JP2004203941A - Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film - Google Patents

Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film Download PDF

Info

Publication number
JP2004203941A
JP2004203941A JP2002371794A JP2002371794A JP2004203941A JP 2004203941 A JP2004203941 A JP 2004203941A JP 2002371794 A JP2002371794 A JP 2002371794A JP 2002371794 A JP2002371794 A JP 2002371794A JP 2004203941 A JP2004203941 A JP 2004203941A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
fine particles
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371794A
Other languages
Japanese (ja)
Other versions
JP4271438B2 (en
Inventor
Naoki Takamiya
直樹 高宮
Sunao Neya
直 根矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2002371794A priority Critical patent/JP4271438B2/en
Publication of JP2004203941A publication Critical patent/JP2004203941A/en
Application granted granted Critical
Publication of JP4271438B2 publication Critical patent/JP4271438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Paints Or Removers (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a coating material for forming a transparent conductive film which is excellent in electromagnetic wave-shielding effect, anti-reflection effect and long-term stability, has a high chemical stability, apparently has extremely few defects caused by agglomerates of coating material components, or the like and shows extremely small temporal changes in its electrical properties, to prepare the transparent conductive film which is excellent in electromagnetic wave-shielding effect and anti-reflection effect, shows extremely small temporal changes in its electrical properties and enables direct and stable measurement of the electrical properties, a manufacturing method for the film and a display device equipped with the transparent conductive film. <P>SOLUTION: The coating material for forming the transparent conductive film comprises a ruthenium fine particle whose primary particle has an average particle size of 1-30 nm and a tin-doped indium oxide fine particle whose primary particle has an average particle size of 35-70 nm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電膜形成用塗料と透明導電膜及びその製造方法並びにそれを備えた表示装置に関し、特に、陰極線管、プラズマディスプレイ、液晶ディスプレイ等の表示面に用いられて、優れた帯電防止効果、電磁波遮蔽効果及び反射防止効果を有し、塗膜の外観上においても違和感を与えない自然な透過色を有し、化学的安定性にも優れ、しかも、導電性の経時変化が小さい透明導電膜を形成する際に用いて好適な透明導電膜形成用塗料、高い透明性と導電性を兼ね備えた透明導電膜及びその製造方法、この透明導電膜を備えた表示装置に関するものである。
【0002】
【従来の技術】
従来、テレビジョン(TV)のブラウン管やコンピュータのディスプレイ等に用いられている表示装置の1種である陰極線管(CRT)は、赤色、緑色、青色に発光する蛍光面に電子ビームを射突させることによって表示面に文字や画像を映し出すものであるから、この表示面に発生する静電気により埃が付着して視認性が低下する他、電磁波を放射して環境に影響を及ぼす虞がある。
また、最近、壁掛けテレビなどとしての応用が進められているプラズマディスプレイパネル(PDP)においても、静電気の発生や電磁波放射の可能性が指摘されている。
【0003】
そこで、これらの問題を解決するために、例えば、電磁波遮蔽効果と反射防止効果に優れた透明導電膜として、平均粒径が2〜200nmの金、銀、白金等の金属微粒子からなる透明導電性微粒子層と、この透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電膜(例えば、特許文献1参照)、平均粒径が50nm以下の白金族金属微粒子を10重量%以上含有する透明導電層を有する透明導電膜(例えば、特許文献2参照)等が提案されている。
上記の表示装置では、表示面に透明導電膜を形成する方法として、例えば、ガラス基板等の透明基材の表面に透明導電膜形成用塗料を塗布し、その後、この塗膜を乾燥あるいは加熱処理する方法が取られている。
【0004】
【特許文献1】
特開平8−77832号公報
【特許文献2】
特開平11−25759号公報
【0005】
【発明が解決しようとする課題】
ところで、従来の透明導電膜では、時間の経過とともに抵抗値が上昇するために、膜の導電性も時間の経過とともに低下し、したがって、膜の導電性の経時変化を抑えることができないという問題点があった。
また、表示装置の製造工程、検査工程等においては、塗膜の電気的特性をチェックするために塗膜の抵抗値を測定する必要があるが、テスターを用いて塗膜の抵抗を直接測定しようとしても、測定値が非常に不安定なために正確な測定値を得ることができない。そこで、塗膜にハンダ等で測定用の電極を形成した後、テスターで抵抗を測定する方法が取られているが、この方法では、測定に手間と時間が掛かるために、生産管理費や検査費用の増大を招き、その結果、製品の価格が高くなってしまうという問題点があった。
【0006】
本発明は、上記の課題を解決するためになされたものであって、電磁波遮蔽効果および反射防止効果に優れ、高い化学的安定性を有し、外観上においても塗料成分の凝集物等による欠陥が極めて少なく、電気的特性の経時変化が小さく長期安定性に優れた透明性の導電膜を形成することが可能な透明導電膜形成用塗料、電磁波遮蔽効果および反射防止効果に優れ、しかも電気的特性の経時変化が極めて小さく、電気的特性を直接、安定して測定することが可能な透明導電膜及びその製造方法、この透明導電膜を備えた表示装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、鋭意検討した結果、1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム(ITO)微粒子を含有する塗料により形成された透明導電膜は、優れた透明性、視認性、電磁波遮蔽性を有するのみでなく、経時変化が抑えられ長期間優れた電磁波遮蔽効果が持続し、さらに透明導電膜にはんだ等による電極を形成しなくても、抵抗値を安定して測定することができることを見出した。
【0008】
すなわち、本発明の透明導電膜形成用塗料は、1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有してなることを特徴とする。
この透明導電膜形成用塗料では、得られた塗膜は、経時的に高い化学的安定性を有するものとなる。これにより、経時変化が小さく長期安定性に優れた透明導電膜を形成することが可能になる。
【0009】
前記ルテニウム微粒子の塗料中における2次粒子の平均粒径は10〜70nmであり、前記スズ添加酸化インジウム微粒子の塗料中における2次粒子の平均粒径は50〜200nmであることが好ましい。
前記ルテニウム微粒子と前記スズ添加酸化インジウム微粒子の重量比は、40:60〜99.9:0.1であることが好ましい。
【0010】
本発明の透明導電膜は、1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有する透明導電層を備えてなることを特徴とする。
この透明導電膜では、透明導電層が経時的に高い化学的安定性を有するものとなり、経時変化が小さく長期安定性に優れた透明導電膜を得ることが可能になる。これにより、膜にはんだ等による電極を形成しなくても、抵抗値を安定して測定することができる。
【0011】
前記ルテニウム微粒子と前記スズ添加酸化インジウム微粒子の重量比は、40:60〜99.9:0.1であることが好ましい。
前記透明導電層のいずれか一方の主面または双方の主面に、前記透明導電層の屈折率とは異なる屈折率を有する透明層を形成したことが好ましい。
【0012】
本発明の透明導電膜の製造方法は、本発明の透明導電膜形成用塗料を基材に塗布し、その後、140〜250℃の温度にて熱処理を施すことを特徴とする。
この製造方法では、基材に塗布した本発明の透明導電膜形成用塗料に、140〜250℃の温度にて熱処理を施すことにより、経時的に高い化学的安定性を有する透明性の導電膜が容易に得られる。これにより、経時変化が小さく長期安定性に優れた透明導電膜が容易に作製される。
【0013】
本発明の表示装置は、本発明の透明導電膜が表示面に形成されていることを特徴とする。
この表示装置では、その表示面に本発明の透明導電膜を形成したことにより、経時的に高い化学的安定性を有する表示面が得られる。これにより、経時変化が小さく長期安定性に優れた表示面が容易に得られることとなり、表示面の電気的特性を安定した状態で、しかも短時間で容易に測定することができる。その結果、電気的特性の測定に要する手間と時間が削減され、製品の低価格化を図ることができる。
【0014】
【発明の実施の形態】
本発明の透明導電膜形成用塗料と透明導電膜及びその製造方法並びにそれを備えた表示装置の一実施形態について説明する。
なお、この実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
【0015】
「透明導電膜形成用塗料」
本実施形態の透明導電膜形成用塗料は、溶媒中に、1次粒子の平均粒径(以下、1次粒子径と称する)が1〜30nmのルテニウム微粒子と、1次粒子径が35〜70nmのスズ添加酸化インジウム微粒子(以下、ITO微粒子と略記する)とを含有した塗料である。このルテニウム微粒子の1次粒子径は、好ましくは1〜20nmであり、ITO微粒子の1次粒子径は、好ましくは35〜50nmである。
【0016】
ここで、ルテニウム微粒子の1次粒子径を1〜30nmと限定した理由は、1次粒子径が1nmより小さいと、比表面積が極めて大きいために、活性が極めて高くなり、容易に酸化して抵抗値が比較的高い酸化ルテニウムに変化し、金属としての性質が損なわれ、また、膜を形成した際に、形成された透明導電膜の導電性が低下(抵抗が上昇)するからであり、一方、1次粒子径が30nmより大きいと、塗料中におけるルテニウム微粒子の凝集傾向が強くなり、均一な膜の形成が困難となり、膜を形成した際に、形成された膜のヘイズ値が増大し、透明性が低下するからである。
【0017】
また、ITO微粒子の1次粒子径を35〜70nmと限定した理由は、1次粒子径が35nmより小さいと、膜を形成した際に、膜中のルテニウム微粒子間の導通特性を良化させる効果が得られ難くなり、経時変化による導電性の低下も大きくかつ不安定なものとなってしまい、その結果、膜の抵抗値を直接テスターで安定して測定することができなくなってしまうからであり、1次粒子径が70nmより大きいと、塗料中におけるITO微粒子の凝集傾向が強くなり、均一な膜の形成が困難となり、また、形成された膜のヘイズ値が増大し、透明性が低下するからである。
【0018】
この透明導電膜形成用塗料におけるルテニウム微粒子とITO微粒子の重量比は、40:60〜99.9:0.1であることが好ましい。その理由は、ルテニウム微粒子の重量比が上記比率より小さくなると、塗膜を形成した際に、塗膜の表面抵抗値が増加し、電磁波遮蔽効果が得難くなるからであり、一方、上記比率より大きくなると、塗膜を形成した際に、抵抗値の経時変化を抑制する効果が得難くなり、また、塗膜の表面抵抗値をテスターにて直接安定して測定することが難しくなるからである。
このルテニウム微粒子とITO微粒子の重量比は、50:50〜90:10がより好ましく、さらに好ましくは50:50〜80:20である。
【0019】
この透明導電膜形成用塗料では、ルテニウム微粒子とITO微粒子は分散して存在するが、各ルテニウム微粒子及びITO微粒子は、塗料中にて2次粒子を形成する。ここで、ルテニウム微粒子の2次粒子の平均粒径(以下、2次粒子径と称する)は、10〜70nmが好ましく、さらに好ましくは10〜30nmである。また、ITO微粒子の2次粒子径は、50〜200nmが好ましく、より好ましくは80〜200nm、さらに好ましくは110〜150nmである。
【0020】
ここで、ルテニウム微粒子の2次粒子径を10〜70nmと限定した理由は、2次粒子径が10nmより小さいと、ルテニウム微粒子間の導電経路が減少する虞があり、また、2次粒子径が70nmより大きいと、塗料中におけるルテニウム微粒子の凝集傾向が強くなり、均一な膜の形成が難しくなるからである。
また、ITO微粒子の2次粒子径を50〜200nmと限定した理由は、2次粒子径が50nmより小さいと、ルテニウム微粒子間の導通特性を良化させる効果が得られ難くなる虞があり、また、2次粒子径が200nmより大きいと、塗料中におけるITO微粒子の凝集傾向が強くなり、均一な膜の形成が難しくなるからである。
【0021】
これらルテニウム微粒子及びITO微粒子のそれぞれの1次粒子径及び2次粒子径を上記の様に限定したことで、この塗料を塗布して得られる膜の経時変化が抑えられる理由、及び膜にはんだ等による電極を形成しなくても、安定して抵抗値を測定することができる理由を説明する。
【0022】
上記の粒径を有するルテニウム微粒子に、このルテニウム微粒子に対して相対的に粒径の大きいITO微粒子を加えることにより、ITO微粒子を核(中心)として多数のルテニウム微粒子が接続し、ルテニウム微粒子間の導電経路が増加し、膜の表面抵抗が低下する。すなわち、この膜における導電性が向上する。これにより、膜の表面にはんだ等による電極を形成しなくても、テスターの測定端子を接触させるのみで、安定した測定値を得ることができる。
【0023】
また、金属であるルテニウム微粒子よりも、酸化物であるITO微粒子の方が、化学的安定性、特に長期の経時的化学的安定性に優れている。また、粒径は、大きい方が導電性に優れ、長期的にも安定である。特に、ITO微粒子は非常に透明性に優れたものであるから、粒径をある程度大きくしても透明性に影響を与える虞はない。これにより、上記の粒径のルテニウム微粒子及びITO微粒子を含有する塗料により形成された膜は、優れた透明性と電磁波遮蔽性を有すると共に経時変化が抑制され、長期的安定性に優れたものとなる。
【0024】
ここで、膜の表面にテスターの測定端子を接触させるのみで、はんだ等による電極を形成しなくても、安定した測定値を得ることができるとは、膜の表面抵抗を電極を形成せずに直接測定することにより、はんだ等により電極を形成して測定した抵抗値とほぼ一定の関係を有する抵抗値が安定して得られるということであり、はんだ等による電極を形成して測定した抵抗値と、電極を形成せずに測定した抵抗値が同じ値になるということではない。
【0025】
この透明導電膜形成用塗料は、透過画像のコントラストの向上、透過光、反射光の色彩調整、あるいは透明導電膜の透明性の色調(透過色及び反射色)を調整するために、染料や顔料等の着色剤を含有してもよい。
着色剤としては、例えば、モノアゾピグメント、キナクリドン、アイアンオキサイド・エロー、ジスアゾピグメント、フタロシアニングリーン、フタロシアニンブルー、シアニンブルー、フラバンスロンエロー、ジアンスラキノリルレッド、インダンスロンブルー、チオインジゴボルドー、ペリレンオレンジ、ペリレンスカーレット、ペリレンレッド178、ペリリレンマルーン、ジオキサジンバイオレット、イソインドリンエロー、ニッケルニトロソエロー、マダーレーキ、銅アゾメチンエロー、アニリンブラック、アルカリブルー等の有機顔料が好適に用いられる。
【0026】
また、亜鉛華、酸化チタン、弁柄、酸化クロム、鉄黒、チタンエロ−、コバルトブルー、セルリアンブルー、コバルトグリーン、アルミナホワイト、ビリジアン、カドミウムエロー、カドミウムレッド、朱、リトポン、黄鉛、モリブデートオレンジ、クロム酸亜鉛、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、鉛白、群青、マンガンバイオレット、エメラルドグリーン、紺青、カーボンブラック等の無機顔料も好適に用いられる。
【0027】
また、アゾ染料、アントラキノン染料、インジゴイド染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノン染料、ナフトキノン染料、ナフタルイミド染料、ペリノン染料などの各種染料も好適に用いられる。
これらの着色材は、単独で、または2種以上を組み合わせて用いることができる。
【0028】
着色剤の含有量は、ルテニウム微粒子に対して1〜40重量%とするのが好ましい。着色剤の含有量が1重量%より少ないと、透過画像のコントラストの向上や透過光および反射光の色彩調整に対する効果が小さくなるからであり、一方、着色剤の含有量が40重量%より多いと、塗膜の抵抗値の増大を招き、十分な電磁波遮蔽効果が得られ難くなるからである。
【0029】
また、膜強度や導電性を向上させるために、必要なら他の成分、例えば、珪素、アルミニウム、ジルコニウム、セリウム、チタン、イットリウム、亜鉛、マグネシウム、インジウム、スズ、アンチモン、ガリウム等の酸化物、複合酸化物、窒化物、特に、インジウムやスズの酸化物、複合酸化物、窒化物を主成分とする無機物の微粒子を含んでもよい。
【0030】
また、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、ブチラール樹脂等の有機系合成樹脂を含んでもよい。この有機系合成樹脂としては、熱可塑性、熱硬化性、紫外線や赤外線等の電磁波による電磁波硬化性、あるいは電子線照射による電子線硬化性等の硬化性樹脂が好適である。
また、珪素、チタン、ジルコニウム等の金属アルコキシドの加水分解物、あるいは、シリコーンモノマー、シリコーンオリゴマー等の有機・無機系バインダー等を含んでもよい。
【0031】
例えば、珪素の酸化物としては、1次粒子径が1〜10nmで、塗料中の2次粒子径が5〜100nmのシリカ微粒子が好適である。この粒径のシリカ微粒子を含有させると、塗膜を形成した際に、膜強度が著しく向上し、スクラッチ強度が向上する。このシリカ微粒子は、透明導電層に含有させることによって、例えば、その上層および/または下層に該透明導電層の屈折率とは異なる屈折率を有する透明層を1層以上形成した場合に、透明層に含まれるシリカ系バインダーとの濡れ性が良く、双方の層の密着性が向上する利点もあり、膜のスクラッチ強度をいっそう改善することができる。
【0032】
このシリカ微粒子の含有量は、ルテニウム微粒子に対して1〜60重量%が好ましい。シリカ微粒子の含有量が1重量%より少ないと、塗膜を形成した際の塗膜の強度が、シリカ微粒子を含有しない場合に比べて却って悪くなるからであり、60重量%より多いと、塗膜を形成した際に、塗膜の抵抗値の増大を招くこととなり、十分な電磁波遮蔽効果が得られないからである。
【0033】
この透明導電膜形成用塗料に用いられる溶媒は、基本的には、水および/または有機溶媒であるが、その他、高分子モノマーやオリゴマーの単体、もしくはこれらの混合物も好適に用いられる。
上記の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、エチレングリコール、ヘキシレングリコール等のアルコール類、酢酸メチルエステル、酢酸エチルエステル等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステル等のケトン類、トルエン、キシレン等の芳香族炭化水素等が好適に用いられ、これらの溶媒のうち1種または2種以上を用いることができる。
【0034】
この透明導電膜形成用塗料は、透明導電層の膜強度を向上させるためにバインダーを含んでいてもよい。
用いることができるバインダーの例としては、例えば、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、ブチラール樹脂等の有機系合成樹脂、ケイ素、チタン、ジルコニウム等の金属アルコキシドの加水分解物、シリコーンモノマー、シリコーンオリゴマー等の有機・無機系バインダー等を挙げることができる。有機系合成樹脂としては、熱可塑性、熱硬化性、紫外線や赤外線等の電磁波による電磁波硬化性、あるいは電子線照射による電子線硬化性等の硬化性樹脂が好適に用いられる。
【0035】
特に、M(OR)……(式1)
(式1中、MはSi、TiまたはZrであり、RはC〜Cのアルキル基であり、mは1〜4の整数であり、nは1〜3の整数であり、かつm+n=4である)で表される化合物またはその部分加水分解物の1種または2種以上の混合物をバインダーとして用いることが好ましい。バインダーは、過剰に含まれると透明導電層の導電性が低下するので、通常は10重量%以下の範囲内で含有量を決定することが好ましい。
【0036】
また、このバインダーと、ルテニウム微粒子及びITO微粒子との親和性を高めるために、ルテニウム微粒子及びITO微粒子の表面を、シリコーンカップリング剤、チタネートカップリング剤等のカップリング剤、あるいは、カルボン酸塩、ポリカルボン酸塩、リン酸エステル塩、スルホン酸塩、ポリスルホン酸塩等の親油化表面処理剤を用いて処理してもよい。
【0037】
「透明導電膜」
本実施形態の透明導電膜は、1次粒子径が1〜30nmのルテニウム微粒子と、1次粒子径が35〜70nmのITO微粒子とを含有する透明導電層を備えている。
【0038】
本実施形態の透明導電膜は、図1に示す様に、ガラス基板等からなる透明基材1の表面に形成された、1次粒子径が1〜30nmのルテニウム微粒子と、1次粒子径が35〜70nmのITO微粒子とを含有してなる透明導電層2、1層により構成したものの他、互いに組成の異なる透明導電層を複数層、積層した構成、あるいは、互いに組成の異なる複数種の透明導電層を交互に積層した構成としてもよい。さらに、透明導電膜の耐擦傷性等を向上させるために、この透明導電膜上にハードコート膜を形成してもよい。
【0039】
ここで、ルテニウム微粒子の1次粒子径を1〜30nmと限定したのは、1次粒子径が1nmより小さいと、金属としての性質が損なわれ、導電性が低下(抵抗が上昇)するからであり、また、1次粒子径が30nmより大きいと、ヘイズ値が増大し、透明性が低下するからである。
また、ITO微粒子の1次粒子径を35〜70nmと限定したのは、1次粒子径が35nmより小さいと、ルテニウム微粒子間の導通特性を良化させる効果が得られ難くなり、経時変化による導電性の低下も大きくかつ不安定なものとなるからであり、また、1次粒子径が70nmより大きいと、ヘイズ値が増大し、透明性が低下するからである。
この透明導電膜におけるルテニウム微粒子の1次粒子径は、好ましくは1〜20nmであり、ITO微粒子の1次粒子径は、好ましくは35〜50nmである。
【0040】
この透明導電膜におけるルテニウム微粒子とITO微粒子の重量比は、40:60〜99.9:0.1であることが好ましい。その理由は、ルテニウム微粒子の重量比が上記比率より小さくなると、透明導電膜の表面抵抗値が増加し、電磁波遮蔽効果が得難くなるからであり、一方、上記比率より大きくなると、透明導電膜の抵抗値の経時変化を抑制する効果が得難くなり、また、透明導電膜の表面抵抗値をテスターにて直接安定して測定することが難しくなるからである。
透明導電膜中のルテニウム微粒子とITO微粒子の重量比は、50:50〜90:10がより好ましく、さらに好ましくは50:50〜60:40である。
【0041】
次に、この透明導電膜が電気的特性の経時変化を抑えることができる理由、及び膜にはんだ等による電極を形成しなくても、安定して抵抗値を測定することができる理由を説明する。
この透明導電膜は、1次粒子径が1〜30nmのルテニウム微粒子と、このルテニウム微粒子に対して相対的に粒径の大きい1次粒子径が35〜70nmのITO微粒子とを含有したことにより、ITO微粒子を核(中心)として多数のルテニウム微粒子が接続し、ルテニウム微粒子間の導電経路が増加し、この透明導電膜の表面抵抗が低下する。したがって、この透明導電膜の導電性が向上する。
これにより、透明導電膜の表面にはんだ等による電極を形成しなくても、テスターの測定端子を接触させるのみで、安定した測定値を得ることができる。
【0042】
また、金属であるルテニウム微粒子よりも、酸化物であるITO微粒子の方が、化学的安定性、特に長期の経時的化学的安定性に優れている。また、粒径は、大きい方が導電性に優れ、長期的にも安定である。特に、ITO微粒子は非常に透明性に優れたものであるから、粒径をある程度大きくしても透明性に影響を与える虞はない。これにより、上記の粒径のルテニウム微粒子及びITO微粒子を含有する透明導電膜は、優れた透明性と電磁波遮蔽性を有すると共に経時変化が抑制され、長期的安定性に優れたものとなる。
【0043】
この透明導電膜は、膜強度や導電性を向上させるために、必要なら他の成分、例えば、珪素、アルミニウム、ジルコニウム、セリウム、チタン、イットリウム、亜鉛、マグネシウム、インジウム、スズ、アンチモン、ガリウム等の酸化物、複合酸化物、窒化物、特に、インジウムやスズの酸化物、複合酸化物、窒化物を主成分とする無機物の微粒子を含んでもよい。
【0044】
また、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、ブチラール樹脂等の有機系合成樹脂を含んでもよい。この有機系合成樹脂としては、熱可塑性、熱硬化性、紫外線や赤外線等の電磁波による電磁波硬化性、あるいは電子線照射による電子線硬化性等の硬化性樹脂が好適である。
また、珪素、チタン、ジルコニウム等の金属アルコキシドの加水分解物、あるいは、シリコーンモノマー、シリコーンオリゴマー等の有機・無機系バインダー等を含んでもよい。
【0045】
珪素の酸化物としては、シリカ微粒子が好適である。このシリカ微粒子を用いる場合、例えば、1次粒子径が1〜10nmのシリカ微粒子を、ルテニウム微粒子に対して1〜60重量%の範囲内で含有させるのが好ましい。
このように、透明導電膜にシリカ微粒子を上記の範囲内で含有させると、透明導電膜の膜強度が著しく向上し、スクラッチ強度が向上する。
【0046】
この透明導電膜の膜厚は、特に制限を設けるものではないが、100nm〜200nmが好ましい。その理由は、膜厚が100nm未満では、膜厚が薄くなるにしたがって、導電性が著しく低下するからであり、一方、膜厚が200nmを越えると、導電性は問題ないものの透明性が低下し、透過画像の視認性が低下するからである。
【0047】
この透明導電膜の最外層に、凹凸を有する透明層(凹凸層)を設けてもよい。
この凹凸層は、透明導電膜の表面反射光を散乱させ、表示面に優れた防眩性を与える効果がある。凹凸層の材質としては、表面硬度と屈折率の観点からシリカが好適である。この凹凸層は、凹凸層形成用塗料を前記透明導電膜の最外層として上述した各種コーティング法により塗布し、乾燥後に透明導電層と同時に、あるいは別個に、140〜250℃の温度で焼付けて形成することができる。特に、凹凸層の形成方法としては、スプレーコート法が好適である。
【0048】
この透明導電膜は、上記の透明導電膜形成用塗料を透明基材の表面に塗布した後、大気中、140〜250℃の温度にて熱処理を施すことにより得ることができる。
塗布に際しては、形成された後の透明導電膜の膜厚が、上述した様に100〜200nmとなるような塗布量とすることが好ましい。
塗布方法としては、スピンコート法、ロールコート法、スプレーコート法、バーコート法、ディップコート法、メニスカスコート法、グラビア印刷法、スクリーン印刷法、インクジェット法等、塗布液を透明基材1の表面に塗布する通常のウエットコート法を用いることができる。これらの内、スピンコート法は、短時間で均一な厚みの薄膜を形成することができるので、特に好ましい塗布法である。
【0049】
「低反射透明導電膜」
本実施形態の低反射透明導電膜は、上述した透明導電層のいずれか一方の主面または双方の主面、すなわち、この透明導電層の上層、または下層、または上層および下層に、この透明導電層の屈折率とは異なる屈折率を有する透明層が少なくとも1層、積層された構成である。
【0050】
この低反射透明導電膜としては、図2に示すように、透明導電層2の上層に該透明導電層2の屈折率とは異なる屈折率を有する透明層3を1層形成して低反射透明導電膜4とした構成の他、透明導電層2の下層に形成した構成、あるいは、透明導電層2の上層及び下層に形成した構成としてもよい。
本実施形態の透明層は、透明導電層を保護するばかりでなく、得られた積層膜の層間界面における外光反射を有効に除去または軽減することができ、優れた反射防止効果を得ることができる。
【0051】
透明層を構成する物質としては、例えば、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、デチテール樹脂等の熱可塑性、熱硬化性、または光・電子線硬化性樹脂、珪素、アルミニウム、チタン、ジルコニウムなどの金属アルコキシドの加水分解物、シリコーンモノマーまたはシリコーンオリゴマーなどが単独で、または混合して用いられる。
【0052】
特に好ましい透明層は、膜の表面硬度が高く、屈折率が比較的低いシリカ(SiO)の薄膜である。このシリカ薄膜を形成し得る物質の例としては、例えば、
M(OR)……(式2)
(式2中、MはSiであり、RはC〜Cのアルキル基であり、mは1〜4の整数であり、nは0〜3の整数であり、かつm+n=4である)で表される化合物、またはその部分加水分解物の1種または2種以上の混合物が好適である。
この化合物の例として、特に、テトラエトキシシラン(Si(OC)が、薄膜形成性、透明性、透明導電層との接合性、膜強度および反射防止性能の観点から好適に用いられる。
【0053】
この透明層は、透過画像のコントラストの向上、透過光、反射光の色彩調整、あるいは透明導電膜の透明性の色調(透過色及び反射色)を調整するために、染料や顔料等の着色剤を含有してもよい。着色剤としては、上記の透明導電膜形成用塗料に用いられる着色剤が好適である。
【0054】
一般に、多層膜における層間界面の反射防止性能は、薄膜の屈折率と膜厚、および積層数により決定されるため、本実施形態の低反射透明導電膜においても、透明導電層及び透明層の積層数を考慮して、透明導電層及び透明層それぞれの厚みを設定することにより、効果的な反射防止効果が得られる。
例えば、2層構造の反射防止膜では、防止しようとする反射光の波長をλとすると、透明基材上に順次積層された高屈折率層と低屈折率層とを、この順にλ/4、λ/4、またはλ/2、λ/4の光学的膜厚とすることによって、効果的に反射を防止することができる。
【0055】
また、3層構造の反射防止膜では、透明基材上に順次積層された中屈折率層と高屈折率層と低屈折率層とを、この順にλ/4、λ/2、λ/4の光学的膜厚とすることが有効とされる。
特に、製造上の容易さや経済性を考慮すると、導電層の上層に、屈折率が比較的低く、ハードコート性を兼ね備えたシリカ膜(屈折率:1.46)をλ/4の膜厚で形成することが好適である。
【0056】
この低反射透明導電膜の最外層に、上記の透明導電膜と同様、凹凸を有する透明層(凹凸層)を形成するのが好ましい。
この凹凸層は、透明導電膜の表面反射光を散乱させ、表示面に優れた防眩性を与える効果がある。
【0057】
この透明層は、透明導電層上に、透明層の成分を含む塗布液(透明膜形成用塗料)を均一に塗布して成膜する方法によって行うことができる。
塗布方法としては、スピンコート法、ロールコート法、スプレーコート法、バーコート法、ディップコート法、メニスカスコート法、グラビア印刷法、スクリーン印刷法、インクジェット法等、通常のウエットコート法を用いることができる。これらの内、スピンコート法は、短時間で均一な厚みの薄膜を形成することができるので、特に好ましい塗布法である。
【0058】
塗布後、塗膜を乾操し、透明導電層と共に、大気中、140〜250℃の温度にて加熱処理を施すことにより、透明膜が得られる。透明膜の成分を含む塗布液としては、透明導電層と異なる屈折率に設定できるのであればよく、各種樹脂、金属酸化物、複合酸化物、窒化物等、あるいは、塗布した後に、これらを生成することができる前駆体等を含む塗布液を用いる。
【0059】
この透明層の成膜は、透明導電層を形成した後に行ってもよく、透明導電層の成膜と同時に行ってもよい。例えば、透明導電膜形成用塗料を表示装置の表示面に塗布し、その上層に透明膜形成用塗料を塗布し、乾燥後に140〜250℃の温度にて一括熱処理することにより、透明導電層と透明層とを同時に形成することができる。
【0060】
「表示装置」
本実施形態の表示装置は、その表示面に上記の透明導電膜、低反射透明導電膜のいずれかが形成されている。
図3は、本実施形態の陰極線管(表示装置)を示す断面図であり、この陰極線管11は、フェイスパネル12の前面(表示面)12aに、透明導電層2及び透明層3からなる低反射透明導電膜4が形成された構成である。
【0061】
この表示装置は、その表示面に上記の透明導電膜、低反射透明導電膜のいずれかが形成されているので、表示面の帯電が防止され、画像表示面に挨などが付着することがない。また、電磁波が遮蔽されるので、各種の電磁波障害が防止される。また、光透過性に優れているので、画像が明るく、表示面の外観が良好である。さらに、表示面の透明導電膜の表面抵抗を、安定して容易に測定することができ、しかも化学的安定性が高いので、取り扱い上における制限もほとんど無くなる。
さらに、上記の透明層、または凹凸層、または透明層及び凹凸層が形成されていれば、外光に対する優れた反射防止効果、防眩効果も得られる。
【0062】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0063】
A.原液の調整
実施例及び比較例に共通の原液として下記のものを調整した。
(1)ルテニウム水性ゾル
0.15ミリモル/lの塩化ルテニウムを含む水溶液と0.024ミリモル/lの水素化ホウ素ナトリウム水溶液とを混合し、得られたコロイド状分散液を濃縮し、0.198モル/lのルテニウム微粒子を含む水性ゾルを得た。ルテニウム微粒子の1次粒子の平均粒径は5nm、2次粒子の平均粒径は15nmであった。
【0064】
(2)ITO水性ゾルA
ITO粉(住友大阪セメント(株)製)30wt%、陰イオン系界面活性剤3wt%、純水67wt%となるように、これらを秤量、混合し、その後サンドミルを用いて分散し、ITO水性ゾルAを得た。このITO水性ゾルA中のITO微粒子の1次粒子の平均粒径は45nm、2次粒子の平均粒径は130nmであった。
【0065】
(3)黒色顔料分散液
カーボンブラックとイソプロピルアルコールを混合した後、サンドミルにて分散し、固形分10%の黒色顔料分散液を得た。このカーボンブラックの1次粒子の平均粒径は20nm、2次粒子の平均粒径は120nmであった。
(4)透明膜形成用塗料
テトラエトキシシラン0.8gと、0.1N塩酸0.8gと、エチルアルコール98.4gを混合し、均一な溶液の透明膜形成用塗料とした。
【0066】
(5)コロイダルシリカ
日本化学工業社製「シリカドール30」(1次粒子の平均粒径:5nm、2次粒子の平均粒径:15nm)を使用した。
(6)ITO水性ゾルB
ITO粉(住友大阪セメント(株)製)30wt%、陰イオン系界面活性剤3wt%、純水67wt%となるように、これらを秤量、混合し、その後サンドミルを用いて分散し、ITO水性ゾルBを得た。このITO水性ゾルB中のITO微粒子の1次粒子の平均粒径は30nm、2次粒子の平均粒径は70nmであった。
【0067】
B.透明導電膜の作製
上記のITO水性ゾルA〜ITO水性ゾルBを用いて実施例及び比較例の透明導電膜を作製した。
【0068】
「実施例1」
透明導電膜形成用塗料の調整:
ルテニウム水性ゾル19g、ITO水性ゾルA0.067gに、エチルセロソルブ10g、エチルアルコール70.93gを加え、攪拌・混合し、透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は97.5/2.5であった。
【0069】
成膜:
この導電膜形成用塗料を陰極線管(CRT)の表示面にスピンコーターを用いて塗布し、乾燥後、この塗布面に上記の透明膜形成用塗料を、同様にスピンコーターを用いて塗布し、このブラウン管を乾燥器を用いて200℃にて30分間熱処理して透明導電膜を形成することにより、反射防止性の透明導電膜を有する実施例1の陰極線管を作製した。
【0070】
「実施例2」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、ITO水性ゾルA0.4gに、エチルセロソルブ10g、エチルアルコール69.6gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は76.9/23.1であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する実施例2の陰極線管を作製した。
【0071】
「実施例3」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、ITO水性ゾルA0.4g、コロイダルシリカ0.27gに、エチルセロソルブ10g、エチルアルコール69.33gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は76.9/23.1、Ru/SiO(重量比)は100/20であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する実施例3の陰極線管を作製した。
【0072】
「実施例4」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル18g、ITO水性ゾルA0.4g、黒色顔料分散液0.4gに、エチルセロソルブ10g、エチルアルコール71.2gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は75/25、Ru/カーボンブラック(重量比)は90/10であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する実施例4の陰極線管を作製した。
【0073】
「実施例5」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、ITO水性ゾルA1.33gに、エチルセロソルブ10g、エチルアルコール68.67gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は50/50であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する実施例5の陰極線管を作製した。
【0074】
「実施例6」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、ITO水性ゾルA0.4gに、エチルセロソルブ10g、エチルアルコール69.6gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は76.9/23.1であった。
成膜:
この導電膜形成用塗料を用い、熱処理条件を120℃、30分とした以外は、実施例1と同様にして反射防止性の透明導電膜を有する実施例6の陰極線管を作製した。
【0075】
「比較例1」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20gに、エチルセロソルブ10g、エチルアルコール70.0gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する比較例1の陰極線管を作製した。
【0076】
「比較例2」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、コロイダルシリカ0.27gに、エチルセロソルブ10g、エチルアルコール69.73gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/SiO(重量比)は100/20であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する比較例2の陰極線管を作製した。
【0077】
「比較例3」
透明導電膜形成用塗料の調製:
ルテニウム水性ゾル20g、ITO水性ゾルB0.4gに、エチルセロソルブ10g、エチルアルコール69.6gを加え、攪拌・混合し、実施例1と同様に透明導電膜形成用塗料を調製した。塗料中のRu/ITO(重量比)は76.9/23.1であった。
成膜:
この導電膜形成用塗料を用い、実施例1と同様にして反射防止性の透明導電膜を有する比較例3の陰極線管を作製した。
【0078】
C.透明導電膜の評価
実施例1〜6及び比較例1〜3それぞれの透明導電膜について、下記の装置または方法により評価を行った。
透過率 :東京電色社製「Automatic Haze Meter HIII DP」を用いて測定した。
ヘーズ :東京電色社製「Automatic Haze Meter HIII DP」を用いて測定した。
抵抗値A(はんだによる間接測定):透明導電膜上に5cm間隔でストライプ状のハンダ(千住金属工業(株)製:セラソルザ)による電極を形成した。この電極間の抵抗値を、カスタム(株)製「ポケットテスター CDM-11HD」にて測定した。
【0079】
抵抗値B(直接測定):カスタム(株)製「ポケットテスター CDM-11HD」の測定用端子を透明導電膜上に5cm間隔で接触させ、抵抗値を測定した。
抵抗値比(B/A):上記の抵抗値A及びBの測定結果に基づき抵抗値B/抵抗値Aを算出した。
膜欠陥 :目視により膜表面の欠陥を観察し、評価した。
○;良好(欠陥が殆ど認められなかったもの)
×;不良(欠陥が明らかに認められたもの)
【0080】
抵抗値変化率:透明導電膜を25℃の下に2ヶ月間放置し、放置前後各々の抵抗値A(はんだによる間接測定)を測定し、「2ヶ月後の抵抗値A/初期の抵抗値A」を算出した。
以上の評価結果のうち、透過率〜膜欠陥の評価結果を表1に、抵抗値変化率の評価結果を表2に、それぞれ示す。
【0081】
【表1】

Figure 2004203941
【0082】
【表2】
Figure 2004203941
【0083】
これらの評価結果によれば、実施例1〜6では、透過率、ヘイズ、膜欠陥ともに良好な結果であり、透明性及び導電性に優れ、膜表面の欠陥が極めて少ない良好な膜であることが分かった。また、抵抗値A及びBともに安定したものであり、膜の電気的特性を直接、安定して測定することができることが分かった。
また、抵抗値変化率も1.03〜1.08と小さく、長期安定性に優れていることが分かった。
【0084】
一方、比較例1〜3では、透過率、ヘイズ、膜欠陥及び抵抗値A(はんだによる間接測定)については実施例1〜6と遜色ないものの、抵抗値B(直接測定)では、抵抗値が時々刻々変化し、非常に不安定で測定不可能であった。
また、抵抗値変化率も1.11〜1.16と大きく、長期安定性に劣ったものであった。
【0085】
【発明の効果】
以上説明したように、本発明の透明導電膜形成用塗料によれば、1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有したので、経時変化が小さく長期安定性に優れた透明導電膜を形成することができる。
【0086】
本発明の透明導電膜によれば、1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有する透明導電層を備えたので、経時的に高い化学的安定性を有するものとなり、経時変化が小さく長期安定性に優れている。したがって、膜にはんだ等による電極を形成しなくても、抵抗値を安定して測定することができる。
【0087】
本発明の透明導電膜の製造方法によれば、本発明の透明導電膜形成用塗料を基材に塗布し、その後、140〜250℃の温度にて熱処理を施すので、経時的に高い化学的安定性を有する透明導電膜を得ることができる。したがって、経時変化が小さく長期安定性に優れた透明導電膜を容易に作製することができる。
【0088】
本発明の表示装置によれば、本発明の透明導電膜を表示面に形成したので、経時変化が小さく長期安定性に優れた表示面を容易に得ることができ、この表示面の電気的特性を安定した状態で、しかも短時間で容易に測定することができる。その結果、電気的特性の測定に要する手間と時間を削減することができ、製品の低価格化を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の透明導電膜を示す断面図である。
【図2】本発明の一実施形態の低反射透明導電膜を示す断面図である。
【図3】本発明の一実施形態の陰極線管を示す断面図である。
【符号の説明】
1 透明基材
2 透明導電層
3 透明層
4 低反射透明導電膜
11 陰極線管(表示装置)
12 フェイスパネル
12a 前面(表示面)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a paint for forming a transparent conductive film, a transparent conductive film, a method for producing the same, and a display device provided with the same, and in particular, is used for a display surface of a cathode ray tube, a plasma display, a liquid crystal display, etc., and has an excellent antistatic property. It has an effect, an electromagnetic wave shielding effect and an anti-reflection effect, has a natural transmission color that does not give a sense of incongruity even in the appearance of the coating film, has excellent chemical stability, and has a small change in conductivity with time. The present invention relates to a transparent conductive film forming paint suitable for use in forming a conductive film, a transparent conductive film having both high transparency and conductivity, a method for manufacturing the same, and a display device provided with the transparent conductive film.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a cathode ray tube (CRT), which is a type of display device used for a cathode ray tube of a television (TV) or a display of a computer, projects an electron beam on a phosphor screen that emits red, green, and blue light. As a result, characters and images are projected on the display surface, so that the static electricity generated on the display surface causes dust to adhere to the display surface, lowering visibility, and radiating electromagnetic waves to affect the environment.
In addition, the generation of static electricity and the possibility of electromagnetic wave radiation have been pointed out in plasma display panels (PDPs) that have recently been applied to wall-mounted televisions and the like.
[0003]
Therefore, in order to solve these problems, for example, as a transparent conductive film having an excellent electromagnetic wave shielding effect and an anti-reflection effect, a transparent conductive film made of fine metal particles such as gold, silver, and platinum having an average particle size of 2 to 200 nm is used. A transparent conductive film composed of a fine particle layer and a transparent film having a lower refractive index than the transparent conductive fine particle layer (for example, see Patent Document 1), containing 10% by weight or more of platinum group metal fine particles having an average particle diameter of 50 nm or less. There has been proposed a transparent conductive film having a transparent conductive layer (see, for example, Patent Document 2).
In the above display device, as a method of forming a transparent conductive film on the display surface, for example, a transparent conductive film forming paint is applied to the surface of a transparent substrate such as a glass substrate, and then the coating film is dried or heat-treated. A way to be taken.
[0004]
[Patent Document 1]
JP-A-8-77832
[Patent Document 2]
JP-A-11-25759
[0005]
[Problems to be solved by the invention]
By the way, in the conventional transparent conductive film, since the resistance value increases with time, the conductivity of the film also decreases with time, and therefore, it is not possible to suppress the change with time of the conductivity of the film. was there.
In the manufacturing process and the inspection process of the display device, it is necessary to measure the resistance value of the coating film in order to check the electrical characteristics of the coating film. Even so, an accurate measurement value cannot be obtained because the measurement value is very unstable. Therefore, a method of measuring the resistance with a tester after forming an electrode for measurement with solder or the like on the coating film has been adopted.However, this method takes time and effort, so production management costs and inspection There is a problem that the cost is increased, and as a result, the price of the product is increased.
[0006]
The present invention has been made in order to solve the above problems, and has excellent electromagnetic wave shielding effect and antireflection effect, has high chemical stability, and has a defect in appearance due to agglomerates of paint components and the like. A coating for forming a transparent conductive film capable of forming a transparent conductive film that has a very small change in electric characteristics with time and has excellent long-term stability, has an excellent electromagnetic wave shielding effect and an anti-reflection effect, and has excellent electrical characteristics. It is an object of the present invention to provide a transparent conductive film, a method of manufacturing the transparent conductive film, capable of directly and stably measuring electrical characteristics, in which characteristics change with time is extremely small, and a display device including the transparent conductive film.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that ruthenium fine particles having an average primary particle size of 1 to 30 nm and tin-added indium oxide (ITO) fine particles having an average primary particle size of 35 to 70 nm are contained. The transparent conductive film formed by paint not only has excellent transparency, visibility, and electromagnetic wave shielding properties, but also suppresses aging and maintains an excellent electromagnetic wave shielding effect for a long time. It has been found that the resistance value can be measured stably without forming an electrode according to the above method.
[0008]
That is, the transparent conductive film forming paint of the present invention contains ruthenium fine particles having an average primary particle size of 1 to 30 nm and tin-added indium oxide fine particles having an average primary particle size of 35 to 70 nm. It is characterized by becoming.
In this transparent conductive film forming coating, the obtained coating film has high chemical stability over time. This makes it possible to form a transparent conductive film which has little change over time and excellent long-term stability.
[0009]
The average particle size of the secondary particles in the coating of the ruthenium fine particles is preferably 10 to 70 nm, and the average particle size of the secondary particles in the coating of the tin-added indium oxide fine particles is preferably 50 to 200 nm.
The weight ratio of the ruthenium fine particles to the tin-added indium oxide fine particles is preferably from 40:60 to 99.9: 0.1.
[0010]
The transparent conductive film of the present invention includes a transparent conductive layer containing ruthenium fine particles having an average primary particle diameter of 1 to 30 nm and tin-added indium oxide fine particles having an average primary particle diameter of 35 to 70 nm. It is characterized by becoming.
In this transparent conductive film, the transparent conductive layer has high chemical stability over time, and it is possible to obtain a transparent conductive film which has little change over time and excellent long-term stability. Thus, the resistance value can be measured stably without forming an electrode such as solder on the film.
[0011]
The weight ratio of the ruthenium fine particles to the tin-added indium oxide fine particles is preferably from 40:60 to 99.9: 0.1.
It is preferable that a transparent layer having a refractive index different from that of the transparent conductive layer is formed on one main surface or both main surfaces of the transparent conductive layer.
[0012]
The method for producing a transparent conductive film of the present invention is characterized in that the coating material for forming a transparent conductive film of the present invention is applied to a substrate, and then heat-treated at a temperature of 140 to 250 ° C.
In this manufacturing method, the transparent conductive film having high chemical stability over time is subjected to a heat treatment at a temperature of 140 to 250 ° C. to the transparent conductive film forming paint of the present invention applied to the base material. Can be easily obtained. As a result, a transparent conductive film having little change over time and excellent in long-term stability can be easily produced.
[0013]
The display device of the present invention is characterized in that the transparent conductive film of the present invention is formed on a display surface.
In this display device, a display surface having high chemical stability over time can be obtained by forming the transparent conductive film of the present invention on the display surface. This makes it possible to easily obtain a display surface with little change over time and excellent long-term stability, and to easily measure the electrical characteristics of the display surface in a stable state in a short time. As a result, the labor and time required for measuring the electrical characteristics are reduced, and the cost of the product can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the transparent conductive film forming paint and the transparent conductive film of the present invention, a method for manufacturing the same, and a display device including the same will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.
[0015]
`` Paint for forming transparent conductive film ''
The coating material for forming a transparent conductive film according to the present embodiment includes, in a solvent, ruthenium fine particles having an average primary particle diameter (hereinafter, referred to as a primary particle diameter) of 1 to 30 nm and a primary particle diameter of 35 to 70 nm. And tin-added indium oxide fine particles (hereinafter abbreviated as ITO fine particles). The primary particle size of the ruthenium fine particles is preferably 1 to 20 nm, and the primary particle size of the ITO fine particles is preferably 35 to 50 nm.
[0016]
Here, the reason why the primary particle diameter of the ruthenium fine particles is limited to 1 to 30 nm is that if the primary particle diameter is smaller than 1 nm, the specific surface area is extremely large, so that the activity becomes extremely high, and it is easily oxidized to resist. This is because the value changes to ruthenium oxide having a relatively high value, the property as a metal is impaired, and when a film is formed, the conductivity of the formed transparent conductive film decreases (resistance increases). If the primary particle diameter is larger than 30 nm, the tendency of the ruthenium fine particles to aggregate in the coating material becomes strong, making it difficult to form a uniform film, and when forming the film, the haze value of the formed film increases, This is because the transparency is reduced.
[0017]
The reason for limiting the primary particle diameter of the ITO fine particles to 35 to 70 nm is that if the primary particle diameter is smaller than 35 nm, the effect of improving the conduction characteristics between the ruthenium fine particles in the film when the film is formed. Is difficult to obtain, and the decrease in conductivity due to aging becomes large and unstable.As a result, the resistance value of the film cannot be measured stably directly with a tester. If the primary particle size is larger than 70 nm, the tendency of the ITO fine particles to agglomerate in the coating material becomes strong, and it becomes difficult to form a uniform film, and the haze value of the formed film increases and the transparency decreases. Because.
[0018]
The weight ratio of the ruthenium fine particles to the ITO fine particles in the coating for forming a transparent conductive film is preferably from 40:60 to 99.9: 0.1. The reason is that when the weight ratio of the ruthenium fine particles is smaller than the above ratio, when a coating film is formed, the surface resistance value of the coating film increases, and it becomes difficult to obtain an electromagnetic wave shielding effect. When the size is large, when a coating film is formed, it is difficult to obtain the effect of suppressing the change over time of the resistance value, and it is difficult to directly and stably measure the surface resistance value of the coating film with a tester. .
The weight ratio of the ruthenium fine particles to the ITO fine particles is more preferably 50:50 to 90:10, and further preferably 50:50 to 80:20.
[0019]
In this transparent conductive film forming paint, the ruthenium fine particles and the ITO fine particles are present in a dispersed state, but each of the ruthenium fine particles and the ITO fine particles forms secondary particles in the coating. Here, the average particle size (hereinafter referred to as secondary particle size) of the secondary particles of the ruthenium fine particles is preferably from 10 to 70 nm, more preferably from 10 to 30 nm. The secondary particle diameter of the ITO fine particles is preferably 50 to 200 nm, more preferably 80 to 200 nm, and further preferably 110 to 150 nm.
[0020]
Here, the reason for limiting the secondary particle diameter of the ruthenium fine particles to 10 to 70 nm is that if the secondary particle diameter is smaller than 10 nm, the conductive path between the ruthenium fine particles may decrease, and the secondary particle diameter may be reduced. If it is larger than 70 nm, the tendency of the ruthenium fine particles to aggregate in the coating material becomes strong, and it becomes difficult to form a uniform film.
Further, the reason why the secondary particle diameter of the ITO fine particles is limited to 50 to 200 nm is that if the secondary particle diameter is smaller than 50 nm, the effect of improving the conduction characteristics between the ruthenium fine particles may not be easily obtained, and If the secondary particle diameter is larger than 200 nm, the tendency of the ITO fine particles to aggregate in the coating material becomes strong, and it becomes difficult to form a uniform film.
[0021]
By limiting the primary particle size and the secondary particle size of the ruthenium fine particles and the ITO fine particles as described above, the time-dependent change of the film obtained by applying this paint can be suppressed, and the solder and the like can be added to the film. The reason why the resistance value can be measured stably without forming an electrode according to the present invention will be described.
[0022]
By adding ITO fine particles having a larger particle size relative to the ruthenium fine particles to the ruthenium fine particles having the above particle diameter, a large number of ruthenium fine particles are connected with the ITO fine particles as a nucleus (center), and between the ruthenium fine particles. The number of conductive paths increases, and the surface resistance of the film decreases. That is, the conductivity of this film is improved. Thus, a stable measurement value can be obtained only by bringing the measurement terminal of the tester into contact without forming an electrode such as solder on the surface of the film.
[0023]
Further, ITO fine particles as an oxide are more excellent in chemical stability, particularly long-term chemical stability over time than ruthenium fine particles as a metal. In addition, the larger the particle size, the more excellent the conductivity and the longer the particle size, the more stable it is. In particular, since the ITO fine particles are very excellent in transparency, even if the particle size is increased to some extent, there is no possibility of affecting the transparency. Thereby, the film formed by the paint containing the ruthenium fine particles and the ITO fine particles having the above particle diameters has excellent transparency and electromagnetic wave shielding properties, and is suppressed from aging, and has excellent long-term stability. Become.
[0024]
Here, simply contacting the measurement terminal of the tester with the surface of the film, and without forming an electrode by solder or the like, can obtain a stable measurement value means that the surface resistance of the film does not form an electrode. By directly measuring the resistance, it is possible to stably obtain a resistance value that has an almost constant relationship with the resistance value measured by forming an electrode with solder or the like. It does not mean that the value and the resistance value measured without forming the electrode become the same value.
[0025]
The paint for forming a transparent conductive film is used for improving the contrast of a transmitted image, adjusting the color of transmitted light and reflected light, or adjusting the color tone (transmitted color and reflected color) of the transparent conductive film. And the like.
Examples of the coloring agent include monoazo pigment, quinacridone, iron oxide yellow, disazo pigment, phthalocyanine green, phthalocyanine blue, cyanine blue, flavanthrone yellow, dianthraquinolyl red, indanthrone blue, thioindigo bordeaux, perylene orange And organic pigments such as perylene scarlet, perylene red 178, perylylene maroon, dioxazine violet, isoindoline yellow, nickel nitroso yellow, madake lake, copper azomethine yellow, aniline black, and alkali blue.
[0026]
In addition, zinc white, titanium oxide, red iron oxide, chromium oxide, iron black, titanium erotic, cobalt blue, cerulean blue, cobalt green, alumina white, viridian, cadmium yellow, cadmium red, vermilion, lithopone, graphite, molybdate orange Also, inorganic pigments such as zinc chromate, calcium sulfate, barium sulfate, calcium carbonate, lead white, ultramarine, manganese violet, emerald green, navy blue, and carbon black are preferably used.
[0027]
Further, various dyes such as azo dyes, anthraquinone dyes, indigoid dyes, phthalocyanine dyes, carbonium dyes, quinone imine dyes, methine dyes, quinoline dyes, nitro dyes, nitroso dyes, benzoquinone dyes, naphthoquinone dyes, naphthalimide dyes, and perinone dyes are also suitable. Used for
These coloring materials can be used alone or in combination of two or more.
[0028]
The content of the coloring agent is preferably set to 1 to 40% by weight based on the ruthenium fine particles. When the content of the colorant is less than 1% by weight, the effect of improving the contrast of a transmitted image and adjusting the color of transmitted light and reflected light is reduced, while the content of the colorant is more than 40% by weight. This causes an increase in the resistance value of the coating film and makes it difficult to obtain a sufficient electromagnetic wave shielding effect.
[0029]
Further, in order to improve film strength and conductivity, if necessary, other components, for example, oxides of silicon, aluminum, zirconium, cerium, titanium, yttrium, zinc, magnesium, indium, tin, antimony, gallium, etc., composites Oxides and nitrides, in particular, oxides of indium and tin, composite oxides, and inorganic fine particles mainly composed of nitrides may be contained.
[0030]
In addition, organic synthetic resins such as polyester resin, acrylic resin, epoxy resin, melamine resin, urethane resin, and butyral resin may be included. As the organic synthetic resin, a curable resin such as thermoplasticity, thermosetting, electromagnetic wave curability by electromagnetic waves such as ultraviolet rays and infrared rays, or electron beam curability by electron beam irradiation is preferable.
It may also contain a hydrolyzate of a metal alkoxide such as silicon, titanium or zirconium, or an organic / inorganic binder such as a silicone monomer or silicone oligomer.
[0031]
For example, as the silicon oxide, silica fine particles having a primary particle diameter of 1 to 10 nm and a secondary particle diameter of 5 to 100 nm in the coating material are suitable. When silica fine particles having this particle size are contained, when a coating film is formed, the film strength is remarkably improved, and the scratch strength is improved. The silica fine particles may be contained in the transparent conductive layer, for example, when one or more transparent layers having a refractive index different from the refractive index of the transparent conductive layer are formed in an upper layer and / or a lower layer thereof. Has good wettability with the silica-based binder contained therein, and also has the advantage of improving the adhesion between both layers, so that the scratch strength of the film can be further improved.
[0032]
The content of the silica fine particles is preferably 1 to 60% by weight based on the ruthenium fine particles. When the content of the silica fine particles is less than 1% by weight, the strength of the coating film when the coating film is formed becomes worse as compared with the case where the silica fine particles are not contained. This is because, when the film is formed, the resistance of the coating film increases, and a sufficient electromagnetic wave shielding effect cannot be obtained.
[0033]
The solvent used in the transparent conductive film forming paint is basically water and / or an organic solvent, but other than the above, a simple substance of a polymer monomer or oligomer, or a mixture thereof is also preferably used.
Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, ethylene glycol, hexylene glycol, esters such as methyl acetate, ethyl acetate, and diethyl ether. Ethers such as ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ethyl ketone, acetylacetone, acetoacetate Ketones such as, for example, aromatic hydrocarbons such as toluene and xylene are preferably used. May be used alone or two or more of the solvents.
[0034]
The paint for forming a transparent conductive film may contain a binder in order to improve the film strength of the transparent conductive layer.
Examples of binders that can be used include, for example, polyester resins, acrylic resins, epoxy resins, melamine resins, urethane resins, organic synthetic resins such as butyral resins, silicon, titanium, hydrolysates of metal alkoxides such as zirconium, Organic / inorganic binders such as silicone monomers and silicone oligomers can be mentioned. As the organic synthetic resin, a curable resin such as thermoplastic, thermosetting, electromagnetic wave curable by electromagnetic waves such as ultraviolet rays and infrared rays, or electron beam curable by electron beam irradiation is preferably used.
[0035]
In particular, M (OR) m R n ... (Equation 1)
(In the formula 1, M is Si, Ti or Zr, and R is C 1 ~ C 4 M is an integer of 1 to 4, n is an integer of 1 to 3, and m + n = 4) or one or two kinds of partial hydrolysates thereof. It is preferable to use the above mixture as a binder. If the binder is excessively contained, the conductivity of the transparent conductive layer is reduced. Therefore, it is usually preferable to determine the content within the range of 10% by weight or less.
[0036]
Further, in order to increase the affinity between the binder and the ruthenium fine particles and the ITO fine particles, the surfaces of the ruthenium fine particles and the ITO fine particles are coated with a coupling agent such as a silicone coupling agent, a titanate coupling agent, or a carboxylate. The treatment may be performed using a lipophilic surface treatment agent such as a polycarboxylate, a phosphate, a sulfonate, and a polysulfonate.
[0037]
"Transparent conductive film"
The transparent conductive film of the present embodiment includes a transparent conductive layer containing ruthenium fine particles having a primary particle diameter of 1 to 30 nm and ITO fine particles having a primary particle diameter of 35 to 70 nm.
[0038]
As shown in FIG. 1, the transparent conductive film of this embodiment has ruthenium fine particles having a primary particle diameter of 1 to 30 nm and a primary particle diameter of 1 to 30 nm formed on the surface of a transparent substrate 1 made of a glass substrate or the like. In addition to the transparent conductive layers 2 and 1 containing 35 to 70 nm ITO fine particles, a plurality of transparent conductive layers having different compositions from each other are laminated, or a plurality of transparent conductive layers having different compositions from each other are formed. A configuration in which conductive layers are alternately stacked may be employed. Further, a hard coat film may be formed on the transparent conductive film in order to improve the scratch resistance and the like of the transparent conductive film.
[0039]
Here, the reason why the primary particle diameter of the ruthenium fine particles is limited to 1 to 30 nm is that if the primary particle diameter is smaller than 1 nm, properties as a metal are impaired, and conductivity decreases (resistance increases). Also, if the primary particle size is larger than 30 nm, the haze value increases and the transparency decreases.
Further, the primary particle size of the ITO fine particles is limited to 35 to 70 nm. If the primary particle size is smaller than 35 nm, it is difficult to obtain the effect of improving the conduction characteristics between the ruthenium fine particles, and the conductivity due to aging changes. The reason for this is that the decrease in the property is large and unstable, and when the primary particle diameter is larger than 70 nm, the haze value increases and the transparency decreases.
The primary particle size of the ruthenium fine particles in this transparent conductive film is preferably 1 to 20 nm, and the primary particle size of the ITO fine particles is preferably 35 to 50 nm.
[0040]
The weight ratio between the ruthenium fine particles and the ITO fine particles in the transparent conductive film is preferably from 40:60 to 99.9: 0.1. The reason is that when the weight ratio of the ruthenium fine particles is smaller than the above ratio, the surface resistance of the transparent conductive film increases, and it becomes difficult to obtain an electromagnetic wave shielding effect. This is because it is difficult to obtain the effect of suppressing the change with time of the resistance value, and it is difficult to directly and stably measure the surface resistance value of the transparent conductive film with a tester.
The weight ratio of the ruthenium fine particles to the ITO fine particles in the transparent conductive film is more preferably from 50:50 to 90:10, and further preferably from 50:50 to 60:40.
[0041]
Next, the reason why the transparent conductive film can suppress the change over time of the electrical characteristics and the reason why the resistance value can be measured stably without forming an electrode such as solder on the film will be described. .
This transparent conductive film contains ruthenium fine particles having a primary particle diameter of 1 to 30 nm and ITO fine particles having a primary particle diameter of 35 to 70 nm, which has a relatively large primary particle diameter with respect to the ruthenium fine particles. A large number of ruthenium fine particles are connected with the ITO fine particles as a nucleus (center), the number of conductive paths between the ruthenium fine particles increases, and the surface resistance of the transparent conductive film decreases. Therefore, the conductivity of the transparent conductive film is improved.
Accordingly, a stable measured value can be obtained only by bringing the measurement terminal of the tester into contact without forming an electrode such as solder on the surface of the transparent conductive film.
[0042]
Further, ITO fine particles as an oxide are more excellent in chemical stability, particularly long-term chemical stability over time than ruthenium fine particles as a metal. The larger the particle size, the better the conductivity and the longer the particle size, the more stable it is. In particular, since the ITO fine particles are very excellent in transparency, even if the particle size is increased to some extent, there is no possibility of affecting the transparency. Thereby, the transparent conductive film containing the ruthenium fine particles and the ITO fine particles having the above particle diameters has excellent transparency and electromagnetic wave shielding properties, is suppressed from changing over time, and has excellent long-term stability.
[0043]
This transparent conductive film has other components, if necessary, for improving film strength and conductivity, such as silicon, aluminum, zirconium, cerium, titanium, yttrium, zinc, magnesium, indium, tin, antimony, and gallium. Oxides, composite oxides, and nitrides, in particular, fine particles of inorganic substances mainly composed of oxides, composite oxides, and nitrides of indium and tin may be included.
[0044]
In addition, organic synthetic resins such as polyester resin, acrylic resin, epoxy resin, melamine resin, urethane resin, and butyral resin may be included. As the organic synthetic resin, a curable resin such as thermoplasticity, thermosetting, electromagnetic wave curability by electromagnetic waves such as ultraviolet rays and infrared rays, or electron beam curability by electron beam irradiation is preferable.
It may also contain a hydrolyzate of a metal alkoxide such as silicon, titanium or zirconium, or an organic / inorganic binder such as a silicone monomer or silicone oligomer.
[0045]
As the silicon oxide, silica fine particles are preferable. When these silica fine particles are used, for example, it is preferable that the silica fine particles having a primary particle diameter of 1 to 10 nm are contained in a range of 1 to 60% by weight based on the ruthenium fine particles.
As described above, when silica fine particles are contained in the transparent conductive film within the above range, the film strength of the transparent conductive film is significantly improved, and the scratch strength is improved.
[0046]
The thickness of the transparent conductive film is not particularly limited, but is preferably 100 nm to 200 nm. The reason is that, when the film thickness is less than 100 nm, the conductivity is significantly reduced as the film thickness is reduced. On the other hand, when the film thickness is more than 200 nm, the transparency is reduced although there is no problem in the conductivity. This is because the visibility of the transmitted image is reduced.
[0047]
A transparent layer having irregularities (uneven layer) may be provided as the outermost layer of the transparent conductive film.
This uneven layer has an effect of scattering light reflected on the surface of the transparent conductive film and giving excellent antiglare properties to the display surface. As the material of the uneven layer, silica is preferable from the viewpoint of surface hardness and refractive index. The uneven layer is formed by applying a coating for forming an uneven layer as the outermost layer of the transparent conductive film by the above-described various coating methods, and after drying, simultaneously or separately, baking at a temperature of 140 to 250 ° C. can do. In particular, a spray coating method is suitable as a method for forming the uneven layer.
[0048]
This transparent conductive film can be obtained by applying the above-mentioned paint for forming a transparent conductive film on the surface of a transparent base material and then performing a heat treatment at a temperature of 140 to 250 ° C. in the air.
At the time of coating, it is preferable to set the coating amount so that the thickness of the formed transparent conductive film is 100 to 200 nm as described above.
Examples of the coating method include spin coating, roll coating, spray coating, bar coating, dip coating, meniscus coating, gravure printing, screen printing, and inkjet printing. An ordinary wet coat method of applying a liquid on the surface can be used. Of these, spin coating is a particularly preferred coating method because a thin film having a uniform thickness can be formed in a short time.
[0049]
"Low reflection transparent conductive film"
The low-reflection transparent conductive film of the present embodiment is formed on one or both of the main surfaces of the above-described transparent conductive layer, that is, on the upper layer or lower layer, or on the upper and lower layers of the transparent conductive layer. It has a configuration in which at least one transparent layer having a refractive index different from the refractive index of the layer is laminated.
[0050]
As shown in FIG. 2, this low-reflection transparent conductive film is formed by forming one transparent layer 3 having a refractive index different from that of the transparent conductive layer 2 on the transparent conductive layer 2 to form a low-reflection transparent conductive film. In addition to the configuration of the conductive film 4, a configuration formed below the transparent conductive layer 2, or a configuration formed above and below the transparent conductive layer 2 may be used.
The transparent layer of the present embodiment not only protects the transparent conductive layer, but also can effectively remove or reduce external light reflection at the interlayer interface of the obtained laminated film, and can obtain an excellent antireflection effect. it can.
[0051]
Examples of the material constituting the transparent layer include, for example, thermoplastic, thermosetting, or optical / electron beam curable resins such as polyester resin, acrylic resin, epoxy resin, and detail resin, and metals such as silicon, aluminum, titanium, and zirconium. An alkoxide hydrolyzate, a silicone monomer or a silicone oligomer, or the like is used alone or as a mixture.
[0052]
A particularly preferred transparent layer is silica (SiO 2) having a high surface hardness of the film and a relatively low refractive index. 2 ). Examples of substances that can form this silica thin film include, for example,
M (OR) m R n ... (Equation 2)
(In the formula 2, M is Si, R is C 1 ~ C 4 M is an integer of 1 to 4, n is an integer of 0 to 3 and m + n = 4), or one or two of a partial hydrolyzate thereof. Mixtures of more than one species are preferred.
Examples of this compound include, in particular, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) Is suitably used from the viewpoints of thin film forming property, transparency, bonding property with the transparent conductive layer, film strength and antireflection performance.
[0053]
The transparent layer is provided with a coloring agent such as a dye or a pigment for improving the contrast of a transmitted image, adjusting the color of transmitted light and reflected light, or adjusting the color tone of the transparent conductive film (transmitted color and reflected color). May be contained. As the coloring agent, the coloring agent used in the above-mentioned paint for forming a transparent conductive film is suitable.
[0054]
In general, the antireflection performance of the interlayer interface in the multilayer film is determined by the refractive index and the thickness of the thin film and the number of laminations. Therefore, even in the low reflection transparent conductive film of the present embodiment, the lamination of the transparent conductive layer and the transparent layer By setting the thickness of each of the transparent conductive layer and the transparent layer in consideration of the number, an effective antireflection effect can be obtained.
For example, in an antireflection film having a two-layer structure, if the wavelength of reflected light to be prevented is λ, a high refractive index layer and a low refractive index layer sequentially laminated on a transparent base material are λ / 4 in this order. , Λ / 4, or λ / 2, λ / 4, the reflection can be effectively prevented.
[0055]
In the three-layered antireflection film, a medium refractive index layer, a high refractive index layer, and a low refractive index layer, which are sequentially laminated on a transparent substrate, are formed in the order of λ / 4, λ / 2, λ / 4. It is considered effective to have an optical film thickness of
In particular, in consideration of easiness in manufacturing and economical efficiency, a silica film (refractive index: 1.46) having a relatively low refractive index and also having a hard coat property is formed on the conductive layer at a thickness of λ / 4. Preferably, it is formed.
[0056]
It is preferable to form a transparent layer having irregularities (uneven layer) on the outermost layer of the low-reflection transparent conductive film, similarly to the above-mentioned transparent conductive film.
This uneven layer has an effect of scattering light reflected on the surface of the transparent conductive film and giving excellent antiglare properties to the display surface.
[0057]
This transparent layer can be formed by a method in which a coating solution (coating for forming a transparent film) containing the components of the transparent layer is uniformly applied on the transparent conductive layer to form a film.
As a coating method, it is possible to use a usual wet coating method such as a spin coating method, a roll coating method, a spray coating method, a bar coating method, a dip coating method, a meniscus coating method, a gravure printing method, a screen printing method, and an inkjet method. it can. Of these, spin coating is a particularly preferred coating method because a thin film having a uniform thickness can be formed in a short time.
[0058]
After the application, the coating film is dried and subjected to a heat treatment together with the transparent conductive layer at a temperature of 140 to 250 ° C. in the air to obtain a transparent film. The coating liquid containing the components of the transparent film may be any one that can be set to a refractive index different from that of the transparent conductive layer, and various resins, metal oxides, composite oxides, nitrides, etc., or these are formed after coating. A coating solution containing a precursor that can be used is used.
[0059]
The formation of the transparent layer may be performed after the formation of the transparent conductive layer, or may be performed simultaneously with the formation of the transparent conductive layer. For example, a transparent conductive film forming paint is applied to the display surface of the display device, a transparent film forming paint is applied thereon, and after drying, a batch heat treatment is performed at a temperature of 140 to 250 ° C. to form a transparent conductive layer. A transparent layer can be formed simultaneously.
[0060]
"Display device"
In the display device of the present embodiment, one of the transparent conductive film and the low-reflection transparent conductive film is formed on the display surface.
FIG. 3 is a cross-sectional view illustrating a cathode ray tube (display device) according to the present embodiment. The cathode ray tube 11 has a low-level structure including a transparent conductive layer 2 and a transparent layer 3 on a front surface (display surface) 12 a of a face panel 12. This is a configuration in which a reflective transparent conductive film 4 is formed.
[0061]
In this display device, any one of the above-described transparent conductive film and low-reflection transparent conductive film is formed on the display surface, so that charging of the display surface is prevented, and no dust or the like adheres to the image display surface. . Further, since the electromagnetic waves are shielded, various electromagnetic wave disturbances are prevented. In addition, since it has excellent light transmittance, the image is bright and the appearance of the display surface is good. Furthermore, since the surface resistance of the transparent conductive film on the display surface can be measured stably and easily, and the chemical stability is high, there is almost no restriction in handling.
Furthermore, if the transparent layer, the uneven layer, or the transparent layer and the uneven layer are formed, excellent antireflection effect and antiglare effect against external light can be obtained.
[0062]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0063]
A. Preparation of stock solution
The following stock solutions were prepared as common stock solutions for Examples and Comparative Examples.
(1) Ruthenium aqueous sol
An aqueous solution containing 0.15 mmol / l ruthenium chloride and a 0.024 mmol / l aqueous sodium borohydride solution are mixed, and the obtained colloidal dispersion is concentrated to obtain 0.198 mol / l ruthenium fine particles. Was obtained. The average particle size of the primary particles of the ruthenium fine particles was 5 nm, and the average particle size of the secondary particles was 15 nm.
[0064]
(2) ITO aqueous sol A
These were weighed and mixed so that ITO powder (manufactured by Sumitomo Osaka Cement Co., Ltd.) was 30 wt%, anionic surfactant was 3 wt%, and pure water was 67 wt%, and then dispersed using a sand mill. A was obtained. The average particle size of the primary particles of the ITO fine particles in the ITO aqueous sol A was 45 nm, and the average particle size of the secondary particles was 130 nm.
[0065]
(3) Black pigment dispersion
After mixing carbon black and isopropyl alcohol, the mixture was dispersed in a sand mill to obtain a black pigment dispersion having a solid content of 10%. The average particle size of the primary particles of this carbon black was 20 nm, and the average particle size of the secondary particles was 120 nm.
(4) Transparent film forming paint
0.8 g of tetraethoxysilane, 0.8 g of 0.1N hydrochloric acid, and 98.4 g of ethyl alcohol were mixed to obtain a uniform solution for forming a transparent film.
[0066]
(5) Colloidal silica
"Silica Doll 30" (average particle diameter of primary particles: 5 nm, average particle diameter of secondary particles: 15 nm) manufactured by Nippon Chemical Industry Co., Ltd. was used.
(6) ITO aqueous sol B
These were weighed and mixed so that ITO powder (manufactured by Sumitomo Osaka Cement Co., Ltd.) was 30 wt%, anionic surfactant was 3 wt%, and pure water was 67 wt%, and then dispersed using a sand mill. B was obtained. The average particle size of the primary particles of the ITO fine particles in the ITO aqueous sol B was 30 nm, and the average particle size of the secondary particles was 70 nm.
[0067]
B. Preparation of transparent conductive film
Using the aqueous ITO sol A and the aqueous ITO sol B, transparent conductive films of Examples and Comparative Examples were produced.
[0068]
"Example 1"
Preparation of paint for forming transparent conductive film:
To 19 g of the ruthenium aqueous sol and 0.067 g of the ITO aqueous sol A, 10 g of ethyl cellosolve and 70.93 g of ethyl alcohol were added and stirred and mixed to prepare a coating material for forming a transparent conductive film. Ru / ITO (weight ratio) in the paint was 97.5 / 2.5.
[0069]
Film formation:
This conductive film forming paint is applied to the display surface of a cathode ray tube (CRT) using a spin coater, and after drying, the above-mentioned transparent film forming paint is applied to the applied surface similarly using a spin coater. This cathode ray tube was heat-treated at 200 ° C. for 30 minutes using a drier to form a transparent conductive film, whereby the cathode ray tube of Example 1 having an antireflective transparent conductive film was produced.
[0070]
"Example 2"
Preparation of paint for forming transparent conductive film:
10 g of ethyl cellosolve and 69.6 g of ethyl alcohol were added to 20 g of the ruthenium aqueous sol and 0.4 g of the ITO aqueous sol A, and the mixture was stirred and mixed, to prepare a coating material for forming a transparent conductive film in the same manner as in Example 1. Ru / ITO (weight ratio) in the paint was 76.9 / 23.1.
Film formation:
Using this conductive film forming paint, a cathode ray tube of Example 2 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0071]
"Example 3"
Preparation of paint for forming transparent conductive film:
To 20 g of the aqueous sol of ruthenium, 0.4 g of the aqueous sol of ITO A, and 0.27 g of colloidal silica, 10 g of ethyl cellosolve and 69.33 g of ethyl alcohol were added, stirred and mixed, to prepare a coating for forming a transparent conductive film in the same manner as in Example 1. did. Ru / ITO (weight ratio) in paint is 76.9 / 23.1, Ru / SiO 2 (Weight ratio) was 100/20.
Film formation:
Using this coating material for forming a conductive film, a cathode ray tube of Example 3 having a transparent conductive film having anti-reflection properties was produced in the same manner as in Example 1.
[0072]
"Example 4"
Preparation of paint for forming transparent conductive film:
To 18 g of the ruthenium aqueous sol, 0.4 g of the ITO aqueous sol A, and 0.4 g of the black pigment dispersion, 10 g of ethyl cellosolve and 71.2 g of ethyl alcohol were added and stirred and mixed. Was prepared. Ru / ITO (weight ratio) in the paint was 75/25, and Ru / carbon black (weight ratio) was 90/10.
Film formation:
Using this coating material for forming a conductive film, a cathode ray tube of Example 4 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0073]
"Example 5"
Preparation of paint for forming transparent conductive film:
10 g of ethyl cellosolve and 68.67 g of ethyl alcohol were added to 20 g of the ruthenium aqueous sol and 1.33 g of the ITO aqueous sol A, and the mixture was stirred and mixed to prepare a coating material for forming a transparent conductive film in the same manner as in Example 1. Ru / ITO (weight ratio) in the paint was 50/50.
Film formation:
Using this coating material for forming a conductive film, a cathode ray tube of Example 5 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0074]
"Example 6"
Preparation of paint for forming transparent conductive film:
10 g of ethyl cellosolve and 69.6 g of ethyl alcohol were added to 20 g of the ruthenium aqueous sol and 0.4 g of the ITO aqueous sol A, and the mixture was stirred and mixed, to prepare a coating material for forming a transparent conductive film in the same manner as in Example 1. Ru / ITO (weight ratio) in the paint was 76.9 / 23.1.
Film formation:
Using this paint for forming a conductive film, a cathode ray tube of Example 6 having an antireflective transparent conductive film was produced in the same manner as in Example 1, except that the heat treatment conditions were set to 120 ° C. and 30 minutes.
[0075]
"Comparative Example 1"
Preparation of paint for forming transparent conductive film:
To 20 g of the aqueous ruthenium sol, 10 g of ethyl cellosolve and 70.0 g of ethyl alcohol were added, and the mixture was stirred and mixed to prepare a paint for forming a transparent conductive film in the same manner as in Example 1.
Film formation:
Using this coating material for forming a conductive film, a cathode ray tube of Comparative Example 1 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0076]
"Comparative Example 2"
Preparation of paint for forming transparent conductive film:
To 20 g of the ruthenium aqueous sol and 0.27 g of colloidal silica, 10 g of ethyl cellosolve and 69.73 g of ethyl alcohol were added, and the mixture was stirred and mixed, to prepare a paint for forming a transparent conductive film in the same manner as in Example 1. Ru / SiO in paint 2 (Weight ratio) was 100/20.
Film formation:
Using this conductive film forming paint, a cathode ray tube of Comparative Example 2 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0077]
"Comparative Example 3"
Preparation of paint for forming transparent conductive film:
To 20 g of the ruthenium aqueous sol and 0.4 g of the ITO aqueous sol B, 10 g of ethyl cellosolve and 69.6 g of ethyl alcohol were added, stirred and mixed, and a coating material for forming a transparent conductive film was prepared in the same manner as in Example 1. Ru / ITO (weight ratio) in the paint was 76.9 / 23.1.
Film formation:
Using this coating material for forming a conductive film, a cathode ray tube of Comparative Example 3 having an antireflective transparent conductive film was produced in the same manner as in Example 1.
[0078]
C. Evaluation of transparent conductive film
Each of the transparent conductive films of Examples 1 to 6 and Comparative Examples 1 to 3 was evaluated by the following device or method.
Transmittance: Measured using "Automatic Haze Meter HIII DP" manufactured by Tokyo Denshoku Co., Ltd.
Haze: Measured using "Automatic Haze Meter HIII DP" manufactured by Tokyo Denshoku Co., Ltd.
Resistance value A (indirect measurement using solder): Stripe-shaped electrodes (Cerasolzer, manufactured by Senju Metal Industry Co., Ltd.) were formed on the transparent conductive film at intervals of 5 cm. The resistance value between the electrodes was measured by "Pocket Tester CDM-11HD" manufactured by Custom Co., Ltd.
[0079]
Resistance value B (direct measurement): A measurement terminal of “Pocket Tester CDM-11HD” manufactured by Custom Co., Ltd. was brought into contact with the transparent conductive film at intervals of 5 cm, and the resistance value was measured.
Resistance value ratio (B / A): Resistance value B / resistance value A was calculated based on the measurement results of resistance values A and B described above.
Film defects: Defects on the film surface were visually observed and evaluated.
;: Good (defects were hardly recognized)
×: defective (defects were clearly recognized)
[0080]
Resistance change rate: The transparent conductive film was allowed to stand at 25 ° C. for 2 months, and the resistance A (indirect measurement by soldering) was measured before and after the storage, and “resistance after 2 months / initial resistance A "was calculated.
Of the above evaluation results, Table 1 shows the results of evaluation of transmittance to film defects, and Table 2 shows the results of evaluation of the rate of change in resistance.
[0081]
[Table 1]
Figure 2004203941
[0082]
[Table 2]
Figure 2004203941
[0083]
According to these evaluation results, in Examples 1 to 6, the transmittance, the haze, and the film defect are all good, and the film is excellent in transparency and conductivity, and has very few defects on the film surface. I understood. Further, it was found that both the resistance values A and B were stable, and the electrical characteristics of the film could be directly and stably measured.
In addition, the rate of change in resistance value was as small as 1.03 to 1.08, which proved to be excellent in long-term stability.
[0084]
On the other hand, in Comparative Examples 1 to 3, although the transmittance, haze, film defect, and resistance value A (indirect measurement using solder) are comparable to those in Examples 1 to 6, the resistance value in B (direct measurement) is lower. It changed every moment and was very unstable and unmeasurable.
Further, the rate of change in resistance value was as large as 1.11 to 1.16, and was poor in long-term stability.
[0085]
【The invention's effect】
As described above, according to the paint for forming a transparent conductive film of the present invention, ruthenium fine particles having an average primary particle size of 1 to 30 nm and tin-added oxidation having an average primary particle size of 35 to 70 nm are used. Since it contains indium fine particles, it is possible to form a transparent conductive film which has little change over time and excellent long-term stability.
[0086]
According to the transparent conductive film of the present invention, a transparent conductive layer containing ruthenium fine particles having an average primary particle size of 1 to 30 nm and tin-added indium oxide fine particles having an average primary particle size of 35 to 70 nm , It has high chemical stability over time, has little change over time, and is excellent in long-term stability. Therefore, the resistance value can be measured stably without forming an electrode such as solder on the film.
[0087]
According to the method for producing a transparent conductive film of the present invention, the coating material for forming a transparent conductive film of the present invention is applied to a substrate, and then subjected to a heat treatment at a temperature of 140 to 250 ° C. A transparent conductive film having stability can be obtained. Therefore, it is possible to easily produce a transparent conductive film which has little change over time and excellent long-term stability.
[0088]
According to the display device of the present invention, since the transparent conductive film of the present invention is formed on the display surface, it is possible to easily obtain a display surface with little change over time and excellent long-term stability, and the electrical characteristics of this display surface Can be easily and stably measured in a short time. As a result, the labor and time required for measuring the electrical characteristics can be reduced, and the cost of the product can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a transparent conductive film according to one embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a low-reflection transparent conductive film according to one embodiment of the present invention.
FIG. 3 is a sectional view showing a cathode ray tube according to one embodiment of the present invention.
[Explanation of symbols]
1 transparent substrate
2 Transparent conductive layer
3 Transparent layer
4 Low reflection transparent conductive film
11 cathode ray tube (display device)
12 Face panel
12a Front (display surface)

Claims (8)

1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有してなることを特徴とする透明導電膜形成用塗料。A paint for forming a transparent conductive film, comprising: ruthenium fine particles having an average primary particle size of 1 to 30 nm; and tin-added indium oxide fine particles having an average primary particle size of 35 to 70 nm. . 前記ルテニウム微粒子の塗料中における2次粒子の平均粒径は10〜70nmであり、前記スズ添加酸化インジウム微粒子の塗料中における2次粒子の平均粒径は50〜200nmであることを特徴とする請求項1記載の透明導電膜形成用塗料。The average particle size of the secondary particles in the coating of the ruthenium fine particles is 10 to 70 nm, and the average particle size of the secondary particles in the coating of the tin-added indium oxide fine particles is 50 to 200 nm. Item 4. The coating material for forming a transparent conductive film according to Item 1. 前記ルテニウム微粒子と前記スズ添加酸化インジウム微粒子の重量比は、40:60〜99.9:0.1であることを特徴とする請求項1または2記載の透明導電膜形成用塗料。3. The coating for forming a transparent conductive film according to claim 1, wherein a weight ratio of the ruthenium fine particles to the tin-added indium oxide fine particles is 40:60 to 99.9: 0.1. 4. 1次粒子の平均粒径が1〜30nmのルテニウム微粒子と、1次粒子の平均粒径が35〜70nmのスズ添加酸化インジウム微粒子とを含有する透明導電層を備えてなることを特徴とする透明導電膜。A transparent material comprising a transparent conductive layer containing ruthenium fine particles having an average primary particle size of 1 to 30 nm and tin-added indium oxide fine particles having an average primary particle size of 35 to 70 nm. Conductive film. 前記ルテニウム微粒子と前記スズ添加酸化インジウム微粒子の重量比は、40:60〜99.9:0.1であることを特徴とする請求項4記載の透明導電膜。The transparent conductive film according to claim 4, wherein a weight ratio of the ruthenium fine particles to the tin-added indium oxide fine particles is 40:60 to 99.9: 0.1. 前記透明導電層のいずれか一方の主面または双方の主面に、前記透明導電層の屈折率とは異なる屈折率を有する透明層を形成してなることを特徴とする請求項4または5記載の透明導電膜。6. A transparent layer having a refractive index different from the refractive index of the transparent conductive layer is formed on one main surface or both main surfaces of the transparent conductive layer. Transparent conductive film. 請求項1、2または3記載の透明導電膜形成用塗料を基材に塗布し、その後、140〜250℃の温度にて熱処理を施すことを特徴とする透明導電膜の製造方法。A method for producing a transparent conductive film, comprising applying the coating material for forming a transparent conductive film according to claim 1, 2 or 3 to a substrate, and then performing a heat treatment at a temperature of 140 to 250 ° C. 請求項4、5または6記載の透明導電膜が表示面に形成されていることを特徴とする表示装置。A display device, wherein the transparent conductive film according to claim 4 is formed on a display surface.
JP2002371794A 2002-12-24 2002-12-24 Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same Expired - Fee Related JP4271438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371794A JP4271438B2 (en) 2002-12-24 2002-12-24 Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371794A JP4271438B2 (en) 2002-12-24 2002-12-24 Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same

Publications (2)

Publication Number Publication Date
JP2004203941A true JP2004203941A (en) 2004-07-22
JP4271438B2 JP4271438B2 (en) 2009-06-03

Family

ID=32810582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371794A Expired - Fee Related JP4271438B2 (en) 2002-12-24 2002-12-24 Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same

Country Status (1)

Country Link
JP (1) JP4271438B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2007035471A (en) * 2005-07-28 2007-02-08 Dowa Holdings Co Ltd Manufacturing method of conductive film or wire
JP2008130290A (en) * 2006-11-17 2008-06-05 Tdk Corp Transparent conductive film and manufacturing method therefor
JP2014013750A (en) * 2007-06-15 2014-01-23 Inktec Co Ltd Transparent conductive film and production method of the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0877832A (en) * 1994-09-01 1996-03-22 Catalysts & Chem Ind Co Ltd Base material with transparent conductive covering, its manufacture, and display device with this base material
JPH10261326A (en) * 1996-12-10 1998-09-29 Samsung Display Devices Co Ltd Transparent conductive composition, transparent conductive film made of the composition, and manufacture of the film
JPH115929A (en) * 1997-04-23 1999-01-12 Asahi Glass Co Ltd Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JPH1125759A (en) * 1997-07-02 1999-01-29 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2000153223A (en) * 1997-04-23 2000-06-06 Asahi Glass Co Ltd Formation of low reflective conductive film
JP2000276941A (en) * 1999-03-25 2000-10-06 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2001131485A (en) * 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film and transparent electroconductive film
JP2002201029A (en) * 2000-12-28 2002-07-16 Sumitomo Metal Mining Co Ltd Light-absorptive transparent electroconductive film and sputtering target
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0877832A (en) * 1994-09-01 1996-03-22 Catalysts & Chem Ind Co Ltd Base material with transparent conductive covering, its manufacture, and display device with this base material
JPH10261326A (en) * 1996-12-10 1998-09-29 Samsung Display Devices Co Ltd Transparent conductive composition, transparent conductive film made of the composition, and manufacture of the film
JPH115929A (en) * 1997-04-23 1999-01-12 Asahi Glass Co Ltd Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JP2000153223A (en) * 1997-04-23 2000-06-06 Asahi Glass Co Ltd Formation of low reflective conductive film
JPH1125759A (en) * 1997-07-02 1999-01-29 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2000276941A (en) * 1999-03-25 2000-10-06 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2001131485A (en) * 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film and transparent electroconductive film
JP2002201029A (en) * 2000-12-28 2002-07-16 Sumitomo Metal Mining Co Ltd Light-absorptive transparent electroconductive film and sputtering target
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2007035471A (en) * 2005-07-28 2007-02-08 Dowa Holdings Co Ltd Manufacturing method of conductive film or wire
JP2008130290A (en) * 2006-11-17 2008-06-05 Tdk Corp Transparent conductive film and manufacturing method therefor
JP2014013750A (en) * 2007-06-15 2014-01-23 Inktec Co Ltd Transparent conductive film and production method of the same
US9556065B2 (en) 2007-06-15 2017-01-31 Inktec Co., Ltd. Transparent conductive layer and preparation method thereof

Also Published As

Publication number Publication date
JP4271438B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
WO1997048107A1 (en) Transparent conductive film, low-reflection transparent conductive film, and display
JP2000124662A (en) Transparent conductive film and display device
JP4043941B2 (en) Transparent conductive film and display device
JP4271438B2 (en) Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP3403578B2 (en) Antireflection colored transparent conductive film and cathode ray tube
JP3652563B2 (en) Transparent conductive film forming paint, transparent conductive film and display device
JP3356966B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JP2000357414A (en) Transparent conductive film and display device
JP3356968B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JPH1135855A (en) Transparent conductive film and display device
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2001126540A (en) Transparent conductive film and display device
JP3910393B2 (en) Transparent conductive film
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP2005225700A (en) Indium tin oxide fine particle, coating for forming transparent conductive film, transparent conductive film and display apparatus, and method of manufacturing transparent conductive film
JP3729528B2 (en) Colored film-forming coating solution, colored film and glass article on which colored film is formed
JP3651983B2 (en) Low resistance film forming coating liquid, low resistance film and method for producing the same, multilayer low resistance film and glass article
JP2005099421A (en) Low transmittance transparent conductive substrate and its manufacturing method, coating liquid for forming low transmittance transparent conductive layer used for manufacturing the substrate, and display device applied with the substrate
JP3217275B2 (en) Low reflection conductive laminated film and cathode ray tube
JP2004303628A (en) Metal-clad metallic particle, its manufacturing method, transparent conductive film forming paint, conductive binding material, and transparent conductive film and display using it
JP2002071911A (en) Transparent base material with low transmittance, method of manufacturing the same, and display device adapting transparent base material with low transmittance
JPH07281004A (en) Colored low resistance film forming application liquid, colored low resistance film and manufacture thereof
JP2004335410A (en) Forming method of transparent electric conductive layer
JP2002190214A (en) Transparent conductive film and display device using the film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees