JP2003286017A - Method for transferring aligned carbon nanotube film - Google Patents

Method for transferring aligned carbon nanotube film

Info

Publication number
JP2003286017A
JP2003286017A JP2002091582A JP2002091582A JP2003286017A JP 2003286017 A JP2003286017 A JP 2003286017A JP 2002091582 A JP2002091582 A JP 2002091582A JP 2002091582 A JP2002091582 A JP 2002091582A JP 2003286017 A JP2003286017 A JP 2003286017A
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube film
substrate
oriented carbon
transferring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002091582A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
尊 藤井
Masao Someya
昌男 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002091582A priority Critical patent/JP2003286017A/en
Publication of JP2003286017A publication Critical patent/JP2003286017A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for transferring an aligned carbon nanotube film so as to transfer the film to a fixing substrate while keeping the alignment. <P>SOLUTION: The method for transferring an aligned carbon nanotube film is carried out by depositing metal particles on the surface of the aligned carbon nanotube film grown on a substrate surface while fixing a low melting point metal film on a fixing substrate, then bringing both films into contact with each other and heating the films at a temperature equal to or higher than the melting point of the low melting point metal so as to transfer the film to the fixing substrate while keeping the alignment. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に成長した
配向性カーボンナノチューブ膜を、配向性を保ったまま
他の基板に転写する方法に関する。本発明は、電子放出
源、アクチュエーター、電池の電極、ガス分離膜、セン
サー、エネルギー貯蔵などの用途に配向性カーボンナノ
チューブ膜を使用する上で好適である。
TECHNICAL FIELD The present invention relates to a method for transferring an oriented carbon nanotube film grown on a substrate to another substrate while maintaining the orientation. INDUSTRIAL APPLICABILITY The present invention is suitable for using the oriented carbon nanotube film for applications such as an electron emission source, an actuator, a battery electrode, a gas separation film, a sensor, and energy storage.

【0002】[0002]

【従来の技術】カーボンナノチューブは、1991年に飯島
澄男氏によって発見されたもので(Nature, 354, pp.56-
58 (1991))、一般的な形状は、直径1〜100nm、長さ1〜1
00mであり、非常に細長い中空のチューブ状の炭素材料
である。カーボンナノチューブの用途としては、電子放
出源、アクチュエーター、電池の電極、ガス分離膜、セ
ンサー、エネルギー貯蔵など広い分野で提案、期待され
ている。但し、これらの用途にカーボンナノチューブを
用いる場合、個々のチューブの特徴を集約でき、効果的
かつ容易に装置に組み込めることができる形状として、
チューブが一方向に配向している形状を成している事が
好ましい。
BACKGROUND ART Carbon nanotubes were discovered by Sumio Iijima in 1991 (Nature, 354, pp.56-
58 (1991)), the general shape is 1-100 nm in diameter, 1-1 in length.
The length is 00 m, which is a carbon material in the shape of a very thin hollow tube. Carbon nanotubes have been proposed and expected in a wide range of fields such as electron emission sources, actuators, battery electrodes, gas separation membranes, sensors, and energy storage. However, when using carbon nanotubes for these applications, the characteristics of individual tubes can be aggregated, and the shape that can be effectively and easily incorporated into the device,
It is preferable that the tube has a shape oriented in one direction.

【0003】過去に垂直方向にカーボンナノチューブが
配向した基板を作製した例は、国際特許WO 00/30141、
特開2000-109308あるいは特開2001-20071などに開示さ
れている。しかしながら、これらの方法で用いられる基
板は、高温下で炭素化合物を分解する事により、カーボ
ンナノチューブを成長させるので、基板の材質が強く制
約されてしまう。すなわち、熱や化学反応に耐性のある
基板に限定せざるを得ない。
In the past, an example of producing a substrate in which carbon nanotubes are vertically oriented is described in International Patent WO 00/30141,
It is disclosed in JP 2000-109308 A, JP 2001-20071 A, and the like. However, the substrate used in these methods grows carbon nanotubes by decomposing a carbon compound at a high temperature, so that the material of the substrate is strongly restricted. That is, there is no choice but to limit to a substrate that is resistant to heat and chemical reactions.

【0004】一方、特開2001-102381では、基板上に垂
直配向したカーボンナノチューブを成長させた後、基板
を溶解することにより、成長基板からカーボンナノチュ
ーブを独立させているが、基板溶解後は個々のチューブ
はランダム配向になってしまう。また、WO/0063115では
基板上に垂直配向したカーボンナノチューブ膜を配向性
を保たせながら基板から剥がす操作が記載されている
が、他の基板に固定させる具体的な方法は記されていな
い。
On the other hand, in Japanese Unexamined Patent Publication No. 2001-102381, the carbon nanotubes are grown independently on the substrate by growing the vertically aligned carbon nanotubes and then melting the substrate. Tubes will be randomly oriented. Further, WO / 0063115 describes an operation of peeling a vertically aligned carbon nanotube film on a substrate while maintaining the orientation, but does not describe a specific method of fixing the carbon nanotube film on another substrate.

【0005】WO/0073204では、基板上に垂直配向したカ
ーボンナノチューブを成長させ、配向性カーボンナノチ
ューブ膜の膜面に金属膜を形成した後、形成した金属膜
とそれに付着した配向性カーボンナノチューブ膜を同時
に成長基板から剥がす事で、配向性カーボンナノチュー
ブ膜を成長基板から金属膜へ転写する方法を開示してい
る。しかしながら、この方法では、第二の基板として選
定される金属としては蒸着やスパッタリングなどで膜を
形成する事ができるものに限られてしまう。従って既存
の基板の表面に配向性カーボンナノチューブ膜を転写し
固定する事はできない。また、膜を形成させるまで蒸着
やスパッタリングを行うためには、大きなエネルギーを
必要とし、長い時間がかかるなど操作として煩雑であ
り、大面積の配向膜の転写には向かない。さらに、記載
されている方法だけでは配向性カーボンナノチューブ膜
を部分的に転写させて、第二の基板上にパターン形成さ
せる事はできない。
In WO / 0073204, vertically aligned carbon nanotubes are grown on a substrate, a metal film is formed on the film surface of the oriented carbon nanotube film, and then the formed metal film and the oriented carbon nanotube film attached thereto are formed. At the same time, the method of transferring the oriented carbon nanotube film from the growth substrate to the metal film by peeling it off from the growth substrate is disclosed. However, in this method, the metal selected as the second substrate is limited to those capable of forming a film by vapor deposition or sputtering. Therefore, the oriented carbon nanotube film cannot be transferred and fixed on the surface of the existing substrate. Further, in order to perform vapor deposition or sputtering until a film is formed, a large amount of energy is required, and it takes a long time, which is a complicated operation and is not suitable for transferring an alignment film having a large area. Furthermore, the described method alone cannot partially transfer the oriented carbon nanotube film to form a pattern on the second substrate.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な既存技術の問題点を解決するもので、金属性の表面を
有する任意の基板を固定用基板として選ぶ事ができ、配
向性カーボンナノチューブ膜を簡便な方法で転写させ、
しかも広い面積への転写を可能とし、さらには配向膜の
パターン形成にも利用できる事で、配向性カーボンナノ
チューブ膜の広範囲な応用をもたらす事を目的としてい
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the existing technology, and any substrate having a metallic surface can be selected as the fixing substrate, and the oriented carbon can be used. Transfer the nanotube film by a simple method,
In addition, it is possible to transfer to a large area and further to be used for pattern formation of the alignment film, and it is intended to bring about a wide range of applications of the alignment carbon nanotube film.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明の配向性カーボンナノチューブ膜
の転写方法では、成長用基板表面上に配向性のあるカー
ボンナノチューブ膜を作製する第一の工程と、該配向性
カーボンナノチューブ膜の膜面に金属微粒子を付着させ
る第二の工程と、金属性の表面を有する固定用基板と該
成長用基板上の配向性カーボンナノチューブ膜の膜面と
を接触させ加熱する第三の工程と、該固定用基板から該
成長用基板を剥離させる第四の工程からなることを特徴
としている。
As a means for solving the above problems, in the method for transferring an oriented carbon nanotube film of the present invention, a carbon nanotube film having orientation is first formed on the surface of a growth substrate. And a second step of adhering metal fine particles to the film surface of the oriented carbon nanotube film, a fixing substrate having a metallic surface, and a film surface of the oriented carbon nanotube film on the growth substrate. Is characterized by comprising a third step of contacting and heating the substrate and a fourth step of peeling the growth substrate from the fixing substrate.

【0008】尚、基板表面上に配向性のあるカーボンナ
ノチューブ膜を作製する工程に関しては、簡便な方法で
大面積の配向性のあるカーボンナノチューブ膜を作製す
る方法として、本出願人が先に出願した特願2001-12035
7に準拠している。
Regarding the step of forming an oriented carbon nanotube film on the surface of the substrate, the applicant of the present invention previously applied as a method of forming a large area oriented carbon nanotube film by a simple method. Japanese Patent Application 2001-12035
Complies with 7.

【0009】[0009]

【発明の実施の形態】以下に本発明を詳しく説明する。
本実施形態における配向性カーボンナノチューブ膜の転
写方法は、成長用基板表面上に配向性のあるカーボンナ
ノチューブ膜を作製する第一の工程と、該配向性カーボ
ンナノチューブ膜の膜面に金属微粒子を付着させる第二
の工程と、金属性の表面を有する固定用基板と該成長用
基板上の配向性カーボンナノチューブ膜の膜面とを接触
させ加熱する第三の工程と、該固定用基板から該成長用
基板を剥離させる第四の工程の、四つの工程から成る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The method for transferring an oriented carbon nanotube film according to the present embodiment includes a first step of producing an oriented carbon nanotube film on the surface of a growth substrate, and attaching metal fine particles to the film surface of the oriented carbon nanotube film. And a third step of heating the fixing substrate having a metallic surface by bringing the fixing substrate having a metallic surface into contact with the film surface of the oriented carbon nanotube film on the growing substrate and heating the fixing substrate from the fixing substrate. It comprises four steps of the fourth step of peeling the substrate for use.

【0010】まず第一の成長用基板表面上に配向性のあ
るカーボンナノチューブ膜を作製する工程では、単独で
は触媒作用を持たない元素を被覆し他の触媒作用を持つ
金属元素あるいはその化合物を担持させた基板を用い
て、炭素化合物を分解することにより、該基板表面上に
該基板と垂直方向に配向したカーボンナノチューブ膜を
形成させる。
First, in the step of producing an oriented carbon nanotube film on the surface of a first growth substrate, an element which does not have a catalytic action by itself is coated and another metallic element having a catalytic action or its compound is supported. The carbon compound is decomposed using the substrate thus formed to form a carbon nanotube film oriented on the surface of the substrate in a direction perpendicular to the substrate.

【0011】ここで、単独では触媒作用を持たない元素
としては、アルミニウムあるいはゲルマニウムが好まし
い。該基板に触媒作用を持つ金属を担持させる方法とし
ては、含浸法、浸漬法、あるいはゾルゲル法等の、一般
的な金属担持方法で良く、容易にかつ均等に金属種を大
面積の基板上に担持させる事ができる。
Here, aluminum or germanium is preferable as the element which has no catalytic action by itself. As a method of supporting a metal having a catalytic action on the substrate, a general metal supporting method such as an impregnation method, a dipping method, or a sol-gel method may be used, and a metal species can be easily and uniformly applied onto a large-area substrate. It can be supported.

【0012】カーボンナノチューブ膜を形成させる際に
使用される炭素化合物は、適当な触媒の存在下で、カー
ボンナノチューブを生じさせるものなら何でも良く、例
えば、メタン、エタン、プロパンなどの飽和炭素化合
物、エチレン、プロピレン、アセチレンなどの不飽和炭
素化合物、ベンゼン、トルエンなどの芳香族炭素化合
物、メタノール、エタノール、アセトンなどの含酸素炭
素化合物などが良く、好ましくは、メタン、エチレン、
プロピレン、アセチレンである。該炭素化合物の導入形
態としては、ガス状のまま導入しても良いし、アルゴン
のような不活性ガスと混合して導入しても良いし、ある
いは不活性ガス中の飽和蒸気として導入しても良い。ま
た、ナノチューブに組み込まれるホウ素、窒素などのヘ
テロ元素を含む化合物を混ぜることで、ヘテロ元素含有
ナノチューブとすることも可能である。該炭素化合物の
分解反応としては、熱分解が最も一般的で、好ましい反
応温度は400〜1100℃(より好ましくは500〜700℃)、
好ましい反応圧力は1kPa〜1MPa(より好ましくは10〜300
kPa)である。
The carbon compound used to form the carbon nanotube film may be any carbon compound that produces carbon nanotubes in the presence of a suitable catalyst, for example, saturated carbon compounds such as methane, ethane and propane, and ethylene. Unsaturated carbon compounds such as propylene and acetylene, aromatic carbon compounds such as benzene and toluene, oxygen-containing carbon compounds such as methanol, ethanol and acetone are preferable, and methane, ethylene, and
Propylene and acetylene. The carbon compound may be introduced in a gaseous state as it is, mixed with an inert gas such as argon, or introduced as a saturated vapor in an inert gas. Is also good. It is also possible to obtain a hetero element-containing nanotube by mixing a compound containing a hetero element such as boron or nitrogen incorporated in the nanotube. As the decomposition reaction of the carbon compound, thermal decomposition is the most general, and the preferable reaction temperature is 400 to 1100 ° C (more preferably 500 to 700 ° C),
The preferred reaction pressure is 1 kPa to 1 MPa (more preferably 10 to 300
kPa).

【0013】第二の工程においては、第一の工程で作製
した配向性カーボンナノチューブ膜の表面に金属微粒子
を付着させる。この工程を省くと、次の第三の工程にお
いて、金属性の表面を有する固定用基板と配向性カーボ
ンナノチューブ膜の膜面とを接触させ加熱しても両者が
接着せず転写ができない。ここで使用される金属はPd、
Pt、Ag、Au、In、AlあるいはGeなどの自然酸化されにく
い金属またはこれらの金属の少なくとも2種のものを用
いると良い。付着の方法としてはスパッタリングや蒸着
などの、真空中で微粒子を飛ばす方法、微粒子が分散し
ている液を塗付する方法などがある。付着する量として
は、ナノチューブの膜面側の先端部分にある程度粒子と
して散在していれば良く、金属がナノチューブの先端部
分を完全に覆う必要は無く、ましてや金属の膜を形成さ
せる必要は全く無い。
In the second step, metal fine particles are attached to the surface of the oriented carbon nanotube film produced in the first step. If this step is omitted, in the next third step, even if the fixing substrate having a metallic surface and the film surface of the oriented carbon nanotube film are brought into contact with each other and heated, the two do not adhere to each other and transfer cannot be performed. The metal used here is Pd,
It is preferable to use a metal such as Pt, Ag, Au, In, Al, or Ge that is not easily oxidized naturally or at least two kinds of these metals. Examples of the method of attachment include a method of flying fine particles in a vacuum such as sputtering and vapor deposition, and a method of applying a liquid in which fine particles are dispersed. The amount of adhesion should be such that particles are scattered to some extent on the tip of the nanotube surface, and it is not necessary for the metal to completely cover the tip of the nanotube, let alone to form a metal film. .

【0014】第三の工程においては、金属性の表面を有
する固定用基板と、第二の工程にて金属微粒子を付着さ
せた該成長用基板上の配向性カーボンナノチューブ膜の
膜面とを接触させ加熱する。固定用の基板としては、表
面が金属性の基板であれば良く、金属または合金の板、
あるいは固定用の板の表面に金属または合金の薄片をの
せた基板でも良い。固定用の板としては、金属または合
金などの導電性の板でも良いし、シリコンウエハーなど
の半導体性の板でも良いし、ガラス板やプラスチック板
などの絶縁性の板でも良い。
In the third step, the fixing substrate having a metallic surface is brought into contact with the film surface of the oriented carbon nanotube film on the growth substrate to which the metal fine particles are attached in the second step. And heat. The fixing substrate may be a substrate having a metallic surface, a metal or alloy plate,
Alternatively, a substrate in which a thin piece of metal or alloy is placed on the surface of a fixing plate may be used. The fixing plate may be a conductive plate such as a metal or an alloy, a semiconductor plate such as a silicon wafer, or an insulating plate such as a glass plate or a plastic plate.

【0015】ここで、加熱温度に関しては、固定用基板
表面の金属あるいは合金の融点まで昇温する。この際、
熱で溶けた金属あるいは合金と、配向性カーボンナノチ
ューブ膜の膜面に付着させた金属粒子とが融着すること
によって、配向性カーボンナノチューブ膜を固定用基板
表面に接着する事ができる。従って固定用の板の表面に
金属や合金の薄片を乗せたものを固定用基板とする場合
は、固定用の板の熱的ダメージを低減する意味で、低融
点の金属または低融点合金を選んだ方が好ましい。これ
ら低融点の金属または低融点合金の融点は100〜500℃で
ある事が好ましい。低融点金属としては、例えばインジ
ウム、スズ、鉛、亜鉛などが良く、低融点合金として
は、インジウム-スズ合金、スズ-鉛合金などが良い。こ
の様にして、カーボンナノチューブを成長させる条件下
では耐性の無い、金属あるいは合金の板、ガラス板、ま
たはプラスチック板などにも、その表面に低融点の金属
または低融点合金を乗せることにより、熱的なダメージ
を避けて配向性カーボンナノチューブ膜を転写する事が
できる。
The heating temperature is raised to the melting point of the metal or alloy on the surface of the fixing substrate. On this occasion,
The metal or alloy melted by heat and the metal particles attached to the film surface of the oriented carbon nanotube film are fused, whereby the oriented carbon nanotube film can be adhered to the surface of the fixing substrate. Therefore, when a thin plate of metal or alloy is placed on the surface of the fixing plate as the fixing substrate, a metal with a low melting point or a low melting point alloy is selected to reduce the thermal damage to the fixing plate. Is preferable. The low melting point metal or low melting point alloy preferably has a melting point of 100 to 500 ° C. The low melting point metal is preferably indium, tin, lead, zinc or the like, and the low melting point alloy is preferably indium-tin alloy or tin-lead alloy. In this way, a metal or alloy plate, a glass plate, or a plastic plate, which has no resistance under the conditions for growing carbon nanotubes, is coated with a low-melting metal or a low-melting alloy on the surface of It is possible to transfer the oriented carbon nanotube film while avoiding mechanical damage.

【0016】第四の工程で、該固定用基板から該成長用
基板を剥離させる。該固定用基板の表面に接着した配向
性カーボンナノチューブ膜は、配向性を保ったまま該成
長用基板から剥離し、転写が完了する。
In the fourth step, the growth substrate is separated from the fixing substrate. The oriented carbon nanotube film adhered to the surface of the fixing substrate is separated from the growth substrate while maintaining the orientation, and the transfer is completed.

【0017】次に、配向性カーボンナノチューブ膜を転
写させてパターン形成する方法を、ディスプレイの電子
放出源に応用する場合を例にして説明する。この際、配
向膜は例えば1mm角に区分されて、一個単位がそれぞれ
各画素の電子源となり、各単位同士は互いに絶縁されて
なければならない。そこで、固定用の基板としては、ガ
ラスあるいはプラスチックのような絶縁性の板に低融点
金属または低融点合金を乗せた固定用基板を準備する。
ここで、絶縁性基板には予め導電用回路を形成させた方
が、配向膜を転写させた後に形成させるよりも遥かに簡
便である。
Next, a method of transferring an oriented carbon nanotube film to form a pattern will be described by taking as an example the case of applying it to an electron emission source of a display. At this time, the alignment film is divided into, for example, 1 mm square, one unit serves as an electron source of each pixel, and each unit must be insulated from each other. Therefore, as a fixing substrate, a fixing substrate prepared by placing a low melting point metal or a low melting point alloy on an insulating plate such as glass or plastic is prepared.
Here, it is much simpler to previously form the conductive circuit on the insulating substrate than to form the conductive film after transferring the alignment film.

【0018】このようにして準備した、低融点金属また
は低融点合金を乗せた固定用基板に、金属微粒子が付着
した配向性カーボンナノチューブ膜の膜面を接触させ、
該金属または該合金の融点まで昇温し熱的に貼り合わせ
る。冷却後、該成長用基板を、該固定用基板から剥がす
ことで、該低融点金属または該低融点合金が乗った部分
のみ、配向性カーボンナノチューブ膜を転写する事がで
き、それ以外の絶縁性の板が剥き出しの部分には転写さ
れない。以上の手順によって、配向性カーボンナノチュ
ーブ膜を区分し、互いに絶縁した状態で、固定用基板に
転写する事ができる。導電性回路を含む場合の、配向性
カーボンナノチューブ膜転写後の固定用基板の模式図を
図1に示す。
The film surface of the oriented carbon nanotube film to which the metal fine particles are attached is brought into contact with the fixing substrate on which the low melting point metal or low melting point alloy is placed, which is prepared in this manner,
The temperature is raised to the melting point of the metal or the alloy and the layers are thermally bonded. After cooling, by peeling the growth substrate from the fixing substrate, it is possible to transfer the oriented carbon nanotube film only to the portion on which the low melting point metal or the low melting point alloy is mounted, and other insulating properties The plate is not transferred to the exposed part. By the above procedure, the oriented carbon nanotube film can be divided and transferred to the fixing substrate while being insulated from each other. FIG. 1 shows a schematic diagram of a fixing substrate after transfer of an oriented carbon nanotube film, including a conductive circuit.

【0019】上記の本発明の方法で配向性カーボンナノ
チューブ膜は成長用基板上で合成され、固定用基板に転
写されるが、配向性カーボンナノチューブ膜を転写した
後の成長用基板をリサイクルすることにより、より安価
な配向性カーボンナノチューブ膜を工業的に提供できる
ようになる。すなわち、配向性カーボンナノチューブ膜
を転写した後の成長用基板を、焼成、研磨あるいは洗浄
の少なくとも一つを行う事によって、残留した配向性カ
ーボンナノチューブ膜、酸化あるいは炭化してしまった
金属元素あるいはその化合物を除く事ができる。この処
理を行った基板を用いて第一の工程を施せば配向性カー
ボンナノチューブ膜を成長させることができ、第二以下
の工程を繰り返すことにより、成長用基板を再使用しな
がら配向性カーボンナノチューブ膜を生産することがで
きる。
The oriented carbon nanotube film is synthesized on the growth substrate by the above-mentioned method of the present invention and transferred to the fixing substrate, but the growth substrate after transferring the oriented carbon nanotube film is recycled. This makes it possible to industrially provide a cheaper oriented carbon nanotube film. That is, the growth substrate after the transfer of the oriented carbon nanotube film is subjected to at least one of baking, polishing, and washing to leave the remaining oriented carbon nanotube film, the oxidized or carbonized metal element, or the metal element thereof. Compounds can be removed. The oriented carbon nanotube film can be grown by performing the first step using the substrate subjected to this treatment, and by repeating the second and subsequent steps, the oriented carbon nanotube film can be reused while the growth substrate is reused. Membranes can be produced.

【0020】[0020]

【実施例】以下に実施例をあげて本発明の方法を更に詳
しく説明するが、本発明はこれらの実施例によって何ら
限定されるものではない。 実施例1基板上に配向性カーボンナノチューブ膜を成長させる工
程(第一の工程) シリカ25%、アルミナ75%の組成で、厚さ2mm、一辺75mm
の角型シリカアルミナを基板として選び、真空蒸着法に
てアルミニウムを蒸着した。この際のアルミニウム薄膜
の厚さは0.5μmであった。この基板を、濃度0.2mol/lの
硝酸コバルト水溶液に2時間浸漬した。基板を引き上げ
た後、400℃、3時間空気中で焼成した。焼成後、アルミ
ニウム蒸着側を水平上向きにして、基板を石英管状炉内
に設置した。水平方向にアルゴンを1000cm3/minで送風
しながら管状炉を700℃まで昇温した。続いて、700℃に
保持したまま、1000cm3/minのアルゴンにプロピレンを3
00cm3/minで混合させて管状炉内に送風した。プロピレ
ン/アルゴン混合ガスを20分間流した後、再びアルゴン
のみに切り替えて流しながら、管状炉の加熱を止めて、
室温まで放冷した。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 A process for growing an oriented carbon nanotube film on a substrate.
(First step) 25% silica, 75% alumina, thickness 2 mm, side 75 mm
The square silica-alumina of was selected as a substrate, and aluminum was vapor-deposited by a vacuum vapor deposition method. At this time, the thickness of the aluminum thin film was 0.5 μm. This substrate was immersed in a cobalt nitrate aqueous solution having a concentration of 0.2 mol / l for 2 hours. After pulling up the substrate, it was baked in air at 400 ° C. for 3 hours. After firing, the substrate was placed in a quartz tube furnace with the aluminum deposition side facing upward. The tube furnace was heated to 700 ° C. while blowing argon at 1000 cm 3 / min in the horizontal direction. Subsequently, while maintaining the temperature at 700 ° C, propylene was mixed with 1000 cm 3 / min of argon in an amount of 3 times.
The mixture was mixed at 00 cm 3 / min and blown into the tubular furnace. After flowing the propylene / argon mixed gas for 20 minutes, stop the heating of the tubular furnace while switching to argon only and flowing again.
It was left to cool to room temperature.

【0021】反応終了後、基板表面を走査型電子顕微鏡
(SEM)観察した結果、基板上側に厚さ約100μmの配向性
カーボンナノチューブ膜が形成されたことが確認でき
た。この基板の断面を30°傾けて撮影した像を図2に示
す。また、この配向膜の透過型電子顕微鏡(TEM)観察を
行ったところ、配向膜を構成するカーボンナノチューブ
は、外径5〜8nm、5〜7層程度の多層ナノチューブであっ
た。
After the reaction is completed, the surface of the substrate is scanned with a scanning electron microscope.
As a result of (SEM) observation, it was confirmed that an oriented carbon nanotube film having a thickness of about 100 μm was formed on the upper side of the substrate. Figure 2 shows an image of the cross section of this substrate taken at an angle of 30 °. Further, when the alignment film was observed by a transmission electron microscope (TEM), the carbon nanotubes forming the alignment film were multi-walled nanotubes having an outer diameter of 5 to 8 nm and about 5 to 7 layers.

【0022】成長した配向性カーボンナノチューブ膜を
転写する工程(第二から第四までの工程) 表面に厚さ0.1mmのインジウム薄板を乗せた銅板を固定
用基板とした。まず、得られた配向性カーボンナノチュ
ーブ膜の膜面にPtスパッタリングを10分間行った。次
に、配向性カーボンナノチューブ膜のPt粒子が付着した
面と、銅板のインジウム薄板を乗せた側とを接触させた
まま、アルゴン雰囲気下で180℃まで加熱した。冷却
後、両者を剥がす事でインジウム薄板の全面に配向性カ
ーボンナノチューブ膜を転写させた。転写した配向膜の
断面を30°傾けて撮影した像を図3に示す。
The grown oriented carbon nanotube film
A copper plate on which a 0.1 mm thick indium thin plate was placed on the surface of the transfer step (second to fourth steps) was used as the fixing substrate. First, Pt sputtering was performed for 10 minutes on the film surface of the obtained oriented carbon nanotube film. Next, with the Pt particle-attached surface of the oriented carbon nanotube film and the side of the copper plate on which the indium thin plate was placed being in contact with each other, the surface was heated to 180 ° C. in an argon atmosphere. After cooling, they were peeled off to transfer the oriented carbon nanotube film to the entire surface of the indium thin plate. Figure 3 shows an image taken by tilting the cross section of the transferred alignment film by 30 °.

【0023】実施例2基板上に配向性カーボンナノチューブ膜を成長させる工
程(第一の工程) 実施例1と同様に配向性カーボンナノチューブ膜を成長
させた。成長した配向性カーボンナノチューブ膜を転写する工程
(第二から第四までの工程) 図4に示すように、ガラス板1上に、角型インジウム薄片
5(厚さ0.1mm)が付着したものを固定用基板として準備
した。また、図5に示すように、シリカアルミナ基板6に
成長した配向性カーボンナノチューブ膜7の膜面に金ス
パッタリングを10分間行い、金粒子8を膜面近くのカー
ボンナノチューブの外壁に付着させた。次に、配向性カ
ーボンナノチューブ膜7の金粒子が付着した面とガラス
板1上にインジウム薄片5が付着した側とを接触させたま
ま、アルゴン雰囲気下で180℃まで加熱する。この様子
を模式的に示したのが図6である。冷却後、両基板を剥
がす事で、図7に示すようにインジウム薄片5に接触して
いた配向膜9は配向性を保ったまま成長用基板6から固定
用基板1へと転写され、図8に示すようにインジウム薄片
5に接触していなかった配向膜の一部分10は成長用基板6
に残った。このようにして、ガラス板上に配向性カーボ
ンナノチューブをパターン形成した。
Example 2 Process for growing an oriented carbon nanotube film on a substrate
(First step) An oriented carbon nanotube film was grown in the same manner as in Example 1. Process for transferring grown oriented carbon nanotube film
(Second to fourth steps) As shown in FIG. 4, a square indium thin piece is formed on the glass plate 1.
A substrate to which 5 (thickness 0.1 mm) was attached was prepared as a fixing substrate. Further, as shown in FIG. 5, gold sputtering was performed on the film surface of the oriented carbon nanotube film 7 grown on the silica alumina substrate 6 for 10 minutes to deposit the gold particles 8 on the outer wall of the carbon nanotube near the film surface. Next, with the surface of the oriented carbon nanotube film 7 on which the gold particles are attached and the side of the glass plate 1 on which the indium flakes 5 are attached, they are heated to 180 ° C. in an argon atmosphere. This is schematically shown in FIG. After cooling, both substrates are peeled off, and as shown in FIG. 7, the alignment film 9 that was in contact with the indium thin piece 5 was transferred from the growth substrate 6 to the fixing substrate 1 while maintaining the orientation, and FIG. Indium flakes as shown in
The portion 10 of the alignment film that was not in contact with 5 is the growth substrate 6
Remained in. In this way, oriented carbon nanotubes were patterned on the glass plate.

【0024】実施例3 実施例1にて配向性カーボンナノチューブ膜を剥離後
に、シリカアルミナ基板を空気焼成炉にて800℃で焼成
する。次に、10%硝酸にて18時間浸漬する。硝酸から引
き上げた後、水洗浄し、再び空気焼成炉にて400℃で焼
成する。冷却後、実施例1と同様の操作で配向性カーボ
ンナノチューブ膜を合成したところ、SEM観察の結果、
厚さ約80μmの配向性カーボンナノチューブ膜が形成さ
れたことが確認できた。さらに、実施例1と同様の操作
で配向膜の転写を行う事が可能であった。
Example 3 After the oriented carbon nanotube film was peeled off in Example 1, the silica-alumina substrate was baked at 800 ° C. in an air baking furnace. Next, it is immersed in 10% nitric acid for 18 hours. After pulling up from nitric acid, it is washed with water and fired again at 400 ° C in an air firing furnace. After cooling, when an oriented carbon nanotube film was synthesized by the same operation as in Example 1, the result of SEM observation,
It was confirmed that an oriented carbon nanotube film having a thickness of about 80 μm was formed. Furthermore, it was possible to transfer the alignment film by the same operation as in Example 1.

【0025】比較例1 実施例1と同様に配向性カーボンナノチューブ膜を成長
させた。第二の工程を省略した以外は、実施例2と同様
の操作を行った。冷却後、両基板を剥がしたが、配向性
カーボンナノチューブ膜は成長用基板に乗ったままで、
全く転写されなかった。
Comparative Example 1 An oriented carbon nanotube film was grown in the same manner as in Example 1. The same operation as in Example 2 was performed except that the second step was omitted. After cooling, both substrates were peeled off, but the oriented carbon nanotube film remained on the growth substrate,
It was not transcribed at all.

【0026】[0026]

【本発明の効果】配向性カーボンナノチューブ膜の転写
において、金属性の表面を有する任意の基板を固定用基
板として選ぶ事ができ、簡便な方法で広い面積への転写
を可能とし、さらには配向膜のパターン形成にも利用で
きる事で、配向性カーボンナノチューブ膜の広範囲な応
用をもたらす事ができる。
EFFECTS OF THE INVENTION In the transfer of the oriented carbon nanotube film, any substrate having a metallic surface can be selected as the fixing substrate, and transfer to a large area can be achieved by a simple method. It can also be used for forming a pattern of a film, and thus can bring about a wide range of applications of the oriented carbon nanotube film.

【図面の簡単な説明】[Brief description of drawings]

【図1】導電性回路を含む配向性カーボンナノチューブ
膜転写後の固定用基板の模式図
FIG. 1 is a schematic diagram of a fixing substrate after transfer of an oriented carbon nanotube film including a conductive circuit.

【図2】配向性カーボンナノチューブ膜を形成させた、
シリカアルミナ基板の断面のSEM像
[Fig. 2] An oriented carbon nanotube film is formed,
SEM image of cross section of silica-alumina substrate

【図3】インジウム薄板上に転写された配向性カーボン
ナノチューブ膜の断面のSEM像
[Fig. 3] SEM image of a cross section of an oriented carbon nanotube film transferred onto an indium thin plate.

【図4】インジウム薄片を乗せた固定用ガラス基板[Fig. 4] Glass substrate for fixing with indium flakes on it

【図5】金スパッタリングを行った、成長用基板上の配
向性カーボンナノチューブ膜
[Fig. 5] Oriented carbon nanotube film on a growth substrate after gold sputtering

【図6】固定用基板上のインジウム薄片面と、成長用基
板上の金スパッタリングを行った配向性カーボンナノチ
ューブ膜面とを接触させた模式図。
FIG. 6 is a schematic diagram in which a thin piece of indium on the fixing substrate is in contact with the surface of the oriented carbon nanotube film on which the gold sputtering has been performed on the growth substrate.

【図7】固定用基板上に転写された配向性カーボンナノ
チューブ
[Fig. 7] Oriented carbon nanotubes transferred onto a fixing substrate

【図8】転写されずに成長用基板に残った配向性カーボ
ンナノチューブ
FIG. 8 Oriented carbon nanotubes that have not been transferred and remain on the growth substrate

【符号の簡単な説明】[Simple explanation of symbols]

1--ガラス板 2--導電性回路 3--低融点金属 4--転写された配向性カーボンナノチューブ 5--インジウム薄片 6--成長用シリカアルミナ基板 7--基板上に成長した配向性カーボンナノチューブ膜 8--金粒子 9--インジウム薄片上に転写された配向性カーボンナノ
チューブ 10--成長用基板に残った配向性カーボンナノチューブ
1-Glass plate 2-Conductive circuit 3-Low melting point metal 4-Transposed oriented carbon nanotubes 5-Indium flakes 6-Growing silica alumina substrate 7-Orientation grown on the substrate Carbon nanotube film 8--Gold particles 9--Aligned carbon nanotubes transferred onto indium flakes 10--Aligned carbon nanotubes remaining on the growth substrate

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】成長用基板表面上に配向性のあるカーボン
ナノチューブ膜を作製する第一の工程と、該配向性カー
ボンナノチューブ膜の膜面に金属微粒子を付着させる第
二の工程と、金属性の表面を有する固定用基板と該成長
用基板上の配向性カーボンナノチューブ膜の膜面とを接
触させ加熱する第三の工程と、該固定用基板から該成長
用基板を剥離させる第四の工程からなることを特徴とす
る、配向性カーボンナノチューブ膜の転写方法。
1. A first step of producing an oriented carbon nanotube film on a surface of a growth substrate, a second step of attaching metal fine particles to the film surface of the oriented carbon nanotube film, and a metallic property. Third step of heating by heating the fixing substrate having the surface of 5 and the film surface of the oriented carbon nanotube film on the growing substrate, and the fourth step of peeling the growing substrate from the fixing substrate. A method for transferring an oriented carbon nanotube film, which comprises:
【請求項2】基板表面上に配向性のあるカーボンナノチ
ューブ膜を作製する工程が、単独では触媒作用を持たな
い元素を被覆し他の触媒作用を持つ金属元素あるいはそ
の化合物を担持させた基板を用いて、炭素化合物を分解
することにより、該基板表面上に該基板と垂直方向に配
向したカーボンナノチューブ膜を形成させることを特徴
とする、請求項1に記載の配向性カーボンナノチューブ
膜の転写方法。
2. The step of producing an oriented carbon nanotube film on the surface of a substrate is carried out by coating a substrate which is coated with an element which does not have a catalytic action by itself and which carries another metallic element having a catalytic action or a compound thereof. The method for transferring an oriented carbon nanotube film according to claim 1, wherein a carbon nanotube film oriented in a direction perpendicular to the substrate is formed on the surface of the substrate by decomposing a carbon compound using the method. .
【請求項3】単独では触媒作用を持たない元素がアルミ
ニウムあるいはゲルマニウムであることを特徴とする請
求項2に記載の配向性カーボンナノチューブ膜の転写方
法。
3. The method for transferring an oriented carbon nanotube film according to claim 2, wherein the element having no catalytic action by itself is aluminum or germanium.
【請求項4】触媒作用を持つ金属元素あるいはその化合
物を担持する方法が、含浸法、浸漬法、あるいはゾルゲ
ル法である事を特徴とする、請求項2に記載の配向性カ
ーボンナノチューブ膜の転写方法。
4. The transfer of an oriented carbon nanotube film according to claim 2, wherein the method of supporting the metal element having a catalytic action or its compound is an impregnation method, an immersion method, or a sol-gel method. Method.
【請求項5】炭素化合物が、飽和炭化水素化合物、不飽
和炭化水素化合物、芳香族炭化水素化合物、含酸素炭化
水素化合物からなる群から選ばれる1種あるいは2種以
上の混合物であることを特徴とする、請求項2に記載の
配向性カーボンナノチューブ膜の転写方法。
5. The carbon compound is one kind or a mixture of two or more kinds selected from the group consisting of a saturated hydrocarbon compound, an unsaturated hydrocarbon compound, an aromatic hydrocarbon compound and an oxygen-containing hydrocarbon compound. The method for transferring an oriented carbon nanotube film according to claim 2, wherein
【請求項6】金属微粒子の金属がPd、Pt、Ag、Au、In、
AlあるいはGe、またはこれらの金属の少なくとも2種か
ら成る事を特徴とする、請求項1に記載の配向性カーボ
ンナノチューブ膜の転写方法。
6. The metal of the metal fine particles is Pd, Pt, Ag, Au, In,
2. The method for transferring an oriented carbon nanotube film according to claim 1, wherein the method comprises transferring Al or Ge, or at least two kinds of these metals.
【請求項7】金属性の表面を有する固定用基板が、金属
または合金の基板である事を特徴とする、請求項1に記
載の配向性カーボンナノチューブ膜の転写方法。
7. The method for transferring an oriented carbon nanotube film according to claim 1, wherein the fixing substrate having a metallic surface is a metal or alloy substrate.
【請求項8】金属性の表面を有する固定用基板が、固定
用の板に低融点金属または低融点合金を乗せた基板であ
る事を特徴とする、請求項1に記載の配向性カーボンナ
ノチューブ膜の転写方法。
8. The oriented carbon nanotube according to claim 1, wherein the fixing substrate having a metallic surface is a fixing plate on which a low melting point metal or a low melting point alloy is placed. Membrane transfer method.
【請求項9】固定用の板が、導電性の板である事を特徴
とする、請求項8に記載の配向性カーボンナノチューブ
膜の転写方法。
9. The method for transferring an oriented carbon nanotube film according to claim 8, wherein the fixing plate is a conductive plate.
【請求項10】固定用の板が、半導体性の板である事を
特徴とする、請求項8に記載の配向性カーボンナノチュ
ーブ膜の転写方法。
10. The method for transferring an oriented carbon nanotube film according to claim 8, wherein the fixing plate is a semiconductor plate.
【請求項11】固定用の板が、絶縁性の板である事を特
徴とする、請求項8に記載の配向性カーボンナノチュー
ブ膜の転写方法。
11. The method for transferring an oriented carbon nanotube film according to claim 8, wherein the fixing plate is an insulating plate.
【請求項12】低融点金属または低融点合金の融点が、
100〜500℃である事を特徴とする、請求項8に記載の配
向性カーボンナノチューブ膜の転写方法。
12. The melting point of the low melting point metal or low melting point alloy is
9. The method for transferring an oriented carbon nanotube film according to claim 8, wherein the temperature is 100 to 500 ° C.
【請求項13】固定用の板が、予め導電用の回路を形成
させた絶縁性の板である事を特徴とする、請求項8に記
載の配向性カーボンナノチューブ膜の転写方法。
13. The method for transferring an oriented carbon nanotube film according to claim 8, wherein the fixing plate is an insulating plate on which a conductive circuit is formed in advance.
【請求項14】剥離後の成長用基板を、焼成、研磨ある
いは洗浄の少なくとも一つを行う事により、再使用する
ことを特徴とする、請求項1に記載の配向性カーボンナ
ノチューブ膜の転写方法。
14. The method for transferring an oriented carbon nanotube film according to claim 1, wherein the growth substrate after peeling is reused by performing at least one of baking, polishing and washing. .
JP2002091582A 2002-03-28 2002-03-28 Method for transferring aligned carbon nanotube film Pending JP2003286017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091582A JP2003286017A (en) 2002-03-28 2002-03-28 Method for transferring aligned carbon nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091582A JP2003286017A (en) 2002-03-28 2002-03-28 Method for transferring aligned carbon nanotube film

Publications (1)

Publication Number Publication Date
JP2003286017A true JP2003286017A (en) 2003-10-07

Family

ID=29236633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091582A Pending JP2003286017A (en) 2002-03-28 2002-03-28 Method for transferring aligned carbon nanotube film

Country Status (1)

Country Link
JP (1) JP2003286017A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007571A1 (en) * 2003-07-18 2005-01-27 Norio Akamatsu Carbon nanotube manufacturing apparatus and method for manufacturing carbon nanotube
JP2005322646A (en) * 2004-05-06 2005-11-17 Samsung Sdi Co Ltd Method of manufacturing cnt field emission element
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2006027948A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of manufacturing monolayer carbon nanotube
WO2007124477A2 (en) * 2006-04-21 2007-11-01 William Marsh Rice University Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
JP2009167023A (en) * 2008-01-11 2009-07-30 Hitachi Zosen Corp Method for regenerating used substrate
JP2010197387A (en) * 2009-02-20 2010-09-09 Qinghua Univ Sensor using carbon nanotube array, and method of manufacturing the same
US7811149B2 (en) * 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
JP2011006265A (en) * 2009-06-23 2011-01-13 Oki Data Corp Method for releasing graphene layer, method for producing graphene wafer, graphene wafer and method for producing graphene element
JP2011014684A (en) * 2009-07-01 2011-01-20 Fujitsu Ltd Radio wave absorber
US8048256B2 (en) * 2007-02-09 2011-11-01 Tsinghua University Carbon nanotube film structure and method for fabricating the same
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
US8734996B2 (en) 2007-06-01 2014-05-27 Tsinghua University Anode of lithium battery and method for fabricating the same
JP2014227311A (en) * 2013-05-21 2014-12-08 大陽日酸株式会社 Substrate reuse method and substrate cleaning apparatus
US9013861B2 (en) 2010-04-02 2015-04-21 Intel Corporation Charge storage device, method of making same, method of making an electrically conductive structure for same, mobile electronic device using same, and microelectronic device containing same
JP2016517338A (en) * 2013-02-28 2016-06-16 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Nano-structured film cartridge-based dispensing
US10265683B2 (en) 2006-05-19 2019-04-23 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
CN112312669A (en) * 2019-07-26 2021-02-02 北京梦之墨科技有限公司 Metal pattern, and preparation method and preparation device of metal pattern
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007571A1 (en) * 2003-07-18 2005-01-27 Norio Akamatsu Carbon nanotube manufacturing apparatus and method for manufacturing carbon nanotube
JP2005322646A (en) * 2004-05-06 2005-11-17 Samsung Sdi Co Ltd Method of manufacturing cnt field emission element
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2006027948A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of manufacturing monolayer carbon nanotube
US7811149B2 (en) * 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
WO2007124477A2 (en) * 2006-04-21 2007-11-01 William Marsh Rice University Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
WO2007124477A3 (en) * 2006-04-21 2008-04-24 Univ Rice William M Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US9067791B2 (en) 2006-04-21 2015-06-30 William Marsh Rice University Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US10906285B2 (en) 2006-05-19 2021-02-02 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US11787691B2 (en) 2006-05-19 2023-10-17 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US11458718B2 (en) 2006-05-19 2022-10-04 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US10265683B2 (en) 2006-05-19 2019-04-23 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US8048256B2 (en) * 2007-02-09 2011-11-01 Tsinghua University Carbon nanotube film structure and method for fabricating the same
US8734996B2 (en) 2007-06-01 2014-05-27 Tsinghua University Anode of lithium battery and method for fabricating the same
JP2009167023A (en) * 2008-01-11 2009-07-30 Hitachi Zosen Corp Method for regenerating used substrate
JP2010197387A (en) * 2009-02-20 2010-09-09 Qinghua Univ Sensor using carbon nanotube array, and method of manufacturing the same
US9068923B2 (en) 2009-02-20 2015-06-30 Tsinghua University Method for fabricating carbon nanotube array sensor
JP2011006265A (en) * 2009-06-23 2011-01-13 Oki Data Corp Method for releasing graphene layer, method for producing graphene wafer, graphene wafer and method for producing graphene element
JP2011014684A (en) * 2009-07-01 2011-01-20 Fujitsu Ltd Radio wave absorber
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2016026375A (en) * 2009-07-06 2016-02-12 ゼプター コーポレイションZeptor Corporation Carbon nanotube composite material structure and method of manufacturing the same
US9368290B2 (en) 2010-04-02 2016-06-14 Intel Corporation Charge storage device, method of making same, method of making an electrically conductive structure for same, mobile electronic device using same, and microelectronic device containing same
US9013861B2 (en) 2010-04-02 2015-04-21 Intel Corporation Charge storage device, method of making same, method of making an electrically conductive structure for same, mobile electronic device using same, and microelectronic device containing same
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
JP2016517338A (en) * 2013-02-28 2016-06-16 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Nano-structured film cartridge-based dispensing
JP2014227311A (en) * 2013-05-21 2014-12-08 大陽日酸株式会社 Substrate reuse method and substrate cleaning apparatus
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN112312669A (en) * 2019-07-26 2021-02-02 北京梦之墨科技有限公司 Metal pattern, and preparation method and preparation device of metal pattern

Similar Documents

Publication Publication Date Title
JP2003286017A (en) Method for transferring aligned carbon nanotube film
JP3912583B2 (en) Method for producing oriented carbon nanotube film
US7491269B2 (en) Method for catalytic growth of nanotubes or nanofibers comprising a NiSi alloy diffusion barrier
KR100730496B1 (en) Method for fabrication of patterned carbon nanotube films
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
EP1885909B1 (en) Nanostructure production methods
KR101513136B1 (en) Method for manufacturing graphene film, graphene film manufactured by the method, electronic devices comprising the graphene film
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
JP2004523460A (en) Method and apparatus for producing carbon nanotubes
US7098112B2 (en) Preparation of field emission array comprising nanostructures
US20060257565A1 (en) Method of preparing catalyst layer for synthesis of carbon nanotubes and method of synthesizing carbon nanotubes using the same
JP2004182581A (en) Method for producing carbon nanotube
JP2004168634A (en) Carbon nanotube matrix and method of growing the same
US7707962B2 (en) Apparatus for forming carbon nanotube film
JP2004002182A (en) Oriented carbon nanotube film and its manufacturing method
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2008201594A (en) Structure of fine fibers and its production method
JP2001220674A (en) Carbon nanotube, producing method therefor and electron emitting source
US20070259462A1 (en) Carbon nanotube structures and methods of manufacture and use
TWI476149B (en) Method for making carbon nanotube film
JP2004281388A (en) Manufacturing method of field emission type cold cathode
KR20060002476A (en) Method for preparing catalyst base for manufacturing carbon nano tubes, and method for manufacturing carbon nano tubes employing the same
JP2006306704A (en) Method of forming carbon film and carbon film
CN100573778C (en) Field-transmitting cathode and manufacture method thereof
US20040180157A1 (en) Tube laminate and method for producing the same