WO2007116706A1 - Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same - Google Patents

Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same Download PDF

Info

Publication number
WO2007116706A1
WO2007116706A1 PCT/JP2007/056298 JP2007056298W WO2007116706A1 WO 2007116706 A1 WO2007116706 A1 WO 2007116706A1 JP 2007056298 W JP2007056298 W JP 2007056298W WO 2007116706 A1 WO2007116706 A1 WO 2007116706A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
composition layer
conductive material
carbon nanotubes
Prior art date
Application number
PCT/JP2007/056298
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Shiozaki
Takaharu Kitamura
Kenji Yoshikawa
Tetsuya Shiraishi
Takeshi Nishihata
Akira Shimomura
Original Assignee
Hitachi Zosen Corporation
Risho Kogyo Co., Ltd.
Research Institute Of Innovative Technology For The Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation, Risho Kogyo Co., Ltd., Research Institute Of Innovative Technology For The Earth filed Critical Hitachi Zosen Corporation
Priority to JP2008509757A priority Critical patent/JP5178509B2/en
Publication of WO2007116706A1 publication Critical patent/WO2007116706A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a conductive material using carbon nanotubes and a method for producing the same.
  • the conductive material according to the present invention can be applied, for example, as a polarizable electrode which is a main component of an electric double layer capacitor capable of storing a large amount of electricity.
  • carbon nanotube means a plurality of brush-like carbon nanotubes.
  • a carbon nanotube is an ultrafine cylinder (a tube having a normal hole diameter of nano (one nano is 1 billionth) meter) in which a graph sheet sheet in which a six-membered ring consisting of carbon atoms is continuously formed is rounded. Material with a very high aspect ratio. Carbon nanotubes have various unique properties such as chemical stability, high strength, and a wide range of electrical properties, and are expected to be applied as new carbon materials for industrial use!
  • the present inventors have previously obtained a carbon nanotube obtained by transferring a carbon nanotube grown on a substrate to a conductive film or a conductive adhesive layer in a direction substantially perpendicular to the surface thereof.
  • a conductive material, a method for producing the same, and an electrode using the same have been proposed (see Patent Document 1 and Patent Document 2).
  • the shape of the energy regeneration system is required to be short, thin, light and thin like other electronic parts and circuits, and a large-capacity electric double layer capacitor with higher efficiency is desired.
  • the electrical capacity charged in the electric double layer capacitor is, of course, better as it is larger, but the electric capacitance of the electric double layer capacitor is larger as the operating voltage is higher, as shown by the following equation [I]. It is advantageous.
  • Thinning of the component parts enables miniaturization and thinning of the electric double layer capacitor, and lowering of resistance of the polarizable electrode may lead to an improvement in the conductivity of the electric double layer capacitor itself and hence to a large capacity. it can.
  • a method of removing a substrate and providing a supported and aligned carbon nanotube film on a second substrate has been proposed (see Patent Document 5).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-30926
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-127737
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-281388
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2005-7861
  • Patent Document 5 Japanese Patent Application Publication No. 2003-500325
  • the conductive carbon nanotube material described in Patent Document 1 is, as shown in FIG. 3, a conductive film (52) made of brush hairy carbon nanotube (51) grown with a catalyst particle on the substrate as a core.
  • the force conductive film (52) which is substantially vertically transferred onto the upper side, is formed by adding the polyethylene layer (54), and therefore, is inferior in heat resistance and strength. Therefore, when the ambient temperature reaches the melting temperature of polyethylene, the carbon nanotubes (51) transferred in a substantially perpendicular manner to the conductive film (52) can not maintain the vertical orientation. In extreme cases, there is a risk of falling off.
  • the polyethylene-based conductive film and porous film, and the polymer film of Patent Document 5 are inferior in strength, as shown in FIG. 4, the conductive film (52) and the reinforcing layer laminated thereon are shown in FIG. (55) Sometimes a multilayer film (56) is used. However, in this case, the total thickness of the film is inevitably increased.
  • the temperature of the conductive film before transfer is raised to a temperature above the softening temperature, and transferred and held in that state, and then the carbon nanotube is transferred to the conductive film.
  • the temperature of the conductive film before transfer is raised to a temperature above the softening temperature, and transferred and held in that state, and then the carbon nanotube is transferred to the conductive film.
  • carbon nanotubes could not be reliably transferred, and the carbon nanotubes grown on the substrate remained or the polyethylene layer of the conductive film was melted and peeled off. .
  • the conductive carbon nanotube material described in Patent Document 2 is, as shown in FIG. 5, a conductive adhesive in which carbon nanotubes (63) grown with catalyst particles as nuclei are laminated on a substrate (61). Transfer to the agent layer (62).
  • thermoplastic resin such as poly salt resin is preferable, but this conductive material is also the same as that of the patent document 1 in heat resistance and melting temperature or more.
  • the retention of carbon nanotubes at high temperatures Less reliable, power!
  • this conductive material When this conductive material is used as a polarizable electrode of an electric double layer capacitor, the transferred carbon nanotubes are simply bonded on the surface of the adhesive layer. Equally, carbon nanotubes may be desorbed by external factors such as temperature change, which is unreliable.
  • the conductive adhesive layer is inferior in strength, as the conductive material to which carbon nanotubes have been transferred, it is necessary to bond together a support such as a film, sheet or thin plate made of an inorganic or organic synthetic resin. There is no choice but to increase the thickness of the conductive material o
  • the operating voltage when the conductive material according to Patent Document 2 is used as a polarizable electrode for an electric double layer capacitor is that the reaction current is generated in a relatively low voltage region. It can not withstand use in the high voltage range that it has. Therefore, the polarizing electrode for a large capacity electric double layer capacitor is not satisfactory in terms of characteristics.
  • Patent Document 3 includes a step of adhering a single-walled carbon nanotube to a surface of a conductive binder layer patterned on a substrate, a step of curing the conductive binder layer as needed, and a conductive step.
  • a method of manufacturing a field emission type cold cathode is disclosed, which comprises the steps of peeling the substrate leaving only the oriented carbon nanotube portion adhered to the conductive binder layer.
  • a method for transferring oriented carbon nanotubes to a flexible substrate having a reversible adhesive surface, and a method for fixing oriented carbon nanotubes on an electrode are described.
  • Patent Document 4 proposes a functional sheet having a three-layer structure intended to prevent contamination and improve convenience during transfer of oriented carbon nanotubes, as shown in FIG.
  • the two functional sheets (72X73) disposed on both sides of the oriented carbon nanotube film (71) have a carbon nanotube film (71) fixed thereto.
  • Immobilization of the carbon nanotube film (71) is described to mean that the surface of the functional sheet (72 ⁇ 73) and the surface of the oriented carbon nanotube film (71) contact and adhere to each other. For this reason, when the conductive material obtained by Patent Document 4 is used as an electrode, there is a possibility that the orientation of carbon nanotubes may be disturbed or dropped as in the case of the above-mentioned patent documents. The reliability of carbon nanotube retention is inferior and it can not be used in some cases.
  • the object of the present invention is to solve the problems in the above-mentioned patent documents by maintaining thinness and high conductivity, and being excellent in strength and reliability of carbon nanotube retention, and excellent in production efficiency.
  • An object of the present invention is to provide a conductive material using a carbon nanotube and a method for producing the same, which is suitable for production and advantageous in cost. Further, according to the present invention, since the conductive material can be thinner and retain high conductivity, and the operation is secured in a high voltage region, the conductive material can be used as a polarizable electrode. Another object of the present invention is to provide a large capacity electric double layer capacitor used.
  • a carbon nanotube grown by using catalyst particles on a substrate as a core is transferred to an epoxy resin composition layer and pierced in a direction substantially perpendicular to the surface thereof. It is an object of the present invention to provide a conductive material using a carbon nanotube, which is characterized in that the resin composition layer is penetrated.
  • the carbon nanotubes in the present invention are transferred to the epoxy resin composition layer, pierced substantially perpendicularly to the surface, and kept penetrating the resin composition layer.
  • the carbon nanotube is reliably held in the resin composition layer by penetrating the epoxy resin composition layer, and the reliability of carbon nanotube retention is greatly improved as compared with the prior art.
  • Carbon nanotubes substantially vertically oriented on a substrate can be produced by a known method.
  • a solution containing a complex of a metal such as nickel, complex, or iron is applied by spraying or brushing on at least one surface of a silicon substrate, and then heated to form a film, or particles of the above metal or its compound
  • a film is formed by striking the substrate with a cluster gun.
  • the film is heated, preferably in an inert gas atmosphere, preferably at 700 to 800 ° C., preferably for 1 to 30 minutes, to form catalyst particles from the film.
  • the obtained particulate form is preferably subjected to a general chemical vapor deposition method (CVD method) using an acetylene gas to obtain a diameter of 10 to 38 nm, a length of 1 to 300 ⁇ m, and a distance between carbon nanotubes 10 to 10: LOOOnm carbon nanotubes are raised on a substrate in a multi-layer structure.
  • CVD method general chemical vapor deposition method
  • the carbon nanotubes preferably have a multi-layered structure, and their outer diameter is preferably 10 to 30 nm!
  • An electric double layer capacitor configured by using such a carbon nanotube as a polarizable electrode exhibits good charge and discharge characteristics.
  • the epoxy resin yarn or composite layer to which a carbon nanotube is to be transferred is further a) a multifunctional epoxy resin having three or more epoxy groups in its molecule, b) a phenoxy resin, c) a synthetic rubber It is preferable to include at least one of or derivatives thereof and d) polyamide resin or derivatives thereof.
  • the epoxy resin composition can obtain appropriate elasticity by containing at least one of the components a) to d), carbon nanotubes are immediately transferred to the epoxy resin composition layer, and It is held in a state of penetrating the epoxy resin composition layer.
  • the epoxy resin composition layer preferably further contains a conductive filler.
  • a conductive filler By the addition of the conductive filler, the electrical bondability between the carbon nanotubes is improved, whereby the conductivity can be improved and the internal resistance of the obtained conductive material can be reduced.
  • the present invention also provides a method of producing a conductive material using carbon nanotubes.
  • carbon nanotubes which are grown with the catalyst particles on the substrate as a core, are transferred to the epoxy resin composition layer, pierced in a direction substantially perpendicular to the surface thereof, It is a method for producing a conductive material using a carbon nanotube, characterized in that before the transfer, the epoxy resin composition layer is heated to 50 ° C. or more and 200 ° C. or less before transfer.
  • the epoxy resin composition layer is preferably in the B-stage state (semi-cured state) at the stage before the heating.
  • the epoxy resin composition layer by containing at least one of the components a) to d), has a proper elasticity for the carbon nanotube to be transferred, and the carbon nanotube is The resin composition layer can be easily penetrated.
  • the present invention provides an electric double layer capacitor characterized by using the above-mentioned conductive material as a polarizable electrode. By using the above-mentioned conductive material for the polarizable electrode, a large capacity electric double layer capacitor can be realized by securing low resistance and high operating voltage.
  • a large capacity electric double layer capacitor in which a further higher operating voltage is secured by using the above-mentioned conductive material as a polarizable electrode and using an ionic liquid as an electrolytic solution Can be realized.
  • the operating voltage of the electric double layer capacitor is determined by a potential window derived from the reaction current measured by cyclic voltammetry.
  • the potential window is a range of voltage range without generation of reaction current, and the range is large! /, The higher the operating voltage is secured, the large capacity can be realized.
  • the generation of the reaction current means that the electricity once charged in the electric double layer capacitor is lost to the outside, that is, it is difficult to operate the electric double layer capacitor in the voltage region where the reaction current is generated. Do.
  • the conductive material according to the present invention has a structure in which the carbon nanotube penetrates the epoxy resin composition layer, so that strength and carbon nanotube retention can be achieved.
  • the high reliability, thin, high conductivity operating voltage is ensured, the operation is ensured in the high voltage region, the production efficiency is excellent, it is suitable for mass production, and the cost is also favorable.
  • the carbon nanotube penetrates through the epoxy resin yarn or compound layer, when the epoxy resin composition layer is formed on the substrate, it is in direct contact with the substrate surface. Ru. Therefore, when using a conductive material obtained by raising a carbon nanotube in a laminate composed of an epoxy resin composition layer and its base material as a collecting electrode, the high conductivity of the carbon nanotube is the electrode itself. It is possible to express a synergetic effect on the conductivity of the electrode and to form a low resistance electrode.
  • the epoxy resin composition layer further contains at least one kind of specific components a) to d).
  • the epoxy resin composition layer has a suitable elasticity, so carbon nanotubes Immediately after being transferred to the resin composition layer, the epoxy resin composition layer is kept penetrating.
  • the epoxy resin composition layer further includes a conductive filler, whereby the effects according to the inventions of claims 1 and 2 can be improved.
  • a conductive filler By improving the electrical connectivity between carbon nanotubes, it is possible to improve the conductivity and reduce the internal resistance as a conductive material.
  • the resin composition layer is suitably flexible for transfer.
  • the transferred carbon nanotubes can be kept penetrating through the resin composition layer.
  • Catalyst particles are formed on a substrate, and carbon nanotubes are grown from a source gas in a high temperature atmosphere using the catalyst particles as nuclei.
  • the substrate may be a silicon substrate which preferably supports catalyst particles, as long as it supports catalyst particles.
  • the catalyst particles may be metal particles such as nickel, cobalt, iron and the like.
  • a solution of a compound such as these metals or complexes thereof is applied to a substrate by spraying or brushing to form a film.
  • the thickness of the film is preferably 1 to: LOO nm.
  • the coating is preferably heated in an inert gas atmosphere, preferably at 700-800 ° C., preferably for 1-30 minutes, to form catalyst particles.
  • aliphatic hydrocarbons such as acetylene, methane and ethylene can be used, and acetylene gas is particularly preferable.
  • acetylene carbon nanotubes with a multilayer structure of 12 to 60 nm in thickness are formed in a brush shape on the substrate with the catalyst particles as the core by the CVD method.
  • the formation temperature of carbon nanotubes is preferably 650 to 800. It is C.
  • the epoxy resin used in the present invention may have two or more glycidyl groups in the molecule.
  • Examples of the epoxy resin S include diglycidinoleate tenore type, diglycydolic ester type, glididylamine type, linear aliphatic epoxide type, alicyclic epoxide type and the like. These may be used alone or in combination of two or more.
  • the epoxy resin may be one modified by a known method.
  • the epoxy resin may be liquid, semi-solid, solid, or loose at room temperature, but the epoxy resin composition may be used alone or as a mixture of organic solvents to facilitate handling. It is preferable to contain a reactive diluent.
  • a reactive diluent various ones such as monofunctional, bifunctional, polyfunctional and the like can be suitably used.
  • the organic solvent methanol, acetone, methyl ethyl ketone, toluene, methyl sequestrub, dimethylformamide and the like can be appropriately used.
  • the epoxy resin composition contains a curing agent.
  • curing agents include polyamines such as aliphatic, alicyclic and aromatic; polyamidoamines; modified polyamines; hexahydrophthalic anhydride; Acids, acid anhydrides such as trimellitic anhydride; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and derivatives thereof; dicyandiamide or derivatives thereof; organic acid dihydrazides such as sebacic acid dihydrazide; 3- (3 Urea derivatives such as 4-dichlorophenyl) -1,1 dimethylurea; mention may be made of boron fluoride-monoethylamine complex, phenol resin, amino acid, polyisosocyanate complex, diaminodiphenyl sulfone and the like.
  • any curing agent can be used as long as it cures by crosslinking reaction with the epoxy resin to be used, and is not particularly limited.
  • the curing agent may be used alone or in combination of two or more. It is also possible to blend other thermosetting resin and thermoplastic resin with the epoxy resin composition. Moreover, in order to impart the necessary characteristics, it is preferable to add organic and inorganic additives and fillers.
  • the epoxy resin yarn composite layer further comprises: a) a polyfunctional epoxy resin having three or more epoxy groups in its molecule, b) a phenoxy resin, c) a synthetic rubber or a derivative thereof, and d It is preferable to include at least one kind of polyamide resin or its derivative.
  • polyfunctional epoxy resins having three or more epoxy groups in the molecule phenol nopolac type epoxy resins, creosoyl novolac type epoxy resins, triglycidyl-P-amitraglycidyldiaminodiphenylmethane And polyfunctional epoxy resins such as tetraglycidyl-1, 3-bisaminomethylcyclohexane.
  • polyfunctional epoxy resins it is possible to use phenol novolac type epoxy resin or cresol novolac type epoxy resin, heat resistance of the epoxy resin composition layer and transferability of carbon nanotube, etc. Force is also preferred.
  • the polyfunctional epoxy resin When the polyfunctional epoxy resin is added to the epoxy resin composition, it is preferable to add 5 to 50 parts by weight to 100 parts by weight of the resin composition. If the addition amount is less than 5 parts by weight or more than 50 parts by weight, transfer of carbon nanotubes in the form of penetrating the same resin composition layer becomes difficult.
  • Fukinoxy resin is generally a linear epoxy resin having a molecular weight of 30000 or more, and has thermoplastic resin-like properties.
  • any of those having a basic structure of bisphenol A type and bisphenol F type can be used.
  • those which are flame-retardant-modified with bromine, phosphorus or the like or modified with other functional groups can also be used.
  • "Fuenotot" from Toto Kasei Co., Ltd. can be mentioned.
  • By adding 5 to 45 parts by weight of phenoxy resin to 100 parts by weight of the same resin composition appropriate rigidity and flexibility are imparted, so carbon in the form of penetrating the epoxy resin composition layer. It is possible to transfer nanotubes. When the addition amount is less than 5 parts by weight and more than 50 parts by weight, transfer of carbon nanotubes in the form of penetrating the same resin composition layer can not be performed.
  • Synthetic rubbers are styrene butadiene rubber, polyisoprene rubber, acrylonitrile butadiene It may be rubber, epichlorohydrin rubber or the like.
  • the derivative of the synthetic rubber may be a derivative derived from hydrogenation of synthetic rubber, modification of carboxyl group and the like.
  • Medium-to-high-tolyl type and high-tolyl type acrylonitrile butadiene rubber and carboxylated acrylonitrile butadiene rubber are preferable because the epoxy resin yarn composite layer can obtain appropriate flexibility and rigidity in transferring carbon nanotubes. .
  • "Nipo 1" manufactured by Nippon Zeon Co., Ltd. and the like can be mentioned.
  • the epoxy resin composition layer is imparted with flexibility and rigidity, so that carbon nanotube transfer in a form penetrating the resin composition layer. Is possible.
  • the addition amount of the synthetic rubber or its derivative is 5 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin composition.
  • the addition amount is 5 parts by weight or less, it becomes difficult to transfer the carbon nanotube to the same resin composition, and when it becomes 50 parts by weight or more, the transferred carbon nano tube is retained in the same resin composition layer. It becomes difficult.
  • a vulcanizing agent suitable for improving the strength, adhesion and the like of the rubber itself such as phenol resin and its derivative may be used in combination. It is preferable to add 5 to 20 parts by weight of phenol resin and its derivative to 100 parts by weight of synthetic rubber or its derivative.
  • the polyamide resin may have a basic structure such as 6-nylon or 6,6-nylon, or the like, or may be a copolymer thereof.
  • CM4000 and CM8000 which are made of East Rene clay copolymer nylon "AMIRAN”.
  • elastomers or synthetic resins having a polyamide group in the molecular structure of “Kayaflex” manufactured by Nippon Kayaku Co., Ltd. can also be used.
  • Polyamide resin or its derivative is powdery fine particles, liquid at room temperature
  • the addition amount of the polyamide resin or its derivative is 100 parts by weight of the epoxy resin composition. Preferably, it is 5 to 60 parts by weight. When the addition amount is 5 parts by weight or less, the flexibility of the resin composition layer is insufficient, and when it is more than 60 parts by weight, the transferred carbon nano tube is retained in the same resin composition layer. It will be difficult to do.
  • a conductive filler in the epoxy resin composition.
  • the conductive filler include carbon nanotube pieces, carbon nanohorn pieces, carbon nanocoil pieces, conductive carbon fibers, graphite, carbon-based conductive pieces such as carbon black, and carbon-based conductive powders.
  • an electroconductive material in an electric double layer capacitor it is possible to achieve a reduction in resistance of the electrode itself without affecting the electrolyte solution and the like.
  • an epoxy resin yarn is coated with a coater, a doctor blade or the like on the surface of an inorganic material such as metal foil or a base material made of heat resistant film, and the epoxy resin yarn is formed.
  • an inorganic material such as metal foil or a base material made of heat resistant film
  • the epoxy resin yarn is formed.
  • metal foils copper foils, stainless steel foils, aluminum foils are preferred, such as availability and economy.
  • the heat resistant film is preferably a polyethylene terephthalate film.
  • the thickness of the epoxy resin composition layer is preferably 0.1 to: LOOO ⁇ m, and more preferably 10 to 200 ⁇ m. If the thickness of the resin composition layer is less than 0.1 ⁇ m, carbon nanotubes can not be reliably held, and if it is more than 1000 m, it becomes extremely difficult to form the resin composition layer. Poor productivity.
  • the step of transferring the carbon nanotubes to the epoxy resin composition layer is carried out at the stage where the solvent is evaporated and the resin composition is dried after the epoxy resin composition is applied to the surface of the substrate. It will be.
  • an epoxy resin composition is coated on a base material having a suitable releasability such as a metal foil or a heat resistant film, and after drying, a laminate comprising the resin composition and the base material is dried.
  • a base material having a suitable releasability such as a metal foil or a heat resistant film
  • a laminate comprising the resin composition and the base material is dried.
  • the carbon nanotube grown on the substrate is planted in the same resin composition layer by pressing the tip from the tip onto the epoxy resin composition layer. After that, carbon nanotubes The carbon nanotube force is also peeled off leaving only the substrate left in the resin composition layer.
  • the transfer of the carbon nanotube to the substrate strength epoxy resin composition layer is completed to obtain the conductive material using the brush-like carbon nanotube.
  • the brush-like carbon nanotube penetrates the epoxy resin composition layer and is surely transferred to the epoxy resin composition layer.
  • the epoxy resin composition layer at the time of transfer is preferably 50 ° C. or more and 200 ° C. or less, and more preferably 60 to 160 ° C. This heating is preferably done in the far infrared or electromagnetic induction mode.
  • the heating time may be, for example, 1 to 20 minutes, preferably 3 to LO minutes.
  • the same resin fiber layer or a composite layer is in a B-stage state at the stage before the above heating.
  • carbon nanotubes can be more reliably penetrated by the resin composition layer.
  • the epoxy resin composition layer is cured by heating or the like as required. Thereby, the carbon nanotube can be reliably fixed in the state of penetrating the same resin composition layer.
  • the carbon nanotube is pierced substantially perpendicularly to the surface of the epoxy resin composition layer, and penetrates to reach the opposite surface.
  • the carbon nanotubes of one electrode and the carbon nanotubes of the other electrode are in a noncontact manner facing each other. Together, impregnating carbon nanotubes with electrolyte solution And place them all in a container.
  • a base material (1) which also functions as a polyethylene terephthalate film, bisphenol A type solid epoxy resin ("AER-6051” manufactured by Asahi Kasei Corp.), dicyandiamide as a curing agent, polyfunctional epoxy resin
  • AER-6051 bisphenol A type solid epoxy resin
  • dicyandiamide as a curing agent
  • polyfunctional epoxy resin An epoxy resin composition that also contains phenol novolak-modified epoxy resin (Dei Nippon Ink Chemical Co., Ltd., “Epiclone N-770”, and methyl ethyl ketone which is an organic solvent for dilution) to a thickness of 10 ⁇ m with a doctor blade
  • the organic solvent was evaporated by coating and heating at 150 ° C. for 3 minutes to form a B-stage epoxy resin composition layer (2).
  • the substrate with carbon nanotubes (5) and the epoxy resin composition layer (2) are heated to 130 ° C with far infrared rays, and the substrate with carbon nanotubes is formed on the surface of the resin composition layer (2) (5 ) Was pressed from the tip of the carbon nanotube, and the tip portion was inserted into the epoxy resin composition layer (2) to penetrate the composition layer (2) as shown in FIG. Id.
  • the tip of the carbon nanotube is in contact with the substrate (1).
  • the silicon substrate (3) was mechanically peeled from the carbon nanotubes (4) so as to leave the carbon nanotubes (4) in the epoxy resin composition layer (2).
  • the transfer of the carbon nanotubes to the substrate strength epoxy resin composition layer was completed.
  • the carbon nanotube (4) does not remain in the silicon substrate (3), and the silicon substrate (3) is not
  • the carbon nanotube transfer to the propoxy resin composition layer (2) could be carried out without any problem.
  • the obtained carbon nanotube-embedded epoxy resin composition layer coated substrate (1) was heated in an oven at a temperature of 150 ° C. to cure the epoxy resin composition layer (2).
  • the base material (1) is mechanically peeled off from the epoxy resin cured material layer (6), and as shown in Fig. If, the carbon nanotube (4) is planted in the epoxy resin cured material layer (6) A conductive material (7) was obtained.
  • the carbon nanotube (4) pierces the surface of the cured epoxy resin layer (6) substantially perpendicularly, and penetrates the cured resin layer (6) to reach the opposite surface. It was confirmed that he would be angry.
  • Example 2 In the second to fifth steps, the same operations as the corresponding steps in Example 1 were performed.
  • the carbon nanotube (4) was pierced substantially perpendicularly to the epoxy resin fiber layer (2), and it was confirmed that the carbon nanotube (4) penetrated the resin composition layer (2). Similar to Example 1, the carbon nanotube was transferred to the silicon substrate, and the transfer of the carbon nanotube to the epoxy resin composition layer (2) could be performed without any problem.
  • the aluminum foil (8) was mechanically peeled off from the epoxy resin cured product layer to obtain a conductive material in which carbon nanotubes were embedded in the epoxy resin cured product layer. It was confirmed that the carbon nanotube (4) was pierced substantially perpendicularly to the surface of the cured epoxy resin layer, and penetrated to reach the opposite surface.
  • Example 1 The conductive material obtained in Example 1 and Example 2 was used as a polarizable electrode, and an electrolytic solution was prepared by using an ionic liquid such as tetrafluoroboric acid N, N-jetyl-N-methyl-N- (2- An electrical double layer capacitor was prepared using methoxyethyl ammonium salt (having a potential window of up to 5.5 V).
  • an ionic liquid such as tetrafluoroboric acid N, N-jetyl-N-methyl-N- (2-
  • An electrical double layer capacitor was prepared using methoxyethyl ammonium salt (having a potential window of up to 5.5 V).
  • a voltage was applied between the positive electrode and the negative electrode of the electric double layer capacitor, and the reaction current was measured by cyclic voltammetry. As a result, no reaction current is observed in the potential window region up to 3.5 V, and it is high as an electric double layer capacitor! It was found that operation in the voltage range was possible.
  • a conductive adhesive containing a thermoplastic resin (polychloride resin) as a binder is coated to a thickness of 10 ⁇ m on a polyethylene terephthalate film base material so as to have a thickness of 10 ⁇ m, and the organic solvent is evaporated to coat it.
  • the working layer was dried to form a conductive adhesive layer.
  • Example 2 The same operation as in the second step of Example 1 was performed to produce a carbon nanotube-attached substrate.
  • the above-mentioned carbon nanotube-attached substrate was pressed against the above-mentioned conductive adhesive layer at normal temperature by the tip force of the carbon nanotube to insert the tip into the conductive adhesive. After that, it took 10 minutes for the conductive adhesive layer to fully cure.
  • the silicon substrate was then mechanically peeled away from the carbon nanotubes, leaving carbon nanotubes in the conductive adhesive layer.
  • transfer of the carbon nanotubes to the substrate resin layer was completed.
  • part of the carbon nanotubes remained on the substrate, and the transfer did not proceed well.
  • the conductive material according to the present invention can be applied, for example, as a polarizable electrode which is a main component of an electric double layer capacitor capable of storing a large amount of electricity.
  • FIG. La is a cross sectional view schematically showing a first step of the first embodiment.
  • Figure lb is a cross sectional view schematically showing a second step of the first embodiment.
  • FIG. 1c is a cross sectional view schematically showing a third step of the first embodiment.
  • Figure Id is a cross sectional view schematically showing a third step of the first embodiment.
  • Figure le is a cross-sectional view schematically showing a fourth step of the first embodiment.
  • Figure If is a cross sectional view schematically showing a sixth step of the first embodiment.
  • FIG. 2 is a cross sectional view schematically showing a first step of the second embodiment.
  • FIG. 3 is a cross-sectional view of the carbon nanotube conductive material described in Patent Document 1.
  • FIG. 4 is a cross-sectional view of a carbon nanotube conductive material described in Patent Document 1.
  • FIG. 5 is a cross-sectional view of the carbon nanotube conductive material described in Patent Document 2.
  • FIG. 6 is a cross-sectional view of a carbon nanotube conductive material described in Patent Document 4. Explanation of sign

Abstract

A conductive material employing carbon nanotubes which is of a thinner type, retains high conductivity, is excellent in strength and reliability of carbon nanotube retention, has an excellent production efficiency and suitability for mass-production, and is advantageous in cost; and a process for producing the conductive material. The conductive material employing carbon nanotubes is obtained by transferring carbon nanotubes (4) grown from catalyst particles as nuclei on a substrate (3) to an epoxy resin composition layer so that the carbon nanotubes pierce the resin composition layer in a direction substantially perpendicular to the surfaces thereof and extend to the opposite surface thereof.

Description

明 細 書  Specification
カーボンナノチューブを用いた導電性材料、その製造方法、およびそれ を利用した電気二重層キャパシタ  Conductive material using carbon nanotube, method of manufacturing the same, and electric double layer capacitor using the same
技術分野  Technical field
[0001] 本発明はカーボンナノチューブを用いた導電性材料およびその製造方法に関する ものである。本発明による導電性材料は、例えば、大容量の電気を蓄えることが可能 な電気二重層キャパシタの主構成部材である分極性電極として適用できる。  The present invention relates to a conductive material using carbon nanotubes and a method for producing the same. The conductive material according to the present invention can be applied, for example, as a polarizable electrode which is a main component of an electric double layer capacitor capable of storing a large amount of electricity.
[0002] 特許請求の範囲および明細書全体を通して、「カーボンナノチューブ」とは、ブラシ 毛状の複数本のカーボンナノチューブを意味する。  [0002] Throughout the claims and the specification, "carbon nanotube" means a plurality of brush-like carbon nanotubes.
背景技術  Background art
[0003] カーボンナノチューブは、炭素原子力 なる六員環が連続して形成されるグラフアイ トシートが丸まった、通常穴径ナノ(1ナノは 10億分の 1)メートルサイズの極微細な筒 (チューブ)状の物質であり、非常にアスペクト比の大きい材料である。カーボンナノ チューブは化学的安定性、高強度、幅広い電気特性を持つなど様々なユニークな特 性を持つことから、新 、炭素材料として産業上への応用が期待されて!、る。  [0003] A carbon nanotube is an ultrafine cylinder (a tube having a normal hole diameter of nano (one nano is 1 billionth) meter) in which a graph sheet sheet in which a six-membered ring consisting of carbon atoms is continuously formed is rounded. Material with a very high aspect ratio. Carbon nanotubes have various unique properties such as chemical stability, high strength, and a wide range of electrical properties, and are expected to be applied as new carbon materials for industrial use!
[0004] その応用の一つとして、電気二重層キャパシタの構成部材である分極性電極への 応用が挙げられている。電気二重層キャパシタを用いたエネルギー回生システムは、 寿命が半永久的であり、環境負荷物質を殆ど含まない上、瞬時充放電特性に優れて いる。近年、地球環境問題における二酸化炭素排出量抑制技術が重要な課題とな つており、無駄に排出していた電気を蓄電 '再利用するため、上記回生システムの開 発が盛んに行われている。  As one of the applications, application to a polarizable electrode which is a component of an electric double layer capacitor is mentioned. The energy regeneration system using the electric double layer capacitor has a semipermanent life, contains almost no environmental load, and is excellent in instantaneous charge and discharge characteristics. In recent years, technology to reduce carbon dioxide emissions in global environmental problems has become an important issue, and in order to reuse electricity that has been wasted wastefully, development of the above-mentioned regeneration system is actively conducted.
[0005] 本発明者らは、先に、基板上に成長させたカーボンナノチューブを導電性フィルム や導電性接着剤層にその表面に対し実質上垂直方向に転写することで得られる力 一ボンナノチューブ導電性材料、その製造方法およびそれを用いた電極を提案した (特許文献 1、特許文献 2参照)。  The present inventors have previously obtained a carbon nanotube obtained by transferring a carbon nanotube grown on a substrate to a conductive film or a conductive adhesive layer in a direction substantially perpendicular to the surface thereof. A conductive material, a method for producing the same, and an electrode using the same have been proposed (see Patent Document 1 and Patent Document 2).
[0006] 電気二重層キャパシタを用いたエネルギー回生システムの用途は、多方面に広が る傾向にあり、そのためには、より安価で大量生産性に富み、より厳しい条件、例えば 、高温環境下での使用に耐えるものが求められる。 Applications of energy regeneration systems using electric double layer capacitors tend to spread in many directions, and for that purpose, they are cheaper, rich in mass productivity, and more severe conditions, for example And those that can withstand use in high temperature environments are required.
[0007] また、エネルギー回生システムの形状としては、他の電子部品、回路等と同様に短 小軽薄であることが求められ、より効率の良い大容量の電気二重層キャパシタが望ま れている。電気二重層キャパシタに充電される電気容量は、もちろん大きい方が優れ ているが、電気二重層キャパシタの電気容量は、次式 [I]で示されるように、作動電 圧が高いほどより大容量となり有利である。  In addition, the shape of the energy regeneration system is required to be short, thin, light and thin like other electronic parts and circuits, and a large-capacity electric double layer capacitor with higher efficiency is desired. The electrical capacity charged in the electric double layer capacitor is, of course, better as it is larger, but the electric capacitance of the electric double layer capacitor is larger as the operating voltage is higher, as shown by the following equation [I]. It is advantageous.
[0008] E= 1/2CV2 [I] E = 1/2 CV 2 [I]
一般に、電気二重層キャパシタにおいては、有機電解液を用いた方がより高電圧 での作動が可能であるが、最近では構成材料の進歩により、有機電解質系電気二 重層キャパシタよりもさらに高電圧での使用が可能となってきている。作動電圧の測 定法は後述する。  Generally, in electric double layer capacitors, it is possible to operate at a higher voltage by using an organic electrolyte, but recently, with the progress of constituent materials, it is possible to operate at higher voltages than organic electrolyte based electric double layer capacitors. The use of is becoming possible. The method of measuring the operating voltage will be described later.
[0009] また、電気二重層キャパシタの大容量ィ匕には、更なる構成部品の薄型化、分極性 電極の低抵抗化も必要とされる。構成部品の薄型化は、電気二重層キャパシタの小 型化'薄型化を可能にし、分極性電極の低抵抗化は、電気二重層キャパシタ自身の 導電性向上、ひいては大容量ィ匕へつなげることができる。  Further, for the large capacity of the electric double layer capacitor, further thinning of the component parts and reduction of the polarizable electrode are also required. Thinning of the component parts enables miniaturization and thinning of the electric double layer capacitor, and lowering of resistance of the polarizable electrode may lead to an improvement in the conductivity of the electric double layer capacitor itself and hence to a large capacity. it can.
[0010] カーボンナノチューブは、その高導電性 ·堅牢性'高いアスペクト比等の性質から、 電子放出型の電子源としての有効性が注目され、多数の検討がなされている。例え ば、垂直配向性をもたせたカーボンナノチューブをパターン形成された導電性バイン ダ一の表面へ転写する工程で電界放出型冷陰極を製造する方法 (特許文献 3参照) や、垂直配向性を持ったカーボンナノチューブを種々の特性を持った機能性シート に転写し固定ィ匕させ、配向性を保ちつつ、取り扱い上の利便性を高めることを目的と した三層構造のシートとする方法 (特許文献 4参照)や、カーボンナノチューブの成長 を支持できる第一の基体上に整列したカーボンナノチューブ層を合成し、同層の上 面にポリマーフィルム力もなる第二の基体の層を適用し、第一の基体を除去し、第二 の基体上に支持され、整列したカーボンナノチューブフィルムを提供する方法 (特許 文献 5参照)が提案されて ヽる。  [0010] From the properties of carbon nanotubes such as high electrical conductivity and high robustness' high aspect ratio, their effectiveness as an electron emission electron source has attracted attention, and a number of studies have been made. For example, a method of manufacturing a field emission type cold cathode in the step of transferring vertically aligned carbon nanotubes onto the surface of a patterned conductive binder (see Patent Document 3), or having vertically aligned property. A method of forming a three-layered sheet for the purpose of enhancing the convenience in handling while transferring the fixed carbon nanotube to a functional sheet having various properties and fixing it, and maintaining the orientation (patent document) 4) or a first substrate capable of supporting the growth of carbon nanotubes, synthesize a carbon nanotube layer aligned on the first substrate, and apply a second substrate layer that also functions as a polymer film on the upper surface of the same layer; A method of removing a substrate and providing a supported and aligned carbon nanotube film on a second substrate has been proposed (see Patent Document 5).
特許文献 1:特開 2004- 30926号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-30926
特許文献 2 :特開 2004- 127737号公報 特許文献 3:特開 2004- 281388号公報 Patent Document 2: Japanese Patent Application Laid-Open No. 2004-127737 Patent Document 3: Japanese Patent Application Laid-Open No. 2004-281388
特許文献 4:特開 2005-7861号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2005-7861
特許文献 5:特表 2003-500325号公報  Patent Document 5: Japanese Patent Application Publication No. 2003-500325
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0011] 特許文献 1に記載のカーボンナノチューブ導電性材料は、図 3に示すように、基板 上の触媒粒子を核として成長させたブラシ毛状カーボンナノチューブ (51)を導電性フ イルム (52)上に実質上垂直に転写したものである力 導電性フィルム (52)はポリエチレ ン層 (54)を添加してなるので、耐熱性や強度に劣る。そのため、周囲温度がポリェチ レンの溶融温度以上に達した場合には、導電性フィルム (52)に実質上垂直に突き刺 す形で転写されたカーボンナノチューブ (51)は、垂直配向を維持できなくなり、ひど い場合には、脱落してしまう恐れがある。  The conductive carbon nanotube material described in Patent Document 1 is, as shown in FIG. 3, a conductive film (52) made of brush hairy carbon nanotube (51) grown with a catalyst particle on the substrate as a core. The force conductive film (52), which is substantially vertically transferred onto the upper side, is formed by adding the polyethylene layer (54), and therefore, is inferior in heat resistance and strength. Therefore, when the ambient temperature reaches the melting temperature of polyethylene, the carbon nanotubes (51) transferred in a substantially perpendicular manner to the conductive film (52) can not maintain the vertical orientation. In extreme cases, there is a risk of falling off.
[0012] また、ポリエチレンベースの導電性フィルムや多孔性フィルム、さらに特許文献 5の ポリマーフィルムは強度に劣るため、図 4に示すように、導電性フィルム (52)とこれに 積層された補強層 (55)カゝらなる多層フィルム (56)を用いることもある。しかし、この場合 にはフィルムの全厚はどうしても大きくならざるを得なくなる。  In addition, since the polyethylene-based conductive film and porous film, and the polymer film of Patent Document 5 are inferior in strength, as shown in FIG. 4, the conductive film (52) and the reinforcing layer laminated thereon are shown in FIG. (55) Sometimes a multilayer film (56) is used. However, in this case, the total thickness of the film is inevitably increased.
[0013] さらに、カーボンナノチューブの転写工程では、転写前の導電性フィルムをー且軟 化温度以上に昇温し、その状態で転写、保持しておき、その後、カーボンナノチュー ブを導電性フィルムに保持するためにその後軟ィ匕温度以下に冷却する必要があり、 これら一連の工程には長時間を要し、生産性が劣る原因になっていた。しかも、カー ボンナノチューブの転写が確実に行えず、基板上に成長させたカーボンナノチュー ブが残ってしまったり、逆に導電性フィルムのポリエチレン層が溶融し剥離してしまう という現象が見られた。  Furthermore, in the carbon nanotube transfer step, the temperature of the conductive film before transfer is raised to a temperature above the softening temperature, and transferred and held in that state, and then the carbon nanotube is transferred to the conductive film. In order to keep the temperature below, it is necessary to cool to a temperature lower than the soft potato temperature, and a series of these steps take a long time, which is a cause of poor productivity. In addition, carbon nanotubes could not be reliably transferred, and the carbon nanotubes grown on the substrate remained or the polyethylene layer of the conductive film was melted and peeled off. .
[0014] 特許文献 2に記載のカーボンナノチューブ導電性材料は、図 5に示すように、触媒 粒子を核として成長させたカーボンナノチューブ (63)を、基材 (61)に積層された導電 性接着剤層 (62)に転写するものである。しかし、接着剤としてはポリ塩ィ匕ビュル榭脂 等の熱可塑性榭脂が好適とされて ヽるが、この導電性材料も前記特許文献 1のもの と同様に、耐熱性や溶融温度以上の高温時でのカーボンナノチューブの保持に対 する信頼性に劣り、力!]えて、カーボンナノチューブの転写工程には、確実にカーボン ナノチューブを保持するためには長時間(例えば 10〜30分)を要し、生産性は依然 として劣る。 The conductive carbon nanotube material described in Patent Document 2 is, as shown in FIG. 5, a conductive adhesive in which carbon nanotubes (63) grown with catalyst particles as nuclei are laminated on a substrate (61). Transfer to the agent layer (62). However, as the adhesive, thermoplastic resin such as poly salt resin is preferable, but this conductive material is also the same as that of the patent document 1 in heat resistance and melting temperature or more. The retention of carbon nanotubes at high temperatures Less reliable, power! Finally, in the carbon nanotube transfer process, it takes a long time (for example, 10 to 30 minutes) to reliably hold the carbon nanotubes, and the productivity is still inferior.
[0015] この導電性材料を電気二重層キャパシタの分極性電極として使用する場合、転写 されたカーボンナノチューブは、単に該接着剤層表面で接着されたものであるため、 特許文献 1の導電性材料と同等に温度変化等の外的要因によってカーボンナノチュ 一ブが脱着する恐れがあり、信頼性に劣る。  When this conductive material is used as a polarizable electrode of an electric double layer capacitor, the transferred carbon nanotubes are simply bonded on the surface of the adhesive layer. Equally, carbon nanotubes may be desorbed by external factors such as temperature change, which is unreliable.
[0016] さらに、導電性接着剤層は強度に劣るため、カーボンナノチューブが転写された導 電性材料としては、無機または有機合成樹脂からなるフィルム、シート、薄板等の支 持体を張り合わせる必要があり、導電性材料としての厚みが大きくならざるを得なか つた o  Furthermore, since the conductive adhesive layer is inferior in strength, as the conductive material to which carbon nanotubes have been transferred, it is necessary to bond together a support such as a film, sheet or thin plate made of an inorganic or organic synthetic resin. There is no choice but to increase the thickness of the conductive material o
[0017] また、特許文献 2による導電性材料を、電気二重層キャパシタ用の分極性電極とし て用いた場合の作動電圧は、反応電流が比較的低電圧領域で発生することから、電 解液の持つ高電圧領域での使用に耐えられるものではな力つた。従って、大容量電 気二重層キャパシタ用の分極性電極として特性面で満足できな ヽものとなって 、た。  Further, the operating voltage when the conductive material according to Patent Document 2 is used as a polarizable electrode for an electric double layer capacitor is that the reaction current is generated in a relatively low voltage region. It can not withstand use in the high voltage range that it has. Therefore, the polarizing electrode for a large capacity electric double layer capacitor is not satisfactory in terms of characteristics.
[0018] 特許文献 3には、基板上にパターン化した導電性バインダー層を表面に配向性力 一ボンナノチューブを接着させる工程と、必要に応じて導電性バインダー層を硬化さ せる工程と、導電性バインダー層に接着した配向性カーボンナノチューブ部分のみ を残して基板を剥離する工程とからなる電解放出型冷陰極を製造する方法が記載さ れている。また、可逆的接着性表面を有する可撓性基板への配向性カーボンナノチ ユーブの転写を行うための方法、および、電極上への配向性カーボンナノチューブ の固定化方法が記載されて 、る。  [0018] Patent Document 3 includes a step of adhering a single-walled carbon nanotube to a surface of a conductive binder layer patterned on a substrate, a step of curing the conductive binder layer as needed, and a conductive step. A method of manufacturing a field emission type cold cathode is disclosed, which comprises the steps of peeling the substrate leaving only the oriented carbon nanotube portion adhered to the conductive binder layer. In addition, a method for transferring oriented carbon nanotubes to a flexible substrate having a reversible adhesive surface, and a method for fixing oriented carbon nanotubes on an electrode are described.
[0019] し力しながら、この方法における導電性バインダーおよび可逆的接着性表面を有 する可撓性基板に関する特性上の記載は殆どなされておらず、さらに、いずれの場 合においても、転写されるカーボンナノチューブは、単に表面粘着または表面接着さ れたものであり、完全にかつ高い信頼性を保つように固定することを目的としたもので はない。また、上記転写工程はアルゴン雰囲気中で加熱下に行われ、その後冷却を 要するので、生産効率は特許文献 1と同様に劣る。 [0020] 特許文献 4は、図 6に示すように、配向性カーボンナノチューブの移送時における 汚染防止や利便性の向上を企図した三層構造の機能性シートを提案したものである 。配向性カーボンナノチューブ膜 (71)の両面に配置される 2枚の機能性シート (72X73 )は、カーボンナノチューブ膜 (71)を固定ィ匕している。カーボンナノチューブ膜 (71)の 固定化とは、機能性シート (72X73)表面と配向性カーボンナノチューブ膜 (71)表面が 接触'接着することを意味すると記載されている。このため、特許文献 4によって得ら れた導電性材料を電極として使用する場合には、前述の特許文献と同様に、カーボ ンナノチューブの配向の乱れや脱落の恐れがあり、該導電性材料はカーボンナノチ ユーブ保持の信頼性に劣り、使用できないことがある。 [0019] While there has been little effort to describe the properties of this method with respect to the conductive binder and the flexible substrate having a reversible adhesive surface in this method, in addition, in either case, Carbon nanotubes are merely surface-sticked or surface-bonded and are not intended to be fixed completely and with high reliability. In addition, since the transfer process is performed under heating in an argon atmosphere and then cooling is required, the production efficiency is as low as in Patent Document 1. [0020] Patent Document 4 proposes a functional sheet having a three-layer structure intended to prevent contamination and improve convenience during transfer of oriented carbon nanotubes, as shown in FIG. The two functional sheets (72X73) disposed on both sides of the oriented carbon nanotube film (71) have a carbon nanotube film (71) fixed thereto. Immobilization of the carbon nanotube film (71) is described to mean that the surface of the functional sheet (72 × 73) and the surface of the oriented carbon nanotube film (71) contact and adhere to each other. For this reason, when the conductive material obtained by Patent Document 4 is used as an electrode, there is a possibility that the orientation of carbon nanotubes may be disturbed or dropped as in the case of the above-mentioned patent documents. The reliability of carbon nanotube retention is inferior and it can not be used in some cases.
[0021] このため、特許文献 4によって得られた導電性材料を電極として使用する場合には 、前述の特許文献と同様に、カーボンナノチューブの配向の乱れや脱落の恐れがあ り、該導電性材料はカーボンナノチューブ保持の信頼性に劣り、使用できないことが ある。これは、片面の機能性シートを剥離して、もう片面の機能性シートを硬化するこ とでカーボンナノチューブ膜を固定化し、そのまま使用する場合も同様であり、カー ボンナノチューブ膜は機能性シート表面との接着だけで保持されて 、るので、この導 電性材料は、電極としての使用を想定した場合やはりカーボンナノチューブ保持の 信頼性に劣る。 For this reason, when the conductive material obtained by Patent Document 4 is used as an electrode, there is a possibility that the orientation of the carbon nanotube may be disturbed or dropped as in the case of the above-mentioned patent documents, Materials may not be able to be used because they are less reliable for carbon nanotube retention. The same applies to the case where the carbon nanotube film is fixed by peeling the functional sheet on one side and curing the functional sheet on the other side, and the carbon nanotube film is the surface of the functional sheet. Since this conductive material is held only by adhesion with this, this conductive material is still inferior in the reliability of carbon nanotube holding when it is assumed to be used as an electrode.
[0022] 従って、本発明の目的は、前記特許文献における諸問題を解決すベぐより薄型で 高い導電性を保持し、強度およびカーボンナノチューブ保持の信頼性に優れ、かつ 、生産効率に優れ大量生産に向いており、コスト的に有利である、カーボンナノチュ ーブを用いた導電性材料およびその製造方法を提供することにある。また、本発明 は、該導電性材料が、より薄型で高い導電性を保持することができ、高電圧領域に お!ヽて作動が確保されることから、該導電性材料を分極性電極として用いた大容量 電気二重層キャパシタ提供することをも目的とする。  Therefore, the object of the present invention is to solve the problems in the above-mentioned patent documents by maintaining thinness and high conductivity, and being excellent in strength and reliability of carbon nanotube retention, and excellent in production efficiency. An object of the present invention is to provide a conductive material using a carbon nanotube and a method for producing the same, which is suitable for production and advantageous in cost. Further, according to the present invention, since the conductive material can be thinner and retain high conductivity, and the operation is secured in a high voltage region, the conductive material can be used as a polarizable electrode. Another object of the present invention is to provide a large capacity electric double layer capacitor used.
課題を解決するための手段  Means to solve the problem
[0023] 本発明者らは、上記問題を解決すべく研究を重ねた結果、より薄型で高!ヽ導電性 、強度、カーボンナノチューブ保持の信頼性を保持し、大量生産性に優れ、コスト的 にも有利な、カーボンナノチューブを用いた導電性材料を製造するために、予め形 成されたエポキシ榭脂組成物層の表面に対して、カーボンナノチューブが同榭脂組 成物層を貫通するようにカーボンナノチューブを転写してなる導電性材料およびその 製造方法を見出した。 [0023] As a result of research conducted to solve the above problems, the present inventors have found that they are thinner and have high conductivity, strength, retention of carbon nanotube retention, excellent mass productivity, and cost effectiveness. In order to manufacture conductive materials using carbon nanotubes, which is also advantageous A conductive material obtained by transferring a carbon nanotube so that the carbon nanotube penetrates the resin composition layer on the surface of the formed epoxy resin composition layer, and a method for producing the same have been found.
[0024] また、該導電性材料を分極性電極として用いた場合、低抵抗化と高!ヽ作動電圧が 確保されることで大容量の電気二重層キャパシタとなりうることを見出した。  In addition, it has been found that, when the conductive material is used as a polarizable electrode, a large capacity electric double layer capacitor can be obtained by securing a low resistance and a high! Working voltage.
[0025] すなわち、本発明は、基板上の触媒粒子を核として成長させたカーボンナノチュー ブが、エポキシ榭脂組成物層に転写され、その表面に対し実質上垂直方向に突き刺 さり、同榭脂組成物層を貫通してなることを特徴とする、カーボンナノチューブを用い た導電性材料を提供するものである。  That is, according to the present invention, a carbon nanotube grown by using catalyst particles on a substrate as a core is transferred to an epoxy resin composition layer and pierced in a direction substantially perpendicular to the surface thereof. It is an object of the present invention to provide a conductive material using a carbon nanotube, which is characterized in that the resin composition layer is penetrated.
[0026] 本発明におけるカーボンナノチューブは、エポキシ榭脂組成物層に転写され、その 表面に対して実質上垂直に突き刺さり、かつ、同榭脂組成物層を貫通させた状態を 保持する。カーボンナノチューブはエポキシ榭脂組成物層を貫通することで同榭脂 組成物層に確実に保持され、カーボンナノチューブ保持の信頼性は、従来技術に比 ベて大きく向上する。  The carbon nanotubes in the present invention are transferred to the epoxy resin composition layer, pierced substantially perpendicularly to the surface, and kept penetrating the resin composition layer. The carbon nanotube is reliably held in the resin composition layer by penetrating the epoxy resin composition layer, and the reliability of carbon nanotube retention is greatly improved as compared with the prior art.
[0027] 基板上に実質上垂直配向されたカーボンナノチューブは、公知の方法で作製でき る。例えば、シリコン基板の少なくとも片面上に、ニッケル、コノ レト、鉄などの金属の 錯体を含む溶液をスプレーや刷毛で塗布した後、加熱し、皮膜を形成し、あるいは上 記金属もしくはその化合物の粒子をクラスター銃で基板に打ち付けて皮膜を形成す る。この皮膜を好ましくは不活性ガス雰囲気で好ましくは、 700〜800°Cで、好ましく は 1〜30分間加熱し、皮膜から触媒粒子を形成する。得られた粒子状に好ましくは、 アセチレンガスを用いて一般的な化学蒸着法 (CVD法)を施すことにより、直径 10〜 38nm、長さ 1〜300 μ m、カーボンナノチューブ同士の間隔 10〜: LOOOnmのカー ボンナノチューブが多層構造で基板上に起毛される。  [0027] Carbon nanotubes substantially vertically oriented on a substrate can be produced by a known method. For example, a solution containing a complex of a metal such as nickel, complex, or iron is applied by spraying or brushing on at least one surface of a silicon substrate, and then heated to form a film, or particles of the above metal or its compound A film is formed by striking the substrate with a cluster gun. The film is heated, preferably in an inert gas atmosphere, preferably at 700 to 800 ° C., preferably for 1 to 30 minutes, to form catalyst particles from the film. The obtained particulate form is preferably subjected to a general chemical vapor deposition method (CVD method) using an acetylene gas to obtain a diameter of 10 to 38 nm, a length of 1 to 300 μm, and a distance between carbon nanotubes 10 to 10: LOOOnm carbon nanotubes are raised on a substrate in a multi-layer structure.
[0028] カーボンナノチューブは多層構造のものであることが好ましぐその外径は 10〜30 nmであることが好まし!/、。このようなカーボンナノチューブを分極性電極として用いて 構成した電気二重層キャパシタは、良好な充放電特性を示す。  [0028] The carbon nanotubes preferably have a multi-layered structure, and their outer diameter is preferably 10 to 30 nm! An electric double layer capacitor configured by using such a carbon nanotube as a polarizable electrode exhibits good charge and discharge characteristics.
[0029] カーボンナノチューブが転写されるべきエポキシ榭脂糸且成物層は、さらに、 a)分子 内にエポキシ基を 3個以上もつ多官能エポキシ榭脂、 b)フエノキシ榭脂、 c)合成ゴム またはその誘導体、および d)ポリアミド榭脂またはその誘導体のうちの少なくとも 1種 類を含むことが好ましい。 [0029] The epoxy resin yarn or composite layer to which a carbon nanotube is to be transferred is further a) a multifunctional epoxy resin having three or more epoxy groups in its molecule, b) a phenoxy resin, c) a synthetic rubber It is preferable to include at least one of or derivatives thereof and d) polyamide resin or derivatives thereof.
[0030] エポキシ榭脂組成物は、上記成分 a)〜d)の少なくとも 1種類を含むことで、適度な 弾性を得られるので、カーボンナノチューブがエポキシ榭脂組成物層に転写されや すぐかつ、エポキシ榭脂組成物層を貫通した状態で保持される。  Since the epoxy resin composition can obtain appropriate elasticity by containing at least one of the components a) to d), carbon nanotubes are immediately transferred to the epoxy resin composition layer, and It is held in a state of penetrating the epoxy resin composition layer.
[0031] エポキシ榭脂組成物層は、さらに、導電性フィラーを含むことが好ましい。導電性フ イラ一の添カ卩により、カーボンナノチューブ間の電気的な接合性が向上することで、 導電性が改善し、得られた導電性材料の内部抵抗を低減させることが可能である。  [0031] The epoxy resin composition layer preferably further contains a conductive filler. By the addition of the conductive filler, the electrical bondability between the carbon nanotubes is improved, whereby the conductivity can be improved and the internal resistance of the obtained conductive material can be reduced.
[0032] 本発明は、また、カーボンナノチューブを用いた導電性材料を製造する方法を提供 する。本発明による方法は、基板上の触媒粒子を核として成長させたカーボンナノチ ユーブをエポキシ榭脂組成物層に転写し、その表面に対し実質上垂直方向に突き 刺し、同榭脂組成物層を貫通させるに当たり、転写前に上記エポキシ榭脂組成物層 を 50°C以上 200°C以下に加熱することを特徴とするカーボンナノチューブを用いた 導電性材料の製造方法である。  The present invention also provides a method of producing a conductive material using carbon nanotubes. In the method according to the present invention, carbon nanotubes, which are grown with the catalyst particles on the substrate as a core, are transferred to the epoxy resin composition layer, pierced in a direction substantially perpendicular to the surface thereof, It is a method for producing a conductive material using a carbon nanotube, characterized in that before the transfer, the epoxy resin composition layer is heated to 50 ° C. or more and 200 ° C. or less before transfer.
[0033] 本発明による導電性材料の製造方法にぉ 、て、上記エポキシ榭脂組成物層は、上 記加熱前の段階では Bステージ状態 (半硬化状態)であることが好ましい。  In the method for producing a conductive material according to the present invention, the epoxy resin composition layer is preferably in the B-stage state (semi-cured state) at the stage before the heating.
[0034] エポキシ榭脂組成物層は、上記成分 a)〜d)の少なくとも 1種類を含むことで、カー ボンナノチューブが転写されるのに適度な弾性を持つようになり、カーボンナノチュー ブが同榭脂組成物層を容易に貫通することができる。  The epoxy resin composition layer, by containing at least one of the components a) to d), has a proper elasticity for the carbon nanotube to be transferred, and the carbon nanotube is The resin composition layer can be easily penetrated.
[0035] また、同榭脂組成物層が上記の条件で加熱される場合、カーボンナノチューブを 同榭脂組成物層に貫通した状態で確実に保持することができる。カロえて、同榭脂組 成物層およびこれを形成するための基材の厚みを極めて薄くすることができるために 、同脂糸且成物層へのカーボンナノチューブの転写を行った後には、基材を直ちに剥 離して、 目的とする導電性材料を得ることができる。したがって、転写後に強制冷却 工程は不要である。  Further, when the same resin composition layer is heated under the above conditions, carbon nanotubes can be reliably held in a state of being penetrated through the same resin composition layer. After transfer of carbon nanotubes to the same fiber / composite layer, it is possible to make the thickness of the same resin composition layer and a substrate for forming the same extremely thin. The substrate can be peeled off immediately to obtain the target conductive material. Therefore, no forced cooling process is necessary after transfer.
[0036] さらに、同榭脂組成物層を Bステージ状態で上記加熱を行うことにより、カーボンナ ノチューブを同榭脂組成物層に確実に貫通した状態で保持することができる請求項 5に記載の発明による効果を一段と高めることができる。 [0037] 本発明は、上記の導電性材料を分極性電極として用いたことを特徴とする電気二 重層キャパシタを提供する。上記の導電性材料を分極性電極に用いることで、低抵 抗化と高い作動電圧が確保されることで大容量の電気二重層キャパシタが実現でき る。 Furthermore, by performing the above heating in the B-stage state of the same resin composition layer, it is possible to hold the carbon nanotube in a state in which the carbon nano tube is reliably penetrated in the same resin composition layer. The effects of the invention can be further enhanced. The present invention provides an electric double layer capacitor characterized by using the above-mentioned conductive material as a polarizable electrode. By using the above-mentioned conductive material for the polarizable electrode, a large capacity electric double layer capacitor can be realized by securing low resistance and high operating voltage.
[0038] また、本発明は、上記の導電性材料を分極性電極として用いてかつ、電解液として イオン性液体を用いることで、さらに高い作動電圧が確保された大容量の電気二重 層キャパシタが実現できる。  In addition, according to the present invention, a large capacity electric double layer capacitor in which a further higher operating voltage is secured by using the above-mentioned conductive material as a polarizable electrode and using an ionic liquid as an electrolytic solution Can be realized.
[0039] 電気二重層キャパシタの作動電圧は、サイクリックボルタメトリー法によって測定され る反応電流を元に導き出される電位窓により決定される。電位窓は、反応電流の発 生しな 、電圧領域の範囲であり、この範囲が大き!/、ほど高 、作動電圧が確保される こととなり、大容量ィ匕が実現できる。反応電流の発生は、一旦電気二重層キャパシタ に充電した電気が外部にロスすることであり、すなわち反応電流の発生する電圧領 域では、電気二重層キャパシタを作動させることが困難であることを意味する。  The operating voltage of the electric double layer capacitor is determined by a potential window derived from the reaction current measured by cyclic voltammetry. The potential window is a range of voltage range without generation of reaction current, and the range is large! /, The higher the operating voltage is secured, the large capacity can be realized. The generation of the reaction current means that the electricity once charged in the electric double layer capacitor is lost to the outside, that is, it is difficult to operate the electric double layer capacitor in the voltage region where the reaction current is generated. Do.
発明の効果  Effect of the invention
[0040] 請求項 1に記載の発明によれば、本発明による導電性材料は、カーボンナノチュー ブがエポキシ榭脂組成物層を貫通する構造とすることで、強度とカーボンナノチュー ブ保持の信頼性に優れ、より薄型でかつ導電性が高ぐ作動電圧が高くて高電圧領 域において作動が確保され、生産効率に優れ大量生産に向いており、コスト的にも 有利である。  According to the invention set forth in claim 1, the conductive material according to the present invention has a structure in which the carbon nanotube penetrates the epoxy resin composition layer, so that strength and carbon nanotube retention can be achieved. The high reliability, thin, high conductivity operating voltage is ensured, the operation is ensured in the high voltage region, the production efficiency is excellent, it is suitable for mass production, and the cost is also favorable.
[0041] また、カーボンナノチューブはエポキシ榭脂糸且成物層を貫通するので、エポキシ榭 脂組成物層が基材上に形成されている場合には、基材表面と直接接触することとな る。したがって、エポキシ榭脂組成物層とその基材とからなる積層体にカーボンナノ チューブを起毛させてなる導電性材料を集電電極として用いる場合は、カーボンナノ チューブの持つ高 ヽ導電性が電極自体の導電性に対して相乗効果を発現させるこ とができ、低抵抗の電極を形成することができる。  In addition, since the carbon nanotube penetrates through the epoxy resin yarn or compound layer, when the epoxy resin composition layer is formed on the substrate, it is in direct contact with the substrate surface. Ru. Therefore, when using a conductive material obtained by raising a carbon nanotube in a laminate composed of an epoxy resin composition layer and its base material as a collecting electrode, the high conductivity of the carbon nanotube is the electrode itself. It is possible to express a synergetic effect on the conductivity of the electrode and to form a low resistance electrode.
[0042] 請求項 2に記載の発明によれば、エポキシ榭脂組成物層がさらに特定の成分 a)〜 d)の少なくとも 1種類を含むことで、請求項 1に記載の発明による上記効果に加え、 エポキシ榭脂組成物層は適度な弾性を有し、従ってカーボンナノチューブがェポキ シ榭脂組成物層に転写されやすぐかつ、エポキシ榭脂組成物層を貫通した状態で 保持される。 [0042] According to the invention as set forth in claim 2, the epoxy resin composition layer further contains at least one kind of specific components a) to d). In addition, the epoxy resin composition layer has a suitable elasticity, so carbon nanotubes Immediately after being transferred to the resin composition layer, the epoxy resin composition layer is kept penetrating.
[0043] 請求項 3および 4に記載の発明によれば、エポキシ榭脂組成物層がさらに導電性フ イラ一を含むことで、請求項 1および 2に記載の発明による上記効果にカ卩え、カーボ ンナノチューブ間の電気的な接合性が向上することで、導電性が改善し、導電性材 料として内部抵抗を低減させることが可能である。  [0043] According to the inventions of claims 3 and 4, the epoxy resin composition layer further includes a conductive filler, whereby the effects according to the inventions of claims 1 and 2 can be improved. By improving the electrical connectivity between carbon nanotubes, it is possible to improve the conductivity and reduce the internal resistance as a conductive material.
[0044] 請求項 5に記載の発明によれば、転写前に上記エポキシ榭脂組成物層を特定の 温度範囲に加熱しておくことで、同榭脂組成物層は転写に適度な柔軟性をもち、転 写されたカーボンナノチューブは同榭脂組成物層を貫通した状態に保持することが できる。  [0044] According to the invention as set forth in claim 5, by heating the epoxy resin composition layer to a specific temperature range before transfer, the resin composition layer is suitably flexible for transfer. The transferred carbon nanotubes can be kept penetrating through the resin composition layer.
[0045] 請求項 6に記載の発明によれば、上記加熱前の同榭脂組成物層が Bステージ状態 であることにより、カーボンナノチューブを同榭脂組成物層に確実に貫通した状態で 保持することができる請求項 5に記載の発明による効果を一段と高めることができる。  [0045] According to the invention described in claim 6, when the resin composition layer before heating is in the B-stage state, the carbon nanotube is held in a state in which the carbon nanotube is reliably penetrated in the resin composition layer. The effect of the invention according to claim 5 can be further enhanced.
[0046] 請求項 7に記載の発明によれば、本発明による導電性材料を電気二重層キャパシ タの電極として使用することで、より薄型でかつ、作動電圧が高く高電圧領域におい て作動が確保され、大容量の電気二重層キャパシタ用材料を提供することができる。  [0046] According to the invention described in claim 7, by using the conductive material according to the present invention as an electrode of an electric double layer capacitor, it is thinner and operates at a high operating voltage in a high voltage region. Thus, a large capacity electric double layer capacitor material can be provided.
[0047] 請求項 8に記載の発明によれば、請求項 7に記載の発明による上記効果を一段と 高めることができる。  [0047] According to the invention of claim 8, the above-mentioned effect of the invention of claim 7 can be further enhanced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下に、本発明の実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
[0049] まず、カーボンナノチューブの形成について説明をする。 First, the formation of carbon nanotubes will be described.
[0050] 基板上に触媒粒子を形成し、触媒粒子を核として高温雰囲気で原料ガスからカー ボンナノチューブを成長させる。基板は触媒粒子を支持するものであればよぐ触媒 粒子がぬれにくいものが好ましぐシリコン基板であってよい。触媒粒子は、ニッケル 、コバルト、鉄などの金属粒子であってよい。これらの金属またはその錯体等の化合 物の溶液をスプレーや刷毛で基板に塗布し、皮膜を形成する。皮膜の厚さは、好ま しくは 1〜: LOOnmである。この皮膜を好ましくは、不活性ガス雰囲気で好ましくは 700 〜800°Cで、好ましくは 1〜30分間加熱し、触媒粒子を形成する。 [0051] カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪 族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、 CV D法により、多層構造で太さ 12〜60nmのカーボンナノチューブが触媒粒子を核とし て基板上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは 650〜800。Cである。 Catalyst particles are formed on a substrate, and carbon nanotubes are grown from a source gas in a high temperature atmosphere using the catalyst particles as nuclei. The substrate may be a silicon substrate which preferably supports catalyst particles, as long as it supports catalyst particles. The catalyst particles may be metal particles such as nickel, cobalt, iron and the like. A solution of a compound such as these metals or complexes thereof is applied to a substrate by spraying or brushing to form a film. The thickness of the film is preferably 1 to: LOO nm. The coating is preferably heated in an inert gas atmosphere, preferably at 700-800 ° C., preferably for 1-30 minutes, to form catalyst particles. As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes with a multilayer structure of 12 to 60 nm in thickness are formed in a brush shape on the substrate with the catalyst particles as the core by the CVD method. The formation temperature of carbon nanotubes is preferably 650 to 800. It is C.
[0052] つぎに、エポキシ榭脂組成物にっ 、て、説明をする。  Next, the epoxy resin composition will be described.
[0053] 本発明で用いられるエポキシ榭脂は分子内にグリシジル基を 2個以上有するもので あればよい。エポキシ榭 S旨の例としては、ジグリジジノレエーテノレ型、ジグリシジノレエス テル型、グリジジルァミン型、線状脂肪族ェポキサイド型、脂環族ェポキサイド型等を 挙げることができる。これらは 1種類を使用してもょ 、し 2以上の組み合わせを使用し てもよい。  The epoxy resin used in the present invention may have two or more glycidyl groups in the molecule. Examples of the epoxy resin S include diglycidinoleate tenore type, diglycydolic ester type, glididylamine type, linear aliphatic epoxide type, alicyclic epoxide type and the like. These may be used alone or in combination of two or more.
[0054] また、エポキシ榭脂は、公知の手法による変性がなされたものであってもよい。  The epoxy resin may be one modified by a known method.
[0055] エポキシ榭脂は、室温にぉ 、て液状、半固形、固形 、ずれであってもよ 、が、ェポ キシ榭脂組成物は、取り扱いやすくするために、単独または混合の有機溶剤や反応 性希釈剤を含むことが好ましい。反応性希釈剤としては、 1官能、 2官能、多官能等 種々のものが適宜使用できる。有機溶剤としては、メタノール、アセトン、メチルェチ ルケトン、トルエン、メチルセ口ソルブ、ジメチルフオルムアミド等が適宜使用できる。 [0055] The epoxy resin may be liquid, semi-solid, solid, or loose at room temperature, but the epoxy resin composition may be used alone or as a mixture of organic solvents to facilitate handling. It is preferable to contain a reactive diluent. As the reactive diluent, various ones such as monofunctional, bifunctional, polyfunctional and the like can be suitably used. As the organic solvent, methanol, acetone, methyl ethyl ketone, toluene, methyl sequestrub, dimethylformamide and the like can be appropriately used.
[0056] エポキシ榭脂組成物は硬化剤を含む力 硬化剤としては、例えば脂肪族、脂環族 、芳香族等のポリアミン;ポリアミドアミン;変成ポリアミン;へキサヒドロ無水フタル酸、 ドデセ-ル無水コハク酸、無水トリメリット酸等の酸無水物; 2-メチルイミダゾール、 2- ェチル -4-メチルイミダゾール等のイミダゾールおよびその誘導体;ジシアンジアミド またはその誘導体;セバチン酸ジヒドラジド等の有機酸ジヒドラジド; 3- (3, 4-ジクロロ フエニル) -1, 1ジメチル尿素等の尿素誘導体;フッ化ホウ素-モノェチルアミン錯体 やフエノール榭脂、アミノ榭脂、ポリイソシァネートイ匕合物、ジアミノジフエ-ルスルフォ ン等を挙げることができる。硬化剤は、使用されるエポキシ榭脂と重付加反応、付カロ 重合反応して架橋硬化するものであれば、いずれも使用することができ、特に限定さ れることは無い。硬化剤は、 1種類を使用してもよいし 2以上の組み合わせを使用して ちょい。 [0057] エポキシ榭脂組成物には、他の熱硬化性榭脂ゃ熱可塑性榭脂をブレンドすること も可能である。また、必要な特性を付与させるために、有機、無機の添加剤、フィラー を添加することが好ましい。 [0056] The epoxy resin composition contains a curing agent. Examples of curing agents include polyamines such as aliphatic, alicyclic and aromatic; polyamidoamines; modified polyamines; hexahydrophthalic anhydride; Acids, acid anhydrides such as trimellitic anhydride; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and derivatives thereof; dicyandiamide or derivatives thereof; organic acid dihydrazides such as sebacic acid dihydrazide; 3- (3 Urea derivatives such as 4-dichlorophenyl) -1,1 dimethylurea; mention may be made of boron fluoride-monoethylamine complex, phenol resin, amino acid, polyisosocyanate complex, diaminodiphenyl sulfone and the like. it can. As the curing agent, any curing agent can be used as long as it cures by crosslinking reaction with the epoxy resin to be used, and is not particularly limited. The curing agent may be used alone or in combination of two or more. It is also possible to blend other thermosetting resin and thermoplastic resin with the epoxy resin composition. Moreover, in order to impart the necessary characteristics, it is preferable to add organic and inorganic additives and fillers.
[0058] エポキシ榭脂糸且成物層は、さらに、 a)分子内にエポキシ基を 3個以上もつ多官能ェ ポキシ榭脂、 b)フエノキシ榭脂、 c)合成ゴムまたはその誘導体、および d)ポリアミド榭 脂またはその誘導体のうちの少なくとも 1種類を含むことが好ましい。  [0058] The epoxy resin yarn composite layer further comprises: a) a polyfunctional epoxy resin having three or more epoxy groups in its molecule, b) a phenoxy resin, c) a synthetic rubber or a derivative thereof, and d It is preferable to include at least one kind of polyamide resin or its derivative.
[0059] a)分子内にエポキシ基を 3個以上もつ多官能エポキシ榭脂としては、フエノールノ ポラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、トリグリシジル -P-アミ トラグリシジルジアミノジフエニルメタン、テトラグリシジル- 1, 3-ビスアミノメチルシクロ へキサン等の多官能エポキシ榭脂を挙げることができる。これらの多官能エポキシ榭 脂のうち、フエノールノボラック型エポキシ榭脂またはクレゾ一ルノボラック型エポキシ 榭脂を使用することが、エポキシ榭脂組成物層の耐熱性およびカーボンナノチュー ブの転写のしゃすさ等力も好ましい。また、上記多官能エポキシ榭脂をエポキシ榭脂 組成物に添加する場合には、同榭脂組成物 100重量部に対して 5〜50重量部添カロ することが好ましい。この添加量が 5重量部より少ないか 50重量部より多いと、同榭脂 組成物層を貫通する形でのカーボンナノチューブの転写が困難になる。  A) As polyfunctional epoxy resins having three or more epoxy groups in the molecule, phenol nopolac type epoxy resins, creosoyl novolac type epoxy resins, triglycidyl-P-amitraglycidyldiaminodiphenylmethane And polyfunctional epoxy resins such as tetraglycidyl-1, 3-bisaminomethylcyclohexane. Among these polyfunctional epoxy resins, it is possible to use phenol novolac type epoxy resin or cresol novolac type epoxy resin, heat resistance of the epoxy resin composition layer and transferability of carbon nanotube, etc. Force is also preferred. When the polyfunctional epoxy resin is added to the epoxy resin composition, it is preferable to add 5 to 50 parts by weight to 100 parts by weight of the resin composition. If the addition amount is less than 5 parts by weight or more than 50 parts by weight, transfer of carbon nanotubes in the form of penetrating the same resin composition layer becomes difficult.
[0060] b)フヱノキシ榭脂は、線状エポキシ榭脂のうち、一般的に分子量が 30000以上の ものであって、熱可塑性榭脂的な特性を持つ。本発明においては、基本構造がビス フエノール A型、ビスフエノール F型のいずれのものも使用することができる。また、臭 素、リン等による難燃ィ匕変性、その他の官能基による変性がなされているものも使用 することができる。このような変性体の例としては、東都化成社の「フエノトート」等が挙 げられる。フヱノキシ榭脂を同榭脂組成物 100重量部に対し 5〜45重量部添加する ことにより、適度な剛性、柔軟性が付与されるため、エポキシ榭脂組成物層を貫通す る形でのカーボンナノチューブの転写が可能となる。この添加量が 5重量部より少なく および 50重量部より多くなると、同榭脂組成物層を貫通する形でのカーボンナノチュ ーブの転写ができない。  [0060] b) Fukinoxy resin is generally a linear epoxy resin having a molecular weight of 30000 or more, and has thermoplastic resin-like properties. In the present invention, any of those having a basic structure of bisphenol A type and bisphenol F type can be used. In addition, those which are flame-retardant-modified with bromine, phosphorus or the like or modified with other functional groups can also be used. As an example of such a modified body, "Fuenotot" from Toto Kasei Co., Ltd. can be mentioned. By adding 5 to 45 parts by weight of phenoxy resin to 100 parts by weight of the same resin composition, appropriate rigidity and flexibility are imparted, so carbon in the form of penetrating the epoxy resin composition layer. It is possible to transfer nanotubes. When the addition amount is less than 5 parts by weight and more than 50 parts by weight, transfer of carbon nanotubes in the form of penetrating the same resin composition layer can not be performed.
[0061] c)合成ゴムは、スチレンブタジエンゴム、ポリイソプレンゴム、アクリロニトリルブタジ ェンゴム、ェピクロルヒドリンゴム等であってよい。合成ゴムの誘導体は、合成ゴムの 水素化、カルボキシルイ匕等の変性による誘導体であってよい。中高-トリル型、高-ト リル型のアクリロニトリルブタジエンゴム、カルボキシル化アクリロニトリルブタジエンゴ ムは、カーボンナノチューブを転写するにあたってエポキシ榭脂糸且成物層が適切な 柔軟性、剛性を得られることから好ましい。その一例としては、 日本ゼオン社製「Nipo 1」等が挙げられる。合成ゴムまたはその誘導体をエポキシ榭脂組成物に添加すること により、エポキシ榭脂組成物層に柔軟性、剛性が付与されるため、同榭脂組成物層 を貫通する形でのカーボンナノチューブの転写が可能となる。 C) Synthetic rubbers are styrene butadiene rubber, polyisoprene rubber, acrylonitrile butadiene It may be rubber, epichlorohydrin rubber or the like. The derivative of the synthetic rubber may be a derivative derived from hydrogenation of synthetic rubber, modification of carboxyl group and the like. Medium-to-high-tolyl type and high-tolyl type acrylonitrile butadiene rubber and carboxylated acrylonitrile butadiene rubber are preferable because the epoxy resin yarn composite layer can obtain appropriate flexibility and rigidity in transferring carbon nanotubes. . As an example, "Nipo 1" manufactured by Nippon Zeon Co., Ltd. and the like can be mentioned. By adding a synthetic rubber or a derivative thereof to the epoxy resin composition, the epoxy resin composition layer is imparted with flexibility and rigidity, so that carbon nanotube transfer in a form penetrating the resin composition layer. Is possible.
[0062] また、これらの合成ゴムをエポキシ榭脂に変性させた、 、わゆるゴム変性エポキシ 榭脂を使用することも可能である。  [0062] It is also possible to use so-called rubber-modified epoxy resin, in which these synthetic rubbers are modified to epoxy resin.
[0063] 合成ゴムまたはその誘導体の添加量は、エポキシ榭脂組成物 100重量部に対し 5 〜50重量部である。添加量が 5重量部以下であると、同榭脂組成物にカーボンナノ チューブを転写することが困難となり、 50重量部以上になると転写されたカーボンナ ノチューブが同榭脂組成物層に保持することが困難となる。  The addition amount of the synthetic rubber or its derivative is 5 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin composition. When the addition amount is 5 parts by weight or less, it becomes difficult to transfer the carbon nanotube to the same resin composition, and when it becomes 50 parts by weight or more, the transferred carbon nano tube is retained in the same resin composition layer. It becomes difficult.
[0064] 合成ゴムまたはその誘導体には、ゴム自体の強度、接着性等を向上させるために 適当な加硫剤、例えば、フエノール榭脂およびその誘導体等を併用することもできる 。フエノール榭脂およびその誘導体は、合成ゴムまたはその誘導体 100重量部に対 して 5〜20重量部添加することが好ま 、。  For the synthetic rubber or its derivative, a vulcanizing agent suitable for improving the strength, adhesion and the like of the rubber itself, such as phenol resin and its derivative may be used in combination. It is preferable to add 5 to 20 parts by weight of phenol resin and its derivative to 100 parts by weight of synthetic rubber or its derivative.
[0065] d)ポリアミド榭脂は、基本構造が 6-ナイロン、 6, 6-ナイロン等の 、ずれのものであ つてもよく、それらの共重合体であってもよい。その一例として、東レネ土製の共重合ナ ィロン「アミラン」の CM4000、 CM8000が挙げられる。また、 日本化薬社製の「カャ フレックス」等の分子構造内にポリアミド基を持つエラストマ一や合成樹脂等も使用す ることができる。ポリアミド榭脂またはその誘導体は、粉状微粒子、室温において液状 D) The polyamide resin may have a basic structure such as 6-nylon or 6,6-nylon, or the like, or may be a copolymer thereof. One example is CM4000 and CM8000, which are made of East Rene clay copolymer nylon "AMIRAN". In addition, elastomers or synthetic resins having a polyamide group in the molecular structure of “Kayaflex” manufactured by Nippon Kayaku Co., Ltd. can also be used. Polyamide resin or its derivative is powdery fine particles, liquid at room temperature
、固形のいずれの形状のものであってもよぐ有機溶媒等適度な溶媒に溶解'分散さ せた形で添加することができる。 It may be added in the form of being dissolved or dispersed in an appropriate solvent such as an organic solvent which may be in any form of solid.
[0066] ポリアミド榭脂またはその誘導体の添カ卩により、カーボンナノチューブの転写時にお[0066] By adding polyamide resin or its derivative, it is possible to
V、ての適度な柔軟性と保持性を同榭脂組成物層に付与することができる。 V, moderate flexibility and retention can be imparted to the same resin composition layer.
[0067] ポリアミド榭脂またはその誘導体の添加量は、エポキシ榭脂組成物 100重量部に 対して好ましくは 5〜60重量部である。この添加量が 5重量部以下であると、榭脂組 成物層の柔軟性が不足し、 60重量部よりも多くなると、転写されたカーボンナノチュ ーブが同榭脂組成物層に保持することが困難となる。 [0067] The addition amount of the polyamide resin or its derivative is 100 parts by weight of the epoxy resin composition. Preferably, it is 5 to 60 parts by weight. When the addition amount is 5 parts by weight or less, the flexibility of the resin composition layer is insufficient, and when it is more than 60 parts by weight, the transferred carbon nano tube is retained in the same resin composition layer. It will be difficult to do.
[0068] 本発明による導電性材料にさらに導電性を付与するためには、エポキシ榭脂組成 物に導電性フィラーを含めることが好ましい。導電性フイラ一としてはカーボンナノチ ユーブ片、カーボンナノホーン片、カーボンナノコイル片、導電性炭素繊維、黒鉛、力 一ボンブラック等の炭素系導電性片または炭素系導電性粉末が例示される。これら は、導電性材料の電気二重層キャパシタへの使用の際、電解液等への影響が無ぐ さらに電極自体の低抵抗化を達成することができる。 In order to further impart conductivity to the conductive material according to the present invention, it is preferable to include a conductive filler in the epoxy resin composition. Examples of the conductive filler include carbon nanotube pieces, carbon nanohorn pieces, carbon nanocoil pieces, conductive carbon fibers, graphite, carbon-based conductive pieces such as carbon black, and carbon-based conductive powders. In the case of using an electroconductive material in an electric double layer capacitor, it is possible to achieve a reduction in resistance of the electrode itself without affecting the electrolyte solution and the like.
[0069] つぎに、カーボンナノチューブの転写について、説明をする。 Next, transfer of carbon nanotubes will be described.
[0070] まず、金属箔等の無機材料や耐熱フィルムカゝらなる基材の表面に、エポキシ榭脂 糸且成物をコーター、ドクターブレード等で塗工することにより、エポキシ榭脂糸且成物層 を形成する。金属箔としては、銅箔、ステンレス箔、アルミニウム箔が入手のしゃすさ や経済性等の面力 好まし 、。耐熱性フィルムはポリエチレンテレフタレートフィルム であることが好ましい。 First, an epoxy resin yarn is coated with a coater, a doctor blade or the like on the surface of an inorganic material such as metal foil or a base material made of heat resistant film, and the epoxy resin yarn is formed. Form an object layer. As metal foils, copper foils, stainless steel foils, aluminum foils are preferred, such as availability and economy. The heat resistant film is preferably a polyethylene terephthalate film.
[0071] エポキシ榭脂組成物層の厚みは、好ましくは 0.1〜: LOOO μ mであり、さらに好ましく は、 10〜200 μ mである。同榭脂組成物層の厚みが 0.1 μ mよりも小さいと、カーボ ンナノチューブを確実に保持することができず、 1000 mよりも大きいと同榭脂組成 物層を形成することが著しく困難となり、生産性に劣る。  The thickness of the epoxy resin composition layer is preferably 0.1 to: LOOO μm, and more preferably 10 to 200 μm. If the thickness of the resin composition layer is less than 0.1 μm, carbon nanotubes can not be reliably held, and if it is more than 1000 m, it becomes extremely difficult to form the resin composition layer. Poor productivity.
[0072] エポキシ榭脂組成物層へのカーボンナノチューブの転写工程は、基材表面へのェ ポキシ榭脂組成物の塗工後、溶剤を蒸発させ同榭脂組成物を乾燥させた段階で行 われる。  The step of transferring the carbon nanotubes to the epoxy resin composition layer is carried out at the stage where the solvent is evaporated and the resin composition is dried after the epoxy resin composition is applied to the surface of the substrate. It will be.
[0073] また、適当な離型性をもった金属箔ゃ耐熱フィルム等カゝらなる基材にエポキシ榭脂 組成物を塗工し、乾燥後、同榭脂組成物と基材からなる積層体から同榭脂組成物層 を剥離することで、エポキシ榭脂組成物フィルムを形成し、これにカーボンナノチュー ブを転写することもできる。  In addition, an epoxy resin composition is coated on a base material having a suitable releasability such as a metal foil or a heat resistant film, and after drying, a laminate comprising the resin composition and the base material is dried. By peeling the same resin composition layer from the body, an epoxy resin composition film can be formed, to which a carbon nanotube can be transferred.
[0074] 基板に成長させたカーボンナノチューブを先端から、エポキシ榭脂組成物層に押し 付けることにより、同榭脂組成物層に植え付ける。その後、カーボンナノチューブを同 榭脂組成物層に残して基板だけをカーボンナノチューブ力も剥離する。 [0074] The carbon nanotube grown on the substrate is planted in the same resin composition layer by pressing the tip from the tip onto the epoxy resin composition layer. After that, carbon nanotubes The carbon nanotube force is also peeled off leaving only the substrate left in the resin composition layer.
[0075] こうして基板力 エポキシ榭脂組成物層へのカーボンナノチューブの転写を完了し 、ブラシ状カーボンナノチューブを用いた導電性材料を得る。ブラシ状カーボンナノ チューブは、エポキシ榭脂組成物層を貫通している状態となり、エポキシ榭脂組成物 層に確実に転写されることとなる。  Thus, the transfer of the carbon nanotube to the substrate strength epoxy resin composition layer is completed to obtain the conductive material using the brush-like carbon nanotube. The brush-like carbon nanotube penetrates the epoxy resin composition layer and is surely transferred to the epoxy resin composition layer.
[0076] 転写を行う際のエポキシ榭脂組成物層は、好ましくは 50°C以上 200°C以下であり、 より好ましくは 60〜160°Cである。この加熱は好ましくは遠赤外線または電磁誘導カロ 熱方式で行われる。加熱時間は例えば 1〜20分、好ましくは 3〜: LO分であってよい。 この温度範囲の条件下でカーボンナノチューブの転写を行うことにより、同榭脂組成 物層は転写に適度な柔軟性をもつ温度に加熱され、転写されたカーボンナノチュー ブは同榭脂組成物層を貫通した状態となり、同時に転写が終了した後もカーボンナ ノチューブを確実に貫通状態に保持することができる。エポキシ榭脂組成物層の温 度が、 50°C以下であると、カーボンナノチューブが貫通した状態で転写することがで きず、 200°C以上であると、カーボンナノチューブを転写させたときに、垂直に配向し た状態に維持することが困難になる。  The epoxy resin composition layer at the time of transfer is preferably 50 ° C. or more and 200 ° C. or less, and more preferably 60 to 160 ° C. This heating is preferably done in the far infrared or electromagnetic induction mode. The heating time may be, for example, 1 to 20 minutes, preferably 3 to LO minutes. By carrying out the transfer of carbon nanotubes under the conditions of this temperature range, the same resin composition layer is heated to a temperature with appropriate flexibility for transfer, and the transferred carbon nanotube is the same resin composition layer. The carbon nano tube can be reliably held in the penetrating state even after the transfer is completed. When the temperature of the epoxy resin composition layer is 50 ° C. or less, the carbon nanotube can not be transferred in a penetrating state, and if the temperature is 200 ° C. or more, the carbon nanotube is transferred, It becomes difficult to maintain the vertically oriented state.
[0077] また、同榭脂糸且成物層は、上記加熱前の段階において、 Bステージ状態であること が好ましい。 Bステージ状態にしておくことで、カーボンナノチューブは同榭脂組成物 層により確実に貫通させることができる。  In addition, it is preferable that the same resin fiber layer or a composite layer is in a B-stage state at the stage before the above heating. By setting the B-stage state, carbon nanotubes can be more reliably penetrated by the resin composition layer.
[0078] エポキシ榭脂組成物層にカーボンナノチューブを転写した後、エポキシ榭脂組成 物層を、必要に応じて、加熱等により硬化させる。これにより、カーボンナノチューブ を同榭脂組成物層に貫通した状態で確実に固定させることができる。  After the carbon nanotubes are transferred to the epoxy resin composition layer, the epoxy resin composition layer is cured by heating or the like as required. Thereby, the carbon nanotube can be reliably fixed in the state of penetrating the same resin composition layer.
[0079] カーボンナノチューブはエポキシ榭脂組成物層表面に対し、実質上垂直に突き刺 さっており、これを貫通して反対側の面まで達した状態になっている。  The carbon nanotube is pierced substantially perpendicularly to the surface of the epoxy resin composition layer, and penetrates to reach the opposite surface.
[0080] 最後に、カーボンナノチューブを用いた電気二重層キャパシタについて、説明をす る。  Finally, an electric double layer capacitor using carbon nanotubes will be described.
[0081] 本発明による導電性材料を分極性電極として用いて電気二重層キャパシタを構成 するには、例えば、一方の電極のカーボンナノチューブと他方の電極のカーボンナノ チューブとを非接触状に互いに向き合わせ、カーボンナノチューブに電解液を含浸 させ、これら全体を容器内に配置する。 In order to construct an electric double layer capacitor using the conductive material according to the present invention as a polarizable electrode, for example, the carbon nanotubes of one electrode and the carbon nanotubes of the other electrode are in a noncontact manner facing each other. Together, impregnating carbon nanotubes with electrolyte solution And place them all in a container.
実施例  Example
[0082] 次に、本発明を実施例に基づいて具体的に説明する力 本発明はこれに限定され るものではない。  Next, the present invention will be specifically described based on examples. The present invention is not limited to this.
[0083] [実施例 1] Example 1
(第 1工程)  (Step 1)
図 laにおいて、まず、ポリエチレンテレフタレートフィルム力もなる基材 (1)上にビス フエノール A型固形エポキシ榭脂 (旭化成社製、「AER-6051」)、硬化剤としてのジ シアンジアミド、多官能エポキシ榭脂としてフエノールノボラック変性エポキシ榭脂(大 日本インキ化学社製、「ェピクロン N- 770」、希釈用有機溶媒であるメチルェチルケト ンカもなるエポキシ榭脂組成物をドクターブレードで厚み 10 μ mとなるように塗工し、 150°Cで 3分間加熱することで、有機溶剤を蒸発させて Bステージ状態のエポキシ榭 脂組成物層 (2)を形成した。  In Fig. La, first, on a base material (1) which also functions as a polyethylene terephthalate film, bisphenol A type solid epoxy resin ("AER-6051" manufactured by Asahi Kasei Corp.), dicyandiamide as a curing agent, polyfunctional epoxy resin An epoxy resin composition that also contains phenol novolak-modified epoxy resin (Dei Nippon Ink Chemical Co., Ltd., “Epiclone N-770”, and methyl ethyl ketone which is an organic solvent for dilution) to a thickness of 10 μm with a doctor blade The organic solvent was evaporated by coating and heating at 150 ° C. for 3 minutes to form a B-stage epoxy resin composition layer (2).
[0084] (第 2工程) (Second step)
図 lbにおいて、 CVD法により、シリコン基板 (3)上に触媒粒子を核として直径 10η m、長さ 200 μ m、カーボンナノチューブ同士の間隔 lOOnmのカーボンナノチュー ブ (4)を成長させ、カーボンナノチューブ付き基板 (5)を作製した。  In Fig. Lb, carbon nanotubes (4) with a diameter of 10 m m, a length of 200 μm, and a carbon nanotube spacing of 100 nm are grown on the silicon substrate (3) by CVD method, An attached substrate (5) was produced.
[0085] (第 3工程) (Third step)
図 lcにおいて、カーボンナノチューブ付き基板 (5)およびエポキシ榭脂組成物層 (2 )を遠赤外線で 130°Cに加熱し、同榭脂組成物層 (2)の表面にカーボンナノチューブ 付き基板 (5)をカーボンナノチューブ先端から押し付け、図 Idに示すように、先端部 をエポキシ榭脂組成物層 (2)内に差し込んで同組成物層 (2)を貫通させた。カーボン ナノチューブ先端部は基材 (1)に当接している。  In Fig. Lc, the substrate with carbon nanotubes (5) and the epoxy resin composition layer (2) are heated to 130 ° C with far infrared rays, and the substrate with carbon nanotubes is formed on the surface of the resin composition layer (2) (5 ) Was pressed from the tip of the carbon nanotube, and the tip portion was inserted into the epoxy resin composition layer (2) to penetrate the composition layer (2) as shown in FIG. Id. The tip of the carbon nanotube is in contact with the substrate (1).
[0086] (第 4工程) (Step 4)
次いで、図 leに示すように、カーボンナノチューブ (4)をエポキシ榭脂組成物層 (2) に残すように、シリコン基板 (3)をカーボンナノチューブ (4)から機械的に剥離した。こ うして、基板力 エポキシ榭脂組成物層へのカーボンナノチューブの転写を完了した 。シリコン基板 (3)にはカーボンナノチューブ (4)は残存せず、シリコン基板 (3)カもェ ポキシ榭脂組成物層 (2)へのカーボンナノチューブ転写は問題なく行うことができて いた。 Next, as shown in FIG. Le, the silicon substrate (3) was mechanically peeled from the carbon nanotubes (4) so as to leave the carbon nanotubes (4) in the epoxy resin composition layer (2). Thus, the transfer of the carbon nanotubes to the substrate strength epoxy resin composition layer was completed. The carbon nanotube (4) does not remain in the silicon substrate (3), and the silicon substrate (3) is not The carbon nanotube transfer to the propoxy resin composition layer (2) could be carried out without any problem.
[0087] (第 5工程) (Step 5)
得られたカーボンナノチューブ埋込みエポキシ榭脂組成物層付き基材 (1)をオーブ ン中で温度 150°Cで加熱してエポキシ榭脂組成物層 (2)を硬化させた。  The obtained carbon nanotube-embedded epoxy resin composition layer coated substrate (1) was heated in an oven at a temperature of 150 ° C. to cure the epoxy resin composition layer (2).
[0088] (第 6工程) (Step 6)
硬化後、基材 (1)をエポキシ榭脂硬化物層 (6)から機械的に剥離して、図 Ifに示す ように、エポキシ榭脂硬化物層 (6)にカーボンナノチューブ (4)を植え付けた導電性 材料 (7)を得た。カーボンナノチューブ (4)はエポキシ榭脂硬化物層 (6)表面に対し、 実質上垂直に突き刺さっており、同榭脂硬化物層 (6)を貫通して反対側の面まで達し た状態になって ヽることが確認された。  After curing, the base material (1) is mechanically peeled off from the epoxy resin cured material layer (6), and as shown in Fig. If, the carbon nanotube (4) is planted in the epoxy resin cured material layer (6) A conductive material (7) was obtained. The carbon nanotube (4) pierces the surface of the cured epoxy resin layer (6) substantially perpendicularly, and penetrates the cured resin layer (6) to reach the opposite surface. It was confirmed that he would be angry.
[0089] [実施例 2] Second Embodiment
(第 1工程)  (Step 1)
図 2にお 、て、実施例 1の第 1工程で用 、たエポキシ榭脂組成物に導電性フィラー として、導電性炭素繊維をエポキシ榭脂組成物 100重量部に対し 10重量部添加し、 得られた混合物を厚さ 25 mのアルミニウム箔 (8)に塗工して、エポキシ榭脂組成物 層 (2)を形成した以外は、実施例 1の第 1工程と同じ操作を行った。  In FIG. 2, 10 parts by weight of a conductive carbon fiber is added to 100 parts by weight of the epoxy resin composition as a conductive filler in the epoxy resin composition used in the first step of Example 1. The same operation as in the first step of Example 1 was performed except that the obtained mixture was applied to a 25 m-thick aluminum foil (8) to form an epoxy resin composition layer (2).
[0090] (第 2工程〜第 5工程)  (Steps 2 to 5)
第 2工程〜第 5工程では、実施例 1の対応する工程と同様の操作を行った。カーボ ンナノチューブ (4)はエポキシ榭脂糸且成物層 (2)に対して実質上垂直に突き刺さって おり、同榭脂組成物層 (2)を貫通している状態が確認された。実施例 1と同様に、シリ コン基板にはカーボンナノチューブはなぐシリコン基板力 エポキシ榭脂組成物層( 2)へのカーボンナノチューブ転写は問題なく行うことができていた。  In the second to fifth steps, the same operations as the corresponding steps in Example 1 were performed. The carbon nanotube (4) was pierced substantially perpendicularly to the epoxy resin fiber layer (2), and it was confirmed that the carbon nanotube (4) penetrated the resin composition layer (2). Similar to Example 1, the carbon nanotube was transferred to the silicon substrate, and the transfer of the carbon nanotube to the epoxy resin composition layer (2) could be performed without any problem.
[0091] (第 6工程)  (Step 6)
硬化後、アルミニウム箔 (8)をエポキシ榭脂硬化物層から機械的に剥離して、ェポ キシ榭脂硬化物層にカーボンナノチューブ植え付けた導電性材料を得た。カーボン ナノチューブ (4)はエポキシ榭脂硬化物層の表面に対し、実質上垂直に突き刺さつ ており、これを貫通して反対側の面まで達した状態になって 、ることが確認された。 [0092] [実施例 3] After curing, the aluminum foil (8) was mechanically peeled off from the epoxy resin cured product layer to obtain a conductive material in which carbon nanotubes were embedded in the epoxy resin cured product layer. It was confirmed that the carbon nanotube (4) was pierced substantially perpendicularly to the surface of the cured epoxy resin layer, and penetrated to reach the opposite surface. Third Embodiment
実施例 1および実施例 2にて得られた導電性材料を分極性電極とし、電解液には、 イオン性液体である四フッ化硼酸 N, N-ジェチル- N-メチル - N- (2-メトキシェチル) アンモ-ゥム塩(電位窓が 5. 5Vまで有するもの)を用いて、電気二重層キャパシタを 作製した。  The conductive material obtained in Example 1 and Example 2 was used as a polarizable electrode, and an electrolytic solution was prepared by using an ionic liquid such as tetrafluoroboric acid N, N-jetyl-N-methyl-N- (2- An electrical double layer capacitor was prepared using methoxyethyl ammonium salt (having a potential window of up to 5.5 V).
[0093] 前記電気二重層キャパシタの正極 ·負極間に電圧を印加し、サイクリックボルタメトリ 一により、反応電流を測定した。その結果、 3. 5Vまでの電位窓領域において、反応 電流は認められず、電気二重層キャパシタとして高!、電圧領域での作動が可能であ ることがわかった。  A voltage was applied between the positive electrode and the negative electrode of the electric double layer capacitor, and the reaction current was measured by cyclic voltammetry. As a result, no reaction current is observed in the potential window region up to 3.5 V, and it is high as an electric double layer capacitor! It was found that operation in the voltage range was possible.
[0094] [比較例 1]  Comparative Example 1
(第 1工程)  (Step 1)
ポリエチレンテレフタレートフィルム力もなる基材上に熱可塑性榭脂(ポリ塩ィ匕ビ- ル)をバインダーとした導電性接着剤を厚み 10 μ mとなるように塗工し、有機溶剤を 蒸発させて塗工層を乾燥させ、導電性接着剤層を形成した。  A conductive adhesive containing a thermoplastic resin (polychloride resin) as a binder is coated to a thickness of 10 μm on a polyethylene terephthalate film base material so as to have a thickness of 10 μm, and the organic solvent is evaporated to coat it. The working layer was dried to form a conductive adhesive layer.
[0095] (第 2工程) (Second step)
実施例 1の第 2工程と同様の操作を行い、カーボンナノチューブ付き基板を作製し た。  The same operation as in the second step of Example 1 was performed to produce a carbon nanotube-attached substrate.
[0096] (第 3工程)  (Third step)
上記カーボンナノチューブ付き基板を、上記導電性接着剤層に常温でカーボンナ ノチューブ先端力 押し付けて先端部を導電性接着剤内に差し込んだ。その後、導 電性接着剤層が十分に硬化するまでに 10分間を要した。  The above-mentioned carbon nanotube-attached substrate was pressed against the above-mentioned conductive adhesive layer at normal temperature by the tip force of the carbon nanotube to insert the tip into the conductive adhesive. After that, it took 10 minutes for the conductive adhesive layer to fully cure.
[0097] (第 4工程) (Step 4)
次いで、カーボンナノチューブを導電性接着剤層に残すように、シリコン基板を力 一ボンナノチューブから機械的に剥離した。こうして、基板カゝらエポキシ榭脂組成物 層へのカーボンナノチューブの転写を完了した。しかし、基板上にはカーボンナノチ ユーブが一部残っており、転写が良好に進んでいな力つた。  The silicon substrate was then mechanically peeled away from the carbon nanotubes, leaving carbon nanotubes in the conductive adhesive layer. Thus, transfer of the carbon nanotubes to the substrate resin layer was completed. However, part of the carbon nanotubes remained on the substrate, and the transfer did not proceed well.
[0098] (第 5工程) (Step 5)
カーボンナノチューブ転写導電性接着剤層付き基材から基材を機械的に剥離しよ うとしたが、導電性接着剤層に破れが生じた。また、カーボンナノチューブは導電性 接着剤層に実質上垂直に突き刺さって 、たが、これを貫通して反対側の面まで達し た状態になって!/ヽなかった。 Mechanically peel off the substrate from the substrate with carbon nanotube transfer conductive adhesive layer However, the conductive adhesive layer was broken. In addition, the carbon nanotubes were pierced substantially perpendicularly to the conductive adhesive layer, but they were penetrated to reach the opposite surface!
産業上の利用可能性  Industrial applicability
[0099] 本発明による導電性材料は、例えば、大容量の電気を蓄えることが可能な電気二 重層キャパシタの主構成部材である分極性電極として適用できる。 図面の簡単な説明  The conductive material according to the present invention can be applied, for example, as a polarizable electrode which is a main component of an electric double layer capacitor capable of storing a large amount of electricity. Brief description of the drawings
[0100] [図 la]図 laは実施例 1の第 1工程を概略的に示す断面図である。 FIG. La is a cross sectional view schematically showing a first step of the first embodiment.
[図 lb]図 lbは実施例 1の第 2工程を概略的に示す断面図である。  [Figure lb] Figure lb is a cross sectional view schematically showing a second step of the first embodiment.
[図 lc]図 lcは実施例 1の第 3工程を概略的に示す断面図である。  FIG. 1c is a cross sectional view schematically showing a third step of the first embodiment.
[図 Id]図 Idは実施例 1の第 3工程を概略的に示す断面図である。  [Figure Id] Figure Id is a cross sectional view schematically showing a third step of the first embodiment.
[図 le]図 leは実施例 1の第 4工程を概略的に示す断面図である。  [Figure le] Figure le is a cross-sectional view schematically showing a fourth step of the first embodiment.
[図 If]図 Ifは実施例 1の第 6工程を概略的に示す断面図である。  [Figure If] Figure If is a cross sectional view schematically showing a sixth step of the first embodiment.
[図 2]図 2は実施例 2の第 1工程を概略的に示す断面図である。  FIG. 2 is a cross sectional view schematically showing a first step of the second embodiment.
[図 3]図 3は特許文献 1に記載のカーボンナノチューブ導電性材料の断面図である。  [FIG. 3] FIG. 3 is a cross-sectional view of the carbon nanotube conductive material described in Patent Document 1.
[図 4]図 4は特許文献 1に記載のカーボンナノチューブ導電性材料の断面図である。  [FIG. 4] FIG. 4 is a cross-sectional view of a carbon nanotube conductive material described in Patent Document 1.
[図 5]図 5は特許文献 2に記載のカーボンナノチューブ導電性材料の断面図である。  FIG. 5 is a cross-sectional view of the carbon nanotube conductive material described in Patent Document 2.
[図 6]図 6は特許文献 4に記載のカーボンナノチューブ導電性材料の断面図である。 符号の説明  [FIG. 6] FIG. 6 is a cross-sectional view of a carbon nanotube conductive material described in Patent Document 4. Explanation of sign
[0101] (1)基材 [0101] (1) Base material
(2)エポキシ榭脂組成物層  (2) Epoxy resin composition layer
(3)シリコン基板  (3) Silicon substrate
(4)カーボンナノチューブ  (4) Carbon nanotubes
(5)カーボンナノチューブ付き基板  (5) Substrate with carbon nanotube
(6)エポキシ榭脂硬化物層  (6) Epoxy resin cured product layer
(7)導電性材料  (7) Conductive material
(8)アルミニウム箔  (8) Aluminum foil

Claims

請求の範囲 The scope of the claims
[1] 基板上の触媒粒子を核として成長させたカーボンナノチューブが、エポキシ榭脂組 成物層に転写され、その表面に対し実質上垂直方向に突き刺さり、同榭脂組成物層 を貫通してなることを特徴とする、カーボンナノチューブを用いた導電性材料。  [1] Carbon nanotubes grown from the catalyst particles on the substrate as nuclei are transferred to the epoxy resin composition layer, pierced in a direction substantially perpendicular to the surface, and penetrated through the resin composition layer. What is claimed is: 1. A conductive material comprising carbon nanotubes.
[2] エポキシ榭脂組成物層が、さらに、 a)分子内にエポキシ基を 3個以上もつ多官能ェ ポキシ榭脂、 b)フエノキシ榭脂、 c)合成ゴムまたはその誘導体、および d)ポリアミド榭 脂またはその誘導体のうちの少なくとも 1種類を含むことを特徴とする請求項 1に記載 のカーボンナノチューブを用いた導電性材料。  [2] The epoxy resin composition layer further comprises: a) a polyfunctional epoxy resin having three or more epoxy groups in its molecule, b) a phenolic resin, c) a synthetic rubber or a derivative thereof, and The conductive material using a carbon nanotube according to claim 1, comprising at least one of a resin or a derivative thereof.
[3] エポキシ榭脂組成物層が、さらに、導電性フィラーを含むことを特徴とする請求項 1 に記載のカーボンナノチューブを用いた導電性材料。  [3] The conductive material using carbon nanotubes according to claim 1, wherein the epoxy resin composition layer further contains a conductive filler.
[4] エポキシ榭脂組成物層が、さらに、導電性フィラーを含むことを特徴とする請求項 2 に記載のカーボンナノチューブを用いた導電性材料。  [4] The conductive material using carbon nanotubes according to claim 4, wherein the epoxy resin composition layer further contains a conductive filler.
[5] 請求項 1〜4のいずれかに記載の導電性材料を製造する方法であって、基板上の 触媒粒子を核として成長させたカーボンナノチューブをエポキシ榭脂組成物層に転 写し、その表面に対し実質上垂直方向に突き刺し、同榭脂組成物層を貫通させるに 当たり、転写前に同榭脂組成物層を 50°C以上 200°C以下に加熱することを特徴とす るカーボンナノチューブを用いた導電性材料の製造方法。  [5] A method for producing the conductive material according to any one of claims 1 to 4, wherein carbon nanotubes having a catalyst particle as a nucleus grown on a substrate are transferred to an epoxy resin composition layer, The carbon is characterized by heating in a direction perpendicular to the surface of the resin composition layer before transfer in order to pierce in the direction substantially perpendicular to the surface and penetrate the resin composition layer. Method of manufacturing conductive material using nanotube.
[6] 加熱前のエポキシ榭脂組成物層が Bステージ状態であることを特徴とする請求項 5 に記載の製造方法。  [6] The process according to claim 5, wherein the epoxy resin composition layer before heating is in a B-stage state.
[7] 請求項 1〜4の ヽずれかに記載の導電性材料を分極性電極として用いたことを特 徴とする電気二重層キャパシタ。  [7] An electric double layer capacitor characterized by using the conductive material according to any one of claims 1 to 4 as a polarizable electrode.
[8] 請求項 1〜4のいずれかに記載の導電性材料を分極性電極とし、電解液をイオン 性液体としたことを特徴とする電気二重層キャパシタ。 [8] An electric double layer capacitor comprising the conductive material according to any one of claims 1 to 4 as a polarizable electrode and an electrolytic solution as an ionic liquid.
PCT/JP2007/056298 2006-03-27 2007-03-27 Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same WO2007116706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509757A JP5178509B2 (en) 2006-03-27 2007-03-27 Method for producing conductive material using carbon nanotube, and electric double layer capacitor using conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006084478 2006-03-27
JP2006-084478 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007116706A1 true WO2007116706A1 (en) 2007-10-18

Family

ID=38581005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056298 WO2007116706A1 (en) 2006-03-27 2007-03-27 Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same

Country Status (3)

Country Link
JP (1) JP5178509B2 (en)
TW (1) TWI424447B (en)
WO (1) WO2007116706A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120771A (en) * 2007-11-16 2009-06-04 Toyota Central R&D Labs Inc Sliding member and method for manufacturing the same
JP2009202328A (en) * 2008-02-29 2009-09-10 Denso Corp Method for manufacturing sheet type thermoconductive material
JP2009238749A (en) * 2008-03-26 2009-10-15 Xerox Corp Composition for compound plastic contact element which features controlled electrical conduction route, and process for manufacturing for it
JP2009537339A (en) * 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
JP2010264370A (en) * 2009-05-14 2010-11-25 Tokyo Metropolitan Univ Microreactor, and method for manufacturing the same
JP2010267706A (en) * 2009-05-13 2010-11-25 Fujitsu Ltd Method of manufacturing sheet-like structure
JP2015138718A (en) * 2014-01-24 2015-07-30 日立造船株式会社 conductive carbon nanotube composite material
KR101824247B1 (en) * 2015-09-11 2018-02-01 한국생산기술연구원 Electrode Material Having Complex Substrate - Metal High Bonding Interfacial Structure by carbon structures
JP2018131344A (en) * 2017-02-13 2018-08-23 日立造船株式会社 Method for producing carbon nanotube composite, carbon nanotube composite and anisotropic carbon nanotube composite
JP2018524255A (en) * 2015-06-12 2018-08-30 リンテック株式会社 Carbon nanotube forest laminate and method for producing carbon nanotube forest laminate
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
CN111094410A (en) * 2017-08-10 2020-05-01 日立造船株式会社 Method for producing filler-resin composite
WO2021059570A1 (en) * 2019-09-25 2021-04-01 株式会社村田製作所 Nanostructure aggregate and method for manufacturing same
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015710A2 (en) 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US9903350B2 (en) 2012-08-01 2018-02-27 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted polymer fiber torsional and tensile actuators
KR101588104B1 (en) * 2014-02-04 2016-01-25 한국과학기술원 Composite film including aligned carbon structure and method of fabricating the same
CN104973585B (en) 2014-04-14 2017-04-05 清华大学 The preparation method of carbon nano-tube film
CN104973586B (en) * 2014-04-14 2017-06-06 清华大学 The preparation method of carbon nano-tube film
CN104973583B (en) 2014-04-14 2017-04-05 清华大学 The preparation method of the transfer method and carbon nano tube structure of carbon nano pipe array
CN104973584B (en) 2014-04-14 2018-03-02 清华大学 The transfer method of carbon nano pipe array and the preparation method of carbon nano tube structure
CN104973587B (en) 2014-04-14 2017-05-17 清华大学 Preparation method of carbon nano-tube film
CN105271105B (en) 2014-06-13 2017-01-25 清华大学 Transfer method of carbon nanotube array and preparation method of carbon nanotube structure
CN105329872B (en) 2014-06-16 2017-04-12 清华大学 Carbon nanotube array transferring method and preparation method of carbon nanotube structure
JP6742098B2 (en) 2016-01-15 2020-08-19 日東電工株式会社 Mounting member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287215A (en) * 1985-06-14 1986-12-17 松下電器産業株式会社 Polarizing electrode
JP2003109691A (en) * 2001-09-28 2003-04-11 Hitachi Chem Co Ltd Anisotropic conductive film
JP3421549B2 (en) * 1996-09-18 2003-06-30 株式会社東芝 Vacuum micro device
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
JP2005007861A (en) * 2003-05-27 2005-01-13 Mitsubishi Gas Chem Co Inc Three-layer structure oriented carbon nanotube membrane composite sheet and method for fixing the oriented carbon nanotube membrane
JP2005290241A (en) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd Film-like adhesive
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406431C (en) * 2001-03-26 2008-07-30 日清纺织株式会社 Ionic liquid electrolyte salt for storage device electrolytic solution for storage device electric double layer capacitor and secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287215A (en) * 1985-06-14 1986-12-17 松下電器産業株式会社 Polarizing electrode
JP3421549B2 (en) * 1996-09-18 2003-06-30 株式会社東芝 Vacuum micro device
JP2003109691A (en) * 2001-09-28 2003-04-11 Hitachi Chem Co Ltd Anisotropic conductive film
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
JP2005007861A (en) * 2003-05-27 2005-01-13 Mitsubishi Gas Chem Co Inc Three-layer structure oriented carbon nanotube membrane composite sheet and method for fixing the oriented carbon nanotube membrane
JP2005290241A (en) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd Film-like adhesive
JP2006008473A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906285B2 (en) 2006-05-19 2021-02-02 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP2018065242A (en) * 2006-05-19 2018-04-26 マサチューセッツ インスティテュート オブ テクノロジー An enhanced nanostructure composite and a method for enhancing a nanostructure
JP2009537339A (en) * 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
US10265683B2 (en) 2006-05-19 2019-04-23 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US11787691B2 (en) 2006-05-19 2023-10-17 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
JP2013248731A (en) * 2006-05-19 2013-12-12 Massachusetts Inst Of Technology <Mit> Nanostructure-reinforced composite article and method
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US9181639B2 (en) 2006-05-19 2015-11-10 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US11458718B2 (en) 2006-05-19 2022-10-04 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP2009120771A (en) * 2007-11-16 2009-06-04 Toyota Central R&D Labs Inc Sliding member and method for manufacturing the same
JP2009202328A (en) * 2008-02-29 2009-09-10 Denso Corp Method for manufacturing sheet type thermoconductive material
JP2009238749A (en) * 2008-03-26 2009-10-15 Xerox Corp Composition for compound plastic contact element which features controlled electrical conduction route, and process for manufacturing for it
JP2010267706A (en) * 2009-05-13 2010-11-25 Fujitsu Ltd Method of manufacturing sheet-like structure
JP2010264370A (en) * 2009-05-14 2010-11-25 Tokyo Metropolitan Univ Microreactor, and method for manufacturing the same
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
JP2015138718A (en) * 2014-01-24 2015-07-30 日立造船株式会社 conductive carbon nanotube composite material
JP2018524255A (en) * 2015-06-12 2018-08-30 リンテック株式会社 Carbon nanotube forest laminate and method for producing carbon nanotube forest laminate
KR101824247B1 (en) * 2015-09-11 2018-02-01 한국생산기술연구원 Electrode Material Having Complex Substrate - Metal High Bonding Interfacial Structure by carbon structures
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
JP2018131344A (en) * 2017-02-13 2018-08-23 日立造船株式会社 Method for producing carbon nanotube composite, carbon nanotube composite and anisotropic carbon nanotube composite
CN111094410A (en) * 2017-08-10 2020-05-01 日立造船株式会社 Method for producing filler-resin composite
CN111094410B (en) * 2017-08-10 2022-10-18 日立造船株式会社 Method for producing filler-resin composite
US11512195B2 (en) 2017-08-10 2022-11-29 Hitachi Zosen Corporation Method for producing filler-resin composite
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
WO2021059570A1 (en) * 2019-09-25 2021-04-01 株式会社村田製作所 Nanostructure aggregate and method for manufacturing same

Also Published As

Publication number Publication date
TW200741747A (en) 2007-11-01
JP5178509B2 (en) 2013-04-10
JPWO2007116706A1 (en) 2009-09-17
TWI424447B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
WO2007116706A1 (en) Conductive material employing carbon nanotube, process for producing the same, and electric double layer capacitor utilizing the same
Wang et al. Monolithic integration of all‐in‐one supercapacitor for 3D electronics
JP6027120B2 (en) Conductive composite structure or laminate
CN101622324B (en) Low temperature curable conductive adhesive and capacitors formed thereby
JP5080295B2 (en) Heat dissipating mounting board and manufacturing method thereof
EP1995053B1 (en) Porous film and layered product including porous film
US20170107355A1 (en) Catecholamine-flaky graphite based polymer complex for preparation of composite
Chen et al. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High‐Performance Flexible Pseudosupercapacitors
US20090317710A1 (en) Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof
Du et al. Ultrahigh‐Strength Ultrahigh Molecular Weight Polyethylene (UHMWPE)‐Based Fiber Electrode for High Performance Flexible Supercapacitors
US8283038B2 (en) Layered structure including graphene and an organic material having a conjugated system, and method of preparing the same
Ko et al. Interfacial design and assembly for flexible energy electrodes with highly efficient energy harvesting, conversion, and storage
KR100675334B1 (en) Carbon nanotube films and their manufacturing process
CN106031310A (en) Protective layer-equipped copper-clad laminate and multilayer printed wiring board
CN101165937A (en) Organic composite P-N junction and its preparation method and organic composite diode applying the P-N junction
TWI383950B (en) Method of forming nanometer-scale point materials
KR101874150B1 (en) A Highly-Oriented Graphite Sheet
Chen et al. Through-silicon-via interposers with Cu-level electrical conductivity and Si-level thermal expansion based on carbon nanotube-Cu composites for microelectronic packaging applications
Chen et al. Water Evaporation Triggered Self‐Assembly of MXene on Non‐Carbonized Wood with Well‐Aligned Channels as Size‐Customizable Free‐Standing Electrode for Supercapacitors
Zhang et al. Metallized Plastic Foils: A Promising Solution for High‐Energy Lithium‐Ion Battery Current Collectors
WO2020158507A1 (en) Dispersion liquid, conductive film and method for producing same, electrode, and solar cell
Rani et al. Fabrication of Binder‐Free TiO2 Nanofibers@ Carbon Cloth for Flexible and Ultra‐Stable Supercapacitor for Wearable Electronics
Yan et al. Smartly designed hierarchical MnO2@ Fe3O4/CNT hybrid films as binder‐free anodes for superior lithium storage
Song et al. Ultrafast Bonding of Wafer Scale Vertical Aligned Carbon Nanotubes onto Gold Surface by Induction Heating
KR101824247B1 (en) Electrode Material Having Complex Substrate - Metal High Bonding Interfacial Structure by carbon structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739736

Country of ref document: EP

Kind code of ref document: A1