JP2002201029A - Light-absorptive transparent electroconductive film and sputtering target - Google Patents

Light-absorptive transparent electroconductive film and sputtering target

Info

Publication number
JP2002201029A
JP2002201029A JP2000401822A JP2000401822A JP2002201029A JP 2002201029 A JP2002201029 A JP 2002201029A JP 2000401822 A JP2000401822 A JP 2000401822A JP 2000401822 A JP2000401822 A JP 2000401822A JP 2002201029 A JP2002201029 A JP 2002201029A
Authority
JP
Japan
Prior art keywords
light
film
ruthenium
target
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401822A
Other languages
Japanese (ja)
Inventor
Takayuki Abe
能之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000401822A priority Critical patent/JP2002201029A/en
Publication of JP2002201029A publication Critical patent/JP2002201029A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light-absorptive transparent electroconductive film producible by direct current sputtering method having high reproducibility of film forming rate and film quality with no need of using reactive gas, and enabling to better control light-absorptivity and resistance depending on the objective compared to conventional anti-reflection film provided with electroconductivity and light-absorptivity, and to provide a sputtering target for producing the light-absorptive transparent electroconductive film by sputtering method. SOLUTION: This light-absorptive transparent electroconductive film comprises indium oxide as a principal component, ruthenium within a range of 0.001 to 0.11 Ru/In atomic ratio and tin within a range of 0.001 to 0.163 Sn/In atomic ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面ブラウン管表
面の反射防止フィルムなどに用いられる光吸収性透明導
電膜、および該光吸収性透明導電膜をスパッタリング法
で製造するためのスパッタリングターゲットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-absorbing transparent conductive film used for an antireflection film on the surface of a flat cathode-ray tube, and a sputtering target for producing the light-absorbing transparent conductive film by a sputtering method.

【0002】[0002]

【従来の技術】近年、コンピュータの急速な普及に伴っ
て悪化傾向にある端末オペレータの作業環境を改善する
ために、端末ディスプレイの反射低減や、特にCRT
(陰極線管)型の端末ディスプレイ表面の帯電防止が要
求されつつある。
2. Description of the Related Art In recent years, in order to improve the working environment of a terminal operator, which has been deteriorating due to the rapid spread of computers, it has been necessary to reduce the reflection of a terminal display and, in particular, to improve the CRT.
There is a growing demand for preventing the surface of (cathode ray tube) type terminals from being charged.

【0003】また、最近ではさらに、CRTディスプレ
イの前面のパネルガラスに対して、コントラスト向上の
ために透過率を低下させることや、人体に悪影響を及ぼ
す極低周波の電磁波を遮蔽することが求められるように
なってきている。
Further, recently, it is required to lower the transmittance of the panel glass on the front surface of the CRT display in order to improve the contrast and to shield the extremely low frequency electromagnetic waves which adversely affect the human body. It is becoming.

【0004】これらの要求に応えるための一つの方法と
して、パネルガラスの表面に導電性の反射防止膜を設け
ている。
As one method for meeting these requirements, a conductive antireflection film is provided on the surface of the panel glass.

【0005】また、最近では、CRTディスプレイの平
面化が進み、強度設計上、パネルガラスの中央部と周辺
部には、従来の曲面管の場合と比べて大きな肉厚差が必
須となる。そのため、従来のように透過率の低いガラス
素地を用いてコントラストを稼ぐという手段では、画面
中央部と画面周辺部の輝度が異なってしまう欠点が生ず
るようになってきた。
In recent years, CRT displays have been flattened, and a difference in wall thickness between the central portion and the peripheral portion of the panel glass is indispensable from the viewpoint of strength design as compared with a conventional curved tube. For this reason, the conventional method of increasing the contrast by using a glass base material having a low transmittance has a disadvantage that the luminance at the center of the screen is different from that at the periphery of the screen.

【0006】この問題を回避するために、CRTディス
プレイのパネルガラスには透過率の高い素地が使用さ
れ、その代わりに前記反射防止膜には、光吸収効果によ
るかなり低い透過率が要求されるようになってきた。
In order to avoid this problem, a substrate having a high transmittance is used for a panel glass of a CRT display. Instead, the antireflection film is required to have a considerably low transmittance due to a light absorption effect. It has become

【0007】導電性で光吸収性を備えた反射防止膜とし
ては、遷移金属の窒化物を用いたものがある。例とし
て、特開平9−156964号公報に記載されたガラス
/遷移金属窒化膜/透明膜構成を備えたものや、特表平
6−510382号公報に記載されたガラス/遷移金属
窒化膜/透明膜/遷移金属窒化膜/透明膜構成を備えた
もの等が提案されており、導電性かつ光吸収性の機能を
持った遷移金属窒化膜が使用されている。この遷移金属
窒化膜には、具体的には窒化チタンや窒化ハフニウムが
用いられ、通常、チタンやハフニウムの金属ターゲット
と、窒素及びアルゴンの混合ガスを用いて、反応性スパ
ッタリング法で製造される。
As a conductive anti-reflection film having a light absorbing property, there is a film using a transition metal nitride. Examples thereof include those having a glass / transition metal nitride film / transparent film structure described in JP-A-9-156964 and glass / transition metal nitride film / transparent film described in JP-A-6-510382. Films having a film / transition metal nitride film / transparent film structure have been proposed, and a transition metal nitride film having a conductive and light absorbing function has been used. Specifically, titanium nitride or hafnium nitride is used for the transition metal nitride film. Usually, the transition metal nitride film is manufactured by a reactive sputtering method using a metal target of titanium or hafnium and a mixed gas of nitrogen and argon.

【0008】[0008]

【発明が解決しようとする課題】しかし、反応性スパッ
タリング法は、窒素反応ガスの混合量や成膜ガス圧、パ
ワー等によって、敏感に成膜速度や膜質が変化するた
め、一定の膜質および一定の膜厚を備えた膜を製造する
ことが容易ではない。
However, in the reactive sputtering method, the film formation rate and film quality change sensitively depending on the mixing amount of the nitrogen reaction gas, the film formation gas pressure, and the power. It is not easy to manufacture a film having a film thickness of

【0009】また、CRTディスプレイ表面の反射防止
膜にチャージアップされた静電気は、反射防止膜を接地
することで放電され、接触による感電を回避できるが、
製造工程不良で十分に接地されていない場合には、前記
反射防止膜が窒化チタン等の窒化物で構成されて抵抗値
の低いことが、接触による感電事故を招きやすくする。
従って、反射防止膜の抵抗値は、目的に応じてコントロ
ールできた方が好ましい。
Further, the static electricity charged on the anti-reflection film on the surface of the CRT display is discharged by grounding the anti-reflection film, so that electric shock due to contact can be avoided.
If the grounding is not sufficient due to a defective manufacturing process, the anti-reflection film is made of a nitride such as titanium nitride and has a low resistance value, so that an electric shock accident due to contact is likely to occur.
Therefore, it is preferable that the resistance value of the antireflection film can be controlled according to the purpose.

【0010】本発明は前記事情に基づきなされたもの
で、本発明の目的は、従来の導電性で光吸収性を備えた
反射防止膜に比べて、光吸収性および抵抗値を目的に応
じてコントロールでき、反応性ガスを用いる必要がな
く、成膜速度および膜質の再現性が高い直流スパッタリ
ングで製造できる光吸収性透明導電膜、および該光吸収
性透明導電膜をスパッタリング法で製造するためのスパ
ッタリングターゲットを、提供することを目的とする。
[0010] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light absorbing property and a resistance value in accordance with the purpose which are higher than those of a conventional conductive anti-reflection film having light absorbing property. A light-absorbing transparent conductive film that can be controlled, does not require the use of a reactive gas, and can be produced by DC sputtering with a high deposition rate and high reproducibility of film quality, and a method for producing the light-absorbing transparent conductive film by a sputtering method. It is intended to provide a sputtering target.

【0011】[0011]

【課題を解決するための手段】本発明の光吸収性透明導
電膜は、一態様では、酸化インジウムを主成分として、
ルテニウム/インジウム原子数比が0.001〜0.1
1の範囲で、ルテニウムを含む。この範囲内において、
500nmより長い波長の可視光の透過率を大体50%
以上にすることができると共に、比抵抗を3×10-3Ω
cmから81Ωcmの範囲で制御できる。
In one embodiment, the light-absorbing transparent conductive film of the present invention contains indium oxide as a main component,
Ruthenium / indium atomic ratio is 0.001-0.1
The range of 1 includes ruthenium. Within this range,
Approximately 50% transmittance of visible light with wavelength longer than 500 nm
And a specific resistance of 3 × 10 −3 Ω
cm to 81 Ωcm.

【0012】さらに、本発明の光吸収性透明導電膜は、
別の態様では、酸化インジウムを主成分として、ルテニ
ウム/インジウム原子数比が0.001〜0.11の範
囲で、ルテニウムを含むと共に、スズ/インジウム原子
数比が0.001〜0.163の範囲で、スズを含むこ
とが望ましい。この範囲内において、スズの添加によ
り、可視光の透過率に影響することなく、比抵抗を10
-4〜10-3のオーダに維持できる。
Further, the light-absorbing transparent conductive film of the present invention comprises:
In another aspect, ruthenium is contained in the range of 0.001-0.11 ruthenium / indium atomic ratio with indium oxide as a main component, and tin / indium atomic ratio is 0.001-0.163. It is desirable to include tin in the range. Within this range, by adding tin, the specific resistance can be reduced to 10 without affecting the transmittance of visible light.
-4 to 10 -3 can be maintained.

【0013】スパッタリング法で光吸収性透明導電膜を
製造するための本発明のスパッタリングターゲットは、
酸化インジウムを主成分として、ルテニウム/インジウ
ム原子数比が0.001〜0.11の範囲で、ルテニウ
ムを含む。さらに、スズ/インジウム原子数比が0.0
01〜0.163の範囲で、スズを含むことが望まし
い。
The sputtering target of the present invention for producing a light-absorbing transparent conductive film by a sputtering method comprises:
It contains indium oxide as a main component and contains ruthenium in a ruthenium / indium atomic ratio in the range of 0.001 to 0.11. Further, when the tin / indium atomic ratio is 0.0
It is desirable to contain tin in the range of 01 to 0.163.

【0014】[0014]

【発明の実施の形態】図1に、本発明を実施するための
直流マグネトロンスパッタリング装置の例を示す。
FIG. 1 shows an example of a DC magnetron sputtering apparatus for carrying out the present invention.

【0015】真空チャンバ1内に、ターゲット2を配置
する。このターゲット2は、直流電源3のマイナス側に
接続され、直流電源3のプラス側およびガラス基板4は
接地する。ターゲット2の対向部には、ガラス基板4が
設置され、ターゲット2とガラス基板4との間の空間部
には、供給管5によってアルゴンガスが供給される。
A target 2 is arranged in a vacuum chamber 1. The target 2 is connected to the negative side of the DC power supply 3, and the positive side of the DC power supply 3 and the glass substrate 4 are grounded. A glass substrate 4 is installed at a portion facing the target 2, and an argon gas is supplied by a supply pipe 5 to a space between the target 2 and the glass substrate 4.

【0016】このアルゴンガスには、前記直流電源3が
作動することでプラズマが発生し、アルゴンガスはイオ
ン化される。この際、ガラス基板4に対して反対側のタ
ーゲット2の背後に、磁石6が設置され、このため、タ
ーゲット2の表面に集中的にプラズマが発生し、効率よ
くアルゴンガスのイオン化が行われる。イオン化された
アルゴンガスがターゲット2に衝突することで、前記タ
ーゲット2から飛び出した物質が、前記空間部を介して
ターゲット2に対向して配置されたガラス基板4に析出
する。
In the argon gas, plasma is generated by the operation of the DC power supply 3, and the argon gas is ionized. At this time, the magnet 6 is provided behind the target 2 on the opposite side to the glass substrate 4, so that plasma is intensively generated on the surface of the target 2 and ionization of argon gas is performed efficiently. When the ionized argon gas collides with the target 2, the substance that has jumped out of the target 2 is deposited on the glass substrate 4 that is arranged to face the target 2 via the space.

【0017】本発明の光吸収性透明導電膜は、1態様で
は、酸化インジウムにルテニウムを添加する。また、他
の態様では、酸化インジウムにスズおよびルテニウムを
添加する。光吸収性は主にルテニウム量で調整すること
ができ、抵抗値はスズ量とルテニウム量で調整すること
ができる。
In one embodiment of the light-absorbing transparent conductive film of the present invention, ruthenium is added to indium oxide. In another embodiment, tin and ruthenium are added to indium oxide. The light absorption can be adjusted mainly by the amount of ruthenium, and the resistance can be adjusted by the amount of tin and the amount of ruthenium.

【0018】本発明のスパッタリングターゲットは、ル
テニウムを含んだ酸化インジウム、もしくはスズとルテ
ニウムを含んだ酸化インジウムの焼結体ターゲットであ
り、反応性ガスを用いず、操作性が容易で、成膜速度の
再現性が良好な直流スパッタリング法で、前記光吸収性
透明導電膜を作製することができる。
The sputtering target of the present invention is a sintered target of indium oxide containing ruthenium or indium oxide containing tin and ruthenium, which does not use a reactive gas, is easy to operate, and has a low film forming rate. The light-absorbing transparent conductive film can be produced by a direct current sputtering method having good reproducibility of the above.

【0019】(実施例)以下、本発明の一実施例を図を
用いて説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

【0020】先ず、粉末の酸化インジウム(In23
および酸化ルテニウム(RuO2)、もしくは、粉末の
酸化インジウム(In23)、酸化スズ(SnO2)お
よび酸化ルテニウム(RuO2)を、適当な配合比で混
合する。得られる混合粉末をプレス成形して所定の形状
に成形したのち、得られる成形品を焼結することで、タ
ーゲット2を得る。
First, powdered indium oxide (In 2 O 3 )
And ruthenium oxide (RuO 2 ), or powdered indium oxide (In 2 O 3 ), tin oxide (SnO 2 ) and ruthenium oxide (RuO 2 ) are mixed at an appropriate mixing ratio. The target 2 is obtained by pressing the obtained mixed powder into a predetermined shape and then sintering the obtained molded product.

【0021】次に、図1に概略図を示した直流マグネト
ロンスパッタリング装置の真空チャンバ1内に、前記タ
ーゲット2を配置する。前記直流電源3を作動させるこ
とにより、プラズマを発生させ、導入されたアルゴンガ
スをイオン化する。イオン化されたアルゴンガスがター
ゲット2に衝突して、前記ターゲット2から飛び出した
物質が、前記空間部を介してターゲット2に対向して配
置されたガラス基板4に析出する。
Next, the target 2 is placed in a vacuum chamber 1 of a DC magnetron sputtering apparatus schematically shown in FIG. By operating the DC power supply 3, plasma is generated, and the introduced argon gas is ionized. The ionized argon gas collides with the target 2, and a substance that has jumped out of the target 2 is deposited on the glass substrate 4 that is disposed to face the target 2 via the space.

【0022】該析出によって透明導電膜が形成され、本
発明の光吸収性透明導電膜が得られる。
By the deposition, a transparent conductive film is formed, and the light-absorbing transparent conductive film of the present invention is obtained.

【0023】(実施例1)以下、本発明の実施例を説明
する。
(Embodiment 1) An embodiment of the present invention will be described below.

【0024】先ず、粉末の酸化インジウム(In23
および酸化ルテニウム(RuO2)、もしくは、粉末の
酸化インジウム(In23)、酸化スズ(SnO2)お
よび酸化ルテニウム(RuO2)を、ルテニウム/イン
ジウム原子数比で0.001〜0.11の範囲で、スズ
/インジウム原子数比で0.000〜0.163の範囲
で、表1に示したターゲット組成のように、種々混合し
た。酸化インジウム粉末および酸化ルテニウム粉末およ
び酸化スズ粉末は、高純度化学(株)から入手した。
First, powdered indium oxide (In 2 O 3 )
And ruthenium oxide (RuO 2 ) or powdered indium oxide (In 2 O 3 ), tin oxide (SnO 2 ) and ruthenium oxide (RuO 2 ) in a ruthenium / indium atomic ratio of 0.001 to 0.11. In the range of 0.001 to 0.163 in the atomic ratio of tin / indium, various kinds of mixing were performed as in the target composition shown in Table 1. Indium oxide powder, ruthenium oxide powder, and tin oxide powder were obtained from Kojundo Chemical Co., Ltd.

【0025】得られる混合粉末をプレス成形して所定の
形状に成形したのち、得られる成形品を焼結すること
で、ターゲット2を得た。プレス成形の条件は、294
MPaであった。
After pressing the obtained mixed powder into a predetermined shape, the resulting molded product was sintered to obtain a target 2. Press molding conditions are 294
MPa.

【0026】次に、図1に概略図を示した直流マグネト
ロンスパッタリング装置の非磁性体ターゲット用カソー
ドに、焼結体の前記ターゲット2を取り付け、ターゲッ
ト2に対向させて、#7059ガラス基板4を、ターゲ
ット2とガラス基板4間の距離を70mmとして、取り
付けた。
Next, the sintered target 2 is attached to the nonmagnetic target cathode of the DC magnetron sputtering apparatus schematically shown in FIG. 1, and the # 7059 glass substrate 4 is placed facing the target 2. The distance between the target 2 and the glass substrate 4 was set to 70 mm.

【0027】真空チャンバ1内の真空度が、1×10-4
Pa以下に達した時点で、純度99.9999質量%の
アルゴンガスを導入して、ガス圧を0.5Paとした。
さらに、直流電源3により、直流電力300Wをターゲ
ット2およびガラス基板4の間に投入して、直流プラズ
マを発生させることによりスパッタリングを実施して、
加熱していないガラス基板4の上に、約500nmの膜
厚の膜を形成した。
The degree of vacuum in the vacuum chamber 1 is 1 × 10 -4
When the pressure reached Pa or less, argon gas having a purity of 99.9999% by mass was introduced to adjust the gas pressure to 0.5 Pa.
Further, the DC power supply 3 applies a DC power of 300 W between the target 2 and the glass substrate 4 to generate DC plasma, thereby performing sputtering.
A film having a thickness of about 500 nm was formed on the glass substrate 4 which was not heated.

【0028】ガラス基板4の上に形成した膜の組成を、
ICP発光分析法で定量分析したところ、ターゲット2
の組成とほぼ等しいことがわかった。膜の比重抵抗を四
探針法で、また可視光領域における光透過特性(波長:
400nm、550nm、620nm)を分光光度計で
測定した。
The composition of the film formed on the glass substrate 4 is
Quantitative analysis by ICP emission spectrometry revealed that target 2
It was found that the composition was almost the same. The specific gravity resistance of the film is measured by the four probe method, and the light transmission characteristics (wavelength:
400 nm, 550 nm, 620 nm) were measured with a spectrophotometer.

【0029】ターゲット2の組成、膜の比抵抗およびの
透過率を、表1に示す。
Table 1 shows the composition of the target 2, the specific resistance of the film, and the transmittance.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示すように、本発明の光吸収性透明
導電膜は、主にルテニウム量をコントロールすることに
より、透過率を変えることができ、また、スズ量とルテ
ニウム量で比抵抗を制御することができる。このよう
に、種々の透過特性および電気特性の組合せを実現する
ことができるので、目的とする光吸収性および抵抗値を
備えた光吸収性透明導電膜を得ることができる。
As shown in Table 1, in the light-absorbing transparent conductive film of the present invention, the transmittance can be changed mainly by controlling the ruthenium content, and the specific resistance can be changed by the tin content and the ruthenium content. Can be controlled. As described above, various combinations of transmission characteristics and electric characteristics can be realized, so that a light-absorbing transparent conductive film having desired light-absorbing properties and resistance values can be obtained.

【0032】また、本発明のスパッタリングターゲット
を用いれば、前述の特徴を有する光吸収性透明導電膜
を、安易な成膜法である直流マグネトロンスパッタ法で
得ることができる。
Further, by using the sputtering target of the present invention, a light-absorbing transparent conductive film having the above-mentioned characteristics can be obtained by a DC magnetron sputtering method which is an easy film forming method.

【0033】本発明の光吸収性透明導電膜の550nm
における屈折率は1.9〜2.3と高いので、SiO2
やMgF2などの低屈折率材料と積層構造にすることに
よって、光吸収性反射防止膜を作製することもできる。
550 nm of the light absorbing transparent conductive film of the present invention
Since the refractive index as high as 1.9 to 2.3 in, SiO 2
And by the laminated structure a low refractive index material, such as and MgF 2, it is also possible to produce a light absorptive antireflection film.

【0034】[0034]

【発明の効果】以上、述べたように、本発明によれば、
酸化インジウムにルテニウムを添加するか、もしくは酸
化インジウムにスズとルテニウムを添加することで、任
意の光吸収性と比抵抗を有する透明導電膜が得られ、透
過率は主にルテニウム量で調整し、抵抗値はスズ量とル
テニウム量で調整することができる。
As described above, according to the present invention,
By adding ruthenium to indium oxide or adding tin and ruthenium to indium oxide, a transparent conductive film having any light absorption and specific resistance is obtained, and the transmittance is mainly adjusted by the amount of ruthenium, The resistance can be adjusted by the amount of tin and the amount of ruthenium.

【0035】また、ルテニウムを含んだ酸化インジウ
ム、もしくはスズとルテニウムを含んだ酸化インジウム
の本発明のスパッタリングターゲットにより、反応性ガ
スを用いる必要がなく、操作性の容易な直流スパッタリ
ング法で、成膜速度と膜質の再現性が良い光吸収性透明
導電膜を作製することができる。
Further, the sputtering target of indium oxide containing ruthenium or indium oxide containing tin and ruthenium according to the present invention does not require the use of a reactive gas, and is formed by a direct current sputtering method which is easy to operate. A light-absorbing transparent conductive film having good reproducibility of speed and film quality can be manufactured.

【0036】従って、本発明の光吸収性透明導電膜は、
感電事故を生じにくく、しかもコントラスト効果を持た
せたブラウン管表面の光吸収性反射防止膜を積層構造で
構成するための一つの層として、極めて有用である。ま
た、本発明のスパッタリングターゲットは、該光吸収性
透明導電膜を簡便にかつ安定して製造するための原料と
して、極めて有用である。
Accordingly, the light-absorbing transparent conductive film of the present invention
This is extremely useful as one layer for forming a light absorbing antireflection film on the surface of a cathode ray tube having a laminated structure, which is unlikely to cause an electric shock and has a contrast effect. Further, the sputtering target of the present invention is extremely useful as a raw material for easily and stably producing the light-absorbing transparent conductive film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例で使用する直流マグネトロン
スパッタリング装置の概略図である。
FIG. 1 is a schematic diagram of a DC magnetron sputtering apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 ターゲット 3 直流電源 4 ガラス基板 5 供給管 6 磁石 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Target 3 DC power supply 4 Glass substrate 5 Supply pipe 6 Magnet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/14 H01B 5/14 A Fターム(参考) 4G048 AA03 AC04 AD02 4G059 AA08 AC04 AC11 AC12 AC30 EA01 EA03 EA18 EB04 4K029 AA09 BA45 BC08 BC09 BD00 CA05 DC05 DC09 DC34 DC40 5G301 CA02 CA15 CA21 CA23 CD03 CE01 5G307 FA02 FB01 FC09 FC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 5/14 H01B 5/14 A F term (Reference) 4G048 AA03 AC04 AD02 4G059 AA08 AC04 AC11 AC12 AC30 EA01 EA03 EA18 EB04 4K029 AA09 BA45 BC08 BC09 BD00 CA05 DC05 DC09 DC34 DC40 5G301 CA02 CA15 CA21 CA23 CD03 CE01 5G307 FA02 FB01 FC09 FC10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化インジウムを主成分として、ルテニ
ウム/インジウム原子数比が0.001〜0.11の範
囲で、ルテニウムを含むことを特徴とする光吸収性透明
導電膜。
1. A light-absorbing transparent conductive film, comprising indium oxide as a main component and ruthenium in a ruthenium / indium atomic ratio in a range of 0.001 to 0.11.
【請求項2】 スズ/インジウム原子数比が0.001
〜0.163の範囲で、スズを含むことを特徴とする請
求項1に記載の光吸収性透明導電膜。
2. A tin / indium atomic ratio of 0.001.
The light-absorbing transparent conductive film according to claim 1, wherein tin is contained in the range of -0.163.
【請求項3】 酸化インジウムを主成分として、ルテニ
ウム/インジウム原子数比が0.001〜0.11の範
囲で、ルテニウムを含み、スパッタリング法で光吸収性
透明導電膜を製造するためのスパッタリングターゲッ
ト。
3. A sputtering target for producing a light-absorbing transparent conductive film by a sputtering method, comprising indium oxide as a main component, ruthenium / indium atomic ratio in a range of 0.001 to 0.11, and ruthenium. .
【請求項4】 スズ/インジウム原子数比が0.001
〜0.163の範囲で、スズを含むことを特徴とする請
求項3に記載のスパッタリングターゲット。
4. The tin / indium atomic ratio is 0.001.
4. The sputtering target according to claim 3, wherein the sputtering target contains tin in a range of 0.163 to 0.163. 5.
JP2000401822A 2000-12-28 2000-12-28 Light-absorptive transparent electroconductive film and sputtering target Pending JP2002201029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401822A JP2002201029A (en) 2000-12-28 2000-12-28 Light-absorptive transparent electroconductive film and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401822A JP2002201029A (en) 2000-12-28 2000-12-28 Light-absorptive transparent electroconductive film and sputtering target

Publications (1)

Publication Number Publication Date
JP2002201029A true JP2002201029A (en) 2002-07-16

Family

ID=18866206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401822A Pending JP2002201029A (en) 2000-12-28 2000-12-28 Light-absorptive transparent electroconductive film and sputtering target

Country Status (1)

Country Link
JP (1) JP2002201029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
JP2011093730A (en) * 2009-10-28 2011-05-12 Jx Nippon Mining & Metals Corp Oxide sintered compact and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
JP2011093730A (en) * 2009-10-28 2011-05-12 Jx Nippon Mining & Metals Corp Oxide sintered compact and method for producing the same

Similar Documents

Publication Publication Date Title
EP1883092A2 (en) Plasma display panel and method for manufacturing the same
TWI258159B (en) Plasma display panel and method of making the same
TW201430158A (en) Light-absorbing layer system and production of and suitable sputtering target for said layer system
JP5170009B2 (en) Indium oxide sputtering target and method for producing the same
JPWO2007142330A1 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
CN110194598A (en) Glass panel and preparation method thereof, the display screen comprising the glass panel and terminal
GB2372042A (en) Functional film with concentration gradient
JP3740244B2 (en) Conductive fired body and gas discharge display panel using the same
JP2002371350A (en) Method for manufacturing transparent laminate
JP2002201029A (en) Light-absorptive transparent electroconductive film and sputtering target
WO2023005136A1 (en) Neutral density filter, and preparation method and preparation device therefor
Chiang et al. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp
KR100603260B1 (en) Filter shielding electro magnetic wave of plasma display panel and manufacturing method thereof
JP2002226966A (en) Transparent electrode film, and sputtering target for deposition of the electrode film
CN100372449C (en) Method for manufacturing electromagnetic shielding film of POP protection screen
KR100524777B1 (en) Manufacturing method for plasma display panel
JP4794757B2 (en) Sputtering target for forming a transparent electrode film
JP2002063842A (en) Plasma display panel and manufacturing method of the same
JP2002025362A (en) Manufacturing method of silver series transparent conductive thin film and transparent laminate
KR100533423B1 (en) Plasma display panel
JP2003139909A (en) Conductive antireflection film and glass panel for cathode ray tube
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH0750568B2 (en) Transparent conductive film and material for producing the transparent conductive film
JP3234567B2 (en) Method for manufacturing plasma display panel
KR100788333B1 (en) Metal oxide containing cu for forming electrically conductive transparent thin layer and sintered body thereof, electrically conductive transparent thin layer using the same, and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040727