JP2002322456A - Anisotropic electroconductive paste - Google Patents

Anisotropic electroconductive paste

Info

Publication number
JP2002322456A
JP2002322456A JP2001124712A JP2001124712A JP2002322456A JP 2002322456 A JP2002322456 A JP 2002322456A JP 2001124712 A JP2001124712 A JP 2001124712A JP 2001124712 A JP2001124712 A JP 2001124712A JP 2002322456 A JP2002322456 A JP 2002322456A
Authority
JP
Japan
Prior art keywords
particles
ultrafine
solution
anisotropic conductive
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001124712A
Other languages
Japanese (ja)
Inventor
Keisuke Abe
啓介 阿部
Yasuhiro Sanada
恭宏 真田
Hisao Iguma
久夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001124712A priority Critical patent/JP2002322456A/en
Publication of JP2002322456A publication Critical patent/JP2002322456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic electroconductive paste achieving electroconduction of the connected parts of the electrodes without lowering the insulating properties between the adjacent electrodes, by solving the problems that insulating between adjacent electrodes becomes difficult in a conventional one and the achieving electrical conduction is hard to finer connected parts of the electrodes of the electronic parts. SOLUTION: This anisotropic electroconductive paste is composed of a thermosetting resin and a plurality of electroconductive particles and is characterized in that the electroconductive particles have >=2 kinds of particle diameters and the electroconductive particles having at least one kind of particle diameter are electroconductive ultrafine particles having <=30 nm particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性導電ペース
トに関し、特に半導体チップ、液晶表示素子の基板など
の端子接続などに用いる異方性導電ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive paste, and more particularly, to an anisotropic conductive paste used for connecting terminals of a semiconductor chip, a substrate of a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】電子部品を電子部材の所定部位へ圧着す
ることにより、電子部品の複数の電極と電子部材の対応
電極との電気的接続を実現する接着剤として、多くの異
方性導電ペーストが提案されている。
2. Description of the Related Art Many anisotropic conductive pastes are used as an adhesive for realizing electrical connection between a plurality of electrodes of an electronic component and corresponding electrodes of the electronic component by pressing an electronic component to a predetermined portion of the electronic component. Has been proposed.

【0003】従来の異方性導電ペーストには、導電性粒
子がペースト状の熱硬化型絶縁樹脂に分散した状態で含
まれている。この異方性導電ペーストにおいて、近年の
電子回路の高密度化に伴い、隣接電極間の絶縁性の確保
が困難となっている問題がある。また、電極接続部分の
微細化に伴い、所定の電気的導通が取りにくい問題があ
る。
A conventional anisotropic conductive paste contains conductive particles dispersed in a paste-like thermosetting insulating resin. In the anisotropic conductive paste, there is a problem that it is difficult to secure insulation between adjacent electrodes with the recent increase in density of electronic circuits. In addition, with the miniaturization of the electrode connection portion, there is a problem that it is difficult to obtain predetermined electrical continuity.

【0004】[0004]

【発明が解決しようとする課題】すなわち、従来の異方
性導電ペーストによる電極間接着の場合、ペースト中に
含まれる粒子径の大きな導電性粒子がある確率で繋がっ
て隣接電極間の絶縁性を低下させる問題がある。そのた
め特開平8−339714などに示されているように導
電性粒子の表面を樹脂、無機膜などで被覆するなどし
て、単なる粒子間接触が生じても容易に短絡しないよう
にするなどの提案がなされてきた。一方、導通抵抗の面
からは、導電性粒子表面に絶縁層を設けるのは好ましく
なく、微細化された電極接続部分での導電性の低下が生
じていた。
That is, in the case of the conventional inter-electrode bonding using an anisotropic conductive paste, conductive particles having a large particle diameter contained in the paste are connected at a certain probability to improve the insulation between adjacent electrodes. There is a problem of lowering. Therefore, as shown in Japanese Patent Application Laid-Open No. 8-339714, a proposal is made such that the surface of the conductive particles is coated with a resin, an inorganic film, or the like so that short-circuiting does not occur easily even if mere contact between particles occurs. Has been done. On the other hand, from the viewpoint of conduction resistance, it is not preferable to provide an insulating layer on the surface of the conductive particles, and a decrease in conductivity at a miniaturized electrode connection portion has occurred.

【0005】本発明の目的は、電子部品の異方性電気接
続における上記課題に鑑み、隣接電極間の絶縁性低下が
なく、電極接続部分の電気的導通が取り易い異方性導電
ペーストを提供することである。
An object of the present invention is to provide an anisotropic conductive paste that does not cause a decrease in insulation between adjacent electrodes and facilitates electrical conduction at electrode connection portions in view of the above-mentioned problems in anisotropic electrical connection of electronic components. It is to be.

【0006】[0006]

【課題を解決するための手段】本発明は、熱硬化性樹脂
と多数個の導電性粒子を含む異方性導電ペーストであっ
て、導電性粒子は2種以上の粒子径を有しており、少な
くとも1種の粒子径の導電性粒子は粒子径が30nm以
下の導電性超微粒子であることを特徴とする異方性導電
ペーストを提供する。
The present invention relates to an anisotropic conductive paste containing a thermosetting resin and a large number of conductive particles, wherein the conductive particles have two or more particle diameters. In addition, the present invention provides an anisotropic conductive paste, wherein the conductive particles having at least one kind of particle diameter are conductive ultrafine particles having a particle diameter of 30 nm or less.

【0007】[0007]

【発明の実施の形態】本発明の熱硬化性樹脂としては、
エポキシ樹脂、アクリル酸エステル樹脂、メラミン樹
脂、尿素樹脂、フェノール樹脂、アルキド樹脂、イミド
樹脂などを使用できるが、これらのうち2種以上の樹脂
を混合したものも使用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermosetting resin of the present invention includes:
An epoxy resin, an acrylate resin, a melamine resin, a urea resin, a phenol resin, an alkyd resin, an imide resin, and the like can be used, and a mixture of two or more of these resins can also be used.

【0008】本発明においては、異方性導電ペーストを
調製する際に溶剤を使用できる。ペースト化のための溶
剤としては、厚膜ペーストの調製時に一般に使用されて
いるものでよい。例えば、メチルイソブチルケトン、ジ
エチレングリコールモノメチルエーテルなどが挙げられ
る。
In the present invention, a solvent can be used when preparing the anisotropic conductive paste. As the solvent for forming the paste, those generally used at the time of preparing the thick film paste may be used. For example, methyl isobutyl ketone, diethylene glycol monomethyl ether and the like can be mentioned.

【0009】本発明の導電性粒子は、2種以上の異なる
粒子径の粒子により構成される。ここで粒子径とは、走
査型電子顕微鏡または透過型電子顕微鏡により観察され
た観察像により測定された一粒子の直径を意味する。測
定された粒子径にはバラツキがあるが、所望の粒子径の
±10%以内の粒子径を有するものを、所望の粒子径と
いう。したがって、30nmの粒子径の場合は、粒子径
が約27±3nmのものをいう。
The conductive particles of the present invention are composed of two or more kinds of particles having different particle diameters. Here, the particle diameter means a diameter of one particle measured by an observation image observed by a scanning electron microscope or a transmission electron microscope. Although the measured particle diameter varies, a particle having a particle diameter within ± 10% of the desired particle diameter is referred to as a desired particle diameter. Therefore, when the particle diameter is 30 nm, the particle diameter is about 27 ± 3 nm.

【0010】異なる粒子径の導電性粒子により、電極端
子間に形成された導電接続部分が、大粒子と小粒子との
混合体により最密充填状構造で形成され、より良好な導
電性が得られる。上記のように、異なる粒子径の導電性
粒子により電極接続部分において充分な導電性が得られ
るため、粒子径の大きな導電性粒子の添加量を制御する
ことができ、導電性粒子同士の繋がりによる隣接電極間
の絶縁性低下を抑止できる。
The conductive connection portions formed between the electrode terminals by the conductive particles having different particle diameters are formed in a close-packed structure by a mixture of the large particles and the small particles, so that better conductivity can be obtained. Can be As described above, since sufficient conductivity is obtained in the electrode connection portion by the conductive particles having different particle diameters, the amount of the conductive particles having a large particle diameter can be controlled, and the connection between the conductive particles can be controlled. A decrease in insulation between adjacent electrodes can be suppressed.

【0011】本発明における導電性粒子は、2種以上の
粒子径を有しており、少なくとも1種の粒子径が30n
m以下の導電性超微粒子である。導電性超粒子の粒子径
が30nmを超える場合、例えば電極端子間に形成され
る導電接続部分の導電性超粒子が最密充填構造を形成し
ても粒子間の空隙が大きく、良好な導電性が得られな
い。また、作製上困難を伴う。粒子径が30nm以下で
あると粒子間の空隙が小さくなり、粒子径が小さければ
小さいほどより高密度となり良好な導電性が得られる。
The conductive particles in the present invention have two or more particle diameters, and at least one of the particle diameters is 30n.
m or less. When the particle size of the conductive super-particles exceeds 30 nm, for example, even if the conductive super-particles in the conductive connection portion formed between the electrode terminals form a close-packed structure, the voids between the particles are large, and good conductivity is obtained. Can not be obtained. In addition, there is a difficulty in manufacturing. If the particle diameter is 30 nm or less, the voids between the particles become small, and the smaller the particle diameter, the higher the density and the better the conductivity.

【0012】本発明における導電性超微粒子は、粒子自
体が導電性を有するものがよく、金属超微粒子、合金超
微粒子または導電性酸化物超微粒子のいずれかであるこ
とが好ましい。特に、銀(Ag)、金(Au)、パラジ
ウム(Pd)、ルテニウム(Ru)、銅(Cu)、ニッ
ケル(Ni)およびスズ(Sn)よりなる群のうちのい
ずれか1種の元素の金属超微粒子、またはこの群のうち
少なくとも2種の元素を含む合金超微粒子であることが
好ましい。また、インジウム(In)、ルテニウム(R
u)、スズ(Sn)、レニウム(Re)、イリジウム
(Ir)、オスミウム(Os)およびアンチモン(S
b)よりなる群のうちの少なくとも1種の元素を含む導
電性酸化物超微粒子であることが好ましい。これらの粒
子を選定する場合、実際上の商品設計に基いて、重要視
される諸特性(電極間導電性、隣接電極間絶縁性、接着
強度、耐久性)および材料コスト、製造コストなどを勘
案し、適宜決定することが好ましい。
The conductive ultrafine particles in the present invention preferably have conductivity in the particles themselves, and are preferably any of metal ultrafine particles, alloy ultrafine particles, and conductive oxide ultrafine particles. In particular, a metal of any one element from the group consisting of silver (Ag), gold (Au), palladium (Pd), ruthenium (Ru), copper (Cu), nickel (Ni) and tin (Sn) Ultrafine particles or alloy ultrafine particles containing at least two elements from this group are preferred. In addition, indium (In), ruthenium (R
u), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os) and antimony (S
It is preferable that the conductive oxide ultrafine particles contain at least one element selected from the group consisting of b). When selecting these particles, various characteristics (electrical conductivity between electrodes, insulation between adjacent electrodes, adhesive strength, durability), material costs, manufacturing costs, etc. are taken into consideration based on the actual product design. However, it is preferable to determine as appropriate.

【0013】本発明における2種以上の異なる粒子径の
導電性粒子のうち、粒子径が30nm以下のものとは異
なる粒子は、粒子径が0.5〜10μmの値であること
が好ましい。この粒子径の導電性粒子を大粒子という。
大粒子の粒子径については、所望の導電特性、接着強
度、導電安定性などに応じて適宜選択できるが、接着部
分の主要な導電経路を形成するためには、粒子径は0.
5μm以上であることが好ましい。導電性粒子の材質は
銀、銀と銅との合金、銅、ニッケルなどの金属フレー
ク、カーボン粒子、および表面に金属メッキが施されて
いる樹脂粒子などがよい。
Among the two or more kinds of conductive particles having different particle diameters in the present invention, particles having a particle diameter different from 30 nm or less preferably have a particle diameter of 0.5 to 10 μm. The conductive particles having this particle size are called large particles.
The particle size of the large particles can be appropriately selected according to the desired conductive characteristics, adhesive strength, conductive stability, and the like.
It is preferably at least 5 μm. The material of the conductive particles is preferably silver, an alloy of silver and copper, metal flakes such as copper and nickel, carbon particles, and resin particles having a metal plated surface.

【0014】また、粒子形状も球状、偏平状、柱状など
種々のものが使用できる。形状などに関しては、所定の
異方性導電ペーストの特性に合わせ選択することが好ま
しい。粒子径に関しては粒子形状との関係から適宜決定
することが好ましいが、その粒子径が10μmを超える
場合、隣接電極間での電気的絶縁性が低下し好ましくな
い。また、粒子径が0.5μm未満で0.03μm(3
0nm)より大きい粒子の場合、接着部分の導電経路の
形成が不充分となるため電極接続部分の電気的導電性が
低下し、好ましくない。
Also, various shapes such as a spherical shape, a flat shape, and a column shape can be used. The shape and the like are preferably selected according to the characteristics of a predetermined anisotropic conductive paste. The particle diameter is preferably determined as appropriate from the relationship with the particle shape. However, if the particle diameter exceeds 10 μm, the electrical insulation between adjacent electrodes decreases, which is not preferable. When the particle diameter is less than 0.5 μm and 0.03 μm (3
In the case of particles larger than 0 nm), the formation of the conductive path in the bonding portion becomes insufficient, so that the electrical conductivity of the electrode connecting portion decreases, which is not preferable.

【0015】次に、導電性超微粒子の調製法を詳述し、
得られた超微粒子を含有する異方性導電ペーストの組
成、調製方法について述べる。超微粒子の調製方法とし
ては化学的方法、物理的方法など種々の方法が使用でき
る。化学的方法として、水や有機溶媒中で超微粒子を析
出させる析出法(ビルドアップ法)が使用できる。ま
た、水酸化物を含む溶液を焼成して結晶化した後、粉砕
することにより調製する粉砕法(ブレイクダウン法)も
使用できる。物理的方法として、高周波誘導加熱装置な
どにより発生させた高温熱プラズマ中で、所定の材料を
瞬時に蒸発させた後、急冷凝固させて超微粒子を調製す
る蒸発・急冷凝固法が使用できる。
Next, a method for preparing the conductive ultrafine particles will be described in detail.
The composition and preparation method of the obtained anisotropic conductive paste containing ultrafine particles will be described. Various methods such as a chemical method and a physical method can be used for preparing the ultrafine particles. As a chemical method, a deposition method (build-up method) in which ultrafine particles are precipitated in water or an organic solvent can be used. Further, a pulverization method (breakdown method) prepared by calcining and crystallizing a solution containing a hydroxide and then pulverizing the solution can also be used. As a physical method, a vaporization / quenching solidification method in which a predetermined material is instantaneously evaporated in high-temperature thermal plasma generated by a high-frequency induction heating device or the like and then rapidly solidified to prepare ultrafine particles can be used.

【0016】次に本発明の異方性導電ペーストの組成に
ついて説明する。熱硬化性樹脂の量は、異方性導電ペー
スト100質量%中に95〜70質量%配合されること
が好ましい。95質量%を超えて配合されると導電性が
損なわれ、70質量%未満の場合、接着強度の低下が生
じる。溶剤の量は、異方性導電ペースト100質量%中
に20質量%以下配合されることが好ましい。20質量
%を超える場合、ペーストの粘性率の低下が大きく、ペ
ーストの塗工性が劣化する。
Next, the composition of the anisotropic conductive paste of the present invention will be described. The amount of the thermosetting resin is preferably 95 to 70% by mass in 100% by mass of the anisotropic conductive paste. If the amount is more than 95% by mass, the conductivity is impaired. If the amount is less than 70% by mass, the adhesive strength is reduced. The amount of the solvent is preferably 20% by mass or less in 100% by mass of the anisotropic conductive paste. If the content exceeds 20% by mass, the viscosity of the paste is greatly reduced, and the coatability of the paste is deteriorated.

【0017】前記熱硬化性樹脂が常温で液状であって、
溶剤を含まなくてもペースト化が可能な場合は溶剤を使
用しなくてもよい。熱硬化性樹脂の硬化触媒として、異
方性導電ペースト中に適宜、熱硬化触媒を添加できる。
添加する場合、硬化触媒の量は、異方性導電ペースト1
00質量%中に10質量%以下配合されることが好まし
い。10質量%を超える場合、接着強度が劣化する。ま
た、前記熱硬化性樹脂が必要充分な熱硬化特性を有する
場合、硬化触媒は使用する必要はない。
The thermosetting resin is liquid at room temperature,
If the paste can be formed without containing a solvent, the solvent may not be used. As a curing catalyst for the thermosetting resin, a thermosetting catalyst can be appropriately added to the anisotropic conductive paste.
When added, the amount of the curing catalyst depends on the anisotropic conductive paste 1
It is preferred that 10% by mass or less be added to 00% by mass. If it exceeds 10% by mass, the adhesive strength will deteriorate. When the thermosetting resin has necessary and sufficient thermosetting properties, it is not necessary to use a curing catalyst.

【0018】導電性粒子の量は、異方性導電ペースト1
00質量%中に5〜30質量%配合されることが好まし
い。30質量%を超えて配合されると接着性が損なわ
れ、5質量%未満の場合、接着部分の導電性が低下す
る。また、粒子径30nm以下の導電性超微粒子(小粒
子)の割合は、全導電性粒子100質量%中1質量%以
上あることが、接着部分で良好な導電性が発現でき好ま
しい。粒子径30nm以下の導電性超微粒子の割合が、
全導電性粒子100質量%中1質量%未満の場合、接着
部分で、大粒子と小粒子の混合体による密度の高い充填
構造が形成されにくく導電性が不充分となりやすい。
The amount of the conductive particles is determined by the amount of the anisotropic conductive paste 1
It is preferable to mix 5 to 30% by mass in 00% by mass. If the amount is more than 30% by mass, the adhesiveness is impaired. If the amount is less than 5% by mass, the conductivity of the bonded portion is reduced. Further, the ratio of the conductive ultrafine particles (small particles) having a particle diameter of 30 nm or less is preferably 1% by mass or more in 100% by mass of all the conductive particles because good conductivity can be exhibited in the bonded portion. The ratio of the conductive ultrafine particles having a particle diameter of 30 nm or less is
When the content is less than 1% by mass in 100% by mass of all the conductive particles, a high-density filling structure of a mixture of large particles and small particles is not easily formed in the adhesive portion, and the conductivity tends to be insufficient.

【0019】本発明における異方性導電ペーストの調製
方法について述べる。前記記載の方法で得られた導電性
超微粒子と粒子径が異なる1種類以上の導電性粒子と、
熱硬化性樹脂などを所定量3本ロールミルで混練するこ
とによりペースト化し異方性導電ペーストを調製する。
The method for preparing the anisotropic conductive paste in the present invention will be described. One or more types of conductive particles having different particle diameters from the conductive ultrafine particles obtained by the method described above,
A predetermined amount of a thermosetting resin or the like is kneaded with a three-roll mill to form a paste to prepare an anisotropic conductive paste.

【0020】[0020]

【実施例】以下の実施例で得られた導電性超微粒子の粒
子径は、日立製作所製透過型電子顕微鏡H−9000に
よって測定された。得られた異方性導電ペーストの導電
性については、電極幅60μm、電極間隔50μmでパ
ターニングされたフレキシブル基板上に塗布し、同一パ
ターンで作成されたもう一つのフレキシブル基板を重ね
180℃で40秒間、3.92×106Paの圧力で圧
着後、対向電極間の導通抵抗と隣接電極間の絶縁抵抗の
測定を行い評価した。また、耐久特性として、導通抵抗
を評価した基板を−40℃で30分間と80℃で1時間
間の2条件に保持しこれを1サイクルとして、計100
0サイクル経過した後の対向電極間の導通抵抗と隣接電
極間の絶縁抵抗を評価した。なおこれらの値は、実施例
の最後に一覧表(表1)としてまとめた。また、以下の
実施例では導電性超微粒子のことを単に超微粒子とい
う。
EXAMPLES The particle diameter of the conductive ultrafine particles obtained in the following examples was measured with a transmission electron microscope H-9000 manufactured by Hitachi, Ltd. Regarding the conductivity of the obtained anisotropic conductive paste, it is applied on a flexible substrate patterned with an electrode width of 60 μm and an electrode interval of 50 μm, and another flexible substrate formed with the same pattern is stacked thereon at 180 ° C. for 40 seconds. After pressure bonding at a pressure of 3.92 × 10 6 Pa, the conduction resistance between the counter electrodes and the insulation resistance between adjacent electrodes were measured and evaluated. Further, as the durability characteristics, the substrate for which the conduction resistance was evaluated was held under two conditions of -40 ° C. for 30 minutes and 80 ° C. for 1 hour, and this was defined as one cycle, and a total of 100
After 0 cycles, the conduction resistance between the counter electrodes and the insulation resistance between adjacent electrodes were evaluated. Note that these values are summarized in a list (Table 1) at the end of the examples. In the following examples, conductive ultrafine particles are simply referred to as ultrafine particles.

【0021】「例1:Ag超微粒子を含む異方性導電ペ
ーストの調製」まず、Ag超微粒子の調製方法を説明す
る。ガラス容器内で、蒸留水1000gに硫酸鉄(I
I)七水和物194gとクエン酸三ナトリウム二水和物
362gを溶解した。これに10%(質量換算濃度、以
下同じ)の硝酸銀水溶液625gを添加し撹拌した。添
加直後にAg超微粒子が生成した。その後、溶液を50
00rpm(Z値2742:Z値とは遠心力場内の1点
に作用する力の大小を比較するため、遠心加速度と重力
加速度との比として定義した無次元数)で、3分間遠心
分離を行い、上澄み液を廃棄し、沈殿した固形物を取り
出し、この固形物に蒸留水1000gを加え、再解膠を
施した。
"Example 1: Preparation of anisotropic conductive paste containing ultrafine Ag particles" First, a method for preparing ultrafine Ag particles will be described. In a glass container, add 1000 g of distilled water to iron sulfate (I
I) 194 g of heptahydrate and 362 g of trisodium citrate dihydrate were dissolved. To this was added 625 g of a 10% (mass-converted concentration, the same applies hereinafter) silver nitrate aqueous solution, followed by stirring. Ag ultrafine particles were generated immediately after the addition. Then, add 50
Centrifugation was performed for 3 minutes at 00 rpm (Z value 2742: Z value is a dimensionless number defined as the ratio of centrifugal acceleration to gravitational acceleration in order to compare the magnitude of force acting on one point in the centrifugal force field). The supernatant was discarded, and the precipitated solid was taken out. 1000 g of distilled water was added to the solid, followed by deflocculation.

【0022】この解膠溶液に18%のクエン酸三ナトリ
ウム水溶液100gを添加し、沈殿操作を行った。この
沈殿物を含む溶液を5000rpmで3分間遠心操作を
行い、前記と同様な方法により沈殿固形物と上澄みを分
離し、得られた固形物に蒸留水500gを添加した後に
限外濾過により脱塩濃縮処理を行い、Ag固形分換算で
9.8%のAgゾル液375gを得た。このゾル液中の
Ag超微粒子の粒子径は10nmであった。このゾル液
をエバポレータにより減圧乾燥し、Ag超微粒子粉体3
5gを得た。
To this peptized solution, 100 g of an 18% aqueous solution of trisodium citrate was added, and a precipitation operation was performed. The solution containing the precipitate was centrifuged at 5,000 rpm for 3 minutes, the precipitated solid was separated from the supernatant by the same method as described above, and 500 g of distilled water was added to the obtained solid, followed by desalting by ultrafiltration. Concentration treatment was performed to obtain 375 g of a 9.8% Ag sol solution in terms of Ag solid content. The particle diameter of the ultrafine Ag particles in the sol was 10 nm. The sol solution was dried under reduced pressure by an evaporator to obtain an Ag ultrafine powder 3.
5 g were obtained.

【0023】次に、異方性導電ペーストの調製方法を説
明する。固形エポキシ樹脂20gをメチルイソブチルケ
トン18gに溶解し、この溶液に液状エポキシ樹脂16
2gを混合した。さらにこの溶液に硬化触媒として1、
2−ジメチルイミダゾール10gを添加して熱硬化性樹
脂による組成物とした後、この熱硬化性樹脂による組成
物とAg超微粒子粉8g、粒子径5μmのNi粒子12
gを混ぜ、この混合物をアルミナ3本ロールミルで混練
することによりペースト化し異方性導電ペーストを得
た。
Next, a method for preparing the anisotropic conductive paste will be described. 20 g of the solid epoxy resin is dissolved in 18 g of methyl isobutyl ketone, and
2 g were mixed. In addition, 1
After adding 10 g of 2-dimethylimidazole to obtain a composition made of a thermosetting resin, the composition made of the thermosetting resin, 8 g of ultrafine Ag powder, and Ni particles 12 having a particle diameter of 5 μm were prepared.
g, and kneaded with a three-roll alumina mill to form a paste to obtain an anisotropic conductive paste.

【0024】「例2:Pd超微粒子を含む異方性導電ペ
ーストの調製」ガラス容器内で、蒸留水10000gに
硫酸鉄(II)七水和物970gとクエン酸三ナトリウ
ム二水和物1800gを溶解した。これに1%の硝酸パ
ラジウム(II)水溶液2000gを添加し撹拌した。
添加10分後にPd微粒子が生成した。その後限外濾過
により脱塩濃縮処理を行い、Pd固形分換算で1.5%
のPdゾル液500gを得た。このゾル液中のPd超微
粒子の粒子径は8nmであった。このゾル液をエバポレ
ータにより減圧乾燥し、Pd超微粒子粉体7gを得た。
Example 2: Preparation of anisotropic conductive paste containing ultrafine Pd particles In a glass container, 970 g of iron (II) sulfate heptahydrate and 1800 g of trisodium citrate dihydrate were added to 10,000 g of distilled water. Dissolved. To this, 2000 g of a 1% aqueous solution of palladium (II) nitrate was added and stirred.
Ten minutes after the addition, Pd fine particles were generated. Thereafter, desalting and concentration treatment is performed by ultrafiltration, and 1.5% in terms of Pd solid content.
Of Pd sol was obtained. The particle size of the ultrafine Pd particles in this sol solution was 8 nm. The sol was dried under reduced pressure by an evaporator to obtain 7 g of ultrafine Pd powder.

【0025】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Pd超微粒子粉7g、粒子径
5μmのNi粒子13gとを混ぜ、さらにこの混合物を
例1と同様の方法で混練して異方性導電ペーストを得
た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 7 g of ultrafine Pd powder and 13 g of Ni particles having a particle diameter of 5 μm. The mixture was kneaded by a method to obtain an anisotropic conductive paste.

【0026】「例3:Au超微粒子を含む異方性導電ペ
ーストの調製」ガラス容器内で、蒸留水10000gに
塩化金酸を10.4g、ヒドロキシプロピルセルロース
(平均分子量25000)を1g溶解した。これに1.
12%の水酸化カリウム水溶液950gおよび36%の
ホルムアルデヒド水溶液150gの混合物を添加し撹拌
した。添加直後にAu超微粒子が生成した。その後、溶
液を40℃に加温し1時間撹拌して、さらに限外濾過に
より脱塩濃縮処理を行い、Au固形分換算で1.2%の
Auゾル液400gを得た。このゾル液中のAu超微粒
子の粒子径は8nmであった。このゾル液をエバポレー
タにより減圧乾燥し、Au超微粒子粉体4gを得た。
Example 3 Preparation of Anisotropic Conductive Paste Containing Au Ultrafine Particles In a glass container, 10.4 g of chloroauric acid and 1 g of hydroxypropylcellulose (average molecular weight 25,000) were dissolved in 10,000 g of distilled water. To this 1.
A mixture of 950 g of a 12% aqueous potassium hydroxide solution and 150 g of a 36% aqueous formaldehyde solution was added and stirred. Immediately after the addition, Au ultrafine particles were generated. Thereafter, the solution was heated to 40 ° C., stirred for 1 hour, and further subjected to desalting and concentration treatment by ultrafiltration to obtain 400 g of a 1.2% Au sol solution in terms of Au solid content. The particle diameter of the Au ultrafine particles in this sol solution was 8 nm. The sol was dried under reduced pressure by an evaporator to obtain 4 g of Au ultrafine powder.

【0027】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Au超微粒子粉4g、粒子径
5μmのNi粒子16gとを混ぜ、さらにこの混合物を
例1と同様の方法で混練して異方性導電ペーストを得
た。
Next, a composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 4 g of Au ultrafine particles and 16 g of Ni particles having a particle diameter of 5 μm. The mixture was kneaded by a method to obtain an anisotropic conductive paste.

【0028】「例4:Ru超微粒子を含む異方性導電ペ
ーストの調製」ガラス容器内で、蒸留水10000gに
塩化ルテニウム三水和物(Ru40%)を12.5gを
溶解した。これに3%の水素化ホウ素ナトリウム水溶液
1000gを添加し撹拌した。添加直後にRu超微粒子
が生成した。その後、限外濾過により脱塩濃縮処理を行
い、Ru固形分換算で1.5%のRuゾル液310gを
得た。このゾル液中のRu超微粒子の粒子径は12nm
であった。このゾル液をエバポレータにより減圧乾燥
し、Ru超微粒子粉体4.0gを得た。
Example 4: Preparation of anisotropic conductive paste containing ultrafine particles of Ru 12.5 g of ruthenium chloride trihydrate (40% of Ru) was dissolved in 10,000 g of distilled water in a glass container. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, Ru ultrafine particles were generated. Thereafter, a desalting and concentration treatment was performed by ultrafiltration to obtain 310 g of a 1.5% Ru sol liquid in terms of Ru solid content. The particle size of the Ru ultrafine particles in this sol liquid is 12 nm.
Met. This sol solution was dried under reduced pressure by an evaporator to obtain 4.0 g of Ru ultrafine particle powder.

【0029】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Ru超微粒子粉4g、粒子径
5μmのNi粒子16gとを混ぜ、さらにこの混合物を
例1と同様の方法で混練して異方性導電ペーストを得
た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 4 g of Ru ultrafine particles and 16 g of Ni particles having a particle diameter of 5 μm. The mixture was kneaded by a method to obtain an anisotropic conductive paste.

【0030】「例5:Cu超微粒子を含む異方性導電ペ
ーストの調製」硫酸銅(II)五水和物125gを蒸留
水1125gに添加し撹拌溶解した。ガラス容器内で、
蒸留水2000gに硫酸鉄(II)七水和物388gと
クエン酸三ナトリウム二水和物724gを溶解した。こ
の溶液に先に調製した硫酸銅水溶液1250gを添加撹
拌した。
Example 5: Preparation of anisotropic conductive paste containing ultrafine Cu particles 125 g of copper (II) sulfate pentahydrate was added to 1125 g of distilled water and dissolved by stirring. In a glass container,
In 2000 g of distilled water, 388 g of iron (II) sulfate heptahydrate and 724 g of trisodium citrate dihydrate were dissolved. To this solution, 1250 g of the previously prepared aqueous copper sulfate solution was added and stirred.

【0031】添加10分後にCu超微粒子が生成した。
その後、溶液を5000rpm(Z値2742)で15
分間で遠心分離を行い、上澄み液を廃棄し、沈殿した固
形物を取り出し、この固形物に蒸留水2000gを加
え、再解膠を施した。さらにこの解膠溶液に18%のク
エン酸三ナトリウム水溶液200gを添加し、沈殿操作
を行った。
Ten minutes after the addition, ultrafine Cu particles were formed.
Thereafter, the solution was cooled at 5000 rpm (Z value 2742) for 15 minutes.
After centrifugation for 1 minute, the supernatant was discarded, the precipitated solid was taken out, 2,000 g of distilled water was added to the solid, and deflocculation was performed. Further, 200 g of an 18% aqueous solution of trisodium citrate was added to the deflocculating solution to perform a precipitation operation.

【0032】この沈殿物を含む溶液を5000rpm
(Z値2742)で3分間で遠心操作を行い、前記と同
様な方法により沈殿固形物と上澄みを分離し、得られた
固形物に蒸留水600gを添加した後に限外濾過により
脱塩濃縮処理を行い、Cu固形分換算で2.5%のCu
ゾル液240gを得た。このゾル液中のCu超微粒子の
粒子径は28nmであった。このゾル液をエバポレータ
により減圧乾燥し、Cu超微粒子粉体6gを得た。
The solution containing the precipitate was subjected to 5000 rpm
(Z value: 2742), centrifugation was performed for 3 minutes, the precipitated solid was separated from the supernatant by the same method as described above, and 600 g of distilled water was added to the obtained solid, followed by ultrafiltration for desalting and concentration treatment. To obtain 2.5% Cu in terms of Cu solid content.
240 g of a sol liquid was obtained. The particle size of the Cu ultrafine particles in this sol liquid was 28 nm. The sol was dried under reduced pressure by an evaporator to obtain 6 g of ultrafine Cu powder.

【0033】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Cu超微粒子粉6g、粒子径
5μmのNi粒子14gとを混ぜ、さらにこの混合物を
例1と同様の方法で混練して異方性導電ペーストを得
た。
Next, a composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 6 g of ultrafine Cu powder and 14 g of Ni particles having a particle diameter of 5 μm. The mixture was kneaded by a method to obtain an anisotropic conductive paste.

【0034】「例6:Ni超微粒子を含む異方性導電ペ
ーストの調製」ガラス容器内で、蒸留水1000gに塩
化ニッケル六水和物を30gを溶解した。これに3%の
水素化ホウ素ナトリウム水溶液100gを添加し撹拌し
た。添加直後にNi超微粒子が生成した。その後、溶液
を3000rpm(Z値987)で5分間で遠心分級操
作を行い、粗大粒子を除去した後、限外濾過により脱塩
濃縮処理を行い、Ni固形分換算で13%のNiゾル液
31gを得た。このゾル液のNi超微粒子の粒子径は2
5nmであった。このゾル液をエバポレータにより減圧
乾燥し、Ni超微粒子粉体4gを得た。
Example 6 Preparation of Anisotropic Conductive Paste Containing Ultrafine Ni Particles In a glass container, 30 g of nickel chloride hexahydrate was dissolved in 1000 g of distilled water. 100 g of a 3% aqueous sodium borohydride solution was added thereto, followed by stirring. Immediately after the addition, Ni ultrafine particles were formed. Thereafter, the solution was subjected to centrifugal classification at 3,000 rpm (Z value 987) for 5 minutes to remove coarse particles, and then subjected to ultrafiltration for desalting and concentration treatment to obtain 31 g of a 13% Ni sol solution in terms of Ni solid content. I got The particle size of the Ni ultrafine particles in this sol solution is 2
It was 5 nm. The sol was dried under reduced pressure by an evaporator to obtain 4 g of Ni ultrafine particle powder.

【0035】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Ni超微粒子粉4g、粒子径
5μmNiの粒子16gとを混ぜ、さらにこの混合物を
例1と同様の方法で混練して異方性導電ペーストを得
た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 4 g of Ni ultrafine particles and 16 g of Ni particles having a particle diameter of 5 μm, and the mixture was subjected to the same method as in Example 1. To obtain an anisotropic conductive paste.

【0036】「例7:AgPd合金超微粒子を含む異方
性導電ペーストの調製」ガラス容器内で、蒸留水100
0gに硫酸鉄(II)七水和物194gとクエン酸三ナ
トリウム二水和物362gを溶解した。これに10%の
硝酸銀水溶液625gと1%の硝酸パラジウム(II)
水溶液200gとの混合溶液を添加し撹拌した。添加直
後にAgPd超微粒子が生成した。その後、溶液を50
00rpm(Z値2742)で3分間遠心分離を行い、
上澄み液を廃棄し、沈殿した固形物を取り出し、この固
形物に蒸留水1000gを加え、再解膠を施した。さら
にこの解膠溶液に18%のクエン酸三ナトリウム水溶液
100gを添加し、沈殿操作を行った。この沈殿物を含
む溶液を5000rpm(Z値2742)で3分間遠心
操作を行い、前記と同様な方法により沈殿固形物と上澄
みを分離し、得られた固形物に蒸留水500gを添加し
た後に,限外濾過により脱塩濃縮処理を行い、固形分換
算で8.5%のAgPdゾル液80gを得た。このゾル
液中のAgPd超微粒子の粒子径は15nmであった。
このゾル液をエバポレータにより減圧乾燥し、AgPd
超微粒子粉体6.5gを得た。
"Example 7: Preparation of anisotropic conductive paste containing AgPd alloy ultrafine particles"
194 g of iron (II) sulfate heptahydrate and 362 g of trisodium citrate dihydrate were dissolved in 0 g. 625 g of a 10% silver nitrate aqueous solution and 1% palladium (II) nitrate
A mixed solution with 200 g of an aqueous solution was added and stirred. AgPd ultrafine particles were formed immediately after the addition. Then, add 50
Centrifuge at 00 rpm (Z value 2742) for 3 minutes,
The supernatant was discarded, the precipitated solid was taken out, and 1000 g of distilled water was added to the solid to perform deflocculation. Further, 100 g of an 18% aqueous solution of trisodium citrate was added to the deflocculating solution to perform a precipitation operation. The solution containing the precipitate was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes, and the precipitated solid and the supernatant were separated by the same method as described above. After adding 500 g of distilled water to the obtained solid, A desalting and concentration treatment was performed by ultrafiltration to obtain 80 g of a 8.5% AgPd sol solution in terms of solid content. The particle diameter of the ultrafine AgPd particles in this sol was 15 nm.
The sol solution was dried under reduced pressure by an evaporator, and AgPd
6.5 g of ultrafine powder was obtained.

【0037】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、AgPd合金超微粒子粉5
g、粒子径5μmのNi粒子15gとを混ぜ、さらにこ
の混合物を例1と同様の方法で混練して異方性導電ペー
ストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1 and the AgPd alloy ultrafine powder 5
g and 15 g of Ni particles having a particle size of 5 μm, and the mixture was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0038】「例8:AgCu合金超微粒子を含む異方
性導電ペーストの調製」ガラス容器内で、蒸留水100
0gに硫酸鉄(II)七水和物194gとクエン酸三ナ
トリウム二水和物362gを溶解した。これに10%の
硝酸銀水溶液625gと10%の硫酸銅(II)水溶液
125gとの混合溶液を添加し撹拌した。添加5分後に
AgCu超微粒子が生成した。その後、溶液を5000
rpm(Z値2742)で3分間遠心分離を行い、上澄
み液を廃棄し、沈殿した固形物を取り出し、この固形物
に蒸留水1000gを加え、再解膠を施した。さらにこ
の解膠溶液に18%のクエン酸三ナトリウム水溶液10
0gを添加し、沈殿操作を行った。この沈殿物を含む溶
液を5000rpm(Z値2742)で3分間遠心操作
を行い、前記と同様な方法により沈殿固形物と上澄みを
分離し、得られた固形物に蒸留水500gを添加した後
に,限外濾過により脱塩濃縮処理を行い、固形分換算で
5.6%のAgCuゾル液80gを得た。このゾル液中
のAgCu超微粒子の粒子径は15nmであった。この
ゾル液をエバポレータにより減圧乾燥し、AgCu超微
粒子粉体4gを得た。
"Example 8: Preparation of anisotropic conductive paste containing AgCu alloy ultrafine particles"
194 g of iron (II) sulfate heptahydrate and 362 g of trisodium citrate dihydrate were dissolved in 0 g. A mixed solution of 625 g of a 10% aqueous solution of silver nitrate and 125 g of a 10% aqueous solution of copper (II) sulfate was added thereto and stirred. Five minutes after the addition, ultrafine AgCu particles were formed. After that, the solution was
The mixture was centrifuged at rpm (Z value: 2742) for 3 minutes, the supernatant was discarded, the precipitated solid was taken out, 1000 g of distilled water was added to the solid, and deflocculation was performed. Further, an 18% aqueous solution of trisodium citrate 10
0 g was added, and a precipitation operation was performed. The solution containing the precipitate was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes to separate the precipitated solid from the supernatant by the same method as described above, and 500 g of distilled water was added to the obtained solid. A desalting and concentration treatment was performed by ultrafiltration to obtain 80 g of a 5.6% AgCu sol solution in terms of solid content. The ultrafine AgCu particles in the sol had a particle size of 15 nm. The sol was dried under reduced pressure by an evaporator to obtain 4 g of AgCu ultrafine powder.

【0039】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、AgCu超微粒子粉体4g、
粒子径5μmのNi粒子16gとを混ぜ、さらにこの混
合物を例1と同様の方法で混練して異方性導電ペースト
を得た。
Next, a composition of the thermosetting resin prepared by the method described in Example 1, 4 g of ultrafine AgCu particles,
16 g of Ni particles having a particle diameter of 5 μm were mixed, and the mixture was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0040】「例9:Sn超微粒子を含む異方性導電ペ
ーストの調製」ガラス容器内で、蒸留水1000gに塩
化錫(II)二水和物を45gを溶解した。これに3%
の水素化ホウ素ナトリウム水溶液150gを添加し撹拌
した。添加直後にSn超微粒子が生成した。その後、溶
液を3000rpm(Z値987)で5分間遠心分級操
作を行い、粗大粒子を除去した後、限外濾過により脱塩
濃縮処理を行い、Sn固形分換算で10%のSnゾル液
35gを得た。このゾル液中のSn超微粒子の粒子径は
28nmであった。このゾル液をエバポレータにより減
圧乾燥し、Sn超微粒子粉体3.5gを得た。
Example 9 Preparation of Anisotropic Conductive Paste Containing Ultrafine Sn Particles In a glass container, 45 g of tin (II) chloride dihydrate was dissolved in 1000 g of distilled water. 3% for this
Of sodium borohydride was added and stirred. Immediately after the addition, ultrafine Sn particles were generated. Thereafter, the solution was subjected to centrifugal classification at 3,000 rpm (Z value 987) for 5 minutes to remove coarse particles, and then subjected to ultrafiltration for desalting and concentration treatment to obtain 35 g of a 10% Sn sol solution in terms of Sn solid content. Obtained. The particle size of the Sn ultrafine particles in this sol liquid was 28 nm. The sol was dried under reduced pressure by an evaporator to obtain 3.5 g of Sn ultrafine powder.

【0041】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、Sn超微粒子粉3.5g、粒
子径5μmのNi粒子16.5gとを混ぜ、さらにこの
混合物を例1と同様の方法で混練して異方性導電ペース
トを得た。
Next, 3.5 g of the ultrafine Sn powder and 16.5 g of Ni particles having a particle diameter of 5 μm were mixed with the composition made of the thermosetting resin prepared by the method described in Example 1, and this mixture was further used as an example. Kneading was performed in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0042】「例10:錫含有酸化インジウム超微粒子
を含む異方性導電ペーストの調製」ガラス容器内で、蒸
留水1000gに塩化錫(IV)(無水)5gを加え溶
解液とした。また、別の蒸留水1000gに三塩化イン
ジウム(無水)40gを加え溶解液とした。この2種類
の溶解液を混合した後、40℃に保った1.12%の水
酸化カリウム水溶液中に混合液を滴下添加し、水酸化物
を得た。
Example 10 Preparation of Anisotropic Conductive Paste Containing Tin-Containing Indium Oxide Ultrafine Particles In a glass container, 5 g of tin (IV) chloride (anhydrous) was added to 1000 g of distilled water to prepare a solution. Further, 40 g of indium trichloride (anhydrous) was added to another 1000 g of distilled water to prepare a solution. After mixing these two kinds of dissolution solutions, the mixture solution was added dropwise to a 1.12% aqueous potassium hydroxide solution kept at 40 ° C. to obtain a hydroxide.

【0043】得られた水酸化物から不純イオン分を脱塩
操作により除去した後、窒素雰囲気下で450℃で2時
間焼成し、錫含有酸化インジウム粉を得た。得られた錫
含有酸化インジウム粉10gをpH4.5に調整した硝
酸酸性水溶液50gに添加後、サンドミルで20分間解
膠処理を行い、錫含有酸化インジウム固形分換算で12
%の錫含有酸化インジウム超微粒子ゾル液40gを得
た。得られたゾル液中の錫含有酸化インジウム超微粒子
の粒子径は25nmであった。このゾル液をエバポレー
タにより減圧乾燥し、錫含有酸化インジウム超微粒子粉
体4.8gを得た。
Impurity ions were removed from the obtained hydroxide by a desalting operation, and then calcined at 450 ° C. for 2 hours in a nitrogen atmosphere to obtain a tin-containing indium oxide powder. After adding 10 g of the obtained tin-containing indium oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 4.5, the mixture was pulverized by a sand mill for 20 minutes to obtain a tin-containing indium oxide solid content of 12 g.
% Of a tin-containing indium oxide ultrafine particle sol solution was obtained. The particle diameter of the tin-containing indium oxide ultrafine particles in the obtained sol solution was 25 nm. The sol was dried under reduced pressure by an evaporator to obtain 4.8 g of tin-containing indium oxide ultrafine particles.

【0044】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、錫含有酸化インジウム超微粒
子粉1.2g、粒子径5μmのNi粒子18.8gとを
混ぜ、さらにこの混合物を例1と同様の方法で混練して
異方性導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1, 1.2 g of ultrafine tin-containing indium oxide powder, and 18.8 g of Ni particles having a particle diameter of 5 μm were mixed. The mixture was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0045】「例11:アンチモン含有酸化錫超微粒子
を含む異方性導電ペーストの調製」ガラス容器内で、蒸
留水1000gに酒石酸カリウムアンチモニル5gを加
え溶解液とした。また、別の蒸留水1000gに塩化錫
(IV)(無水)40gを加え溶解液とした。この2種
類の溶解液を混合した後、40℃に保った1.5%の水
酸化カリウム水溶液中に混合液を滴下添加し、錫−アン
チモン水酸化物を得た。
Example 11 Preparation of Anisotropic Conductive Paste Containing Antimony-Containing Tin Oxide Ultrafine Particles In a glass container, 5 g of potassium antimonyl tartrate was added to 1000 g of distilled water to prepare a solution. In addition, tin (IV) chloride (anhydrous) 40 g was added to another 1000 g of distilled water to obtain a solution. After mixing these two kinds of dissolution solutions, the mixture solution was added dropwise to a 1.5% aqueous solution of potassium hydroxide maintained at 40 ° C. to obtain a tin-antimony hydroxide.

【0046】得られた水酸化物から不純イオン分を脱塩
操作により除去した後、大気雰囲気下で550℃で2時
間焼成し、アンチモン含有酸化錫粉を得た。得られたア
ンチモン含有酸化錫粉10gをpH4.5に調整した硝
酸酸性水溶液50gに添加後、サンドミルで30分間解
膠処理を行い、アンチモン含有酸化錫固形分換算で16
%のアンチモン含有酸化錫超微粒子ゾル液35gを得
た。得られたゾル液中のアンチモン含有酸化錫超微粒子
の粒子径は18nmであった。このゾル液をエバポレー
タにより減圧乾燥し、アンチモン含有酸化錫超微粒子粉
体5.6gを得た。
After removing the impurity ions from the obtained hydroxide by a desalting operation, it was calcined at 550 ° C. for 2 hours in the atmosphere to obtain antimony-containing tin oxide powder. After adding 10 g of the obtained antimony-containing tin oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 4.5, the mixture was pulverized by a sand mill for 30 minutes, and converted to a solid content of 16 parts in terms of antimony-containing tin oxide.
% Of antimony-containing tin oxide ultrafine particle sol solution was obtained. The particle diameter of the antimony-containing tin oxide ultrafine particles in the obtained sol solution was 18 nm. The sol was dried under reduced pressure using an evaporator to obtain 5.6 g of antimony-containing ultrafine tin oxide particles.

【0047】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、アンチモン含有酸化錫超微粒
子粉体1.0g、粒子径5μmのNi粒子19.0gと
を混ぜ、さらにこの混合物を例1と同様の方法で混練し
て異方性導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1, 1.0 g of antimony-containing ultrafine tin oxide powder, and 19.0 g of Ni particles having a particle diameter of 5 μm were mixed. This mixture was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0048】「例12:酸化ルテニウム超微粒子を含む
異方性導電ペーストの調製」ガラス容器内で、蒸留水1
000gに塩化ルテニウム三水和物(Ru40%)を1
2.5g加え溶解液とした。40℃に保った1.5%の
水酸化ナトリウム水溶液中に、塩化ルテニウムの溶解液
を滴下添加し、水酸化物を得た。得られた水酸化物から
不純イオン分を脱塩操作により除去した後、大気雰囲気
下450℃で2時間焼成し、酸化ルテニウム粉を得た。
得られた酸化ルテニウム粉10gをpH3.5に調整し
た塩酸酸性水溶液50gに添加後、サンドミルで2時間
解膠処理を行い、酸化ルテニウム固形分換算で15%の
酸化ルテニウム超微粒子ゾル液45gを得た。得られた
ゾル液中の酸化ルテニウム超微粒子の粒子径は22nm
であった。このゾル液をエバポレータにより減圧乾燥
し、酸化ルテニウム超微粒子粉体6.3gを得た。
Example 12 Preparation of Anisotropic Conductive Paste Containing Ruthenium Oxide Ultrafine Particles
1 g of ruthenium chloride trihydrate (Ru 40%)
2.5 g was added to obtain a solution. A solution of ruthenium chloride was added dropwise to a 1.5% aqueous sodium hydroxide solution maintained at 40 ° C. to obtain a hydroxide. Impurity ions were removed from the obtained hydroxide by a desalting operation, and then calcined at 450 ° C. for 2 hours in the air to obtain ruthenium oxide powder.
After adding 10 g of the obtained ruthenium oxide powder to 50 g of aqueous hydrochloric acid solution adjusted to pH 3.5, the mixture was peptized by a sand mill for 2 hours to obtain 45 g of a 15% ruthenium oxide ultrafine particle sol solution in terms of ruthenium oxide solid content. Was. The particle size of the ruthenium oxide ultrafine particles in the obtained sol solution is 22 nm.
Met. The sol was dried under reduced pressure by an evaporator to obtain 6.3 g of ultrafine ruthenium oxide particles.

【0049】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、酸化ルテニウム超微粒子粉体
2.0g、粒子径5μmのNi粒子18.0gとを混
ぜ、さらにこの混合物を例1と同様の方法で混練して異
方性導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1 was mixed with 2.0 g of ultrafine ruthenium oxide powder and 18.0 g of Ni particles having a particle diameter of 5 μm. Was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0050】「例13:酸化レニウム超微粒子を含む異
方性導電ペーストの調製」ガラス容器内で、蒸留水10
00gに五塩化レニウム12.5gを加え溶解液とし
た。80℃に保った8.5%の水酸化ナトリウム水溶液
中に、五塩化レニウムの溶解液を滴下添加し、水酸化物
を得た。
Example 13 Preparation of Anisotropic Conductive Paste Containing Rhenium Oxide Ultrafine Particles
12.5 g of rhenium pentachloride was added to 00 g to prepare a solution. A solution of rhenium pentachloride was added dropwise to an 8.5% aqueous sodium hydroxide solution kept at 80 ° C. to obtain a hydroxide.

【0051】得られた水酸化物から不純イオン分を脱塩
操作により除去した後、大気雰囲気下600℃で3時間
焼成し、酸化レニウム粉を得た。得られた酸化レニウム
粉10gをpH3.5に調整した塩酸酸性水溶液50g
に添加後、サンドミルで2時間解膠処理を行い、酸化レ
ニウム固形分換算で15%の酸化レニウム超微粒子ゾル
液45gを得た。得られたゾル液中の酸化レニウム超微
粒子の粒子径は22nmであった。このゾル液をエバポ
レータにより減圧乾燥し、酸化レニウム超微粒子粉体
6.3gを得た。
After removing the impurity ions from the obtained hydroxide by a desalting operation, it was calcined at 600 ° C. for 3 hours in the atmosphere to obtain rhenium oxide powder. 10 g of the obtained rhenium oxide powder was adjusted to pH 3.5 and 50 g of hydrochloric acid aqueous solution was added.
After the addition, pulverization treatment was performed for 2 hours using a sand mill to obtain 45 g of a sol solution of ultrafine rhenium oxide particles having a solid content of 15% in terms of rhenium oxide. The particle size of the ultrafine rhenium oxide particles in the obtained sol solution was 22 nm. The sol was dried under reduced pressure by an evaporator to obtain 6.3 g of ultrafine rhenium oxide particles.

【0052】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、酸化レニウム超微粒子粉体
1.5g、粒子径5μmNi粒子18.5gとを混ぜ、
さらにこの混合物を例1と同様の方法で混練して異方性
導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1, 1.5 g of ultrafine rhenium oxide powder, and 18.5 g of 5 μm Ni particles were mixed.
This mixture was further kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0053】「例14:酸化オスミウム超微粒子を含む
異方性導電ペーストの調製」ガラス容器内で、蒸留水1
000gに三塩化オスミウムを12.5g加え溶解液と
した。40℃に保った7.5%の水酸化ナトリウム水溶
液中に三塩化オスミウムの溶解液を滴下添加し、水酸化
物を得た。得られた水酸化物から不純イオン分を脱塩操
作により除去した後、大気雰囲気下で600℃で2時間
焼成し、酸化オスミウム粉を得た。得られた酸化オスミ
ウム粉10gを2.0に調整した塩酸酸性水溶液50g
に添加後、サンドミルで16時間解膠処理を行い、酸化
オスミウム固形分換算で15%の酸化オスミウム超微粒
子ゾル液45gを得た。得られたゾル液中の酸化オスミ
ウム超微粒子の粒子径は22nmであった。このゾル液
をエバポレータにより減圧乾燥し、酸化オスミウム超微
粒子粉体6.3gを得た。
"Example 14: Preparation of anisotropic conductive paste containing ultrafine osmium oxide particles" In a glass container, distilled water 1
12.5 g of osmium trichloride was added to 000 g to prepare a solution. A solution of osmium trichloride was added dropwise to a 7.5% aqueous sodium hydroxide solution kept at 40 ° C. to obtain a hydroxide. Impurity ions were removed from the obtained hydroxide by a desalting operation, and then calcined at 600 ° C. for 2 hours in an air atmosphere to obtain osmium oxide powder. 50 g of hydrochloric acid aqueous solution prepared by adjusting 10 g of the obtained osmium oxide powder to 2.0.
After the addition, pulverization treatment was performed for 16 hours with a sand mill to obtain 45 g of a sol solution of osmium oxide ultrafine particles having a solid content of 15% in terms of osmium oxide solid content. The particle diameter of the osmium oxide ultrafine particles in the obtained sol solution was 22 nm. The sol was dried under reduced pressure by an evaporator to obtain 6.3 g of osmium oxide ultrafine particles.

【0054】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、酸化オスミウム超微粒子粉体
1.0g、粒子径5μmNi粒子19.0gとを混ぜ、
さらにこの混合物を例1と同様の方法で混練して異方性
導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1, 1.0 g of ultrafine osmium oxide powder, and 19.0 g of Ni particles of 5 μm in diameter were mixed.
This mixture was further kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0055】「例15:酸化イリジウム超微粒子を含む
異方性導電ペーストの調製」ガラス容器内で、蒸留水1
000gに三塩化イリジウム三水和物を12.5g加え
溶解液とした。40℃に保った7.5%の水酸化ナトリ
ウム水溶液中に、三塩化イリジウムの溶解液を滴下添加
し、水酸化物を得た。得られた水酸化物から不純イオン
分を脱塩操作により除去した後、大気雰囲気下で800
℃で5時間焼成し、酸化イリジウム粉を得た。得られた
酸化イリジウム粉10gをpH2.0に調整した塩酸酸
性水溶液50gに添加後、サンドミルで16時間解膠処
理を行い、酸化イリジウム固形分換算で15%の酸化イ
リジウム超微粒子ゾル液45gを得た。得られたゾル液
中の酸化イリジウム超微粒子の粒子径は22nmであっ
た。このゾル液をエバポレータにより減圧乾燥し、酸化
イリジウム超微粒子粉体6.3gを得た。
Example 15 Preparation of Anisotropic Conductive Paste Containing Iridium Oxide Ultrafine Particles
12.5 g of iridium trichloride trihydrate was added to 000 g to prepare a solution. A solution of iridium trichloride was added dropwise to a 7.5% aqueous solution of sodium hydroxide maintained at 40 ° C. to obtain a hydroxide. Impurity ions are removed from the obtained hydroxide by a desalting operation.
Calcination was performed at 5 ° C. for 5 hours to obtain iridium oxide powder. After adding 10 g of the obtained iridium oxide powder to 50 g of a hydrochloric acid aqueous solution adjusted to pH 2.0, the mixture was peptized with a sand mill for 16 hours to obtain 45 g of a 15% iridium oxide ultrafine particle sol solution in terms of iridium oxide solid content. Was. The particle size of the iridium oxide ultrafine particles in the obtained sol solution was 22 nm. The sol was dried under reduced pressure by an evaporator to obtain 6.3 g of iridium oxide ultrafine powder.

【0056】次に、例1で説明した方法で調整した熱硬
化性樹脂による組成物と、酸化イリジウム超微粒子粉体
1.2g、粒子径5μmのNi粒子18.8gとを混
ぜ、さらにこの混合物を例1と同様の方法で混練して異
方性導電ペーストを得た。
Next, the composition of the thermosetting resin prepared by the method described in Example 1, 1.2 g of ultrafine iridium oxide powder, and 18.8 g of Ni particles having a particle diameter of 5 μm were mixed. Was kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0057】「例16(比較例):Ni大粒子を含む異
方性導電ペーストの調製」 例1で説明した方法で調整した熱硬化性樹脂による組成
物と、粒子径5μmのNi大粒子20gとを混ぜ、さら
にこの混合物を例1と同様の方法で混練して異方性導電
ペーストを得た。
Example 16 (Comparative Example): Preparation of Anisotropic Conductive Paste Containing Large Ni Particles Composition of thermosetting resin prepared by the method described in Example 1 and 20 g of large Ni particles having a particle diameter of 5 μm And the mixture was further kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0058】「例17(比較例):Au大粒子を含む異
方性導電ペーストの調製」 例1で説明した方法で調整した熱硬化性樹脂による組成
物と、粒子径20μmのAu大粒子20gとを混ぜ、さ
らにこの混合物を例1と同様の方法で混練して異方性導
電ペーストを得た。
Example 17 (Comparative Example): Preparation of Anisotropic Conductive Paste Containing Au Large Particles Composition of thermosetting resin prepared by the method described in Example 1 and 20 g of Au large particles having a particle diameter of 20 μm And the mixture was further kneaded in the same manner as in Example 1 to obtain an anisotropic conductive paste.

【0059】上記の各実施例における、対向電極間の導
通抵抗と隣接電極間の絶縁抵抗の測定結果を、初期特性
と耐久特性(1000サイクル試験後)の2種類につい
て表1に示す。
Table 1 shows the measurement results of the conduction resistance between the opposing electrodes and the insulation resistance between the adjacent electrodes in each of the above embodiments, for two types of initial characteristics and durability characteristics (after a 1000 cycle test).

【0060】[0060]

【表1】 [Table 1]

【0061】各実施例は比較例と異なり、導電特性、絶
縁特性、耐劣化特性の点で優れている。
Each of the examples is different from the comparative example, and is excellent in the conductive properties, the insulating properties, and the deterioration resistance properties.

【0062】[0062]

【発明の効果】以上説明したように本発明によれば、異
方性導電ペースト中に大きさの異なる2種類以上の導電
性粒子があり、その内少なくとも一種類は粒子径が30
nm以下の導電性超微粒子であり、微細電極間接着時に
おいても、大粒子と小粒子との最密充填構造が形成され
易く、導電特性、絶縁特性、耐劣化特性に優れた接着が
形成される。
As described above, according to the present invention, there are two or more kinds of conductive particles having different sizes in the anisotropic conductive paste, and at least one of them has a particle diameter of 30%.
nm or less conductive ultra-fine particles.Even at the time of bonding between fine electrodes, a close-packed structure of large particles and small particles is easily formed, and adhesion excellent in conductive properties, insulating properties, and deterioration resistance is formed. You.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/20 H01B 1/20 D H01L 21/60 311 H01L 21/60 311S Fターム(参考) 2H092 GA48 HA26 NA16 NA29 4J040 DF031 EB031 EB131 EC001 ED091 EH031 HA026 JA02 KA03 KA42 LA09 MA02 NA19 NA20 PA24 5F044 LL09 5G301 DA03 DA05 DA06 DA10 DA11 DA23 DD01 DD03 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01B 1/20 H01B 1/20 D H01L 21/60 311 H01L 21/60 311S F term (Reference) 2H092 GA48 HA26 NA16 NA29 NA29 4J040 DF031 EB031 EB131 EC001 ED091 EH031 HA026 JA02 KA03 KA42 LA09 MA02 NA19 NA20 PA24 5F044 LL09 5G301 DA03 DA05 DA06 DA10 DA11 DA23 DD01 DD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱硬化性樹脂と多数個の導電性粒子を含む
異方性導電ペーストであって、導電性粒子は2種以上の
粒子径を有しており、少なくとも1種の粒子径の導電性
粒子は粒子径が30nm以下の導電性超微粒子であるこ
とを特徴とする異方性導電ペースト。
1. An anisotropic conductive paste containing a thermosetting resin and a large number of conductive particles, wherein the conductive particles have two or more kinds of particle diameters, and have at least one kind of particle diameter. An anisotropic conductive paste, wherein the conductive particles are conductive ultrafine particles having a particle diameter of 30 nm or less.
【請求項2】前記導電性超微粒子が、銀、金、パラジウ
ム、ルテニウム、銅、ニッケルおよびスズよりなる群の
うちのいずれか1種の元素の金属超微粒子、または前記
群のうち少なくとも2種の元素からなる合金超微粒子で
ある請求項1記載の異方性導電ペースト。
2. The method according to claim 1, wherein the conductive ultrafine particles are metal ultrafine particles of any one element selected from the group consisting of silver, gold, palladium, ruthenium, copper, nickel and tin, or at least two elements of the group. The anisotropic conductive paste according to claim 1, wherein the paste is ultrafine alloy particles of the following elements.
【請求項3】前記導電性超微粒子が、インジウム、ルテ
ニウム、スズ、レニウム、イリジウム、オスミウムおよ
びアンチモンよりなる群のうちの少なくとも1種の元素
を含む導電性酸化物超微粒子である請求項1記載の異方
性導電ペースト。
3. The conductive ultrafine particle according to claim 1, wherein the conductive ultrafine particle is at least one element selected from the group consisting of indium, ruthenium, tin, rhenium, iridium, osmium and antimony. Anisotropic conductive paste.
【請求項4】前記2種以上の粒子径のうち、前記導電性
超微粒子の粒子径以外の少なくとも1種の粒子径が、
0.5〜10μmの値である請求項1、2または3記載
の異方性導電ペースト。
4. At least one of the two or more particle diameters other than the particle diameter of the conductive ultrafine particles is:
4. The anisotropic conductive paste according to claim 1, which has a value of 0.5 to 10 [mu] m.
JP2001124712A 2001-04-23 2001-04-23 Anisotropic electroconductive paste Pending JP2002322456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001124712A JP2002322456A (en) 2001-04-23 2001-04-23 Anisotropic electroconductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124712A JP2002322456A (en) 2001-04-23 2001-04-23 Anisotropic electroconductive paste

Publications (1)

Publication Number Publication Date
JP2002322456A true JP2002322456A (en) 2002-11-08

Family

ID=18974053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124712A Pending JP2002322456A (en) 2001-04-23 2001-04-23 Anisotropic electroconductive paste

Country Status (1)

Country Link
JP (1) JP2002322456A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
WO2006070615A1 (en) * 2004-12-28 2006-07-06 Sharp Kabushiki Kaisha Liquid crystal module and method for manufacturing the same
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2007277040A (en) * 2006-04-06 2007-10-25 Sumitomo Metal Mining Co Ltd Iridium oxide powder, its manufacturing method, and paste for forming thick film resistor using the same
JP2009099708A (en) * 2007-10-16 2009-05-07 Osaka Univ Connecting method for terminal, bonding structure for terminal, and resin for connection
JP2011108748A (en) * 2009-11-13 2011-06-02 Citizen Electronics Co Ltd Led light emitting device and method of manufacturing led light emitting device
WO2013058380A1 (en) * 2011-10-20 2013-04-25 日立化成株式会社 Adhesive composition, connection structure and method for producing same
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
WO2006070615A1 (en) * 2004-12-28 2006-07-06 Sharp Kabushiki Kaisha Liquid crystal module and method for manufacturing the same
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2007277040A (en) * 2006-04-06 2007-10-25 Sumitomo Metal Mining Co Ltd Iridium oxide powder, its manufacturing method, and paste for forming thick film resistor using the same
JP2009099708A (en) * 2007-10-16 2009-05-07 Osaka Univ Connecting method for terminal, bonding structure for terminal, and resin for connection
JP2011108748A (en) * 2009-11-13 2011-06-02 Citizen Electronics Co Ltd Led light emitting device and method of manufacturing led light emitting device
WO2013058380A1 (en) * 2011-10-20 2013-04-25 日立化成株式会社 Adhesive composition, connection structure and method for producing same
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module
CN108475583A (en) * 2016-02-18 2018-08-31 积水化学工业株式会社 The manufacturing method of electrical component and electrical component
JPWO2017142086A1 (en) * 2016-02-18 2018-12-06 積水化学工業株式会社 Electric module and method of manufacturing electric module

Similar Documents

Publication Publication Date Title
KR100525176B1 (en) Ceramic electronic component and production method therefor
JP5402350B2 (en) Method for producing conductive paste and conductive paste
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
US9662748B2 (en) Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP2002322456A (en) Anisotropic electroconductive paste
JP2004111254A (en) Metal contained composition for electrical connection of electronic device
WO2005123308A1 (en) Copper-containing tin powder and method for producing the copper-containing tin powder, and electroconductive paste using the copper-containing tin powder
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JP2002329419A (en) Metal element containing organic compound paste, its manufacturing method and its use
WO2015099049A1 (en) Conductive paste and conductive film
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
JP4163987B2 (en) Flaked copper powder, method for producing flaky copper powder and conductive paste
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP5756694B2 (en) Flat metal particles
JP2000239713A (en) Production of flaky silver powder
EP3210696B1 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP4524727B2 (en) Ni alloy grain for anisotropic conductive film and method for producing the same
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
CN116194236A (en) Electrode or wiring, electrode pair, and method for manufacturing electrode or wiring
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP3645504B2 (en) Metal powder and method for producing the same
JP2003257244A (en) Conductive resin paste and conductive resin membrane
JPH08167768A (en) Forming method for circuit pattern, and paste used therefor
JP4517290B2 (en) Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same