JP2000153223A - Formation of low reflective conductive film - Google Patents

Formation of low reflective conductive film

Info

Publication number
JP2000153223A
JP2000153223A JP11307577A JP30757799A JP2000153223A JP 2000153223 A JP2000153223 A JP 2000153223A JP 11307577 A JP11307577 A JP 11307577A JP 30757799 A JP30757799 A JP 30757799A JP 2000153223 A JP2000153223 A JP 2000153223A
Authority
JP
Japan
Prior art keywords
film
solution
conductive film
fine particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11307577A
Other languages
Japanese (ja)
Other versions
JP3514192B2 (en
Inventor
Keisuke Abe
啓介 阿部
Yasuhiro Sanada
恭宏 真田
Kenji Ishizeki
健二 石関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30757799A priority Critical patent/JP3514192B2/en
Publication of JP2000153223A publication Critical patent/JP2000153223A/en
Application granted granted Critical
Publication of JP3514192B2 publication Critical patent/JP3514192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the limitation of a decrease in reflection coefficient and to prevent lowering of the resolution in a cathod-ray tube panel or the like by applying conductive film forming coating liquid containing sol of metal fine particles of Ru onto a substrate to form a coating film before forming a film of a lower reflective coefficient then the conductive film on the coating film. SOLUTION: Ru metal used in forming conductive coating liquid is used in the form of fine particles, and the fine particles formed by subjecting the salt of Ru metal to chemical reduction are preferable. As a reducing agent for the metal salt, a hydride such as sodium hydride, oxalic acid, formaldehyde, and the like can be used. As a reducing deposition method of metal fine particles, a method can be adopted in which after metal salt is dissolved in water or organic solvent and pH is adjusted by ammonia or the like at need, a reducing agent is added. In this way, electromagnetic waves can be easily shielded, and a low reflective conductive film can be manufactured at a relatively low cost. Particularly, since it can be sufficiently applied to a substrate of a large area such as the surface of a panel face of a CRT and its mass production can be made, its industrial value is very high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブラウン管パネル
などの基体表面に形成される低反射性導電膜の形成方法
に関する。
The present invention relates to a method for forming a low-reflection conductive film formed on a surface of a substrate such as a cathode ray tube panel.

【0002】[0002]

【従来の技術】従来、ブラウン管パネルは高電圧で作動
するために、起動時または終了時にその表面に静電気が
誘発される。この静電気によりブラウン管パネル表面に
ほこりが付着してコントラスト低下を引き起こしたり、
ブラウン管パネルに直接手を触れた際に軽い電気ショッ
クによる不快感を生じたりすることが多い。
2. Description of the Related Art Conventionally, since a cathode ray tube panel operates at a high voltage, static electricity is induced on its surface at the time of start-up or termination. This static electricity causes dust to adhere to the surface of the CRT panel, causing a decrease in contrast,
Touching the CRT panel directly often causes discomfort due to a slight electric shock.

【0003】上述の現象を防止するために、ブラウン管
パネル表面に帯電防止膜を付与する試みが種々検討さ
れ、例えば、ブラウン管パネル表面を350℃程度に加
熱し、該表面にCVD法により酸化スズまたは酸化イン
ジウムなどの導電性酸化物層を設ける方法(特開昭63
−76247)が提案されている。
In order to prevent the above phenomenon, various attempts have been made to apply an antistatic film to the surface of a CRT panel. For example, the surface of the CRT panel is heated to about 350 ° C., and tin oxide or tin oxide is applied to the surface by a CVD method. A method of providing a conductive oxide layer such as indium oxide (JP-A-63
-76247) has been proposed.

【0004】しかし、この方法では成膜装置にコストが
かかることに加え、ブラウン管パネル表面を高温に加熱
するため、ブラウン管内の蛍光体の脱落を生じたり、寸
法精度が低下するなどの問題があった。また、導電層に
用いる材料としては酸化スズが最も一般的であるが、酸
化スズの場合、低温処理では高性能の膜が得にくい欠点
があった。
[0004] However, in this method, in addition to the cost of the film forming apparatus, the surface of the CRT panel is heated to a high temperature, so that the phosphor in the CRT may fall off or the dimensional accuracy may be reduced. Was. In addition, tin oxide is most commonly used as a material used for the conductive layer. However, tin oxide has a disadvantage that it is difficult to obtain a high-performance film by low-temperature treatment.

【0005】また、近年、電磁波の遮蔽も求められてい
る。導電性塗膜をブラウン管パネル表面に介在させるこ
とにより、導電性塗膜に電磁波が当たり、塗膜内に渦電
流を誘導して、この作用で電磁波を反射する。しかし、
このためには導電性塗膜は高い電界強度に耐えうる良導
電性であることが必要であるが、それほどの良導電性の
膜を得ることはさらに困難であった。
[0005] In recent years, shielding of electromagnetic waves has also been required. By interposing the conductive coating on the surface of the cathode ray tube panel, the conductive coating is irradiated with electromagnetic waves and induces an eddy current in the coating, thereby reflecting the electromagnetic waves. But,
For this purpose, the conductive coating film needs to have good conductivity to withstand high electric field strength, but it has been more difficult to obtain a film with such good conductivity.

【0006】一方、導電膜の製造法としては、ブラウン
管パネル表面に金属塩と還元剤の混合液を塗布して導電
膜を形成させる方法(特開平6−310058)がある
が、この方法では金属導電膜はガラス面にメッキされた
状態となり、膜の強度が著しく弱く、かつ該導電膜を洗
浄して副生成塩を除去する工程が必要となる問題があっ
た。
On the other hand, as a method for producing a conductive film, there is a method in which a mixed solution of a metal salt and a reducing agent is applied to the surface of a CRT panel to form a conductive film (Japanese Patent Laid-Open No. 6-310058). There is a problem that the conductive film is plated on the glass surface, the strength of the film is extremely weak, and a step of cleaning the conductive film to remove by-product salts is required.

【0007】また、Ag、Auなどの微粒子を用いる場
合、その粒径が10nm付近になるとプラズマ共鳴吸収
という光の吸収が生じ、CRT等の表示装置において
は、不具合が生じる。また、Agは特に導電率が高いた
め電磁波遮蔽膜には適するが、一方その化学的活性が高
くかつマイグレーションが生じるため、耐久性の点で充
分とはいえない。
In the case where fine particles such as Ag and Au are used, when the particle diameter is about 10 nm, light absorption called plasma resonance absorption occurs, which causes a problem in a display device such as a CRT. Ag is particularly suitable for an electromagnetic wave shielding film because of its high conductivity, but Ag is not sufficient in terms of durability because of its high chemical activity and migration.

【0008】さらには、金属超微粒子ペーストによる金
属膜の形成方法(特開平3−281783)があるが、
この金属ペーストは炭素数5以上のアルコール類、酢酸
エチル、オレイン酸エチル、酢酸ブチル、またはグリセ
リドを含有し比較的粘稠であるため、数μmの厚さの導
電膜形成には優れているが、50〜150nmという光
学薄膜の形成や、大面積へのコーティングには不向きで
ある。
Further, there is a method of forming a metal film by using a metal ultrafine particle paste (Japanese Patent Laid-Open No. 3-281783).
Since this metal paste contains an alcohol having 5 or more carbon atoms, ethyl acetate, ethyl oleate, butyl acetate, or glyceride and is relatively viscous, it is excellent for forming a conductive film having a thickness of several μm. It is not suitable for forming an optical thin film having a thickness of 50 to 150 nm or coating a large area.

【0009】また、導電膜および低反射性導電膜のコー
ティング法による形成は、従来より光学機器のみなら
ず、民生用機器、特にTV、コンピュータ端末のCRT
に関して数多くの検討がなされてきた。すなわち、例え
ば、ブラウン管パネル表面に防眩効果を持たせるために
表面に微細な凹凸を有するSiO2層を付着させたり、
フッ酸により表面をエッチングして凹凸を設けるなどの
方法(特開昭61−118931)が採られてきた。
Further, the formation of the conductive film and the low-reflective conductive film by a coating method has been conventionally carried out not only for optical devices but also for consumer devices, especially TVs and CRTs of computer terminals.
Numerous studies have been made on. That is, for example, an SiO 2 layer having fine irregularities is attached to the surface of the cathode ray tube panel so as to have an antiglare effect,
A method has been adopted in which the surface is etched with hydrofluoric acid to form irregularities (Japanese Patent Laid-Open No. 61-118931).

【0010】しかし、これらの方法は、外部光を散乱さ
せるノングレア処理と呼ばれ、本質的に低反射性層を設
ける方法でないため、反射率の低減には限界があり、ま
た、ブラウン管パネルなどにおいては、解像度を低下さ
せる原因ともなっている。
However, these methods are called non-glare treatments for scattering external light, and are not essentially a method of providing a low-reflection layer. Therefore, there is a limit in reducing the reflectance. Is also a cause of lowering the resolution.

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来技術に
よる低反射性導電膜の上述の欠点を解消しようとするも
のであり、低温熱処理により形成が可能な低反射性導電
膜の形成方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the conventional low-reflection conductive film, and to provide a method for forming a low-reflection conductive film which can be formed by low-temperature heat treatment. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】本発明は、Ruの金属微
粒子のゾルを含有してなる導電膜形成用塗布液を基体上
に塗布して塗膜を形成した後、塗膜上に前記導電膜より
低屈折率の膜を形成することを特徴とする低反射性導電
膜の形成方法を提供する。
According to the present invention, a coating film for forming a conductive film containing a sol of fine metal particles of Ru is applied to a substrate to form a coating film, and then the conductive film is formed on the coating film. Provided is a method for forming a low-reflection conductive film, which comprises forming a film having a lower refractive index than the film.

【0013】本発明の特徴は、導電膜を形成するに際
し、金属微粒子をゾルの形で含有する塗布液を使用する
ことであり、この塗布液を基体上に塗布して導電膜を形
成させた場合、特開平6−310058などに記載のよ
うな金属塩と還元液からなる塗布液を用いたメッキ膜と
は異なり、微少な孔が導電膜中に導入される。
A feature of the present invention is to use a coating solution containing metal fine particles in the form of a sol when forming a conductive film. This coating solution is applied on a substrate to form a conductive film. In this case, unlike a plating film using a coating solution composed of a metal salt and a reducing solution as described in JP-A-6-310058, minute holes are introduced into the conductive film.

【0014】そして、当該導電膜の上にケイ素化合物を
形成するSiアルコキシドの加水分解物を含有する塗布
液を塗布した場合に、この孔にケイ素化合物が侵入し、
膜強度が著しく向上する。
When a coating solution containing a hydrolyzate of Si alkoxide forming a silicon compound is applied on the conductive film, the silicon compound penetrates into the pores,
The film strength is significantly improved.

【0015】また、本発明においては、特開平6−31
0058などに記載のような従来法とは異なり、導電膜
の形成時に副生成物が生成せず、導電膜とその上に形成
される膜との間での膜強度の劣化も生じない。さらに、
特開平3−281783に記載されている金属ペースト
のように比較的高沸点(沸点150〜300℃)の溶媒
を必ずしも要しないため、膜を低温(150〜160
℃)で焼成した場合でも、膜中に残留する有機成分がき
わめて少なく、強固な膜を形成できる。したがって本発
明によれば、ブラウン管パネル面などのガラス基体に、
前述の問題点を解決した導電膜を1層以上含む低反射性
導電膜を形成できる。
Further, in the present invention, Japanese Patent Laid-Open No. 6-31
Unlike the conventional method as described in 0058 and the like, no by-product is generated during the formation of the conductive film, and the film strength between the conductive film and the film formed thereon does not deteriorate. further,
Since a solvent having a relatively high boiling point (boiling point of 150 to 300 ° C.) is not necessarily required as in the case of the metal paste described in JP-A-3-281783, the film is formed at a low temperature (150 to 160 ° C.).
C), the organic component remaining in the film is extremely small, and a strong film can be formed. Therefore, according to the present invention, a glass substrate such as a cathode ray tube panel surface,
A low-reflective conductive film including at least one conductive film that solves the above-described problem can be formed.

【0016】[0016]

【発明の実施の形態】次に発明の実施の形態を挙げて本
発明をさらに詳しく説明する。導電膜形成用塗布液(以
下、本塗布液という)に用いるRu金属は微粒子として
用いる。金属微粒子としては、例えば、Ru金属の蒸発
凝縮により生成される微粒子などが使用できるが、良好
な結果が得られることから、Ru金属の塩を化学還元す
ることにより生成する微粒子が好ましく使用される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to embodiments of the present invention. Ru metal used in a coating liquid for forming a conductive film (hereinafter, referred to as a main coating liquid) is used as fine particles. As the metal fine particles, for example, fine particles generated by evaporating and condensing Ru metal can be used, but fine particles generated by chemically reducing a Ru metal salt are preferably used because good results are obtained. .

【0017】本発明において化学還元によるRu金属微
粒子の生成に用いられる金属塩としては、例えば、ニト
ロソ硝酸ルテニウム、塩化ルテニウム、塩化ルテニウム
アンモニウム、塩化ルテニウムカリウム、塩化ルテニウ
ムナトリウム、酢酸ルテニウムなどが挙げられる。
In the present invention, examples of metal salts used for producing Ru metal fine particles by chemical reduction include ruthenium nitrosonitrate, ruthenium chloride, ruthenium ammonium chloride, ruthenium potassium chloride, ruthenium sodium chloride, ruthenium acetate and the like.

【0018】上記金属塩の還元剤としては、例えば、水
素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化
ナトリウム、水素化リチウムなどの水素化物やギ酸、シ
ュウ酸、次亜リン酸、次亜リン酸ナトリウム、ホルムア
ルデヒドなどが使用できる。金属微粒子の還元析出法
は、特に限定されないが、例えば、金属塩を水または有
機溶媒に溶解させ、必要に応じアンモニアなどでpHを
調整した後、還元剤を添加する方法が採用できる。この
とき、クエン酸、クエン酸ナトリウム、ポリビニルピロ
リドン、ポリビニルアルコール、ポリアクリル酸等の金
属粒子分散保護剤を添加することも好ましい。
Examples of the metal salt reducing agent include hydrides such as sodium borohydride, potassium borohydride, sodium hydride and lithium hydride, and formic acid, oxalic acid, hypophosphorous acid and hypophosphorous acid. Sodium, formaldehyde and the like can be used. The method for reducing and depositing the metal fine particles is not particularly limited. For example, a method of dissolving a metal salt in water or an organic solvent, adjusting the pH with ammonia or the like as necessary, and then adding a reducing agent can be employed. At this time, it is also preferable to add a metal particle dispersion protective agent such as citric acid, sodium citrate, polyvinylpyrrolidone, polyvinyl alcohol, and polyacrylic acid.

【0019】この方法においては、金属塩の種類により
反応温度を調整することが好ましい。生成した金属微粒
子は、適宜洗浄および乾燥される。金属微粒子の粉体体
積抵抗は、0.01Ωcm以下であることが好ましい。
In this method, it is preferable to adjust the reaction temperature depending on the type of the metal salt. The generated metal fine particles are appropriately washed and dried. The powder volume resistance of the metal fine particles is preferably 0.01 Ωcm or less.

【0020】本塗布液は、上記の金属微粒子を水や有機
溶媒などにゾルの形に均一に分散させることによって調
製される。金属微粒子の粉末は、粒子径があまり大きい
と分散しにくくなり、また、塗布液保管中に沈殿等が生
じ保存安定性が劣る傾向にあるため、塗布液中のRu金
属微粒子の平均凝集粒径は200nm以下、さらには1
0〜160nm、であることが好ましい。平均凝集粒径
が10nm未満の微粒子はその調製上実用的でなく、ま
た、平均凝集粒径が160nm超の微粒子は、塗布液中
で容易に微粒子同士の凝集が生じ、塗布液の保存安定性
が劣る傾向が顕著である。
The present coating solution is prepared by uniformly dispersing the above-mentioned metal fine particles in water or an organic solvent in the form of a sol. If the particle diameter of the metal fine particles is too large, it is difficult to disperse the particles, and the storage stability tends to deteriorate due to precipitation during storage of the coating solution. Is 200 nm or less, and 1
It is preferably from 0 to 160 nm. Fine particles having an average agglomerated particle size of less than 10 nm are impractical in their preparation, and fine particles having an average agglomerated particle size of more than 160 nm readily agglomerate with each other in a coating solution, and the storage stability of the coating solution Is remarkable.

【0021】平均一次粒径としては塗布液の保存安定性
の観点から100nm以下、特に5〜80nm、が好ま
しい。平均一次粒径が5nm未満の微粒子は結晶性が低
く、かつ塗膜化した場合、膜中の金属微粒子同士の接触
抵抗が増大し、塗膜の導電性が劣る傾向がある。また、
平均一次粒径が80nm超の微粒子は、塗布液中で容易
に微粒子同士の凝集が生じ、塗布液の保存安定性が劣る
傾向が顕著である。
The average primary particle size is preferably 100 nm or less, particularly preferably 5 to 80 nm, from the viewpoint of storage stability of the coating solution. Fine particles having an average primary particle size of less than 5 nm have low crystallinity and, when formed into a coating, tend to increase the contact resistance between the metal fine particles in the film and deteriorate the conductivity of the coating. Also,
The fine particles having an average primary particle diameter of more than 80 nm have a remarkable tendency that the fine particles easily aggregate in the coating solution and the storage stability of the coating solution is deteriorated.

【0022】また、金属微粒子の分散性向上のために、
加熱、紫外線の照射、酸化剤への浸漬などにより金属微
粒子の表面を一部酸化してもよい。塗布液中の金属微粒
子の含有量は、特に限定されないが、通常は0.05〜
10重量%程度であり、形成される導電膜が所定の厚さ
となるように含有量を調整する。0.05重量%未満の
場合は所定の膜厚の導電膜が得られ難く、また、10重
量%超の場合は均一な膜厚の導電膜が得られ難い傾向
(特にスピンコート法では顕著である)があり、かつ液
の保存安定性が劣る傾向にある。
In order to improve the dispersibility of the metal fine particles,
The surface of the metal fine particles may be partially oxidized by heating, irradiation with ultraviolet light, immersion in an oxidizing agent, or the like. The content of the metal fine particles in the coating solution is not particularly limited, but is usually 0.05 to
The content is about 10% by weight, and the content is adjusted so that the formed conductive film has a predetermined thickness. When the content is less than 0.05% by weight, a conductive film having a predetermined thickness is difficult to obtain, and when the content is more than 10% by weight, a conductive film having a uniform thickness tends to be difficult to obtain (especially in a spin coating method. And the storage stability of the liquid tends to be poor.

【0023】本塗布液の調製においては金属微粒子を水
や有機溶媒などに均一に分散させることが好ましい。そ
のためには、溶媒と金属微粒子との接触を容易ならしめ
るために充分な撹拌を行うことが必要である。撹拌手段
としては、例えば、コロイドミル、ボールミル、サンド
ミル、ホモミキサーなどの市販の粉砕・分散機を採用で
きる。また、分散させる際には、20〜200℃の範囲
で加熱することもできる。溶媒の沸点以上で撹拌する場
合には、加圧して液相が保持できるようにする。こうし
て、Ruの金属微粒子がコロイド粒子として分散した水
性ゾルまたはオルガノゾルが得られる。
In the preparation of the present coating solution, it is preferable to uniformly disperse the metal fine particles in water, an organic solvent or the like. For that purpose, it is necessary to perform sufficient stirring to facilitate the contact between the solvent and the metal fine particles. As the stirring means, for example, a commercially available pulverizer / disperser such as a colloid mill, a ball mill, a sand mill, and a homomixer can be employed. Moreover, when dispersing, it can also be heated in the range of 20 to 200 ° C. When stirring at a temperature equal to or higher than the boiling point of the solvent, pressurization is performed so that a liquid phase can be maintained. Thus, an aqueous sol or organosol in which Ru metal fine particles are dispersed as colloid particles is obtained.

【0024】本発明においては、前記水性ゾルをそのま
ま本塗布液として使用できるが、基体に対する塗布性を
増すために、金属微粒子を有機溶媒に分散させるか、ま
たは水性ゾルの水分を有機溶媒で置換しても使用でき
る。
In the present invention, the aqueous sol can be used as it is as the main coating solution. However, in order to enhance the coating property on the substrate, fine metal particles are dispersed in an organic solvent or the water in the aqueous sol is replaced with an organic solvent. Can be used even if.

【0025】オルガノゾルの形成および上記の媒体の置
換などに使用される有機溶媒としては、親水性有機溶媒
が好ましく、例えば、メタノール、エタノール、プロピ
ルアルコール、ブタノールなどのアルコール類、エチル
セロソルブ、メチルセロソルブ、ブチルセロソルブ、プ
ロピレングリコールメチルエーテルなどのエーテル類、
2,4−ペンタンジオン、ジアセトンアルコールなどの
ケトン類、乳酸エチル、乳酸メチルなどのエステル類が
などが挙げられる。
The organic solvent used for the formation of the organosol and the replacement of the above-mentioned medium is preferably a hydrophilic organic solvent, for example, alcohols such as methanol, ethanol, propyl alcohol and butanol, ethyl cellosolve, methyl cellosolve, and the like. Ethers such as butyl cellosolve and propylene glycol methyl ether,
Examples include ketones such as 2,4-pentanedione and diacetone alcohol, and esters such as ethyl lactate and methyl lactate.

【0026】本塗布液は、上記の有機溶媒や水を含有し
うるが、大面積の基体に光学薄膜を形成するために塗布
液の粘度は0.1〜5cPが好ましい。5cPより粘度
が高い場合、均一な光学薄膜を形成しにくい傾向にあ
る。実用上特に0.2〜5cPが好ましい。
The present coating solution may contain the above-mentioned organic solvent and water, but the viscosity of the coating solution is preferably 0.1 to 5 cP in order to form an optical thin film on a large-area substrate. When the viscosity is higher than 5 cP, it tends to be difficult to form a uniform optical thin film. Practically, 0.2 to 5 cP is particularly preferable.

【0027】本塗布液には、液の表面張力、拡がり性等
を調整する点から、Si(OR)y・R'4-y(yは3ま
たは4、R、R'はアルキル基)などの加水分解性ケイ
素化合物、またはその部分加水分解物(以下、「加水分
解性ケイ素化合物またはその部分加水分解物」を単に
「ケイ素化合物」という)を添加できる。金属微粒子に
対してケイ素化合物は任意の割合で添加できるが、導電
性および導電膜の強度を考慮すると、金属微粒子/Si
2換算の該ケイ素化合物(重量比)は1/6〜10/
1が好ましく、1/4〜5/1がさらに好ましい。
In order to adjust the surface tension, spreadability, etc. of the coating solution, Si (OR) y · R ′ 4-y (y is 3 or 4, R and R ′ are alkyl groups), etc. Or a partially hydrolyzed product thereof (hereinafter, the “hydrolysable silicon compound or its partially hydrolyzed product” is simply referred to as “silicon compound”). The silicon compound can be added at an arbitrary ratio to the metal fine particles, but considering the conductivity and the strength of the conductive film, the metal fine particles / Si
The silicon compound (weight ratio) in terms of O 2 is 1/6 to 10 /
1 is preferred, and 1/4 to 5/1 is more preferred.

【0028】また、本塗布液には、導電膜の膜厚調整な
どのために、Sn、Sb、In、Zn、Ga、Alおよ
びRuからなる群から選ばれる1種以上の金属の酸化物
を金属微粒子と同様なゾルの形で含有させることもでき
る。金属酸化物は金属微粒子に対して任意の割合で使用
できるが、金属微粒子/金属酸化物(重量比)は99/
1〜60/40、さらには95/5〜70/30、が好
ましい。
The coating solution may contain an oxide of at least one metal selected from the group consisting of Sn, Sb, In, Zn, Ga, Al and Ru for adjusting the thickness of the conductive film. It can be contained in the form of a sol similar to the metal fine particles. The metal oxide can be used in an arbitrary ratio to the metal fine particles, but the metal fine particles / metal oxide (weight ratio) is 99 /
1 to 60/40, more preferably 95/5 to 70/30.

【0029】さらに、基体との濡れ性を向上させるため
に種々の界面活性剤を本塗布液に添加できる。金属微粒
子とともにケイ素化合物や金属酸化物などを含む場合の
本塗布液の濃度(固形分)は、0.05〜10重量%程
度が好ましい。0.05重量%未満の場合は所定の膜厚
の導電膜が得られ難く、また、10重量%超の場合は均
一な膜厚の導電膜が得られ難い傾向(特にスピンコート
法では顕著である)があり、かつ液の保存安定性が劣る
傾向にある。
Further, various surfactants can be added to the present coating solution in order to improve the wettability with the substrate. When a silicon compound or a metal oxide is contained together with the metal fine particles, the concentration (solid content) of the present coating solution is preferably about 0.05 to 10% by weight. When the content is less than 0.05% by weight, a conductive film having a predetermined thickness is difficult to obtain, and when the content is more than 10% by weight, a conductive film having a uniform thickness tends to be difficult to obtain (especially in a spin coating method. And the storage stability of the liquid tends to be poor.

【0030】こうして得られた本塗布液を基体上に、乾
燥後に所定の厚さとなるように塗布し、加熱して導電膜
を形成させる。導電膜の厚さは、特に限定されないが、
通常は50〜150nmが好ましい。50nm未満では
導電性が充分発現されない場合があり、150nm超で
は透過率が低下しブラウン管のような表示装置への適用
が難しくなる。さらに、150nm超では、導電膜上に
低屈折率膜を形成し2層による低反射性導電膜を形成す
る場合に所定の低反射性能が維持されにくいことがあ
る。
The coating liquid thus obtained is applied on a substrate to a predetermined thickness after drying, and heated to form a conductive film. The thickness of the conductive film is not particularly limited,
Usually, 50 to 150 nm is preferable. If it is less than 50 nm, conductivity may not be sufficiently exhibited, and if it is more than 150 nm, the transmittance is reduced and application to a display device such as a cathode ray tube becomes difficult. Further, when the thickness exceeds 150 nm, when a low-refractive-index film is formed on the conductive film to form a two-layer low-reflective conductive film, it may be difficult to maintain a predetermined low reflection performance.

【0031】本塗布液を基体に塗布する方法は、特に限
定されないが、例えば、スピンコート、ディップコー
ト、スプレーコートなどの方法が好適に使用できる。ま
た、スプレーコート法を用いて表面に凹凸を形成し、防
眩効果を付与してもよく、また、基体の上にシリカ被膜
などのハードコートを設けてもよい。さらには、本発明
における導電膜をスピンコートまたはスプレーコートの
いずれかの方法で形成し、その上に前記したケイ素化合
物を含む溶液をスプレーコートして、表面に凹凸を有す
るシリカ被膜のノングレアコートを設けてもよい。
The method for applying the present coating solution to the substrate is not particularly limited, but for example, a method such as spin coating, dip coating, spray coating and the like can be suitably used. Further, the surface may be formed to have an anti-glare effect by using a spray coating method, or a hard coat such as a silica coating may be provided on the substrate. Further, the conductive film of the present invention is formed by any one of spin coating and spray coating, and the solution containing the silicon compound is spray-coated thereon to form a non-glare coat of a silica coating having irregularities on the surface. It may be provided.

【0032】本塗布液に低沸点溶媒を用いる場合には、
室温での乾燥で均一な塗膜が得られるが、沸点が100
〜250℃の範囲にある中〜高沸点溶媒を用いる場合に
は、室温乾燥では溶媒が塗膜中に残留するため、加熱処
理を行う。加熱温度の上限は基体に用いるガラス、プラ
スチックなどの基体の軟化点によって決定される。この
点も考慮すると好ましい加熱温度範囲は100〜500
℃である。
When a low boiling point solvent is used in the present coating solution,
Drying at room temperature gives a uniform coating, but with a boiling point of 100
When a medium to high boiling point solvent having a temperature in the range of 250 ° C. to 250 ° C. is used, the solvent is left in the coating film when dried at room temperature. The upper limit of the heating temperature is determined by the softening point of the substrate such as glass or plastic used for the substrate. Considering this point, the preferable heating temperature range is 100 to 500.
° C.

【0033】本発明においては、上記方法で形成した導
電膜の上に、光の干渉作用を利用して低反射性膜を形成
できる。例えば、基体がガラスの場合(屈折率n=1.
52)、導電膜の上に、(導電膜の屈折率)/(低屈折
率膜の屈折率)の比の値が約1.23となるような低屈
折率膜を形成することによって反射率を最も低減させる
ことができる。反射率の低減には可視光領域において、
特に555nmの光の反射率を低減させることが好まし
いが、実用上は反射外観などを考慮して適宜決定するこ
とが好ましい。
In the present invention, a low-reflection film can be formed on the conductive film formed by the above method by utilizing the interference effect of light. For example, when the substrate is glass (refractive index n = 1.
52), forming a low-refractive-index film on the conductive film such that the ratio of (refractive index of the conductive film) / (refractive index of the low-refractive-index film) is about 1.23; Can be reduced most. To reduce the reflectivity in the visible light region,
In particular, it is preferable to reduce the reflectivity of light having a wavelength of 555 nm, but in practice, it is preferable to determine the reflectivity appropriately in consideration of the reflection appearance and the like.

【0034】こうした2層からなる低反射性導電膜の最
外層の低屈折率膜は、MgF2ゾルを含む溶液やケイ素
化合物を含む溶液から選ばれる1種以上の溶液を用いて
形成した膜が好ましい。屈折率の点ではMgF2が最も
低く、反射率低減のためにはMgF2ゾルを含む溶液を
用いてなるMgF2を主成分とする膜が好ましいが、膜
の硬度や耐擦傷性の点ではSiO2を主成分とする膜が
好ましい。
The outermost low-refractive-index film of the two-layer low-reflective conductive film is formed by using one or more solutions selected from a solution containing MgF 2 sol and a solution containing a silicon compound. preferable. MgF 2 is the lowest in terms of the refractive index, and a film containing MgF 2 as a main component using a solution containing an MgF 2 sol is preferable for reducing the reflectance, but in terms of the hardness and scratch resistance of the film. A film mainly composed of SiO 2 is preferred.

【0035】低屈折率膜形成用のケイ素化合物を含む溶
液としては種々のものが使用できるが、例えば、シリコ
ンテトラエトキシド、シリコンテトラメトキシド、シリ
コンテトライソプロポキシド、シリコンテトラブトキシ
ドなどのモノマー、またはそれらの重合体が好ましい。
Various solutions can be used as a solution containing a silicon compound for forming a low refractive index film. Examples of the solution include monomers such as silicon tetraethoxide, silicon tetramethoxide, silicon tetraisopropoxide, and silicon tetrabutoxide. Or those polymers are preferred.

【0036】ケイ素化合物は、通常、アルコール、エス
テル、エーテルなどに溶解して用いるが、また、前記溶
液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、フッ
酸、またはアンモニア水溶液を添加して加水分解して用
いることもできる。溶液中のケイ素化合物の含有量は特
に限定されないが、固形分量が多すぎると保存安定性が
低下するので溶媒に対して30重量%以下の固形分量で
使用することが好ましい。
The silicon compound is usually used by dissolving it in an alcohol, an ester, an ether or the like, and adding an aqueous solution of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid or ammonia to the above solution. It can be used after hydrolysis. The content of the silicon compound in the solution is not particularly limited. However, if the solid content is too large, the storage stability is reduced. Therefore, it is preferable to use the silicon compound at a solid content of 30% by weight or less based on the solvent.

【0037】また、低屈折率膜形成用にMgF2を使用
する場合には、MgF2の微粒子を用い、前記と同様に
して該微粒子を水や有機溶媒などの溶媒に安定なコロイ
ド粒子として均一に分散させた水性ゾル、またはオルガ
ノゾルとして使用する。分散液中のMgF2の好ましい
濃度はケイ素化合物の場合と同様である。有機溶媒とし
ては前記の有機溶媒が使用できる。
When MgF 2 is used for forming a low refractive index film, MgF 2 fine particles are used, and the fine particles are uniformly formed as colloid particles stable in a solvent such as water or an organic solvent in the same manner as described above. Used as an aqueous sol or an organosol. The preferred concentration of MgF 2 in the dispersion is the same as in the case of the silicon compound. As the organic solvent, the above-mentioned organic solvents can be used.

【0038】また、上記の溶液または分散液には膜の強
度を向上させるために、バインダとしてZr、Ti、S
n、Alなどのアルコキシドや、これらの部分加水分解
物を添加して、ZrO2、TiO2、SnO2、Al23
などの1種または2種以上の複合物をMgF2やSiO2
と同時に析出させてもよい。上記溶液または分散液への
これらのアルコキシドなどバインダの添加量は、ケイ素
化合物および/またはMgF2に対して0.1〜10重
量%が好ましい。
In order to improve the strength of the film, Zr, Ti, S
Alkoxides such as n and Al, and partial hydrolysates thereof are added to form ZrO 2 , TiO 2 , SnO 2 , Al 2 O 3
One or more composites such as MgF 2 or SiO 2
At the same time, they may be precipitated. The addition amount of the binder such as these alkoxides to said solution or dispersion, 0.1 to 10% by weight relative to the silicon compound and / or MgF 2 are preferable.

【0039】さらに、必要により、基体との濡れ性を向
上させるために、上記の溶液または分散液に界面活性剤
を添加してもよい。添加される界面活性剤としては、例
えば、直鎖アルキルベンゼンスルホン酸ナトリウム、ア
ルキルエーテル硫酸エステルなどが挙げられる。
Further, if necessary, a surfactant may be added to the above solution or dispersion in order to improve the wettability with the substrate. Examples of the surfactant to be added include sodium linear alkylbenzene sulfonate, alkyl ether sulfate, and the like.

【0040】以上の低屈折率膜形成用溶液または分散液
を用い、導電膜形成の場合と同様の方法で導電膜上に低
屈折率膜を形成させる。本発明の低反射性導電膜の形成
方法は、多層干渉効果による低反射性の導電膜にも応用
できる。反射防止性能を有する多層の低反射性膜の構成
としては、例えば、反射防止をしたい光の波長をλとし
て、基体側より、高屈折率層−低屈折率層を光学厚みλ
/2−λ/4、またはλ/4−λ/4で形成した2層の
低反射性膜、基体側より中屈折率層−高屈折率層−低屈
折率層を光学厚みλ/4−λ/2−λ/4で形成した3
層の低反射性膜、基体側より低屈折率層−中屈折率層−
高屈折率層−低屈折率層を光学厚みλ/2−λ/2−λ
/2−λ/4で形成した4層の低反射性膜などが典型例
として知られている。
Using the above solution or dispersion for forming a low refractive index film, a low refractive index film is formed on the conductive film in the same manner as in the case of forming the conductive film. The method for forming a low-reflection conductive film of the present invention can be applied to a low-reflection conductive film by a multilayer interference effect. As a configuration of a multilayer low-reflection film having antireflection performance, for example, assuming that the wavelength of light to be antireflection is λ, from the substrate side, the high refractive index layer-the low refractive index layer, the optical thickness λ
/ 2−λ / 4 or λ / 4−λ / 4, two layers of low-reflection film, and a medium refractive index layer−high refractive index layer−low refractive index layer formed from the substrate side with an optical thickness of λ / 4− 3 formed by λ / 2−λ / 4
Low-reflective layer, lower refractive index layer from substrate side-middle refractive index layer-
The high refractive index layer-the low refractive index layer has an optical thickness of λ / 2-λ / 2-λ.
A typical example is a four-layer low-reflection film formed at / 2−λ / 4.

【0041】Ruの金属微粒子を含有する導電膜は、可
視光領域全般にわたって吸収を生じるため、コントラス
トの向上にも寄与する。
The conductive film containing the fine metal particles of Ru absorbs over the entire visible light region, and thus contributes to improvement of contrast.

【0042】本発明において、低反射性導電膜を形成す
る基体としては、1)ブラウン管パネル、2)複写機用
ガラス板、3)計算機用パネル、4)クリーンルーム用
ガラス、5)CRT、LCDなどの表示装置の前面板、
などの各種ガラス基体、またはプラスチック基体などが
挙げられる。
In the present invention, as the substrate on which the low-reflective conductive film is formed, 1) CRT panel, 2) glass plate for copying machine, 3) panel for computer, 4) glass for clean room, 5) CRT, LCD, etc. Display device front panel,
And various glass substrates or plastic substrates.

【0043】[0043]

【実施例】以下に実施例および比較例を挙げて本発明を
さらに具体的に説明するが、本発明はこれらの例に限定
されない。なお、実施例および比較例における使用割合
および%は重量基準である。また、実施例および比較例
において得られた膜の評価方法は次のとおりであり、結
果は表1に示した。なお、表中の「7.2E2」なる記
載は、7.2×102の意であり、他も同様である。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The percentages and percentages used in the examples and comparative examples are on a weight basis. The methods of evaluating the films obtained in the examples and comparative examples are as follows, and the results are shown in Table 1. Note that the description “7.2E2” in the table means 7.2 × 10 2 , and the same applies to other items.

【0044】1)導電性評価:ローレスタ抵抗測定器
(三菱化学社製)により膜表面の表面抵抗を測定した。 2)耐擦傷性:擦傷性測定器(LION社製50−5
0)により1kg荷重下で膜表面を50回往復後、その
表面の傷つきを目視で判断した。評価基準は、○:傷が
全くつかない、△:傷が多少つく、×:一部に膜剥離が
生じる、とした。
1) Conductivity evaluation: The surface resistance of the film surface was measured using a Loresta resistance meter (manufactured by Mitsubishi Chemical Corporation). 2) Scratch resistance: Scratch resistance measuring device (50-5 manufactured by LION)
According to 0), the film surface was reciprocated 50 times under a load of 1 kg, and the surface was visually judged for damage. The evaluation criteria were as follows: :: no scratch at all, Δ: slight scratch, x: partial film peeling.

【0045】3)鉛筆硬度:1kg荷重下において種々
の硬度の鉛筆で膜表面を走査し、その後目視により表面
に傷が生じ始める鉛筆の硬度を膜の鉛筆硬度と判断し
た。 4)視感反射率:GAMMA分光反射率スペクトル測定
器により多層膜の400〜700nmでの視感反射率を
測定した。 5)視感透過率:スペクトロフォトメータU−3500
(日立製作所製)により380〜780nmでの視感透
過率を測定した。
3) Pencil hardness: The film surface was scanned with pencils of various hardnesses under a load of 1 kg, and the pencil hardness at which the surface began to be scratched visually was judged as the pencil hardness of the film. 4) Luminous reflectance: The luminous reflectance of the multilayer film at 400 to 700 nm was measured with a GAMMA spectral reflectance spectrum measuring instrument. 5) Luminous transmittance: Spectrophotometer U-3500
The luminous transmittance at 380 to 780 nm was measured by (manufactured by Hitachi, Ltd.).

【0046】6)耐候性評価:フォトドライクリーナP
L7−200(センエンジニアリング社製)により25
4mmを主波長とする紫外線を200時間照射後の膜の
表面抵抗値を測定した。 7)耐薬品性評価:5%NaCl液に100時間浸漬し
た後の膜の表面抵抗値を測定した。
6) Evaluation of weather resistance: Photodry cleaner P
25 for L7-200 (Sen Engineering)
The surface resistance of the film after irradiation with ultraviolet light having a main wavelength of 4 mm for 200 hours was measured. 7) Evaluation of chemical resistance: The surface resistance of the film after immersion in a 5% NaCl solution for 100 hours was measured.

【0047】また、得られた金属微粒子の粉体体積抵抗
は4端子法により測定し、得られたゾルの平均凝集粒径
は大塚電子社製レーザー回折式粒径測定装置LPA−3
100により測定した。得られたゾルの平均一次粒径は
日本電子社製透過型電子顕微鏡100CXによって観察
して代表20個の粒子の粒径を平均して求めた。得られ
た膜の膜厚は膜破断面の走査型電子顕微鏡観察より測定
し、導電液の粘度はE型粘度計により20℃で測定し
た。
The powder volume resistance of the obtained metal fine particles was measured by a four-terminal method, and the average agglomerated particle size of the obtained sol was a laser diffraction particle size analyzer LPA-3 manufactured by Otsuka Electronics Co., Ltd.
100. The average primary particle size of the obtained sol was determined by observing with a transmission electron microscope 100CX manufactured by JEOL Ltd. and averaging the particle sizes of 20 representative particles. The film thickness of the obtained film was measured by observing a film fracture surface with a scanning electron microscope, and the viscosity of the conductive liquid was measured at 20 ° C. with an E-type viscometer.

【0048】シリコンテトラエトキシドをエタノールに
溶かし塩酸酸性水溶液で加水分解を行わせ、SiO2
算で5%となるようにエタノールで調整した(B液)。 水:エタノール:メタノール:プロピレングリコールモ
ノメチルエーテル=50:42:5:3(重量比)の混
合液を調製した(D液)。
Silicon tetraethoxide was dissolved in ethanol, hydrolyzed with an aqueous solution of hydrochloric acid, and adjusted with ethanol to a concentration of 5% in terms of SiO 2 (solution B). A mixed solution of water: ethanol: methanol: propylene glycol monomethyl ether = 50: 42: 5: 3 (weight ratio) was prepared (Solution D).

【0049】[例1]三塩化ルテニウム水溶液(固形分
10%)にクエン酸ナトリウムをルテニウムに対し10
倍モル添加し、さらに水素化ホウ素ナトリウム液をルテ
ニウムに対して4倍モル添加し、金属ルテニウムを還元
析出させた。この後、余剰イオンを限外濾過で除去し、
金属ルテニウムを5.8%含有するルテニウムゾル液を
調製した(F液)。
EXAMPLE 1 Sodium citrate was added to ruthenium trichloride aqueous solution (solid content 10%) with respect to ruthenium.
The sodium borohydride solution was added four times as much as ruthenium, and the metal ruthenium was reduced and precipitated. After this, the excess ions are removed by ultrafiltration,
A ruthenium sol solution containing 5.8% of metal ruthenium was prepared (Solution F).

【0050】得られたゾルの平均凝集粒径は60nmで
あった。また、平均一次粒径は9nmであり、一次粒径
の最大値と最小値との差は5nm以内で粒径はきわめて
均一であった。また、このゾルを100℃で乾燥して得
られた金属粉末の粉体体積抵抗は0.0003Ωcmで
あった。
The average agglomerated particle size of the obtained sol was 60 nm. The average primary particle size was 9 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. The powder volume resistance of the metal powder obtained by drying the sol at 100 ° C. was 0.0003 Ωcm.

【0051】水:ブチルセロソルブ:N−メチルピロリ
ドン=87:10:3(重量比)の混合液を調製した
(G液)。F液をG液で固形分0.6%(本例の場合は
ルテニウム金属微粒子のみ)となるように希釈した(H
液)。H液の粘度は1.02cPであった。
A mixed solution of water: butyl cellosolve: N-methylpyrrolidone = 87: 10: 3 (weight ratio) was prepared (Solution G). Solution F was diluted with solution G to a solid content of 0.6% (only ruthenium metal fine particles in this example) (H
liquid). The viscosity of the liquid H was 1.02 cP.

【0052】イソプロピルアルコール:プロピレングリ
コールモノエチルエーテルアセテート:ジアセトンアル
コール=6:3:1(重量比)の混合液を調製した(U
1液)。H液を14インチブラウン管表面にスピンコー
ト法で塗布した後、膜(導電膜)の上にB液をU1液で
0.85%に希釈したものをスピンコート法で塗布し、
160℃で30分焼成し低反射性導電膜を得た。なお、
導電膜の膜厚は70nmであった。
A mixed solution of isopropyl alcohol: propylene glycol monoethyl ether acetate: diacetone alcohol = 6: 3: 1 (weight ratio) was prepared (U
1 solution). H solution is applied to the surface of a 14-inch cathode ray tube by spin coating, and then a solution obtained by diluting B solution to 0.85% with U1 solution is applied on the film (conductive film) by spin coating.
It was baked at 160 ° C. for 30 minutes to obtain a low reflective conductive film. In addition,
The thickness of the conductive film was 70 nm.

【0053】[例2]三塩化ルテニウム水溶液(固形分
10%)にギ酸をルテニウムに対し3倍モル添加し、そ
の後、クエン酸をルテニウムに対し10倍モル添加し、
さらに水素化ホウ素ナトリウム液をルテニウムに対して
4倍モル添加し、金属ルテニウムを還元析出させた。こ
の後、遠心分離で金属ルテニウムを分離し、蒸留水を加
え再分散させた後、イオン交換樹脂で余剰イオンを除去
し、金属ルテニウムを4.3%含有するルテニウムゾル
液を調製した(F2液)。
Example 2 To a ruthenium trichloride aqueous solution (solid content: 10%), formic acid was added at 3 times the molar amount of ruthenium, and then citric acid was added at 10 times the molar amount of ruthenium.
Further, a sodium borohydride solution was added in a molar amount of 4 times the amount of ruthenium, and metal ruthenium was reduced and precipitated. Thereafter, the metal ruthenium was separated by centrifugation, and distilled water was added to redisperse the metal ruthenium. Then, excess ions were removed with an ion exchange resin to prepare a ruthenium sol solution containing 4.3% of metal ruthenium (F2 solution). ).

【0054】得られたゾルの平均凝集粒径は32nmで
あった。また、平均一次粒径は5nmであり、一次粒径
の最大値と最小値との差は5nm以内で粒径はきわめて
均一であった。また、このゾルを100℃で乾燥して得
られた金属粉末の粉体体積抵抗は0.0003Ωcmで
あった。
The average aggregate particle size of the obtained sol was 32 nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. The powder volume resistance of the metal powder obtained by drying the sol at 100 ° C. was 0.0003 Ωcm.

【0055】F2液をG液で固形分が0.45%(本例
の場合はルテニウム金属微粒子のみ)となるように希釈
した(H2液)。H2液の粘度は1.01cPであっ
た。H2液を14インチブラウン管表面にスピンコート
法で塗布した後、膜(導電膜)の上にB液をU1液で
0.85%に希釈したものをスピンコート法で塗布し、
160℃で30分焼成し低反射性導電膜を得た。なお、
導電膜の膜厚は60nmであった。
The solution F2 was diluted with the solution G so that the solid content was 0.45% (only ruthenium metal fine particles in this example) (solution H2). The viscosity of the H2 liquid was 1.01 cP. After applying the H2 solution to the surface of a 14-inch cathode ray tube by spin coating, the solution (liquid B) diluted to 0.85% with U1 solution is applied on the film (conductive film) by spin coating.
It was baked at 160 ° C. for 30 minutes to obtain a low reflective conductive film. In addition,
The thickness of the conductive film was 60 nm.

【0056】[例3]塩化第二スズ(SnCl4)水溶
液と硝酸インジウム水溶液を、Sn/In=15/85
(原子比)となるように混合し、この溶液をアンモニア
水でpH12に調整し、60℃に保持した溶液中に滴下
し、沈殿析出させた。この沈殿物を洗浄濾別し、100
℃で10時間乾燥後、600℃で5時間窒素中で焼成
し、スズドープ酸化インジウム(ITO)微粒子を得
た。この粒子を液中の平均凝集粒径が80nm(平均一
次粒径は30nm)になるまで衝撃粉砕法で粉砕し、そ
の後濃縮を行い固形分が4.3%の液を得た(K2
液)。
[Example 3] An aqueous solution of stannic chloride (SnCl 4 ) and an aqueous solution of indium nitrate were mixed with Sn / In = 15/85.
(Atomic ratio), the solution was adjusted to pH 12 with aqueous ammonia, and dropped into a solution maintained at 60 ° C. to precipitate. This precipitate is filtered off by washing, and 100
After drying at ℃ for 10 hours, baking in nitrogen at 600 ℃ for 5 hours to obtain tin-doped indium oxide (ITO) fine particles. These particles were pulverized by an impact pulverization method until the average aggregate particle diameter in the liquid became 80 nm (the average primary particle diameter was 30 nm), and then concentrated to obtain a liquid having a solid content of 4.3% (K2
liquid).

【0057】前記F2液とK2液をF2液/K2液が9
3/7(重量比)となるように混合した。なお、ルテニ
ウム金属微粒子の平均凝集粒径は32nmであった。ま
た、平均一次粒径は5nmであり、一次粒径の最大値と
最小値との差は5nm以内で粒径はきわめて均一であっ
た。その後この混合液をG液で固形分(ルテニウム金属
微粒子とITO微粒子との総量)が0.55%となるよ
うに希釈した(H4液)。H4液の粘度は1.15cP
であった。なお、ルテニウム金属微粒子/ITO微粒子
(重量比)は93/7であった。
The F2 solution and the K2 solution were prepared by mixing the F2 solution / K2 solution with 9
It was mixed so as to be 3/7 (weight ratio). The average agglomerated particle size of the ruthenium metal fine particles was 32 nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. Thereafter, this mixture was diluted with Liquid G so that the solid content (the total amount of ruthenium metal fine particles and ITO fine particles) was 0.55% (H4 liquid). The viscosity of H4 liquid is 1.15 cP
Met. The ratio of ruthenium metal fine particles / ITO fine particles (weight ratio) was 93/7.

【0058】H4液を14インチブラウン管表面にスピ
ンコート法で塗布した後、膜上にB液をU1液で0.9
3%に希釈したものをスピンコート法で塗布し、160
℃で30分焼成し低反射性導電膜を得た。なお、導電膜
の膜厚は80nmであった。 [例4]塩化ルテニウム水溶液を、アンモニア水でpH
10に調整し、60℃に保持した溶液中に滴下し、沈殿
析出させた。この沈殿物を洗浄濾別し、100℃で10
時間乾燥後、500℃で2時間大気中で焼成し、酸化ル
テニウム(RuO2)微粒子を得た。この粒子を液中の
平均凝集粒径が95nm(平均一次粒径は20nm)に
なるまで衝撃粉砕法で粉砕し、その後濃縮を行い固形分
が4.3%の液を得た(K3液)。
After applying the H4 solution to the surface of a 14-inch cathode ray tube by a spin coating method, the B solution was applied to the film with U1 solution at 0.9%.
The solution diluted to 3% is applied by spin coating,
C. for 30 minutes to obtain a low reflective conductive film. Note that the thickness of the conductive film was 80 nm. [Example 4] pH of ruthenium chloride aqueous solution with ammonia water
The solution was adjusted to 10 and dropped into a solution maintained at 60 ° C. to precipitate. The precipitate is filtered off by washing,
After drying for an hour, it was calcined at 500 ° C. for 2 hours in the air to obtain ruthenium oxide (RuO 2 ) fine particles. These particles were pulverized by an impact pulverization method until the average agglomerated particle diameter in the liquid became 95 nm (the average primary particle diameter was 20 nm), and then concentrated to obtain a liquid having a solid content of 4.3% (K3 liquid). .

【0059】前記F2液とK3液をF2液/K3液が7
0/30となるように混合した。なお、ルテニウム金属
微粒子の平均凝集粒径は32nmであった。また、平均
一次粒径は5nmであり、一次粒径の最大値と最小値と
の差は5nm以内で粒径はきわめて均一であった。その
後この混合液をG液で固形分(ルテニウム金属微粒子と
RuO2微粒子との総量)が0.62%となるように希
釈した(H5液)。H5液の粘度は1.35cPであっ
た。なお、ルテニウム金属微粒子/RuO2微粒子(重
量比)は70/30であった。
The F2 solution and the K3 solution were prepared by mixing the F2 solution / K3 solution with 7
It was mixed so as to be 0/30. The average agglomerated particle size of the ruthenium metal fine particles was 32 nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. Thereafter, this mixed solution was diluted with Liquid G so that the solid content (the total amount of the ruthenium metal fine particles and the RuO 2 fine particles) was 0.62% (H5 liquid). The viscosity of the H5 liquid was 1.35 cP. The ratio of ruthenium metal fine particles / RuO 2 fine particles (weight ratio) was 70/30.

【0060】H5液を14インチブラウン管表面にスピ
ンコート法で塗布した後、膜(導電膜)上にB液をU1
液で0.95%に希釈したものをスピンコート法で塗布
し、160℃で30分焼成し低反射性導電膜を得た。な
お、導電膜の膜厚は100nmであった。
After applying the H5 solution to the surface of a 14-inch cathode ray tube by spin coating, the B solution was applied on the film (conductive film) by U1.
A solution diluted to 0.95% with a solution was applied by a spin coating method and baked at 160 ° C. for 30 minutes to obtain a low-reflection conductive film. Note that the thickness of the conductive film was 100 nm.

【0061】[例5(比較例)]塩化第二スズ(SnC
4)と塩化アンチモンを、Sn/Sb=85/15
(原子比)となるように混合し、この溶液をアンモニア
水でpH10に調整し、50℃に保持した溶液中に添加
し、沈殿析出させた。この沈殿物を洗浄濾別し、100
℃で12時間乾燥後650℃で3時間大気中で焼成し、
アンチモンドープ酸化スズ微粒子を得た。この微粒子を
サンドミルで2時間粉砕した。このときの液中のアンチ
モンドープ酸化スズ微粒子の平均粒径は65nmであっ
た。その後濃縮を行い固形分が5%の液を得た。
Example 5 (Comparative Example) Stannic chloride (SnC
l 4 ) and antimony chloride, Sn / Sb = 85/15
(Atomic ratio), the solution was adjusted to pH 10 with aqueous ammonia, and added to the solution maintained at 50 ° C. to precipitate. This precipitate is filtered off by washing, and 100
Baked in air at 650 ° C for 3 hours,
Antimony-doped tin oxide fine particles were obtained. These fine particles were pulverized with a sand mill for 2 hours. At this time, the average particle size of the antimony-doped tin oxide fine particles in the liquid was 65 nm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5%.

【0062】この液をD液で固形分1.2%に希釈し、
14インチブラウン管パネル表面にスピンコートした。
さらにこの膜の上にB液をU1液で0.9%に希釈した
液をスピンコート法で塗布し、160℃で20分間焼成
し2層膜を形成させた。
This liquid was diluted with liquid D to a solid content of 1.2%,
Spin coating was performed on the surface of a 14-inch CRT panel.
Further, a solution obtained by diluting the solution B to 0.9% with the U1 solution was applied on the film by a spin coating method, and baked at 160 ° C. for 20 minutes to form a two-layer film.

【0063】[例6(比較例)]硝酸銀水溶液(銀換算
固形分10%)にクエン酸ナトリウムを銀に対して5倍
モル添加した後、硝酸鉄を銀に対して3倍モル添加し沈
殿析出させた。この沈殿物を遠心分離で分離した後、蒸
留水を加え再分散を行いその後イオン交換樹脂による脱
塩を行い固形分3.2%の銀ゾルを得た(I液)。I液
をG液で固形分が0.45%となるように希釈した(J
液)。J液を14インチブラウン管表面スピンコート法
で塗布し、その膜の上にB液をU1液で0.85%に希
釈したものをスピンコート法で塗布し、160℃で30
分焼成し低反射導電膜を得た。
Example 6 (Comparative Example) To a silver nitrate aqueous solution (solid content in terms of silver: 10%), sodium citrate was added at 5 times the mole of silver, and iron nitrate was added at 3 times the mole of silver. Was deposited. After the precipitate was separated by centrifugation, distilled water was added for re-dispersion, followed by desalting with an ion exchange resin to obtain a silver sol having a solid content of 3.2% (Solution I). The solution I was diluted with the solution G so that the solid content was 0.45% (J
liquid). Solution J was applied by spin coating on the surface of a 14-inch cathode ray tube, and solution B diluted to 0.85% with solution U1 was applied on the film by spin coating.
By firing for a minute, a low reflection conductive film was obtained.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】本発明によれば、スプレーまたはスピン
コートなどの簡便な方法により効率よく優れた低反射性
導電膜を提供できる。本発明によれば電磁波を容易にシ
ールドでき、かつ比較的安価に製造できる。特に、CR
Tのパネルフェイス面などの大面積の基体にも充分適用
でき、量産も可能であるため工業的価値は非常に高い。
According to the present invention, an excellent low-reflection conductive film can be efficiently provided by a simple method such as spraying or spin coating. According to the present invention, electromagnetic waves can be shielded easily and can be manufactured relatively inexpensively. In particular, CR
It is sufficiently applicable to a large-area substrate such as a panel face of T, and can be mass-produced, so that its industrial value is very high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C03C 17/36 G02B 1/10 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C03C 17/36 G02B 1/10 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Ruの金属微粒子のゾルを含有してなる導
電膜形成用塗布液を基体上に塗布して塗膜を形成した
後、塗膜上に前記導電膜より低屈折率の膜を形成するこ
とを特徴とする低反射性導電膜の形成方法。
A coating liquid for forming a conductive film containing a sol of Ru metal fine particles is applied to a substrate to form a coating film, and then a film having a lower refractive index than the conductive film is formed on the coating film. A method for forming a low-reflection conductive film, comprising:
JP30757799A 1997-04-23 1999-10-28 Method for forming low reflective conductive film Expired - Fee Related JP3514192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30757799A JP3514192B2 (en) 1997-04-23 1999-10-28 Method for forming low reflective conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10637397 1997-04-23
JP9-106373 1997-04-23
JP30757799A JP3514192B2 (en) 1997-04-23 1999-10-28 Method for forming low reflective conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21785097A Division JPH115929A (en) 1997-04-23 1997-08-12 Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Publications (2)

Publication Number Publication Date
JP2000153223A true JP2000153223A (en) 2000-06-06
JP3514192B2 JP3514192B2 (en) 2004-03-31

Family

ID=32095280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30757799A Expired - Fee Related JP3514192B2 (en) 1997-04-23 1999-10-28 Method for forming low reflective conductive film

Country Status (1)

Country Link
JP (1) JP3514192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190214A (en) * 2000-12-20 2002-07-05 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device using the film
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
WO2011027827A1 (en) 2009-09-07 2011-03-10 旭硝子株式会社 Article having low-reflection film on surface of base material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190214A (en) * 2000-12-20 2002-07-05 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device using the film
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
WO2011027827A1 (en) 2009-09-07 2011-03-10 旭硝子株式会社 Article having low-reflection film on surface of base material
US8431211B2 (en) 2009-09-07 2013-04-30 Asahi Glass Company, Limited Article having low-reflection film on surface of base material

Also Published As

Publication number Publication date
JP3514192B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP2000153223A (en) Formation of low reflective conductive film
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3315673B2 (en) CRT with conductive film
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP2892250B2 (en) Paint for forming antistatic / high refractive index film, transparent laminate with antistatic / antireflective film and display device
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JPH11203943A (en) Transparent conductive base material, its manufacture and display device using this base material
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JPH0789720A (en) Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP2005232272A (en) Coating liquid for forming conductive film and manufacturing method of low reflection conductive film
JPH09188545A (en) Electroconductive film, its production and glass article

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees