JP3729528B2 - Colored film-forming coating solution, colored film and glass article on which colored film is formed - Google Patents

Colored film-forming coating solution, colored film and glass article on which colored film is formed Download PDF

Info

Publication number
JP3729528B2
JP3729528B2 JP01013295A JP1013295A JP3729528B2 JP 3729528 B2 JP3729528 B2 JP 3729528B2 JP 01013295 A JP01013295 A JP 01013295A JP 1013295 A JP1013295 A JP 1013295A JP 3729528 B2 JP3729528 B2 JP 3729528B2
Authority
JP
Japan
Prior art keywords
colored film
low
film
resistance
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01013295A
Other languages
Japanese (ja)
Other versions
JPH08208274A (en
Inventor
和也 平塚
恭宏 真田
恵子 大橋
健二 石関
通郎 小松
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP01013295A priority Critical patent/JP3729528B2/en
Publication of JPH08208274A publication Critical patent/JPH08208274A/en
Application granted granted Critical
Publication of JP3729528B2 publication Critical patent/JP3729528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • C03C2217/485Pigments

Description

【0001】
【産業上の利用分野】
本発明は陰極線管用パネル等に適用される着色膜形成用塗布液と、それを塗布することにより形成される着色膜及び着色膜を形成したガラス物品に関する。
【0002】
【従来の技術】
着色膜、着色帯電防止膜、低反射帯電防止膜、着色低反射帯電防止膜等のコーティング方法は、従来より、光学機器用のみならず、民生用機器特にTV、コンピュータ端末の陰極線管(CRT)用としても多く検討がなされてきた。
【0003】
膜の着色に関しては、特開平1−275664号公報に水溶性フタロシアニン化合物を用いる方法が提案されている。また、帯電防止能を持つ着色膜については特開平1−251545号公報にメチルバイオレットを用いた帯電防止膜の記述がある。しかし、これらの着色材は耐熱性に乏しく、ブラウン管の製造工程中に加熱された場合著しく退色する問題があった。
【0004】
また、これらの物質は本質的に絶縁体であるため、膜に帯電防止性等を付与しようとする場合、着色材に低抵抗物質を添加する必要があり、これら着色材の安定性が乏しいため抵抗阻害をおこし、充分低抵抗化ができない問題があった。
【0005】
また着色膜の主目的は陰極線管の画像のコントラスト向上にあり、そのため可視光全域での均一な吸収が必要となる。着色材としては黒色であることが好ましいが、上記の従来の着色材では均一な吸収は非常に困難であった。
【0006】
帯電防止性に関しては、特開昭63−76247号公報には、ブラウン管パネル表面を350℃程度に加熱してCVD法により酸化錫及び酸化インジウム等の低抵抗酸化物層を設ける方法が提案されている。しかし、CVD法により帯電防止膜を形成させる手法は、装置コストがかかることに加えてブラウン管表面を高温に加熱するため、ブラウン管内の蛍光体の脱落を生じたり寸法精度が低下する等の問題があった。またこの場合、通常400℃程度の高温を必要とし、低温で焼成した場合に充分に低抵抗の膜が得られない欠点があった。
【0007】
低反射性に関しては、特開昭61−118931号公報記載のように、ブラウン管表面に防眩効果をもたせるために表面に微細な凹凸を有するSiO層を付着させたり、フッ酸により表面をエッチングして凹凸を設ける等の方法が採られてきた。
【0008】
しかし、これらの方法は外部光を散乱させるノングレア処理と呼ばれ、本質的に低反射層を設ける方法ではないため反射率の低減には限界があり、またブラウン管等においては解像度を低下させる原因ともなっていた。
【0009】
低反射低抵抗膜については、特開平3−93136号公報にイオンプレーティング法による光学多層膜を設ける方法が記載されている。しかし、イオンプレーティングによる方法は工業的に安価とはいえない。
【0010】
【発明が解決しようとする課題】
本発明は上述の課題を解決しようとするものであり、高性能かつ新規な着色膜形成用塗布液、着色膜及び着色膜を形成したガラス物品を提供する。
【0011】
【課題を解決するための手段】
本発明は、一般式がZSiO(Zは金属元素)であるオリビン型複合酸化物であって、ZがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるオリビン型複合酸化物からなり平均粒径が5〜200nmである顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液、一般式がAB(A、Bは金属元素)であるスピネル型複合酸化物であって、AがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるスピネル型複合酸化物からなり平均粒径が5〜200nmである顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液、及び前記BがCr、Fe及びAlである着色膜形成用塗布液を提供する。
【0012】
本発明の前記塗布液中にSn、In、Sb、Zn、Al、Ti、Si及びGaの群から選ばれる少なくとも1種の金属の化合物であって、前記複合酸化物からなる顔料とは別異の化合物を含むようにすれば、低抵抗の着色膜形成用塗布液となり、形成膜に帯電防止性を付与でき好ましい。前記化合物としてはSnO、In、ZnO、Al、TiO、SiO(シリカゾル)、SbドープSnO、SnドープIn(ITO)、Al(又はGa)ドープZnO、Al(又はGa)ドープTiO等が好ましい。
【0013】
本発明の着色膜形成用塗布液を塗布することにより形成された着色膜は、380〜700nmの光の波長領域において透過率が低下し、ほぼ全可視光の波長領域で透過率を調整でき好ましい。透過率の低下の程度については、実用上コントラストの向上が得られる範囲でよく、少なくとも5%以上の低下が生ずるのがよく、好ましくは5〜30%の低下が生ずるのがよい。30%を超えると画像自体の輝度が落ちるため好ましくない。
【0014】
この場合、本発明の着色膜形成用塗布液中に前述のようなSn、In、Sb、Zn、Al、Ti、Si及びGaの群から選ばれる少なくとも1つの金属の化合物を含むようにすれば、380〜700nmの光の波長領域において透過率が低下しかつ帯電防止能を有する低抵抗着色膜が形成できる。前記帯電防止能については、帯電したガラス物品の静電荷減衰がすみやかになされればよく、少なくとも1×1010Ω/□以下、好ましくは1×10Ω/□以下の表面(電気)抵抗値であればよい。
【0015】
また、透明基体上に基体側から本発明の着色膜又は低抵抗着色膜を形成し、その上に前記着色膜又は前記低抵抗着色膜より低屈折率の被膜を順次形成すれば、反射防止性を付与された多層の低反射着色膜又は低反射低抵抗着色膜を形成できる。
【0016】
本発明の着色膜、低抵抗着色膜、低反射着色膜、低抵抗低反射着色膜は、陰極線管(CRT)等のディスプレイ用途に供されるガラス物品に好ましく用いられる。ガラス物品としての陰極線管は、近年コンピュータ装置の端末表示装置等に使用される場合、高解像度の要求とともにハイコントラストの要求も高まりつつある。
【0017】
しかし、コントラストの向上を期してガラス自体の透過率を低下させた場合、ディスプレイの大型化に伴ってパネルのフェイスプレートの肉厚も厚くなってくるので、特に大型ディスプレイでは透過率の著しい低下が問題となる。
【0018】
本発明では、ガラス自体の透過率を下げることなくその表面に膜を形成し、この膜に光吸収性を付与させることによりコントラストの向上を図る。よって、種々の肉厚を持つディスプレイ用ガラスパネルへの自在な光吸収性の付与がきわめて容易である。
【0019】
陰極線管の発光スペクトルは複数のスペクトルで構成され、発光スペクトルのバランスを崩さずにコントラストの向上を図るには、特定の光吸収を持つ着色膜よりも可視光領域にわたって均一の光吸収をもつ着色膜が好ましい。
【0020】
このような観点から鋭意研究を行った結果、一般式がZSiO(Zは金属元素)であるオリビン型複合酸化物であって、ZがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるオリビン型複合酸化物からなる顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液、又は一般式がAB(A、Bは金属元素)であるスピネル型複合酸化物であって、AがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるスピネル型複合酸化物からなる顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液を用いることにより、可視光領域においてほぼ均一かつ充分な着色力を有し、さらに耐熱性にも優れた着色膜を製造できることが判明した。また上記着色材を含む液は安定であり、従来公知である種々の低抵抗性物質、たとえばSn、In等の酸化物と混合して低抵抗の着色膜形成用塗布液を容易に製造しうることも判明した。
【0021】
本発明において用いられる一般式がZSiO(Zは金属元素)であるオリビン型複合酸化物であって、ZがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるオリビン型複合酸化物からなる顔料、又は一般式がAB(A、Bは金属元素)であるスピネル型複合酸化物であって、AがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるスピネル型複合酸化物からなる顔料としては種々の物質が使用できる。複合酸化物顔料は、通常、原料を混合後焼成して製造され、他の顔料あるいは染料に比べて耐熱性及び耐薬品性に優れるという長所があり、本発明にとって好ましい効果を有する。本発明でいう平均粒径は、基体に塗布する塗布液中における平均粒径を示し、たとえば1次粒子をゾルにして2次粒子を形成させそれを塗布液に用いるような場合は平均2次粒径を示す。
【0022】
複合酸化物顔料の結晶構造としてはガーネット型、ルチル型、オリビン型、スピネル型等種々の構造を有する物質がある。具体的にはガーネット型として3CaO・Cr・3SiO、ルチル型として(Ni、Sb、Ti)O、オリビン型としてCoSiO、スピネル型としてCo(Al、Cr)等の物質があげられる。また特殊な構造としてはZrSiOにVが固溶した複合酸化物等があげられる。本発明においては、オリビン型、又はスピネル型の結晶構造を有する複合酸化物が使用される。
【0023】
ここで、スピネル型複合酸化物は一般式AB(A、Bは金属元素)で示され、前記一般式中において結晶中で金属原子が占有する位置が複数あり、数種の金属原子で置換可能である。一般に金属酸化物の光吸収特性は金属種に依存し、通常はその金属に特有な波長の光を選択的に吸収する。スピネル型複合酸化物の場合は前述の如く複数の金属原子を結晶中に固溶可能であり、そのため可視光全域にわたる均一な吸収が得られ、特に本発明の目的に沿ったものである。
【0024】
スピネル型複合酸化物顔料の組成としては、CuCr、(Co、Fe)(Fe、Cr)、(Fe、Mn)(Fe、Mn)、(Ni、Fe)(Fe、Cr)、(Fe、Co)Fe、(Zn、Mn)(Al、Cr、Fe)、(Zn、Co)(Al、Cr)等があげられる。
【0025】
複合酸化物顔料は、平均粒径が5〜200nmである。5nm未満では液中での分散安定性に乏しく、200nm超では塗膜外観が悪化する。複合酸化物顔料の塗布液中での含有量は、全固形分量に対し1〜90重量%であることが好ましい。1重量%未満では着色性能が充分でなく、90重量%超では膜の強度が低下するため好ましくない。
【0026】
複合酸化物を含む液を合成する際には複合酸化物粒子が液中に均一に分散していることが必要である。粒子の均一分散が可能な手法であれば分散媒、分散法等は特に限定されず、公知の種々の分散媒、分散法が使用できる。
【0027】
前記粒子の均一分散が可能な手法として、特に好ましくは水又はアルコール等の有機溶媒中に粒子を添加し、界面活性剤、樹脂、酸、アルカリ等の分散助剤を添加し、コロイドミル、サンドミル、ホモジナイザー等の市販の粉砕器で分散させる手法を採用できる。特に分散助剤としては界面活性剤、樹脂が分散効率の点から有効である。界面活性剤としては特に陰イオン系及び非イオン系界面活性剤は好ましい。また樹脂としてはセルロース樹脂、ポリビニルアルコール、ポリフッ化スチレン、ポリスチレン、エポキシ樹脂、PET(ポリエチレンテレフタラート)、フェノール樹脂、ポリウレタン等が使用できる。
【0028】
本発明においては、塗布液中に複合酸化物を含むことで所期の目標を達成可能であるが、顔料は通常電気伝導性に乏しい。そのため、帯電防止性等の電気的特性を膜に付与する場合には、塗布液中にSn、In、Sb、Zn、Al、Ti、Si及びGaの群から選ばれる少なくとも1種の化合物を含有させることにより、透過率、表面抵抗値を制御できる。特にSbドープSnO又はSnドープInを塗布液中に添加した場合、前記酸化物は可視光に対しほぼ透明でかつ低抵抗であるため、塗膜の表面抵抗値を低下させつつ、透過率の制御ができる。
【0029】
本発明においては、塗布液中に公知の染料又は顔料を添加することにより得られる低抵抗着色膜の色調を変化させうる。染料としては公知のアゾ染料、アントラキノン染料等が使用できる。複合酸化物以外の顔料も種々使用でき、これらのうち特に窒素を0.1〜30重量%含有するTiO(1.0≦x<2.0)は着色力に優れ、またある程度の電導性も有しており、さらに分散性、安定性に優れるため特に好ましい。
【0030】
前記の窒素含有TiO(1.0≦x<2.0)の構造については、詳細には判明していないが、ルチル型TiOとアナタース型TiOの混相であると考えられる。TiO結晶中に酸素欠損構造が存在し、その欠損した結晶格子に窒素Nが入り込んだものと考えられる。したがって、より正確には若干量のTiONあるいはTiNを含有する酸素欠損型TiOであるといえる。これをX線回折法により分析すると、既知のTiOピークの他に未知の弱いピークが観測でき、TiONのピークと推定できるが正確には不明である。
【0031】
窒素を多量に含有しうるTiO(1.0≦x<2.0)は、ON計(酸素窒素測定計)等によりその窒素含有量(重量%)を正確に測定できる。
【0032】
また、Si化合物を液中に添加した場合、膜外観が向上するため好ましい。Si化合物としては特に制限されず、Si(OR)4−m(mは1〜4の整数、Rは炭素が1〜4個のアルキル基)で示される化合物、又はその加水分解物、部分加水分解物が好ましい。ケイ酸ソーダのイオン交換法等の公知手法によって得られる重合ケイ酸よりなるシリカゾルも好ましく使用できる。
【0033】
本発明では着色膜用塗布液又は低抵抗着色膜形成用塗布液として、複合酸化物を分散させた液又はさらに抵抗低減成分を添加した液をそのまま用いることもできる。また種々の溶媒で希釈して用いることもできる。使用できる溶媒としては特に限定はなく、水、又はアルコール、ケトン、エーテル、エステル類等種々の有機溶媒が使用できる。シリコーンオイル等のレベリング剤も添加できる。
【0034】
さらに上記着色膜又は低抵抗の着色膜形成用塗布液を用いて得られる着色膜又は低抵抗着色膜上に、前記膜よりも低屈折率の膜を形成し、解像度を損なうことなく蛍光灯の写り込み等を制御する低反射性能をも付与しうる。
【0035】
一般に、薄膜の光学的性能はその膜を構成する屈折率と膜厚とで決定される。ここで、一定の屈折率nを有する透明基体上に屈折率nを有する薄膜を付着させ、屈折率nの溶質中より波長λの光が入射した場合のエネルギー反射率Rを求める。光が膜中を通過する際の位相差をΔとすると、Δ=4πnd/λ(d:膜厚)であり、Δ=(2m+1)π(mは0以上の整数)、すなわち位相差Δが半波長の奇数倍の時に極小値をとり、このとき、(1)式のようになる。
【0036】
無反射条件を満たすには、(1)式においてR=0とおき、(2)式の条件が必要とされる。(2)式を2層構成に拡張した場合、(3)式のようになる。ただし、nは媒質側層の屈折率、nは基体側層の屈折率である。
【0037】
【数1】

Figure 0003729528
【0038】
ここで、n=1(空気)、n=1.52(ガラス)を(3)式に適用した場合、n/n=1.23となる。この場合、2層構成膜の最大の低反射性が得られる。n/n=1.23を満たさなくても、2層構成膜の屈折率がこれに近い値をとれる場合、低反射性が得られる。よって、基体側に設ける高屈折率層と媒質側に設ける低屈折率層は両者の屈折率比ができるだけ1.23に近い値を選択するのが望ましい。
【0039】
本発明において、所望の低反射膜を得るには、多層膜間の屈折率差とあわせて膜厚も重要な要素である。反射防止性能を有する多層の低反射膜の構成としては、反射防止をしたい波長をλとして、基体側より高屈折率層及び低屈折率層を光学厚みλ/2及びλ/4で構成した低反射膜、基体側より中屈折率層、高屈折率層及び低屈折率層を光学厚みλ/4、λ/2及びλ/4で順次形成した3層の低反射膜、基体側より低屈折率層、中屈折率層、高屈折率層及び低屈折率層を光学厚みλ/4、λ/4、λ/2及びλ/4で順次形成した4層の低反射膜等が典型例として知られている。
【0040】
また、着色膜、低反射着色膜又は低抵抗低反射着色膜において、低屈折率膜を構成する物質としてはケイ素化合物が屈折率、膜強度の点で好ましく用いられる。ケイ素化合物としては、Si(OR)4−m(mは1〜4の整数、Rは炭素が1〜4個のアルキル基)で示される化合物、又はその加水分解物、部分加水分解物が好ましい。ケイフッ化水素酸、ホウ酸を含む水溶液に二酸化ケイ素粉末を飽和させてなる溶液より析出させてできるケイ素化合物も使用できる。
【0041】
前記Si(OR)4−mで示される化合物又は部分加水分解物の低抵抗着色膜上への塗布方法としては、スピンコート法、ディップコート法、スプレー法、ロールコーター法、メニスカスコーター法等種々考えられ、特にスピンコート法は量産性、再現性に優れ、好ましい。かかる方法によって、10nm〜1μm程度の膜が形成できる。
【0042】
本発明の着色膜は高屈折率の複合酸化物を含有するため、上記低屈折率膜との2層で構成した場合前述の低反射性能が容易に発現できる。
【0043】
本発明において、着色膜、帯電防止性を有する低抵抗着色膜、帯電防止性及び低反射性を有する低抵抗低反射着色膜を形成する透明基体としては特に限定されない。目的に応じてソーダライムシリケートガラス、アルミノシリケートガラス、ボロシリケートガラス、リチウムアルミノシリケートガラス、石英ガラス等のガラス、鋼玉等の単結晶、マグネシア、サイアロン等の透光性セラミックス、ポリカーボネート等のプラスチックも使用できる。
【0044】
【作用】
本発明の着色膜、低抵抗着色膜又は低抵抗低反射着色膜においては、着色成分として着色力及び耐熱性に優れた複合酸化物の均一分散液を含む塗布液を用いて成膜されるため、高性能を有する膜が容易に得られる。
【0045】
【実施例】
以下に、実施例(例1〜13)、比較例(例14〜17)により本発明を具体的に説明するが、本発明はこれらによって限定されない。
【0046】
(1)透過率評価
日立製作所製スペクトロフォトメーターU−3500により視感透過率を測定した。さらにこの値よりブランク値として測定したブラウン管パネルの視感透過率を差し引き、膜による透過率低下を算出した。
【0047】
(2)低抵抗性評価
低抵抗着色膜について三菱油化製ハイレスタ抵抗測定器により相対湿度30%以下の雰囲気中で膜表面の表面抵抗値を測定した。
【0048】
(3)耐擦傷性
1kg重の荷重下、消しゴムで膜表面を50回往復後、その表面の傷の付き方を目視で判断した。評価基準は、○:傷が全く付かない、△:傷が多少付く、×:多く傷が付くか剥離、とした。
【0049】
(4)視感反射率
低反射着色膜、低反射低抵抗着色膜についてGAMMA分光反射スペクトル測定器により膜の380〜700nmの視感反射率を測定した。
【0050】
(例1)
組成式(Co、Fe)(Fe、Cr)で示される複合酸化物顔料(平均1次粒径35nm)10gを、あらかじめ界面活性剤(ノニルフェノールエトキシレート)3.0gを添加した水溶液50g中に添加して、サンドミルで2時間粉砕処理後、水で濃度10重量%に調整し平均2次粒径130nmのゾルを得た(A液)。
【0051】
A液を水:エタノール=20:80(重量比)の液を用いて、酸化物換算で固形分濃度1.2重量%となるように希釈後、ブラウン管パネル表面(フェース外面)にスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し約100nmの厚さの着色膜を得た。
【0052】
(例2)
組成式(Ni、Fe)(Fe、Cr)で示される複合酸化物顔料(平均1次粒径35nm)10gを、あらかじめ界面活性剤(ノニルフェノールエトキシレート)3.0gを添加した水溶液50g中に添加して、サンドミルで2時間粉砕処理後、水で濃度10重量%に調整し平均2次粒径130nmのゾルを得た(B液)。
【0053】
B液を水:エタノール=20:80(重量比)の液を用いて、酸化物換算で固形分濃度1.2重量%となるように希釈後、例1と同様にしてスピンコーターによりブラウン管パネル表面に着色膜を形成した。
【0054】
(例3)
組成式CoAlで示される複合酸化物顔料(平均1次粒径25nm)10gを、あらかじめ10重量%ポリビニルアルコール水溶液5.0gを添加した水溶液50g中に添加して、サンドミルで2時間粉砕処理後、水で濃度10重量%に調整し平均2次粒径130nmのゾルを得た(C液)。
【0055】
C液を水:エタノール=20:80(重量比)の液を用いて、酸化物換算で固形分濃度1.2重量%となるように希釈後、例1と同様にしてスピンコーターによりブラウン管パネル表面に着色膜を形成した。
【0056】
(例4)
組成式CoSiOで示される複合酸化物顔料(平均1次粒径25nm)10gを、あらかじめ界面活性剤(ドデシルベンゼンスルホン酸アンモニウム)3.0gを添加した水溶液50g中に添加して、サンドミルで2時間粉砕処理後、水で濃度10重量%に調整し平均2次粒径130nmのゾルを得た(D液)。
【0057】
D液を水:エタノール=20:80(重量比)の液を用いて、酸化物換算で固形分濃度1.2重量%となるように希釈後、例1と同様にしてスピンコーターによりブラウン管パネル表面に着色膜を形成した。
【0058】
(例5)
例1における160℃、30分間の加熱処理を450℃、30分間に変更して約95nmの厚さの着色膜を得た。
【0059】
(例6)
SbドープSnO粉末(原子比でSb/Sn=0.15、平均1次粒径10nm)15gを、水85g中に添加して、サンドミルで16時間粉砕して90℃で1時間加熱後、水で酸化物換算固形分濃度10重量%に調整し、平均2次粒径50nmのゾルを得た(E液)。
【0060】
A液とE液を3:7(重量比)となるように混合し、さらに水: エタノール=20:80(重量比)の液で固形分濃度1.2重量%となるように希釈後、例1と同様にスピンコーターによりブラウン管パネル表面に低抵抗着色膜を形成した。
【0061】
(例7)
B液とE液を3:7(重量比)となるように混合し、さらに水: エタノール=20:80(重量比)の液で固形分濃度1.2重量%となるように希釈後、例1と同様にスピンコーターによりブラウン管パネル表面に低抵抗着色膜を形成した。
【0062】
(例8)
SnドープIn粉末(原子比でSn/In=0.2、平均1次粒径30nm)15gを、水85g中に添加して、サンドミルで16時間粉砕して90℃で1時間加熱後、水で酸化物換算固形分濃度10重量%に調整し平均2次粒径50nmのゾルを得た(F液)。
【0063】
D液とF液を3:7(重量比)となるように混合し、さらに水: エタノール=20:80(重量比)の液で固形分濃度1.2重量%となるように希釈後、例1と同様にスピンコーターによりブラウン管パネル表面に低抵抗着色膜を形成した。
【0064】
(例9)
Si(OCのエタノール溶液(酸化物換算固形分5重量%)に、SiO:水が1:8(モル比)となるように水をpH2.8に調整した硝酸酸性水溶液として添加し、1時間撹拌後プロピレングリコールモノメチルエーテルアセテート:イソプロピルアルコール:ジアセトンアルコール=5:4:1(重量比)に調整された混合有機溶媒で酸化物換算固形分濃度1.0重量%となるように希釈した(G液)。
【0065】
例1における160℃、30分の加熱処理を60℃、10分の加熱処理に変更し約105nmの厚さの着色膜を得た。この膜の上にG液をスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し低反射着色膜を得た。
【0066】
(例10)
例5における160℃、30分の加熱処理を60℃、10分の加熱処理に変更し、約105nmの厚さの着色膜を得た。この膜の上にG液をスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し低反射低抵抗着色膜を得た。
【0067】
(例11)
例7における160℃、30分の加熱処理を60℃、10分の加熱処理に変更し約105nmの厚さの着色膜を得た。この膜の上にG液をスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し低反射低抵抗着色膜を得た。
【0068】
(例12)
A液とE液とG液を3:6:1(重量比)となるように混合したのち、プロピレングリコールモノメチルエーテルアセテート:イソプロピルアルコール:ジアセトンアルコール=5:4:1(重量比)に調整された混合有機溶媒で酸化物換算固形分濃度1.2重量%となるように希釈した。その後、ブラウン管パネル表面にスピンコーターで100rpmの回転速度で60秒間塗布し、その後60℃で10分間加熱し約110nmの厚さの低抵抗着色膜を得た。この膜の上にG液をスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し低反射低抵抗着色膜を得た。
【0069】
(例13)
例11における160℃、30分間の加熱処理を450℃、30分間の加熱処理に変更して低反射低抵抗着色膜を得た。
【0070】
(例14)
銅フタロシアニンブルーをエタノール中に固形分濃度1重量%となるように分散した(H液)。H液とG液を3:7(重量比)となるように混合し、ブラウン管パネル表面(フェース外面)にスピンコーターで100rpmの回転速度で60秒間塗布し、その後160℃で30分間加熱し約100nmの厚さの膜を得た。
【0071】
(例15)
例14における160℃、30分間の加熱処理を450℃、30分間に変更して約95nmの厚さの膜を得た。
【0072】
(例16)
E液をエタノールで固形分濃度1.2重量%となるように希釈した後、例14と同様にしてスピンコーターにより膜を形成した。
【0073】
(例17)
例14における160℃、30分間の加熱処理を60℃、10分間に変更して約105nmの厚さの膜を得た。この膜の上にG液をスピンコーターで100rpmの回転速度で60秒間塗布し、その後450℃で30分間加熱し約100nmの厚さの膜を得た。
【0074】
例1〜17における膜の透過率低下、表面抵抗値、視感反射率、耐擦傷性を表1に示す。
【0075】
【表1】
Figure 0003729528
【0076】
【発明の効果】
本発明におけるオリビン型複合酸化物分散液、又はスピネル型複合酸化物分散液を含む着色膜形成用塗布液により、耐擦傷性、耐熱性に優れ、可視光領域全域における膜の透過率を均一かつ自在に調整できるという高品位な着色性を膜に付与し得る。また、導電性成分を付与することにより、充分な帯電防止性を付与できる。[0001]
[Industrial application fields]
The present invention relates to a coating solution for forming a colored film applied to a cathode ray tube panel or the like, a colored film formed by coating the same, and a glass article on which the colored film is formed.
[0002]
[Prior art]
Conventionally, coating methods for colored films, colored antistatic films, low reflection antistatic films, colored low reflection antistatic films and the like have been used not only for optical equipment but also for consumer equipment, particularly TV, computer terminal cathode ray tubes (CRT). Many studies have been made for use.
[0003]
Regarding the coloring of the film, JP-A-1-275664 proposes a method using a water-soluble phthalocyanine compound. As for the colored film having antistatic ability, JP-A-1-251545 describes an antistatic film using methyl violet. However, these colorants have poor heat resistance and have a problem of fading significantly when heated during the cathode ray tube manufacturing process.
[0004]
In addition, since these substances are essentially insulators, it is necessary to add a low-resistance substance to the colorant when trying to impart antistatic properties to the film, and the stability of these colorants is poor. There was a problem that resistance could not be sufficiently lowered due to resistance inhibition.
[0005]
The main purpose of the colored film is to improve the contrast of the image of the cathode ray tube, so that uniform absorption over the entire visible light region is required. The colorant is preferably black, but uniform absorption is very difficult with the conventional colorant.
[0006]
Regarding antistatic properties, JP-A-63-76247 proposes a method in which the surface of a cathode ray tube panel is heated to about 350 ° C. and a low resistance oxide layer such as tin oxide or indium oxide is provided by a CVD method. Yes. However, the method of forming the antistatic film by the CVD method is not only costly, but also heats the surface of the cathode ray tube to a high temperature, causing problems such as dropping off the phosphor in the cathode ray tube and reducing the dimensional accuracy. there were. In this case, a high temperature of about 400 ° C. is usually required, and a sufficiently low resistance film cannot be obtained when fired at a low temperature.
[0007]
As for the low reflectivity, as described in JP-A-61-1118931, SiO having fine irregularities on the surface in order to have an antiglare effect on the surface of the cathode ray tube. 2 Methods such as depositing layers or etching the surface with hydrofluoric acid to provide irregularities have been employed.
[0008]
However, these methods are called non-glare treatment that scatters external light and are not essentially methods of providing a low reflection layer, so there is a limit to the reduction of reflectivity, and in the case of a cathode ray tube, etc., it also causes a decrease in resolution. It was.
[0009]
As for the low reflection low resistance film, JP-A-3-93136 describes a method of providing an optical multilayer film by an ion plating method. However, the ion plating method is not industrially inexpensive.
[0010]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned problems, and provides a high-performance and novel coating solution for forming a colored film, a colored film, and a glass article on which the colored film is formed.
[0011]
[Means for Solving the Problems]
In the present invention, the general formula is Z 2 SiO 4 An olivine type complex oxide, wherein Z is a metal element, wherein Z is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn From complex oxide The average particle size is 5 to 200 nm A coating solution for forming a colored film, characterized by containing a pigment-dispersed pigment having a general formula of AB 2 O 4 (A and B are metal elements) is a spinel type complex oxide, and A is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. From spinel complex oxide The average particle size is 5 to 200 nm A coating solution for forming a colored film, which contains a pigment-dispersed liquid, and a coating solution for forming a colored film wherein B is Cr, Fe and Al.
[0012]
The coating solution of the present invention is a compound of at least one metal selected from the group consisting of Sn, In, Sb, Zn, Al, Ti, Si and Ga, and is different from the pigment made of the composite oxide. If the compound is included, it becomes a low-resistance coating solution for forming a colored film, which is preferable because it can impart antistatic properties to the formed film. As the compound, SnO 2 , In 2 O 3 , ZnO, Al 2 O 3 TiO 2 , SiO 2 (Silica sol), Sb-doped SnO 2 , Sn-doped In 2 O 3 (ITO), Al (or Ga) doped ZnO, Al (or Ga) doped TiO 2 Etc. are preferred.
[0013]
The colored film formed by applying the coating solution for forming a colored film of the present invention is preferable because the transmittance decreases in the wavelength region of light of 380 to 700 nm and the transmittance can be adjusted in the wavelength region of almost all visible light. . The degree of reduction in the transmittance may be in a range where an improvement in contrast can be obtained practically, should be at least 5% lower, and preferably should be 5-30% lower. If it exceeds 30%, the brightness of the image itself decreases, which is not preferable.
[0014]
In this case, if the colored film forming coating liquid of the present invention contains at least one metal compound selected from the group of Sn, In, Sb, Zn, Al, Ti, Si and Ga as described above. , A low resistance colored film having a reduced transmittance and an antistatic ability in the light wavelength region of 380 to 700 nm can be formed. With respect to the antistatic ability, it is sufficient that the electrostatic charge of the charged glass article is quickly attenuated, and at least 1 × 10. 10 Ω / □ or less, preferably 1 × 10 7 Any surface (electrical) resistance value of Ω / □ or less may be used.
[0015]
Further, when the colored film or the low resistance colored film of the present invention is formed on the transparent substrate from the substrate side, and the coating having a lower refractive index than the colored film or the low resistance colored film is sequentially formed thereon, the antireflection property is obtained. A multi-layered low-reflection colored film or a low-reflection low-resistance colored film can be formed.
[0016]
The colored film, low-resistance colored film, low-reflection colored film, and low-resistance and low-reflection colored film of the present invention are preferably used for glass articles used for display applications such as cathode ray tubes (CRT). In recent years, when a cathode ray tube as a glass article is used in a terminal display device of a computer apparatus, a demand for high resolution is increasing along with a demand for high resolution.
[0017]
However, if the transmittance of the glass itself is lowered for the purpose of improving the contrast, the thickness of the faceplate of the panel increases as the display becomes larger. It becomes a problem.
[0018]
In the present invention, the contrast is improved by forming a film on the surface of the glass without lowering the transmittance of the glass itself and imparting light absorption to the film. Therefore, it is very easy to freely impart light absorption to a display glass panel having various thicknesses.
[0019]
The emission spectrum of a cathode ray tube is composed of a plurality of spectra, and in order to improve the contrast without breaking the balance of the emission spectrum, coloring with a uniform light absorption over the visible light region rather than a colored film having a specific light absorption A membrane is preferred.
[0020]
As a result of earnest research from this point of view, the general formula is Z 2 SiO 4 An olivine type complex oxide, wherein Z is a metal element, wherein Z is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn A coating solution for forming a colored film comprising a liquid in which a pigment made of a complex oxide is dispersed, or a general formula AB 2 O 4 (A and B are metal elements) is a spinel type complex oxide, and A is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. By using a coating solution for forming a colored film characterized by including a liquid in which a pigment made of a spinel complex oxide is dispersed, it has a substantially uniform and sufficient coloring power in the visible light region, and is also heat resistant. It was also found that an excellent colored film can be produced. The liquid containing the colorant is stable and can be easily mixed with various conventionally known low-resistance substances such as Sn, In and other oxides to form a low-resistance colored film forming coating liquid. It was also found out.
[0021]
The general formula used in the present invention is Z 2 SiO 4 An olivine type complex oxide, wherein Z is a metal element, wherein Z is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn Pigment made of complex oxide, or general formula is AB 2 O 4 (A and B are metal elements) is a spinel type complex oxide, and A is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. Various materials can be used as the pigment made of the spinel complex oxide. A composite oxide pigment is usually produced by mixing raw materials and then firing, and has the advantage of being excellent in heat resistance and chemical resistance compared to other pigments or dyes, and has a favorable effect for the present invention. The average particle diameter in the present invention indicates an average particle diameter in a coating solution applied to a substrate. For example, when secondary particles are formed by using primary particles as a sol and used as a coating solution, the average secondary particle size is used. The particle size is shown.
[0022]
As the crystal structure of the complex oxide pigment, there are substances having various structures such as a garnet type, a rutile type, an olivine type, and a spinel type. Specifically, 3CaO · Cr as a garnet type 2 O 3 ・ 3SiO 2 , (Ni, Sb, Ti) O as rutile type 2 , Co as olivine type 2 SiO 4 , Co (Al, Cr) as spinel type 2 O 4 And the like. As a special structure, ZrSiO 4 And composite oxides in which V is dissolved. In the present invention, a composite oxide having an olivine type or spinel type crystal structure is used.
[0023]
Here, the spinel-type complex oxide has the general formula AB. 2 O 4 (A and B are metal elements) In the general formula, there are a plurality of positions occupied by metal atoms in the crystal, and they can be substituted with several kinds of metal atoms. In general, the light absorption characteristics of a metal oxide depend on the metal species, and usually selectively absorb light having a wavelength characteristic of the metal. In the case of the spinel type complex oxide, a plurality of metal atoms can be dissolved in the crystal as described above, so that uniform absorption over the entire visible light region can be obtained, and this is particularly in line with the object of the present invention.
[0024]
The composition of the spinel complex oxide pigment is CuCr 2 O 4 , (Co, Fe) (Fe, Cr) 2 O 4 , (Fe, Mn) (Fe, Mn) 2 O 4 , (Ni, Fe) (Fe, Cr) 2 O 4 , (Fe, Co) Fe 2 O 4 , (Zn, Mn) (Al, Cr, Fe) 2 O 4 , (Zn, Co) (Al, Cr) 2 O 4 Etc.
[0025]
The composite oxide pigment has an average particle diameter of 5 to 200 nm. The If it is less than 5 nm, the dispersion stability in the liquid is poor, and if it exceeds 200 nm, the appearance of the coating film deteriorates. The The content of the composite oxide pigment in the coating solution is preferably 1 to 90% by weight with respect to the total solid content. If it is less than 1% by weight, the coloring performance is not sufficient, and if it exceeds 90% by weight, the strength of the film decreases, which is not preferable.
[0026]
When synthesizing a liquid containing a complex oxide, it is necessary that the complex oxide particles are uniformly dispersed in the liquid. The dispersion medium and the dispersion method are not particularly limited as long as the particles can be uniformly dispersed, and various known dispersion media and dispersion methods can be used.
[0027]
As a method capable of uniformly dispersing the particles, it is particularly preferable to add particles in an organic solvent such as water or alcohol, add a dispersion aid such as a surfactant, resin, acid, alkali, etc., colloid mill, sand mill A method of dispersing with a commercially available grinder such as a homogenizer can be employed. In particular, surfactants and resins are effective as dispersion aids from the viewpoint of dispersion efficiency. As the surfactant, anionic and nonionic surfactants are particularly preferable. As the resin, cellulose resin, polyvinyl alcohol, polyfluorinated styrene, polystyrene, epoxy resin, PET (polyethylene terephthalate), phenol resin, polyurethane and the like can be used.
[0028]
In the present invention, the intended goal can be achieved by including a complex oxide in the coating solution, but the pigment is usually poor in electrical conductivity. Therefore, when imparting electrical characteristics such as antistatic properties to the film, the coating solution contains at least one compound selected from the group consisting of Sn, In, Sb, Zn, Al, Ti, Si and Ga. By controlling, the transmittance and the surface resistance value can be controlled. Especially Sb-doped SnO 2 Or Sn-doped In 2 O 3 Is added to the coating solution, the oxide is almost transparent to visible light and has a low resistance. Therefore, the transmittance can be controlled while reducing the surface resistance value of the coating film.
[0029]
In the present invention, the color tone of the low resistance colored film obtained by adding a known dye or pigment to the coating solution can be changed. Known azo dyes and anthraquinone dyes can be used as the dye. Various pigments other than complex oxides can be used, and among these, TiO containing 0.1 to 30% by weight of nitrogen in particular. x (1.0 ≦ x <2.0) is particularly preferable because it is excellent in coloring power, has a certain degree of electrical conductivity, and is excellent in dispersibility and stability.
[0030]
Nitrogen-containing TiO x The structure of (1.0 ≦ x <2.0) is not known in detail, but rutile TiO 2 And anatase TiO 2 It is considered to be a mixed phase. TiO 2 It is considered that an oxygen deficient structure exists in the crystal, and nitrogen N has entered the deficient crystal lattice. Therefore, more precisely, oxygen-deficient TiO containing a small amount of TiON or TiN. 2 You can say that. When this is analyzed by the X-ray diffraction method, the known TiO 2 In addition to the peak, an unknown weak peak can be observed, which can be estimated as a TiON peak, but is not exactly known.
[0031]
TiO that can contain a large amount of nitrogen x (1.0 ≦ x <2.0) can accurately measure the nitrogen content (% by weight) with an ON meter (oxygen nitrogen meter) or the like.
[0032]
Moreover, it is preferable to add a Si compound to the liquid because the film appearance is improved. The Si compound is not particularly limited, and Si (OR) m R 4-m A compound represented by (wherein m is an integer of 1 to 4 and R is an alkyl group having 1 to 4 carbon atoms), or a hydrolyzate or partial hydrolyzate thereof is preferred. A silica sol made of polymerized silicic acid obtained by a known method such as an ion exchange method of sodium silicate can also be preferably used.
[0033]
In the present invention, as the colored film coating liquid or the low resistance colored film forming coating liquid, a liquid in which a complex oxide is dispersed or a liquid to which a resistance reducing component is further added can be used as it is. Moreover, it can also be used by diluting with various solvents. The solvent that can be used is not particularly limited, and various organic solvents such as water or alcohols, ketones, ethers and esters can be used. Leveling agents such as silicone oil can also be added.
[0034]
Further, on the colored film or the low resistance colored film obtained by using the colored film or the low resistance colored film forming coating solution, a film having a refractive index lower than that of the film is formed, and the fluorescent lamp can be used without losing resolution. Low reflection performance for controlling reflection and the like can also be imparted.
[0035]
In general, the optical performance of a thin film is determined by the refractive index and film thickness constituting the film. Here, a constant refractive index n s A thin film having a refractive index n is deposited on a transparent substrate having a refractive index n 0 The energy reflectance R when light of wavelength λ enters from the solute is obtained. If the phase difference when light passes through the film is Δ, Δ = 4πnd / λ (d: film thickness), and Δ = (2 m 1 +1) π (m 1 Is an integer greater than or equal to 0), that is, when the phase difference Δ is an odd multiple of a half wavelength, a minimum value is obtained.
[0036]
In order to satisfy the non-reflection condition, R = 0 is set in the expression (1), and the condition of the expression (2) is required. When formula (2) is expanded to a two-layer configuration, formula (3) is obtained. Where n 1 Is the refractive index of the medium side layer, n 2 Is the refractive index of the substrate side layer.
[0037]
[Expression 1]
Figure 0003729528
[0038]
Where n 0 = 1 (air), n s = 1.52 (glass) when applied to equation (3), n 2 / N 1 = 1.23. In this case, the maximum low reflectivity of the two-layer structure film can be obtained. n 2 / N 1 Even if it does not satisfy = 1.23, if the refractive index of the two-layer film can take a value close to this, low reflectivity can be obtained. Therefore, it is desirable that the refractive index ratio of the high refractive index layer provided on the substrate side and the low refractive index layer provided on the medium side be as close to 1.23 as possible.
[0039]
In the present invention, in order to obtain a desired low reflection film, the film thickness is an important factor in addition to the refractive index difference between the multilayer films. The multilayer low-reflection film having anti-reflection performance has a structure in which the wavelength to be anti-reflection is λ and the high refractive index layer and the low refractive index layer are optical thicknesses λ / 2 and λ / 4 from the substrate side. Reflective film, three-layer low-reflective film in which a medium refractive index layer, a high refractive index layer, and a low refractive index layer are sequentially formed with optical thicknesses λ / 4, λ / 2, and λ / 4 from the substrate side, and lower refractive than the substrate side A typical example is a four-layer low reflective film in which a refractive index layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer are sequentially formed with optical thicknesses λ / 4, λ / 4, λ / 2, and λ / 4. Are known.
[0040]
Further, in the colored film, the low reflective colored film or the low resistance low reflective colored film, a silicon compound is preferably used as a material constituting the low refractive index film in terms of refractive index and film strength. As a silicon compound, Si (OR) m R 4-m A compound represented by (where m is an integer of 1 to 4 and R is an alkyl group having 1 to 4 carbon atoms), or a hydrolyzate or partial hydrolyzate thereof is preferred. A silicon compound formed by precipitation from a solution obtained by saturating silicon dioxide powder in an aqueous solution containing hydrofluoric acid and boric acid can also be used.
[0041]
Si (OR) m R 4-m As a coating method on the low-resistance colored film of the compound or the partial hydrolyzate shown in FIG. 4, various methods such as spin coating method, dip coating method, spray method, roll coater method, meniscus coater method, etc. are considered. Excellent in mass productivity and reproducibility, which is preferable. By this method, a film of about 10 nm to 1 μm can be formed.
[0042]
Since the colored film of the present invention contains a complex oxide having a high refractive index, the above-described low reflection performance can be easily exhibited when it is composed of two layers with the low refractive index film.
[0043]
In the present invention, the transparent substrate for forming the colored film, the low resistance colored film having antistatic properties, and the low resistance and low reflective colored film having antistatic properties and low reflectivity is not particularly limited. Depending on the purpose, soda lime silicate glass, aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass, quartz glass, etc., single crystals such as steel balls, translucent ceramics such as magnesia and sialon, and plastics such as polycarbonate are also used. it can.
[0044]
[Action]
In the colored film, low-resistance colored film, or low-resistance and low-reflection colored film of the present invention, the film is formed using a coating solution containing a uniform dispersion of a complex oxide having excellent coloring power and heat resistance as a coloring component. A film having high performance can be easily obtained.
[0045]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples (Examples 1 to 13) and Comparative Examples (Examples 14 to 17), but the present invention is not limited thereto.
[0046]
(1) Transmittance evaluation
The luminous transmittance was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd. Further, the luminous transmittance of the cathode ray tube panel measured as a blank value was subtracted from this value, and the decrease in transmittance due to the film was calculated.
[0047]
(2) Low resistance evaluation
About the low resistance colored film, the surface resistance value of the film surface was measured in an atmosphere having a relative humidity of 30% or less using a Hiresta resistance measuring instrument manufactured by Mitsubishi Oil Corporation.
[0048]
(3) Scratch resistance
Under a load of 1 kg, the film surface was reciprocated 50 times with an eraser, and then how the surface was scratched was visually determined. The evaluation criteria were as follows: ○: no scratches were observed, Δ: some scratches were attached, ×: many scratches were attached or peeling.
[0049]
(4) Luminous reflectance
With respect to the low reflection colored film and the low reflection low resistance colored film, the luminous reflectance of 380 to 700 nm of the film was measured with a GAMMA spectral reflection spectrum measuring instrument.
[0050]
(Example 1)
Composition formula (Co, Fe) (Fe, Cr) 2 O 4 Is added to 50 g of an aqueous solution to which 3.0 g of a surfactant (nonylphenol ethoxylate) is added in advance, and pulverized with a sand mill for 2 hours. To obtain a sol having an average secondary particle size of 130 nm (liquid A).
[0051]
Liquid A was diluted with water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight in terms of oxide, and then applied to the cathode ray tube panel surface (face outer surface) with a spin coater. The coating was applied at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C. for 30 minutes to obtain a colored film having a thickness of about 100 nm.
[0052]
(Example 2)
Composition formula (Ni, Fe) (Fe, Cr) 2 O 4 Is added to 50 g of an aqueous solution to which 3.0 g of a surfactant (nonylphenol ethoxylate) is added in advance, and pulverized with a sand mill for 2 hours. To obtain a sol having an average secondary particle size of 130 nm (liquid B).
[0053]
Liquid B was diluted with water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight in terms of oxide, and then a cathode ray tube panel using a spin coater in the same manner as in Example 1. A colored film was formed on the surface.
[0054]
(Example 3)
Composition formula CoAl 2 O 4 10 g of the composite oxide pigment (average primary particle size 25 nm) is added to 50 g of an aqueous solution to which 5.0 g of a 10 wt% polyvinyl alcohol aqueous solution has been added in advance, pulverized with a sand mill for 2 hours, and then concentrated with water. A sol having an average secondary particle size of 130 nm was obtained by adjusting to 10% by weight (liquid C).
[0055]
C liquid was diluted with water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight in terms of oxide, and then a cathode ray tube panel using a spin coater in the same manner as in Example 1. A colored film was formed on the surface.
[0056]
(Example 4)
Composition formula Co 2 SiO 4 10 g of the composite oxide pigment (average primary particle size 25 nm) represented by the formula (1) was added to 50 g of an aqueous solution to which 3.0 g of a surfactant (ammonium dodecylbenzenesulfonate) had been added in advance, and pulverized for 2 hours in a sand mill A sol having an average secondary particle size of 130 nm was obtained by adjusting the concentration to 10% by weight with water (D liquid).
[0057]
The D liquid was diluted with water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight in terms of oxide, and then a cathode ray tube panel using a spin coater in the same manner as in Example 1. A colored film was formed on the surface.
[0058]
(Example 5)
The heat treatment at 160 ° C. for 30 minutes in Example 1 was changed to 450 ° C. for 30 minutes to obtain a colored film having a thickness of about 95 nm.
[0059]
(Example 6)
Sb-doped SnO 2 15 g of powder (Sb / Sn = 0.15 in atomic ratio, average primary particle size 10 nm) is added to 85 g of water, pulverized with a sand mill for 16 hours, heated at 90 ° C. for 1 hour, and then oxidized with water. The sol having an average secondary particle size of 50 nm was obtained by adjusting the converted solid content concentration to 10% by weight (Liquid E).
[0060]
Liquid A and liquid E were mixed at a ratio of 3: 7 (weight ratio), and further diluted with a liquid of water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight. In the same manner as in Example 1, a low resistance colored film was formed on the surface of the cathode ray tube panel by a spin coater.
[0061]
(Example 7)
Liquid B and liquid E were mixed at a ratio of 3: 7 (weight ratio), and further diluted with a liquid of water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight. In the same manner as in Example 1, a low resistance colored film was formed on the surface of the cathode ray tube panel by a spin coater.
[0062]
(Example 8)
Sn-doped In 2 O 3 15 g of powder (Sn / In = 0.2 in atomic ratio, average primary particle size 30 nm) was added to 85 g of water, pulverized with a sand mill for 16 hours, heated at 90 ° C. for 1 hour, and then oxidized with water. A sol having an average secondary particle size of 50 nm was obtained by adjusting the converted solid content concentration to 10% by weight (liquid F).
[0063]
D liquid and F liquid were mixed at a ratio of 3: 7 (weight ratio), and further diluted with a liquid of water: ethanol = 20: 80 (weight ratio) to a solid content concentration of 1.2% by weight. In the same manner as in Example 1, a low resistance colored film was formed on the surface of the cathode ray tube panel by a spin coater.
[0064]
(Example 9)
Si (OC 2 H 5 ) 4 Into an ethanol solution (solid content 5% by weight in terms of oxide), SiO 2 : Water was added as a nitric acid acidic aqueous solution adjusted to pH 2.8 so that the water was 1: 8 (molar ratio), and after stirring for 1 hour, propylene glycol monomethyl ether acetate: isopropyl alcohol: diacetone alcohol = 5: 4: It diluted with the mixed organic solvent adjusted to 1 (weight ratio) so that it might become 1.0 weight% of solid content density | concentrations of oxide (G liquid).
[0065]
The heat treatment at 160 ° C. for 30 minutes in Example 1 was changed to the heat treatment at 60 ° C. for 10 minutes to obtain a colored film having a thickness of about 105 nm. On this film, the G liquid was applied with a spin coater at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C. for 30 minutes to obtain a low reflection colored film.
[0066]
(Example 10)
The heat treatment at 160 ° C. for 30 minutes in Example 5 was changed to a heat treatment at 60 ° C. for 10 minutes to obtain a colored film having a thickness of about 105 nm. On this film, the G solution was applied for 60 seconds at a rotation speed of 100 rpm with a spin coater, and then heated at 160 ° C. for 30 minutes to obtain a low-reflection low-resistance colored film.
[0067]
(Example 11)
The heat treatment at 160 ° C. for 30 minutes in Example 7 was changed to the heat treatment at 60 ° C. for 10 minutes to obtain a colored film having a thickness of about 105 nm. On this film, the G solution was applied for 60 seconds at a rotation speed of 100 rpm with a spin coater, and then heated at 160 ° C. for 30 minutes to obtain a low-reflection low-resistance colored film.
[0068]
(Example 12)
After mixing A liquid, E liquid and G liquid so that it may become 3: 6: 1 (weight ratio), it adjusts to propylene glycol monomethyl ether acetate: isopropyl alcohol: diacetone alcohol = 5: 4: 1 (weight ratio). It diluted with the mixed organic solvent made so that it might become 1.2 weight% of oxide conversion solid content concentration. Thereafter, it was applied to the surface of the cathode ray tube panel with a spin coater at a rotational speed of 100 rpm for 60 seconds, and then heated at 60 ° C. for 10 minutes to obtain a low resistance colored film having a thickness of about 110 nm. On this film, the G solution was applied for 60 seconds at a rotation speed of 100 rpm with a spin coater, and then heated at 160 ° C. for 30 minutes to obtain a low-reflection low-resistance colored film.
[0069]
(Example 13)
The heat treatment at 160 ° C. for 30 minutes in Example 11 was changed to the heat treatment at 450 ° C. for 30 minutes to obtain a low-reflection, low-resistance colored film.
[0070]
(Example 14)
Copper phthalocyanine blue was dispersed in ethanol to a solid content concentration of 1% by weight (Liquid H). Liquids H and G were mixed at a ratio of 3: 7 (weight ratio), applied to the surface of the cathode ray tube panel (the outer surface of the face) with a spin coater at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C. for 30 minutes. A film with a thickness of 100 nm was obtained.
[0071]
(Example 15)
The heat treatment at 160 ° C. for 30 minutes in Example 14 was changed to 450 ° C. for 30 minutes to obtain a film having a thickness of about 95 nm.
[0072]
(Example 16)
The solution E was diluted with ethanol to a solid content concentration of 1.2% by weight, and then a film was formed by a spin coater in the same manner as in Example 14.
[0073]
(Example 17)
The heat treatment at 160 ° C. for 30 minutes in Example 14 was changed to 60 ° C. for 10 minutes to obtain a film having a thickness of about 105 nm. On this film, the G solution was applied with a spin coater at a rotation speed of 100 rpm for 60 seconds, and then heated at 450 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm.
[0074]
Table 1 shows the decrease in transmittance, surface resistance, luminous reflectance, and scratch resistance of the films in Examples 1-17.
[0075]
[Table 1]
Figure 0003729528
[0076]
【The invention's effect】
The coating liquid for forming a colored film containing the olivine type complex oxide dispersion liquid or the spinel type complex oxide dispersion liquid in the present invention is excellent in scratch resistance and heat resistance, and has uniform film transmittance throughout the visible light region. High-quality colorability that can be freely adjusted can be imparted to the film. Moreover, sufficient antistatic property can be provided by providing a conductive component.

Claims (10)

一般式がZSiO(Zは金属元素)であるオリビン型複合酸化物であって、ZがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるオリビン型複合酸化物からなり平均粒径が5〜200nmである顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液。An olivine-type composite oxide having a general formula of Z 2 SiO 4 (Z is a metal element), wherein Z is at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn colored film-forming coating liquid having an average particle diameter Ri Do from olivine-type composite oxide is a kind of element, characterized in that it comprises a liquid in which a pigment is dispersed Ru 5~200nm der. 一般式がAB(A、Bは金属元素)であるスピネル型複合酸化物であって、AがTi、V、Cr、Mn、Fe、Co、Ni、Cu及びZnの群から選ばれる少なくとも1種の元素であるスピネル型複合酸化物からなり平均粒径が5〜200nmである顔料を分散させた液を含むことを特徴とする着色膜形成用塗布液。A spinel-type composite oxide having a general formula of AB 2 O 4 (A and B are metal elements), wherein A is selected from the group of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn colored film-forming coating liquid which comprises at least one having an average particle diameter Do Ri spinel type complex oxide an element has a pigment dispersed Ru 5~200nm der liquid. 前記BがCr、Fe及びAlである請求項2記載の着色膜形成用塗布液。  The coating liquid for forming a colored film according to claim 2, wherein the B is Cr, Fe and Al. 前記塗布液中にSn、In、Sb、Zn、Al、Ti、Si及びGaの群から選ばれる少なくとも1種の金属の化合物を含む請求項1〜3のいずれか1項記載の着色膜形成用塗布液。  4. The colored film forming device according to claim 1, wherein the coating solution contains at least one metal compound selected from the group consisting of Sn, In, Sb, Zn, Al, Ti, Si, and Ga. Coating liquid. 前記塗布液中に染料又は顔料を含む請求項1〜4のいずれか1項記載の着色膜形成用塗布液。  The colored film-forming coating liquid according to claim 1, wherein the coating liquid contains a dye or a pigment. 請求項1〜5のいずれか1項記載の着色膜形成用塗布液を塗布することにより形成された、380〜700nmの光の波長領域において透過率が低下することを特徴とする着色膜。  A colored film having a reduced transmittance in a wavelength region of light of 380 to 700 nm, formed by applying the coating liquid for forming a colored film according to any one of claims 1 to 5. 請求項4記載の着色膜形成用塗布液を塗布することにより形成された、380〜700nmの光の波長領域において透過率が低下しかつ帯電防止能を有することを特徴とする低抵抗着色膜。  A low-resistance colored film, which is formed by applying the colored film-forming coating solution according to claim 4 and has a reduced transmittance and an antistatic ability in a light wavelength region of 380 to 700 nm. 透明基体上に基体側から請求項6記載の着色膜、又は請求項7記載の低抵抗着色膜を形成し、その上に前記着色膜又は前記低抵抗着色膜より低屈折率の被膜が順次形成されてなることを特徴とする多層の低反射着色膜又は低反射低抵抗着色膜。  The colored film according to claim 6 or the low-resistance colored film according to claim 7 is formed on the transparent substrate from the substrate side, and a coating having a lower refractive index than the colored film or the low-resistance colored film is sequentially formed thereon. A multilayer low-reflection colored film or a low-reflection low-resistance colored film, 請求項6記載の着色膜、請求項7記載の低抵抗着色膜、又は請求項8記載の多層の低反射着色膜又は低反射低抵抗着色膜が表面に形成されてなることを特徴とするガラス物品。  A glass comprising the colored film according to claim 6, the low-resistance colored film according to claim 7, or the multilayer low-reflection colored film or low-reflection low-resistance colored film according to claim 8 formed on the surface. Goods. 前記ガラス物品が陰極線管用パネルである請求項9記載のガラス物品。  The glass article according to claim 9, wherein the glass article is a cathode ray tube panel.
JP01013295A 1995-01-25 1995-01-25 Colored film-forming coating solution, colored film and glass article on which colored film is formed Expired - Lifetime JP3729528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01013295A JP3729528B2 (en) 1995-01-25 1995-01-25 Colored film-forming coating solution, colored film and glass article on which colored film is formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01013295A JP3729528B2 (en) 1995-01-25 1995-01-25 Colored film-forming coating solution, colored film and glass article on which colored film is formed

Publications (2)

Publication Number Publication Date
JPH08208274A JPH08208274A (en) 1996-08-13
JP3729528B2 true JP3729528B2 (en) 2005-12-21

Family

ID=11741771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01013295A Expired - Lifetime JP3729528B2 (en) 1995-01-25 1995-01-25 Colored film-forming coating solution, colored film and glass article on which colored film is formed

Country Status (1)

Country Link
JP (1) JP3729528B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945209A (en) * 1996-11-07 1999-08-31 Fuji Photo Film Co., Ltd. Anti-reflection film and plasma display panel
JP4275787B2 (en) * 1999-01-21 2009-06-10 住友大阪セメント株式会社 Shading film
WO2011025963A1 (en) * 2009-08-28 2011-03-03 3M Innovative Properties Company Optical device with antistatic coating

Also Published As

Publication number Publication date
JPH08208274A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
KR970001594B1 (en) Coating material for antistatic high refractive index film formation, antistatic anti-reflection film-covered transparent material laminated body and cathode ray tube provided therewith
JP3266323B2 (en) Composite functional materials
JP3272111B2 (en) Paint for forming low refractive index film, antistatic / antireflective film, transparent laminate with antistatic / antireflective film, and cathode ray tube
JPH10142401A (en) Low-reflectivity transparent conductive film as well as its production and display device
JP3729528B2 (en) Colored film-forming coating solution, colored film and glass article on which colored film is formed
JP3478589B2 (en) Paint for forming conductive / high-refractive-index film and transparent laminate with conductive / anti-reflective coating obtained therefrom
JP3262248B2 (en) Anti-reflective coating
JP3403578B2 (en) Antireflection colored transparent conductive film and cathode ray tube
JPH0854502A (en) Coating liquid for forming colored low resistance film, colored low resistance film and glass product having colored low resistance film
JP3347467B2 (en) Coating liquid for forming colored thin film, colored thin film and method for producing the same, and glass article
JP2859783B2 (en) Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film and display device
JP2859790B2 (en) Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film and display device
JP3544687B2 (en) Coating liquid, colored film and method for producing the same
US5578377A (en) Colored thin film-forming coating solution and colored thin film obtained by such coating solution
JPH0782527A (en) Colored film-forming liquid coating, colored film, and production thereof
JPH07281004A (en) Colored low resistance film forming application liquid, colored low resistance film and manufacture thereof
JP4271438B2 (en) Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same
JPH0789720A (en) Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
US7132169B2 (en) Composition for forming coating layer and flat monitor panel for display device having coating layer prepared from the same
TW293005B (en)
JPH0762323A (en) Coating liquid for forming colored film, colored film and preparation thereof
JP3651983B2 (en) Low resistance film forming coating liquid, low resistance film and method for producing the same, multilayer low resistance film and glass article
JPH0474568A (en) Low reflection antistatic film and preparation and use thereof
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JPH07326308A (en) Coating liquid for forming colored thin film and colored thin film obtained by the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term