO2007116706A1 (en) * 2006-03-27 2007-10-18 Hitachi Zosen Corporation Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same
JP2009537339A (en) * 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
US9181639B2 (en) 2006-05-19 2015-11-10 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US11458718B2 (en) 2006-05-19 2022-10-04 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP2018065242A (en) * 2006-05-19 2018-04-26 マサチューセッツ インスティテュート オブ テクノロジー An enhanced nanostructure composite and a method for enhancing a nanostructure
US11787691B2 (en) 2006-05-19 2023-10-17 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US10265683B2 (en) 2006-05-19 2019-04-23 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
JP2013248731A (en) * 2006-05-19 2013-12-12 Massachusetts Inst Of Technology <Mit> Nanostructure-reinforced composite article and method
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US10906285B2 (en) 2006-05-19 2021-02-02 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
WO2008035730A1 (en) * 2006-09-22 2008-03-27 Otsuka Chemical Co., Ltd. Metal oxide particles carrying carbon nanotubes and granular carbon nanotubes
JP5343228B2 (en) * 2006-09-22 2013-11-13 大塚化学株式会社 Carbon nanotube-supported metal oxide particles and granular carbon nanotubes
JPWO2008102813A1 (en) * 2007-02-20 2010-05-27 独立行政法人産業技術総合研究所 Beam-like body made of carbon nanotube and method for producing the same
US8231965B2 (en) 2007-04-24 2012-07-31 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube and method for production thereof
JP5590598B2 (en) * 2007-04-24 2014-09-17 独立行政法人産業技術総合研究所 Carbon nanotube-containing resin composite and method for producing the same
JPWO2008133299A1 (en) * 2007-04-24 2010-07-29 独立行政法人産業技術総合研究所 Carbon nanotube-containing resin composite and method for producing the same
WO2008133299A1 (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial Science And Technology Resin complex containing carbon nanotube, and method for production thereof
KR101410929B1 (en) * 2008-01-17 2014-06-23 삼성전자주식회사 Method of transferring carbon nanotube
JP2010244737A (en) * 2009-04-02 2010-10-28 Toppan Printing Co Ltd Tripolar-structure field electron emission type lamp, and manufacturing method thereof
JP2012072495A (en) * 2010-08-31 2012-04-12 Kagoshima Univ Aluminum thin film, method for producing the same, electrolytic capacitor, catalytic metal film, and separation element
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
JP2015086094A (en) * 2013-10-30 2015-05-07 日立造船株式会社 Production method of carbon nanotube sheet
WO2015064481A1 (en) * 2013-10-30 2015-05-07 日立造船株式会社 Method for producing carbon nanotube sheet
JP2015098418A (en) * 2013-11-20 2015-05-28 日立造船株式会社 Production method of carbon nanotube sheet
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
WO2021079990A1 (en) * 2019-10-26 2021-04-29 国立大学法人山形大学 Carbonaceous structure forming method and substrate having carbonaceous structure
JP7376077B2 (en) 2019-10-26 2023-11-08 国立大学法人山形大学 Method for forming a carbonaceous structure and substrate having a carbonaceous structure
CN114171359A (en) * 2021-12-06 2022-03-11 国家纳米科学中心 Carbon nanotube cold cathode electron source and alignment welding method thereof
CN114171359B (en) * 2021-12-06 2023-06-23 国家纳米科学中心 Carbon nanotube cold cathode electron source and alignment welding method thereof

Similar Documents

Publication Publication Date Title
US7150801B2 (en) Process for producing cold field-emission cathodes
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
CN1959896B (en) Field emission of Nano carbon tube, and preparation method
US7993180B2 (en) Manufacturing method of field emission element having carbon nanotubes
EP1594151A2 (en) Method of manufacturing carbon nanotube field emission device
JP2008509540A5 (en)
JP2001319560A (en) Electron emitting element, electron source, field-emission image display device and fluorescent lamp using electron emitting element and their manufacturing methods
US20090170394A1 (en) Method for making thermionic electron source
US20060238095A1 (en) Carbon nanotube, electron emission source including the carbon nanotube, electron emission device including the electron emission source, and method of manufacturing the electron emission device
JP2006120636A (en) Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source
JP4355928B2 (en) Manufacturing method of field emission cold cathode
JP2003286017A (en) Method for transferring aligned carbon nanotube film
JP4484047B2 (en) Method for producing patterned columnar aggregate of oriented carbon nanotubes and field emission cold cathode
KR20060029613A (en) Electron emitter and process of fabrication
JP2007188662A (en) Method of manufacturing field emission type cold cathode
TWI343591B (en) Field emission componet and method for making same
JP2006294525A (en) Electron emission element, its manufacturing method and image display device using it
JP2007287478A (en) Manufacturing method of oriented carbon nanotube wiring
JP2007073217A (en) Manufacturing method of field emission type cold cathode
CN112930578A (en) Carbon-metal structure and method for producing carbon-metal structure
JP5444893B2 (en) Nanocarbon material composite substrate manufacturing method, electron-emitting device using the same, and illumination lamp
JP4378992B2 (en) Carbon nanotube production equipment
JP4984130B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device
TWI401209B (en) Field emission componet and method for making same
TW201025416A (en) Method of making air-fired cathode assemblies in field emission devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426