JP2004127737A - Carbon nanotube conductive material and its manufacturing method - Google Patents

Carbon nanotube conductive material and its manufacturing method Download PDF

Info

Publication number
JP2004127737A
JP2004127737A JP2002290740A JP2002290740A JP2004127737A JP 2004127737 A JP2004127737 A JP 2004127737A JP 2002290740 A JP2002290740 A JP 2002290740A JP 2002290740 A JP2002290740 A JP 2002290740A JP 2004127737 A JP2004127737 A JP 2004127737A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
substrate
conductive
carbon nanotube
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290740A
Other languages
Japanese (ja)
Other versions
JP2004127737A5 (en
Inventor
Chikashi Inasumi
稲住 近
Hideki Shiozaki
塩崎 秀喜
Akiharu Kitamura
北村 暁晴
Jirou Ishibe
石辺 二朗
Daisuke Fujita
藤田 大祐
Masaaki Kishida
岸田 将明
Momoyo Sawai
澤井 百世
Yoshikazu Nakayama
中山 喜萬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002290740A priority Critical patent/JP2004127737A/en
Publication of JP2004127737A publication Critical patent/JP2004127737A/en
Publication of JP2004127737A5 publication Critical patent/JP2004127737A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube conductive material, suitable for mass production, advantageous in cost, and excellent in linearity, and to provide its manufacturing method. <P>SOLUTION: A carbon nanotube grown with catalyst particles on a substrate as a core is transferred to a conductive layer on a substrate having the conductive layer. The conductive layer is preferably a conductive adhesive layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブを用いた導電性材料およびその製造方法に関する。本発明による導電性材料は、例えば、大容量の電気を蓄えることが可能な電気二重層キャパシタの主構成部材である電極として適用できる。本発明は、さらに、カーボンナノチューブを燃料電池電極、電子源、電子材料、プローブ短針、ガス貯蔵材などに適用する際に、適用価値が大きい直線性に優れ、長いブラシ状カーボンナノチューブの導電性材料およびその製造方法に関する。
【0002】
【従来の技術】
従来、電気二重層キャパシタでは、集電体上に活性炭を主とする分極性電極層を形成した一対の分極性電極の間にポリプロピレン不織布などのセパレータを挟んで素子とし、この素子に電解液を含浸させ、素子を金属容器に収容し、封口板とガスケットにより金属容器に密封した構造がとられていた。これら小型の電気二重層キャパシタは、おもにICメモリのバックアップに使用されていた。
【0003】
また、集電体上に活性炭ベースの電極層を形成した平板状の正極と負極をセパレータを介して交互に積層し、この積層体をケースに収め、ケース内に電解液を注入して電極層中に浸透させてなる積層型の電気二重層キャパシタも提案されていた(特許文献1参照)。これは、主に大電流・大容量向けに用いられていた。
【0004】
これらの電気二重層キャパシタを構成する分極性電極は、従来、大比表面積を有する活性炭を主とするものであった。また、電解液としては、電解質を高濃度で溶解できるように、水や炭酸エステルなどの高誘電率の極性溶媒が用いられていた。
【0005】
また、ブラシ状カーボンナノチューブは、平滑な基板上にFeからなる触媒層を形成し、基板温度を700℃前後にした後、アセチレンガスを流すことにより生成させてきた(特許文献2参照)。
【0006】
しかしながら、大比表面積を有する活性炭は、一般に電気伝導度が小さく、活性炭のみでは分極性電極の内部抵抗が大きくなって、大電流を取り出せない。このため、内部抵抗を下げる目的で、分極性電極中にカーボンナノチューブを含有させて電気伝導度を上げることにより大容量化を図る試みも行われた(特許文献3参照)。しかし、この方法では、従来の容量を約1.7倍に上げるに留まった。
【0007】
他方において、ICメモリをバックアップすることができる時間を、さらに長くできるように、より大容量の電気二重層キャパシタの実現が望まれている。
【0008】
本発明者らは、小型で大容量の蓄電を実現できる電気二重層キャパシタの開発を目的として鋭意努力し、先に、ブラシ状カーボンナノチューブを用いた電気二重層キャパシタの発明を完成し、特許出願した(特願2002−31148号)。
【0009】
しかしながら、カーボンナノチューブ電極を製造するには、600℃以上の雰囲気における化学蒸着法(CVD法)を用いるので、ガラスや金属のような耐熱性材料からなる基板上にカーボンナノチューブが成長するための種結晶として例えば鉄やニッケルなどの薄膜を用いなければならない。また、カーボンナノチューブは基板上の触媒粒子上に成長するため、機械的な力によって基板から剥がれたり、触媒粒子が化学的に腐食して剥れという問題があった。
【0010】
また、ブラシ状カーボンナノチューブは、互いに絡まり合いながら成長するために、直線性に乏しい。そこで、直流グロー放電によってカーボンナノチューブを垂直に配向させる方法が提案されている(特許文献4参照)。しかし、この方法は工業的には向かない上に、ブラシ状カーボンナノチューブはブラシの先端面に凹凸があり水平でない。
【0011】
【特許文献1】
特開平4−154106号公報。
【0012】
【特許文献2】
特開2001−220674号公報。
【0013】
【特許文献3】
特開2000−124079号公報。
【0014】
【特許文献4】
特開平10−203810号公報。
【0015】
【発明が解決しようとする課題】
本発明の目的は、大量生産に向きコスト的に有利であり、また直線性に優れたカーボンナノチューブ導電性材料およびその製造方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明者は、上記問題を解決すべく研究を重ねた結果、カーボンナノチューブ導電性材料を製造するのに転写法を適用して、導電層を有する基材の導電層にカーボンナノチューブをブラシ状に植え付けるカーボンナノチューブ導電性材料の製造方法を見出した。
【0017】
すなわち、本発明による導電性材料の製造方法は、基板上の触媒粒子を核として成長させたカーボンナノチューブを導電層を有する基材の導電層に転写することを特徴とする方法である。
【0018】
導電層は導電性接着剤層であることが好ましい。
【0019】
基板は例えば低抵抗N型半導体シリコン基板であってよい。転写の際、カーボンナノチューブを導電層例えば接着剤層に植え付けた後、同層が十分に硬化してから基板を機械的に剥離することにより、ブラシ状カーボンナノチューブを導電層に対し垂直方向に向けることができる。
【0020】
カーボンナノチューブを導電層に層表面に対し実質上垂直方向に転写することが好ましい。
【0021】
本発明によるカーボンナノチューブ導電性材料の製造方法は、連続的に実施することもできる。
【0022】
カーボンナノチューブは、カーボン原子が網目状に結合してできた穴径ナノ(1ナノは10億分の1)メートルサイズの極微細な筒(チューブ)状の物質である。通常の電解液の電解質イオン直径は約0.4〜0.6nmであるので、穴径1〜2nmのカーボンナノチューブがイオンの吸脱着に好ましい。
【0023】
ブラシ状カーボンナノチューブは、公知の方法で作製できる。例えば、シリコン基板の少なくとも片面上に、ニッケル、コバルト、鉄などの金属の錯体を含む溶液をスプレーや刷毛で塗布した後、加熱し、皮膜を形成し、あるいは上記金属もしくはその化合物の粒子をクラスター銃で基板に打ち付けて皮膜を形成する。この皮膜を好ましくは不活性ガス雰囲気で好ましくは700〜800℃で、好ましくは1〜30分間加熱し、皮膜から触媒粒子を形成する。得られた粒子上に好ましくは、アセチレン(C H )ガスを用いて一般的な化学蒸着法(CVD法)を施すことにより、直径12〜60nm、長さ1〜300μm、カーボンナノチューブ同士の間隔10〜1000nmのカーボンナノチューブが多層構造で基板上に垂直に起毛される。
【0024】
本発明によるカーボンナノチューブ導電性材料は、電極材料、例えば固体高分子型燃料電池用の電極材料として有用である。
【0025】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0026】
まず、基板上に触媒粒子を形成し、触媒粒子を核として高温雰囲気で原料ガスからカーボンナノチューブを成長させる。基板は触媒粒子を支持するものであればよく、触媒粒子が濡れにくいものが好ましく、シリコン基板であってよい。触媒粒子はニッケル、コバルト、鉄などの金属粒子であってよい。これらの金属またはその錯体等の化合物の溶液をスプレーや刷毛で基板に塗布し、またはクラスター銃で基板に打ち付け、乾燥させ、必要であれば加熱し、皮膜を形成する。皮膜の厚さは、好ましくは1〜100nmである。この皮膜を好ましくは不活性ガス雰囲気で好ましくは700〜800℃で、好ましくは1〜30分間加熱し、触媒粒子を形成する。
【0027】
カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜60nmのカーボンナノチューブが触媒粒子を核として基板上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。
【0028】
基板のブラシ状カーボンナノチューブを接着剤層付きフィルムの接着剤層に先端から押し付けることにより同層に植え付ける。その後、好ましくは接着剤層が十分に硬化してから、ブラシ状カーボンナノチューブを接着剤層付きフィルムに残して同チューブから基板を機械的に剥離する。こうして基板から接着剤層へのカーボンナノチューブの転写を完了し、ブラシ状カーボンナノチューブ導電性材料を得る。
【0029】
転写の際、カーボンナノチューブを接着剤層に植え付けた後、接着剤層が十分に硬化してから、基板を機械的に剥離することにより、ブラシ状カーボンナノチューブを導電性接着剤層に対し垂直方向に向けることが容易になる。
【0030】
導電性接着剤は合成樹脂を主体としたバインダーと、金属粉を主体とした導電性フィラーとからなる複合材料である。導電性接着剤としては集電体となり得るものが好ましく、市販品、例えば日本アチソン社製の導電性接着剤を用いることができる。導電性フィラーはAg、Cu、Ni、Au、Pd、カーボン、グラファイトなどの粉体であってよい。バインダーはカーボンナノチューブを固定できる接着力を示すものであればよく、好ましくはポリ塩化ビニル樹脂等の熱可塑性樹脂バインダーが用いられる。
【0031】
これらの工程(すなわち、基板への触媒の塗布、触媒粒子の形成、化学蒸着法によるブラシ状カーボンナノチューブの成長、カーボンナノチューブの導電性接着剤層への転写)は一連の連続工程として行うことができる。
【0032】
本発明方法により得られた導電性材料をブラシ状カーボンナノチューブ電極として用いて電気二重層キャパシタを構成するには、例えば、一方の電極のブラシ状カーボンナノチューブと他方の電極のブラシ状カーボンナノチューブとを非接触状に互いに向き合わせ、電解液を含浸させ、容器内に配置する。
【0033】
前記カーボンナノチューブの構造は単層すなわち単一のチューブであってもよいし、多層すなわち同心状の複数の異径チューブであってもよい。カーボンナノチューブの直径は好ましくは1〜100nmである。
【0034】
CVD法によりブラシ状カーボンナノチューブを作製するためには、基板上に種結晶として鉄などの金属触媒粒子を形成し、触媒粒子上にカーボンナノチューブが成長するため、基板からカーボンナノチューブが機械的な力によって剥がれることがある。また、ブラシ状カーボンナノチューブは、互いに絡まり合いながら成長するために、直線性に乏しい。
【0035】
このような問題を解決するには、基板上に成長させたカーボンナノチューブを転写工程において導電性接着剤層に植え付けた後、接着剤層が十分に硬化してから、基板を機械的に剥離することが好ましい。
【0036】
本発明方法により得られたカーボンナノチューブは、長さ1〜300μm、カーボンナノチューブ同士の間隔10〜1000nmのものであることが好ましい。
【0037】
導電性接着剤を塗布するための基材は、金属のような無機材料またはポリエチレンのような有機合成樹脂からなるフィルム、シート、薄板等であってよい。基材はフラットであっても、湾曲していてもよい。基材は無数の貫通孔を有する多孔基材であってもよい。多孔基材を用いて得られるカーボンナノチューブ導電性材料は、ガス拡散が容易であり、本発明による導電性材料を環境浄化用触媒材料として使用する場合に優れた特性を発揮する。導電性接着剤層の厚さは好ましくは1〜50μmである。
【0038】
本発明によるカーボンナノチューブ導電性材料は、電界電子エミッターとして優れた特性を有する。近年、電子放出素材としてのCTNは、シリコンやモリブデン等のマイクロエミッターに比べ、真空の制約がが緩いこと、高い電流密度が得られること、頑健であることなど優れた特徴を有しているが、シリコン基板に成長したブラシ状カーボンナノチューブを使用すると、カーボンナノチューブの成長方向に対して垂直方向においてもカーボンナノチューブが互いに絡み合っているため、電気が通じやすく電子を取り出す際の電圧が高いと言う問題があった。それに対して、本発明によるカーボンナノチューブ導電性材料は、カーボンナノチューブが互いに絡み合わないため成長方向に垂直な方向において電気が通じにくく、すなわち導電性が低く、その結果、低い電界をかけた場合でもカーボンナノチューブの先端から電子が放出しやすい。
【0039】
つぎに、本発明を実施例に基づいて具体的に説明する。
【0040】
実施例1
(第一工程)
厚さ0.6mmの低抵抗N型半導体シリコン基板上に、Fe錯体の溶液をスプレーで塗布したのち、基板を220℃に加熱することにより鉄の皮膜を生成させた。次いで、基板をヘリウムガス雰囲気中で750℃で10分間加熱し皮膜から触媒粒子を生成させた。
【0041】
(第二工程)
この粒子付きの基板を化学蒸着装置に入れた。カーボンナノチューブの原料ガスとしてアセチレンを流量30ml/min、温度約720℃、時間15分、化学蒸着装置内に流した。第一工程で得られた触媒粒子を核としてブラシ状カーボンナノチューブが生成し、徐々に成長した。成長したカーボンナノチューブは、太さ12nmの多層構造であり、長さは50μmであった。
【0042】
(第三工程)
10μmのポリエチレンフィルムの片面に日本アチソン社製の導電性接着剤Electrodag6030(導電性フィラーがAgで、バインダーが熱可塑性樹脂バインダーである)を塗布し、厚さ10μmの接着剤層を形成した。この接着剤層付きフィルムを70℃に加熱し、前工程で得られたブラシ状カーボンナノチューブを先端から接着剤層に押し付けた。こうして、カーボンナノチューブをフィルムの導電性接着剤層にその表面に対し実質上垂直に植え付けた。
【0043】
(第四工程)
基板のブラシ状カーボンナノチューブを植え付けた接着剤層付きフィルムを70℃で30分間保持し、その後、接着剤層が十分に硬化してから、ブラシ状カーボンナノチューブを接着剤層付きフィルムに残して同チューブから基板を機械的に剥離した。こうして基板から接着剤層へのカーボンナノチューブの転写を完了し、ブラシ状カーボンナノチューブ導電性材料を得た。
【0044】
カーボンナノチューブは真っ直ぐ伸びており、カーボンナノチューブの長さは120μmで、カーボンナノチューブ間隔は100nmであった。
【0045】
実施例2
(第一工程)
実施例1と同じ操作を行った。
【0046】
(第二工程)
実施例1と同じ操作を行った。
【0047】
(第三工程)
厚さ10μmのポリエチレンフィルムの片面に日本アチソン社製の導電性接着剤Electrodag415 (導電性フィラーがAgで、バインダーがポリ塩化ビニル樹脂バインダーである)を塗布し、厚さ10μmの接着剤層を形成した。この接着剤層付きフィルムの接着剤層に、室温で、前工程で得られたブラシ状カーボンナノチューブを先端から押し付けた。こうして、カーボンナノチューブをフィルムの導電性接着剤層にその表面に対し実質上垂直に植え付けた。
【0048】
(第四工程)
ブラシ状カーボンナノチューブを植え付けた導電性フィルムを常温で10分間保持した以外、実施例1の第四工程と同じ操作を行った。
【0049】
実施例3
(第一工程)
実施例1と同じ操作を行った。
【0050】
(第二工程)
実施例1と同じ操作を行った。
【0051】
(第三工程)
無数の貫通孔を有する厚さ10μmの多孔ポリエチレンフィルムの片面に日本アチソン社製の導電性接着剤Electrodag415 (導電性フィラーがAgで、バインダーがポリ塩化ビニル樹脂バインダーである)を塗布し、厚さ10μmの接着剤層を形成した。この接着剤層付きフィルムの接着剤層に、室温で、前工程で得られたブラシ状カーボンナノチューブを先端から押し付けた。こうして、カーボンナノチューブをフィルムの導電性接着剤層にその表面に対し実質上垂直に植え付けた。
【0052】
(第四工程)
ブラシ状カーボンナノチューブを植え付けた導電性フィルムを常温で10分間保持した以外、実施例1の第四工程と同じ操作を行った。
【0053】
本実施例で得られたカーボンナノチューブ導電性材料は導電性接着剤層付きフィルムが多孔状のものであるため、ガス拡散が容易であり、環境浄化用触媒材料として使用する場合に優れた特性を発揮する。
【0054】
実施例4
実施例1で作製したカーボンナノチューブ導電性材料を電極として電界放出型ディスプレー(field emission display)に適用し、その電子放出特性を下記の方法で測定した。すなわち、カーボンナノチューブ電極を陰極とし、陽極にはITO(indium tin oxide) をコーティングしたガラス基板を用いた。エミッターとコレクターの間隔は130μmで、圧力は6.7×10−7Torrであった。電圧を0〜1000Vの間で印加することにより電流密度と電圧の関係を測定した。10mA/cm の電流密度において、300Vという低い電圧を示した。
【0055】
参考例1
実施例1の第二工程で作製した、基板上の触媒粒子に成長させたブラシ状カーボンナノチューブについて、実施例4と同様の操作で電子放出特性を測定したところ、10mA/cm の電流密度において、電圧は400Vであった。実施例1の第二工程で作製し基板上のブラシ状カーボンナノチューブは、長さ50μm、カーボンナノチューブ間隔100nmのものであり、互いに絡み合っていた。
【0056】
【発明の効果】
本発明によるカーボンナノチューブ導電性材料の製造方法は大量生産に向きコスト的に有利である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive material using carbon nanotubes and a method for manufacturing the same. The conductive material according to the present invention can be applied, for example, as an electrode that is a main component of an electric double layer capacitor capable of storing a large amount of electricity. The present invention further provides a highly applicable linear carbon material having a high application value when the carbon nanotube is applied to a fuel cell electrode, an electron source, an electronic material, a probe short needle, a gas storage material, and the like. And its manufacturing method.
[0002]
[Prior art]
Conventionally, in an electric double layer capacitor, a separator such as a polypropylene non-woven fabric is sandwiched between a pair of polarizable electrodes having a polarizable electrode layer mainly composed of activated carbon formed on a current collector, and an electrolytic solution is applied to the element. The device was impregnated, housed in a metal container, and sealed in a metal container with a sealing plate and a gasket. These small electric double layer capacitors were mainly used for backup of IC memory.
[0003]
In addition, a positive electrode and a negative electrode in the form of a plate having an activated carbon-based electrode layer formed on a current collector are alternately laminated via a separator, and the laminated body is placed in a case, and an electrolytic solution is injected into the case to form an electrode layer. There has also been proposed a multilayer electric double layer capacitor infiltrated into the inside (see Patent Document 1). This was mainly used for large current and large capacity.
[0004]
Conventionally, the polarizable electrodes constituting these electric double layer capacitors have mainly been activated carbon having a large specific surface area. In addition, a polar solvent having a high dielectric constant such as water or carbonate ester has been used as an electrolytic solution so that the electrolyte can be dissolved at a high concentration.
[0005]
Further, brush-like carbon nanotubes have been produced by forming a catalyst layer made of Fe on a smooth substrate, setting the substrate temperature at about 700 ° C., and then flowing an acetylene gas (see Patent Document 2).
[0006]
However, activated carbon having a large specific surface area generally has low electric conductivity, and the activated carbon alone cannot increase the internal resistance of the polarizable electrode, and cannot take out a large current. For this reason, for the purpose of lowering the internal resistance, attempts have been made to increase the capacity by increasing the electric conductivity by including carbon nanotubes in the polarizable electrode (see Patent Document 3). However, this method only increases the conventional capacity by about 1.7 times.
[0007]
On the other hand, it is desired to realize a larger-capacity electric double layer capacitor so that the time during which the IC memory can be backed up can be further increased.
[0008]
The present inventors have worked diligently to develop an electric double-layer capacitor capable of realizing a small-capacity and large-capacity power storage. First, the inventors have completed the invention of an electric double-layer capacitor using brush-like carbon nanotubes and applied for a patent. (Japanese Patent Application No. 2002-31148).
[0009]
However, in order to manufacture a carbon nanotube electrode, a chemical vapor deposition method (CVD method) in an atmosphere of 600 ° C. or higher is used, so that a seed for growing carbon nanotubes on a substrate made of a heat-resistant material such as glass or metal is used. As the crystal, a thin film of, for example, iron or nickel must be used. Further, since the carbon nanotubes grow on the catalyst particles on the substrate, there is a problem that the carbon nanotubes are peeled off from the substrate by a mechanical force, or the catalyst particles are chemically corroded and peeled off.
[0010]
In addition, the brush-like carbon nanotubes grow with being entangled with each other, and thus have poor linearity. Therefore, a method of vertically aligning carbon nanotubes by DC glow discharge has been proposed (see Patent Document 4). However, this method is not industrially suitable, and the brush-like carbon nanotube is not horizontal due to the unevenness of the tip surface of the brush.
[0011]
[Patent Document 1]
JP-A-4-154106.
[0012]
[Patent Document 2]
JP-A-2001-22067.
[0013]
[Patent Document 3]
JP-A-2000-1224079.
[0014]
[Patent Document 4]
JP-A-10-203810.
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a carbon nanotube conductive material which is advantageous in terms of cost for mass production and has excellent linearity, and a method for producing the same.
[0016]
[Means for Solving the Problems]
The present inventor has conducted researches to solve the above problem, and as a result, applied a transfer method to produce a carbon nanotube conductive material, and brushed the carbon nanotubes on the conductive layer of the base material having the conductive layer. A method for producing a carbon nanotube conductive material to be implanted has been found.
[0017]
That is, the method for producing a conductive material according to the present invention is a method characterized in that carbon nanotubes grown with catalyst particles on a substrate as nuclei are transferred to a conductive layer of a substrate having a conductive layer.
[0018]
The conductive layer is preferably a conductive adhesive layer.
[0019]
The substrate may be, for example, a low-resistance N-type semiconductor silicon substrate. During the transfer, after the carbon nanotubes are implanted in the conductive layer, for example, the adhesive layer, the brush-like carbon nanotubes are directed perpendicularly to the conductive layer by mechanically peeling off the substrate after the layer is sufficiently cured. be able to.
[0020]
Preferably, the carbon nanotubes are transferred to the conductive layer in a direction substantially perpendicular to the layer surface.
[0021]
The method for producing a carbon nanotube conductive material according to the present invention can be carried out continuously.
[0022]
A carbon nanotube is an extremely fine tube-shaped substance having a hole diameter of nanometers (one nano is one billionth) meters formed by bonding carbon atoms in a network. Since the electrolyte ion diameter of a normal electrolyte is about 0.4 to 0.6 nm, carbon nanotubes having a hole diameter of 1 to 2 nm are preferable for adsorption and desorption of ions.
[0023]
The brush-like carbon nanotube can be produced by a known method. For example, a solution containing a complex of a metal such as nickel, cobalt, and iron is applied on at least one side of a silicon substrate by spraying or brushing, and then heated to form a film, or particles of the metal or a compound thereof are clustered. The film is formed by striking the substrate with a gun. The coating is heated in an inert gas atmosphere, preferably at 700-800 ° C., preferably for 1-30 minutes, to form catalyst particles from the coating. The obtained particles are preferably subjected to a general chemical vapor deposition method (CVD method) using acetylene (C 2 H 2 ) gas to obtain a carbon nanotube having a diameter of 12 to 60 nm and a length of 1 to 300 μm. Carbon nanotubes with a spacing of 10 to 1000 nm are raised vertically on the substrate in a multilayer structure.
[0024]
The carbon nanotube conductive material according to the present invention is useful as an electrode material, for example, an electrode material for a polymer electrolyte fuel cell.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0026]
First, catalyst particles are formed on a substrate, and carbon nanotubes are grown from a source gas in a high-temperature atmosphere using the catalyst particles as nuclei. The substrate only needs to support the catalyst particles, and is preferably one in which the catalyst particles are hardly wetted, and may be a silicon substrate. The catalyst particles may be metal particles such as nickel, cobalt, iron and the like. A solution of a compound such as a metal or a complex thereof is applied to the substrate by spraying or brushing, or is applied to the substrate by a cluster gun, dried, and, if necessary, heated to form a film. The thickness of the coating is preferably from 1 to 100 nm. The coating is heated in an inert gas atmosphere, preferably at 700-800 ° C., preferably for 1-30 minutes, to form catalyst particles.
[0027]
As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 60 nm are formed in a brush shape on a substrate with catalyst particles as nuclei. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.
[0028]
The brush-like carbon nanotubes of the substrate are planted on the adhesive layer of the film with the adhesive layer by pressing the same from the tip. Thereafter, preferably, after the adhesive layer is sufficiently cured, the substrate is mechanically peeled from the tube while leaving the brush-like carbon nanotubes on the film with the adhesive layer. Thus, the transfer of the carbon nanotubes from the substrate to the adhesive layer is completed, and a brush-like carbon nanotube conductive material is obtained.
[0029]
At the time of transfer, after the carbon nanotubes are implanted in the adhesive layer, the adhesive layer is sufficiently cured, and then the substrate is mechanically peeled off, so that the brush-like carbon nanotubes are oriented in a direction perpendicular to the conductive adhesive layer. It becomes easier to turn to.
[0030]
The conductive adhesive is a composite material including a binder mainly composed of a synthetic resin and a conductive filler mainly composed of metal powder. The conductive adhesive is preferably a current collector, and a commercially available product, for example, a conductive adhesive manufactured by Acheson Japan, can be used. The conductive filler may be a powder such as Ag, Cu, Ni, Au, Pd, carbon, and graphite. The binder only needs to have an adhesive force capable of fixing the carbon nanotube, and a thermoplastic resin binder such as a polyvinyl chloride resin is preferably used.
[0031]
These steps (ie, application of a catalyst to a substrate, formation of catalyst particles, growth of brush-like carbon nanotubes by chemical vapor deposition, and transfer of carbon nanotubes to a conductive adhesive layer) can be performed as a series of continuous steps. it can.
[0032]
To construct an electric double layer capacitor using the conductive material obtained by the method of the present invention as a brush-like carbon nanotube electrode, for example, a brush-like carbon nanotube of one electrode and a brush-like carbon nanotube of the other electrode are used. They face each other in a non-contact manner, are impregnated with an electrolyte, and are placed in a container.
[0033]
The structure of the carbon nanotube may be a single-walled or single tube, or may be a multi-walled or concentric plurality of different-diameter tubes. The diameter of the carbon nanotube is preferably 1 to 100 nm.
[0034]
In order to fabricate brush-like carbon nanotubes by the CVD method, metal catalyst particles such as iron are formed as seed crystals on a substrate, and the carbon nanotubes grow on the catalyst particles. May be peeled off. In addition, the brush-like carbon nanotubes grow with being entangled with each other, and thus have poor linearity.
[0035]
In order to solve such a problem, after the carbon nanotubes grown on the substrate are planted in the conductive adhesive layer in the transfer step, the adhesive layer is sufficiently cured, and then the substrate is mechanically peeled. Is preferred.
[0036]
The carbon nanotubes obtained by the method of the present invention preferably have a length of 1 to 300 μm and an interval between the carbon nanotubes of 10 to 1000 nm.
[0037]
The substrate on which the conductive adhesive is applied may be a film, sheet, thin plate or the like made of an inorganic material such as a metal or an organic synthetic resin such as polyethylene. The substrate may be flat or curved. The substrate may be a porous substrate having countless through holes. The carbon nanotube conductive material obtained by using the porous substrate easily diffuses gas, and exhibits excellent characteristics when the conductive material according to the present invention is used as a catalyst material for environmental purification. The thickness of the conductive adhesive layer is preferably 1 to 50 μm.
[0038]
The carbon nanotube conductive material according to the present invention has excellent properties as a field electron emitter. In recent years, CTN as an electron-emitting material has excellent features such as less restrictive vacuum, higher current density, and robustness than micro-emitters such as silicon and molybdenum. However, when brush-like carbon nanotubes grown on a silicon substrate are used, the carbon nanotubes are entangled with each other even in the direction perpendicular to the growth direction of the carbon nanotubes, so that electricity is easily conducted and the voltage for extracting electrons is high. was there. In contrast, the carbon nanotube conductive material according to the present invention has difficulty in conducting electricity in the direction perpendicular to the growth direction because the carbon nanotubes do not entangle with each other, that is, low conductivity, and as a result, even when a low electric field is applied. Electrons are easily emitted from the tip of the carbon nanotube.
[0039]
Next, the present invention will be specifically described based on examples.
[0040]
Example 1
(First step)
After a solution of an Fe complex was applied on a low-resistance N-type semiconductor silicon substrate having a thickness of 0.6 mm by spraying, the substrate was heated to 220 ° C. to form an iron film. Next, the substrate was heated at 750 ° C. for 10 minutes in a helium gas atmosphere to generate catalyst particles from the film.
[0041]
(Second step)
The substrate with the particles was placed in a chemical vapor deposition apparatus. Acetylene was flowed as a raw material gas for the carbon nanotubes into the chemical vapor deposition apparatus at a flow rate of 30 ml / min at a temperature of about 720 ° C. for 15 minutes. Using the catalyst particles obtained in the first step as nuclei, brush-like carbon nanotubes were generated and gradually grew. The grown carbon nanotube had a multilayer structure with a thickness of 12 nm and a length of 50 μm.
[0042]
(Third step)
One side of a 10 μm polyethylene film was coated with Electrodag 6030, a conductive adhesive manufactured by Acheson Japan Co., Ltd. (the conductive filler was Ag and the binder was a thermoplastic resin binder) to form a 10 μm thick adhesive layer. The film with the adhesive layer was heated to 70 ° C., and the brush-like carbon nanotubes obtained in the previous step were pressed against the adhesive layer from the tip. Thus, the carbon nanotubes were implanted in the conductive adhesive layer of the film substantially perpendicular to its surface.
[0043]
(Fourth step)
The film with the adhesive layer, on which the brush-like carbon nanotubes of the substrate are implanted, is held at 70 ° C. for 30 minutes, and then, after the adhesive layer is sufficiently cured, the brush-like carbon nanotubes are left on the film with the adhesive layer. The substrate was mechanically peeled from the tube. Thus, the transfer of the carbon nanotubes from the substrate to the adhesive layer was completed, and a brush-like carbon nanotube conductive material was obtained.
[0044]
The carbon nanotubes extended straight, the length of the carbon nanotubes was 120 μm, and the interval between the carbon nanotubes was 100 nm.
[0045]
Example 2
(First step)
The same operation as in Example 1 was performed.
[0046]
(Second step)
The same operation as in Example 1 was performed.
[0047]
(Third step)
One side of a polyethylene film having a thickness of 10 μm is coated with a conductive adhesive Electrodag415 (made of Acheson Japan) (the conductive filler is Ag and the binder is a polyvinyl chloride resin binder) to form an adhesive layer having a thickness of 10 μm. did. At room temperature, the brush-like carbon nanotubes obtained in the previous step were pressed against the adhesive layer of the film with the adhesive layer from the tip. Thus, the carbon nanotubes were implanted in the conductive adhesive layer of the film substantially perpendicular to its surface.
[0048]
(Fourth step)
The same operation as in the fourth step of Example 1 was performed, except that the conductive film on which the brush-like carbon nanotubes were planted was kept at room temperature for 10 minutes.
[0049]
Example 3
(First step)
The same operation as in Example 1 was performed.
[0050]
(Second step)
The same operation as in Example 1 was performed.
[0051]
(Third step)
One side of a 10 μm-thick porous polyethylene film having a myriad of through holes is coated with a conductive adhesive Electrodag415 (manufactured by Acheson Japan Co., Ltd.) (the conductive filler is Ag and the binder is a polyvinyl chloride resin binder). An adhesive layer of 10 μm was formed. At room temperature, the brush-like carbon nanotubes obtained in the previous step were pressed against the adhesive layer of the film with the adhesive layer from the tip. Thus, the carbon nanotubes were implanted in the conductive adhesive layer of the film substantially perpendicular to its surface.
[0052]
(Fourth step)
The same operation as in the fourth step of Example 1 was performed, except that the conductive film on which the brush-like carbon nanotubes were planted was kept at room temperature for 10 minutes.
[0053]
Since the carbon nanotube conductive material obtained in this example has a porous film with a conductive adhesive layer, gas diffusion is easy and excellent properties when used as an environmental purification catalyst material. Demonstrate.
[0054]
Example 4
The carbon nanotube conductive material prepared in Example 1 was applied to a field emission display as an electrode, and its electron emission characteristics were measured by the following method. That is, a glass substrate coated with ITO (indium tin oxide) was used as an anode, using a carbon nanotube electrode as a cathode. The distance between the emitter and the collector was 130 μm, and the pressure was 6.7 × 10 −7 Torr. The relationship between the current density and the voltage was measured by applying a voltage between 0 and 1000 V. At a current density of 10 mA / cm 2 , a voltage as low as 300 V was exhibited.
[0055]
Reference Example 1
The electron emission characteristics of the brush-like carbon nanotubes produced in the second step of Example 1 and grown on the catalyst particles on the substrate were measured by the same operation as in Example 4, and the current density was 10 mA / cm 2 . And the voltage was 400V. The brush-like carbon nanotubes formed on the substrate in the second step of Example 1 had a length of 50 μm and a carbon nanotube interval of 100 nm, and were intertwined with each other.
[0056]
【The invention's effect】
The method for producing a carbon nanotube conductive material according to the present invention is advantageous in terms of cost for mass production.

Claims (6)

基板上の触媒粒子を核として成長させたカーボンナノチューブを、導電層を有する基材の導電層に転写することを特徴とする、カーボンナノチューブを用いた導電性材料の製造方法。A method for producing a conductive material using carbon nanotubes, comprising transferring carbon nanotubes grown with catalyst particles on a substrate as nuclei to a conductive layer of a substrate having a conductive layer. 導電層が導電性接着剤層であることを特徴とする、請求項1記載の導電性材料。The conductive material according to claim 1, wherein the conductive layer is a conductive adhesive layer. カーボンナノチューブを、導電層を有する基材の導電層に、その表面に対し実質上垂直方向に転写することを特徴とする、請求項1または2記載の導電性材料の製造方法。The method for producing a conductive material according to claim 1, wherein the carbon nanotubes are transferred to a conductive layer of a substrate having the conductive layer in a direction substantially perpendicular to the surface thereof. 連続して行うことを特徴とする、請求項1〜3のいずれかに記載の導電性材料の製造方法。The method for producing a conductive material according to claim 1, wherein the method is performed continuously. 請求項1〜4のいずれかに記載の方法により得られることを特徴とする、カーボンナノチューブ導電性材料。A carbon nanotube conductive material obtained by the method according to claim 1. 電極であることを特徴とする、請求項5記載の導電性材料。The conductive material according to claim 5, which is an electrode.
JP2002290740A 2002-10-03 2002-10-03 Carbon nanotube conductive material and its manufacturing method Pending JP2004127737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290740A JP2004127737A (en) 2002-10-03 2002-10-03 Carbon nanotube conductive material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290740A JP2004127737A (en) 2002-10-03 2002-10-03 Carbon nanotube conductive material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004127737A true JP2004127737A (en) 2004-04-22
JP2004127737A5 JP2004127737A5 (en) 2005-08-25

Family

ID=32282517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290740A Pending JP2004127737A (en) 2002-10-03 2002-10-03 Carbon nanotube conductive material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004127737A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322646A (en) * 2004-05-06 2005-11-17 Samsung Sdi Co Ltd Method of manufacturing cnt field emission element
JP2005353590A (en) * 2004-05-31 2005-12-22 Samsung Sdi Co Ltd Flexible emitter using polymeric material and method for manufacturing the same
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2006179487A (en) * 2004-12-20 2006-07-06 Palo Alto Research Center Inc Nanorod aligned in vertical direction, and system and method for forming electrical contact to the alignment
JP2007128896A (en) * 2005-11-04 2007-05-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission device and its manufacturing method
EP1873797A1 (en) * 2006-06-30 2008-01-02 E.I.Du pont de nemours and company Electronic component and capacitor
WO2009041076A1 (en) * 2007-09-28 2009-04-02 Nippon Chemi-Con Corporation Electrode for electric double layer capacitor and method for producing the same
JP2009099935A (en) * 2007-03-30 2009-05-07 Nippon Chemicon Corp Electrode for electric double-layer capacitor and method of manufacturing the same
JP2009176430A (en) * 2008-01-21 2009-08-06 Hitachi Zosen Corp Energy conversion element and method of manufacturing the same
JP2009231224A (en) * 2008-03-25 2009-10-08 Hitachi Zosen Corp Photoelectric conversion element, and manufacturing method thereof
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2013133262A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Carbon nanofiber structure, carbon nanofiber electrode, and method for manufacturing the carbon nanofiber structure
KR20130102653A (en) 2011-02-07 2013-09-17 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
WO2014020650A1 (en) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 Fuel cell electrode, as well as method for manufacturing fuel cell electrode, membrane electrode assembly, and fuel cell
JP2014105125A (en) * 2012-11-28 2014-06-09 Fujikura Ltd Method and apparatus for producing carbon nanofiber structure, carbon nanofiber structure, carbon nanofiber electrode, and carbon nanofiber conductive wire
JP2015086094A (en) * 2013-10-30 2015-05-07 日立造船株式会社 Production method of carbon nanotube sheet
WO2015064481A1 (en) * 2013-10-30 2015-05-07 日立造船株式会社 Method for producing carbon nanotube sheet
JP2015098418A (en) * 2013-11-20 2015-05-28 日立造船株式会社 Production method of carbon nanotube sheet
CN105679555A (en) * 2016-01-12 2016-06-15 东华大学 Preparation method for three-dimensional aminated carbon nanotube array/stretchable textile fiber electrode material
WO2017159661A1 (en) * 2016-03-18 2017-09-21 日東電工株式会社 Conveying fixing jig
JP2017175126A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Conveying fixing jig
JP2018131381A (en) * 2011-06-07 2018-08-23 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation Energy storage media for ultracapacitors
US10435519B2 (en) 2009-01-20 2019-10-08 Taiyo Nippon Sanso Corporation Composite resinous material particles and process for producing same
US10600582B1 (en) 2016-12-02 2020-03-24 Fastcap Systems Corporation Composite electrode
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322646A (en) * 2004-05-06 2005-11-17 Samsung Sdi Co Ltd Method of manufacturing cnt field emission element
JP2005353590A (en) * 2004-05-31 2005-12-22 Samsung Sdi Co Ltd Flexible emitter using polymeric material and method for manufacturing the same
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2006179487A (en) * 2004-12-20 2006-07-06 Palo Alto Research Center Inc Nanorod aligned in vertical direction, and system and method for forming electrical contact to the alignment
US7811149B2 (en) 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
JP2007128896A (en) * 2005-11-04 2007-05-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission device and its manufacturing method
EP1873797A1 (en) * 2006-06-30 2008-01-02 E.I.Du pont de nemours and company Electronic component and capacitor
JP2009099935A (en) * 2007-03-30 2009-05-07 Nippon Chemicon Corp Electrode for electric double-layer capacitor and method of manufacturing the same
EP2207189A4 (en) * 2007-09-28 2012-07-11 Nippon Chemicon Electrode for electric double layer capacitor and method for producing the same
EP2207189A1 (en) * 2007-09-28 2010-07-14 Nippon Chemi-Con Corporation Electrode for electric double layer capacitor and method for producing the same
US8824120B2 (en) 2007-09-28 2014-09-02 Nippon Chemi-Con Corporation Electrode for electric double layer capacitor and method for producing the same
US8427811B2 (en) 2007-09-28 2013-04-23 Nippon Chemi-Con Corporation Electrode for electric double layer capacitor and method for producing the same
WO2009041076A1 (en) * 2007-09-28 2009-04-02 Nippon Chemi-Con Corporation Electrode for electric double layer capacitor and method for producing the same
JP2009176430A (en) * 2008-01-21 2009-08-06 Hitachi Zosen Corp Energy conversion element and method of manufacturing the same
JP2009231224A (en) * 2008-03-25 2009-10-08 Hitachi Zosen Corp Photoelectric conversion element, and manufacturing method thereof
US10435519B2 (en) 2009-01-20 2019-10-08 Taiyo Nippon Sanso Corporation Composite resinous material particles and process for producing same
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
KR20150085110A (en) 2011-02-07 2015-07-22 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
KR20130102653A (en) 2011-02-07 2013-09-17 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
US9183966B2 (en) 2011-02-07 2015-11-10 Taiyo Nippon Sanso Corporation Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
JP2018131381A (en) * 2011-06-07 2018-08-23 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation Energy storage media for ultracapacitors
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11901123B2 (en) 2011-07-08 2024-02-13 Fastcap Systems Corporation High temperature energy storage device
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device
US11776765B2 (en) 2011-07-08 2023-10-03 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
JP2013133262A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Carbon nanofiber structure, carbon nanofiber electrode, and method for manufacturing the carbon nanofiber structure
US9692058B2 (en) 2012-08-02 2017-06-27 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and production method of electrode for fuel cell, membrane electrode assembly and fuel cell
RU2590890C1 (en) * 2012-08-02 2016-07-10 Тойота Дзидося Кабусики Кайся Electrode for fuel cell and method for fabricating electrode for fuel cell, membrane-electrode assembly, and fuel cell
JPWO2014020650A1 (en) * 2012-08-02 2016-07-11 トヨタ自動車株式会社 Fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell manufacturing method
JP5862780B2 (en) * 2012-08-02 2016-02-16 トヨタ自動車株式会社 Fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell manufacturing method
WO2014020650A1 (en) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 Fuel cell electrode, as well as method for manufacturing fuel cell electrode, membrane electrode assembly, and fuel cell
CN104521047A (en) * 2012-08-02 2015-04-15 丰田自动车株式会社 Fuel cell electrode, as well as method for manufacturing fuel cell electrode, membrane electrode assembly, and fuel cell
JP2014105125A (en) * 2012-11-28 2014-06-09 Fujikura Ltd Method and apparatus for producing carbon nanofiber structure, carbon nanofiber structure, carbon nanofiber electrode, and carbon nanofiber conductive wire
WO2015064481A1 (en) * 2013-10-30 2015-05-07 日立造船株式会社 Method for producing carbon nanotube sheet
JP2015086094A (en) * 2013-10-30 2015-05-07 日立造船株式会社 Production method of carbon nanotube sheet
JP2015098418A (en) * 2013-11-20 2015-05-28 日立造船株式会社 Production method of carbon nanotube sheet
CN105679555A (en) * 2016-01-12 2016-06-15 东华大学 Preparation method for three-dimensional aminated carbon nanotube array/stretchable textile fiber electrode material
CN108886011A (en) * 2016-03-18 2018-11-23 日东电工株式会社 Convey stationary fixture
US11420832B2 (en) 2016-03-18 2022-08-23 Nitto Denko Corporation Transport fixing jig
JP2017175126A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Conveying fixing jig
WO2017159661A1 (en) * 2016-03-18 2017-09-21 日東電工株式会社 Conveying fixing jig
US11450488B2 (en) 2016-12-02 2022-09-20 Fastcap Systems Corporation Composite electrode
US10600582B1 (en) 2016-12-02 2020-03-24 Fastcap Systems Corporation Composite electrode
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint
JP7230928B2 (en) 2019-01-16 2023-03-01 日本電気株式会社 Carbon nanobrush antistatic paint
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US11848449B2 (en) 2019-07-05 2023-12-19 Fastcap Systems Corporation Electrodes for energy storage devices

Similar Documents

Publication Publication Date Title
JP2004127737A (en) Carbon nanotube conductive material and its manufacturing method
JP3962862B2 (en) Conductive material using carbon nanotube and method for producing the same
Zhang et al. Electrochemically synthesis of nickel cobalt sulfide for high‐performance flexible asymmetric supercapacitors
SuongáOu Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes
Zhang et al. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries
Du et al. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition
Li et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells
JP3740295B2 (en) Carbon nanotube device, manufacturing method thereof, and electron-emitting device
CN107235472A (en) Porous vertical graphene nano wall array of N doping and preparation method and application
US20110149465A1 (en) Electric double layer capacitor and method for manufacturing the same
Guo et al. Well‐Defined Fullerene Nanowire Arrays
JP2007527099A (en) Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode
KR20070059794A (en) Method for preparing a flexible semiconductor electrode, semiconductor electrode prepared by the same and solar cell using the same
JP2012517399A (en) Mesoporous carbon material for energy storage
Zhang et al. Using a cut–paste method to prepare a carbon nanotube fur electrode
JP2010046788A (en) Catalyst particle on tip
CN104882297A (en) Process for preparing stretchable supercapacitor based on highly conductive graphene/nickel particle mixed structure
TWI464762B (en) Super capacitor
CN109817881B (en) Preparation method and application of copper foil loaded sodium-ion battery negative electrode material
US9153389B2 (en) Carbon nanotube-graphene composite, method of forming the same, and electronic device
Zhang et al. Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors
TWI387987B (en) Super capacitor and method for making the same
KR101561959B1 (en) All solid state flexible micro-supercapacitor with patterned graphene and fabrication method thereof
WO2022078759A1 (en) Direct growth cross-linked carbon nanotubes on microstructured metal substrate for supercapacitor application
KR100827951B1 (en) Synthesizing carbon nanotubes directly on nickel foil

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422