JPH115929A - Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity - Google Patents

Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Info

Publication number
JPH115929A
JPH115929A JP21785097A JP21785097A JPH115929A JP H115929 A JPH115929 A JP H115929A JP 21785097 A JP21785097 A JP 21785097A JP 21785097 A JP21785097 A JP 21785097A JP H115929 A JPH115929 A JP H115929A
Authority
JP
Japan
Prior art keywords
conductive film
solution
film
fine particles
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21785097A
Other languages
Japanese (ja)
Inventor
Keisuke Abe
啓介 阿部
Yasuhiro Sanada
恭宏 真田
Kenji Ishizeki
健二 石関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP21785097A priority Critical patent/JPH115929A/en
Publication of JPH115929A publication Critical patent/JPH115929A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating liquid for use in forming electrically conductive film that can form an electrically conductive film contributing to the improvement of contrast due to the occurrence of absorption over the whole visible light region, and also excellent in low reflectivity by heat treatment at a low temperature, by using a sol of metal fine particles of Ru. SOLUTION: This coating liquid for use in forming electrically conductive film is prepared by dispersing metal fine particles of Ru homogeneously in a sol form in water, an organic solvent or the like. Fine particles formed by chemical reduction of a Ru salt are preferably used. The average coagulated particle diameter and the powder volume resistance of the metal particles are preferably 200 nm or less and 0.01 ohm.cm or less, respectively. This coating liquid may contain a silicon compound for adjusting the surface tension, the spreadability and the like of the liquid, and may also contain a metal oxide of Sn, Sb, In or the like, for example, for adjusting the thickness of the resulting conductive film. An electrically conductive film having a low reflectivity is provided by forming, on this electrically conductive film, a film having a lower refractive index than that of this film (SiO2 or MgF2 ).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブラウン管パネル
などの基体表面に形成される導電膜または低反射性導電
膜およびその形成方法と、前記導電膜の形成用塗布液に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film or a low-reflective conductive film formed on the surface of a substrate such as a CRT panel, a method for forming the conductive film, and a coating solution for forming the conductive film.

【0002】[0002]

【従来の技術】従来、ブラウン管パネルは高電圧で作動
するために、起動時または終了時にその表面に静電気が
誘発される。この静電気によりブラウン管パネル表面に
ほこりが付着してコントラスト低下を引き起こしたり、
ブラウン管パネルに直接手を触れた際に軽い電気ショッ
クによる不快感を生じたりすることが多い。
2. Description of the Related Art Conventionally, since a cathode ray tube panel operates at a high voltage, static electricity is induced on its surface at the time of start-up or termination. This static electricity causes dust to adhere to the surface of the CRT panel, causing a decrease in contrast,
Touching the CRT panel directly often causes discomfort due to a slight electric shock.

【0003】上述の現象を防止するために、ブラウン管
パネル表面に帯電防止膜を付与する試みが種々検討さ
れ、例えば、ブラウン管パネル表面を350℃程度に加
熱し、該表面にCVD法により酸化スズまたは酸化イン
ジウムなどの導電性酸化物層を設ける方法(特開昭63
−76247)が提案されている。
In order to prevent the above phenomenon, various attempts have been made to apply an antistatic film to the surface of a CRT panel. For example, the surface of the CRT panel is heated to about 350 ° C., and tin oxide or tin oxide is applied to the surface by a CVD method. A method of providing a conductive oxide layer such as indium oxide (JP-A-63
-76247) has been proposed.

【0004】しかし、この方法では成膜装置にコストが
かかることに加え、ブラウン管パネル表面を高温に加熱
するため、ブラウン管内の蛍光体の脱落を生じたり、寸
法精度が低下するなどの問題があった。また、導電層に
用いる材料としては酸化スズが最も一般的であるが、酸
化スズの場合、低温処理では高性能な膜が得にくい欠点
があった。また、近年、電磁波ノイズによる電子機器へ
の電波障害が社会問題となり、それらを防止するため規
格の作成および規制が行われている。電磁波ノイズは、
導電性塗膜をブラウン管パネル表面に介在させ、導電性
塗膜に電磁波が当たり、該塗膜内に渦電流を誘導して、
この作用で電磁波を反射させることにより遮断できる。
しかし、このためには導電性塗膜は高い電界強度に耐え
うる良導電性であることが必要であるが、それほどの良
導電性の膜を得ることはさらに困難であった。
[0004] However, in this method, in addition to the cost of the film forming apparatus, the surface of the CRT panel is heated to a high temperature, so that the phosphor in the CRT may fall off or the dimensional accuracy may be reduced. Was. In addition, tin oxide is most commonly used as a material used for the conductive layer. However, in the case of tin oxide, there is a disadvantage that it is difficult to obtain a high-performance film by low-temperature treatment. Further, in recent years, radio interference to electronic devices due to electromagnetic noise has become a social problem, and standards have been created and regulated to prevent them. Electromagnetic noise is
The conductive coating is interposed on the surface of the cathode ray tube panel, the conductive coating is irradiated with electromagnetic waves, and an eddy current is induced in the coating,
Electromagnetic waves can be cut off by reflecting the electromagnetic waves by this effect.
However, for this purpose, the conductive coating film needs to have good conductivity to withstand high electric field strength, but it has been more difficult to obtain such a good conductive film.

【0005】一方、導電膜の製造法としては、ブラウン
管パネル表面に金属塩と還元剤の混合液を塗布して導電
膜を形成させる方法(特開平6−310058)がある
が、この方法では金属導電膜はガラス面にメッキされた
状態となり、膜の強度が著しく弱く、かつ該導電膜を洗
浄して副生成塩を除去する工程が必要となる問題が生じ
ていた。
On the other hand, as a method for producing a conductive film, there is a method in which a mixture of a metal salt and a reducing agent is applied to the surface of a cathode ray tube panel to form a conductive film (Japanese Patent Laid-Open No. 310058/1994). The conductive film is in a state of being plated on the glass surface, and the strength of the film is extremely weak, and there is a problem that a step of cleaning the conductive film to remove by-product salts is required.

【0006】また、Ag、Auなどの微粒子を用いる場
合、その粒径が10nm付近になるとプラズマ共鳴吸収
という光の吸収が生じ、CRT等の表示装置において
は、不具合が生じる。また、Agは特に導電率が高いた
め電磁波遮蔽膜には適するが、一方その化学的活性が高
くかつマイグレーションが生じるため、耐久性の点で充
分とはいえない。
In the case where fine particles such as Ag and Au are used, when the particle diameter is around 10 nm, light absorption called plasma resonance absorption occurs, which causes a problem in a display device such as a CRT. Ag is particularly suitable for an electromagnetic wave shielding film because of its high conductivity, but Ag is not sufficient in terms of durability because of its high chemical activity and migration.

【0007】さらには、金属超微粒子ペーストによる金
属膜の形成方法(特開平3−281783)があるが、
この金属ペーストは炭素数5以上のアルコール類、酢酸
エチル、オレイン酸エチル、酢酸ブチル、またはグリセ
リドを含有し比較的粘調であるため、数μmの厚さの導
電膜形成には優れているが、50〜150nmという光
学薄膜の形成や、大面積へのコーティングには不向きで
ある。
Further, there is a method of forming a metal film by using a metal ultrafine particle paste (Japanese Patent Laid-Open No. 3-281783).
Since this metal paste contains alcohols having 5 or more carbon atoms, ethyl acetate, ethyl oleate, butyl acetate, or glyceride and is relatively viscous, it is excellent for forming a conductive film having a thickness of several μm. It is not suitable for forming an optical thin film having a thickness of 50 to 150 nm or coating a large area.

【0008】また、導電膜および低反射性導電膜のコー
ティング法による形成は、従来より光学機器のみなら
ず、民生用機器、特にTV、コンピュータ端末のCRT
に関して数多くの検討がなされてきた。すなわち、例え
ば、ブラウン管パネル表面に防眩効果を持たせるために
表面に微細な凹凸を有するSiO2 層を付着させたり、
フッ酸により表面をエッチングして凹凸を設けるなどの
方法(特開昭61−118931)が採られてきた。
Further, the formation of the conductive film and the low-reflective conductive film by a coating method has been conventionally carried out not only on optical devices but also on consumer devices, particularly TVs and CRTs of computer terminals.
Numerous studies have been made on. That is, for example, an SiO 2 layer having fine irregularities is attached to the surface of the cathode ray tube panel so as to have an antiglare effect,
A method has been adopted in which the surface is etched with hydrofluoric acid to form irregularities (Japanese Patent Laid-Open No. 61-118931).

【0009】しかし、これらの方法は、外部光を散乱さ
せるノングレア処理と呼ばれ、本質的に低反射性層を設
ける方法でないため、反射率の低減には限界があり、ま
た、ブラウン管パネルなどにおいては、解像度を低下さ
せる原因ともなっている。
However, these methods are called non-glare treatments for scattering external light, and are not essentially methods of providing a low-reflection layer. Therefore, there is a limit in reducing the reflectance. Is also a cause of lowering the resolution.

【0010】[0010]

【発明が解決しようとする課題】本発明は、従来技術に
よる導電膜および低反射性導電膜の上述の欠点を解消し
ようとするものであり、低温熱処理により形成が可能な
高性能導電膜および低反射性導電膜とその形成方法、お
よび前記導電膜の形成用塗布液を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the conventional conductive film and the low-reflective conductive film. It is an object to provide a reflective conductive film, a method for forming the same, and a coating solution for forming the conductive film.

【0011】[0011]

【課題を解決するための手段】本発明は、Ruの金属微
粒子のゾルを含有してなる導電膜形成用塗布液を提供す
る。また、該塗布液を基体上に塗布して加熱することを
特徴とする導電膜の形成方法を提供する。本発明の特徴
は、導電膜を形成するに際し、金属微粒子をゾルの形で
含有する塗布液を使用することであり、この塗布液を基
体上に塗布して導電膜を形成させた場合、特開平6−3
10058などに記載のような金属塩と還元液からなる
塗布液を用いたメッキ膜とは異なり、微少な孔が導電膜
中に導入される。
SUMMARY OF THE INVENTION The present invention provides a coating solution for forming a conductive film, which contains a sol of Ru fine metal particles. Further, the present invention provides a method for forming a conductive film, comprising applying the coating solution onto a substrate and heating the substrate. A feature of the present invention is to use a coating liquid containing metal fine particles in the form of a sol when forming a conductive film. Kaihei 6-3
Unlike a plating film using a coating solution composed of a metal salt and a reducing solution as described in 10058 and the like, minute holes are introduced into the conductive film.

【0012】そして、当該導電膜の上にケイ素化合物を
形成するSiアルコキシドの加水分解物を含有する塗布
液を塗布した場合に、この孔にケイ素化合物が侵入し、
膜強度が著しく向上する。
When a coating solution containing a hydrolyzate of a Si alkoxide forming a silicon compound is applied on the conductive film, the silicon compound penetrates into the pores,
The film strength is significantly improved.

【0013】また、本発明においては、特開平6−31
0058などに記載のような従来法とは異なり、導電膜
の形成時に副生成物が生成せず、導電膜とその上に形成
される膜との間での膜強度の劣化も生じない。さらに、
特開平3−281783に記載されている金属ペースト
のように比較的高沸点(沸点150〜300℃)の溶媒
を必ずしも要しないため、膜を低温(150〜160
℃)で焼成した場合でも、膜中に残留する有機成分がき
わめて少なく、強固な膜を形成できる。
Further, according to the present invention, Japanese Patent Laid-Open No. 6-31
Unlike the conventional method as described in 0058 and the like, no by-product is generated during the formation of the conductive film, and the film strength between the conductive film and the film formed thereon does not deteriorate. further,
Since a solvent having a relatively high boiling point (boiling point of 150 to 300 ° C.) is not necessarily required as in the case of the metal paste described in JP-A-3-281783, the film is formed at a low temperature (150 to 160 ° C.).
C), the organic component remaining in the film is extremely small, and a strong film can be formed.

【0014】したがって本発明によれば、ブラウン管パ
ネル面などのガラス基体に、前述の問題点を解決した導
電膜、またはこの導電膜を1層以上含む低反射性導電膜
を形成できる。
Therefore, according to the present invention, a conductive film which has solved the above-mentioned problems or a low-reflective conductive film containing at least one conductive film can be formed on a glass substrate such as a CRT panel surface.

【0015】[0015]

【発明の実施の形態】次に発明の実施の形態を挙げて本
発明をさらに詳しく説明する。本発明の導電膜形成用塗
布液(以下、本発明の塗布液という)に用いるRu金属
は微粒子として用いる。金属微粒子としては、例えば、
Ru金属の蒸発凝縮により生成される微粒子などが使用
できるが、良好な結果が得られることから、Ru金属の
塩を化学還元することにより生成する微粒子が好ましく
使用される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to embodiments of the present invention. Ru metal used in the coating liquid for forming a conductive film of the present invention (hereinafter, referred to as the coating liquid of the present invention) is used as fine particles. As metal fine particles, for example,
Fine particles generated by evaporative condensation of Ru metal can be used, but fine particles generated by chemically reducing a Ru metal salt are preferably used because good results can be obtained.

【0016】本発明において化学還元によるRu金属微
粒子の生成に用いられる金属塩としては、例えば、ニト
ロソ硝酸ルテニウム、塩化ルテニウム、塩化ルテニウム
アンモニウム、塩化ルテニウムカリウム、塩化ルテニウ
ムナトリウム、酢酸ルテニウムなどが挙げられる。
In the present invention, examples of the metal salt used for producing Ru metal fine particles by chemical reduction include ruthenium nitrosonitrate, ruthenium chloride, ruthenium ammonium chloride, ruthenium potassium chloride, ruthenium sodium chloride, ruthenium acetate and the like.

【0017】上記金属塩の還元剤としては、例えば、水
素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化
ナトリウム、水素化リチウムなどの水素化物やギ酸、シ
ュウ酸、次亜リン酸、次亜リン酸ナトリウム、ホルムア
ルデヒドなどが使用できる。金属微粒子の還元析出法
は、特に限定されないが、例えば、金属塩を水または有
機溶媒に溶解させ、必要に応じアンモニアなどでpHを
調整した後、還元剤を添加する方法が採用できる。この
とき、クエン酸、クエン酸ナトリウム、ポリビニルピロ
リドン、ポリビニルアルコール、ポリアクリル酸等の金
属粒子分散保護剤を添加することも好ましい。
Examples of the metal salt reducing agent include hydrides such as sodium borohydride, potassium borohydride, sodium hydride and lithium hydride, and formic acid, oxalic acid, hypophosphorous acid and hypophosphorous acid. Sodium, formaldehyde and the like can be used. The method for reducing and depositing the metal fine particles is not particularly limited. For example, a method of dissolving a metal salt in water or an organic solvent, adjusting the pH with ammonia or the like as necessary, and then adding a reducing agent can be employed. At this time, it is also preferable to add a metal particle dispersion protective agent such as citric acid, sodium citrate, polyvinylpyrrolidone, polyvinyl alcohol, and polyacrylic acid.

【0018】この方法においては、金属塩の種類により
反応温度を調整することが好ましい。生成した金属微粒
子は、適宜洗浄および乾燥される。金属微粒子の粉体体
積抵抗は、0.01Ωcm以下であることが好ましい。
In this method, it is preferable to adjust the reaction temperature depending on the type of the metal salt. The generated metal fine particles are appropriately washed and dried. The powder volume resistance of the metal fine particles is preferably 0.01 Ωcm or less.

【0019】本発明の塗布液は、上記の金属微粒子を水
や有機溶媒などにゾルの形に均一に分散させることによ
って調製される。金属微粒子の粉末は、粒子径があまり
大きいと分散しにくくなり、また、塗布液保管中に沈殿
等が生じ保存安定性が劣る傾向にあるため、塗布液中の
Ru金属微粒子の平均凝集粒径は200nm以下、さら
には10〜160nm、であることが好ましい。平均凝
集粒径が10nm未満の微粒子はその調製上実用的でな
く、また、平均凝集粒径が160nm超の微粒子は、塗
布液中で容易に微粒子同士の凝集が生じ、塗布液の保存
安定性が劣る傾向が顕著である。
The coating liquid of the present invention is prepared by uniformly dispersing the above metal fine particles in water or an organic solvent in the form of a sol. If the particle diameter of the metal fine particles is too large, it is difficult to disperse the particles, and the storage stability tends to deteriorate due to precipitation during storage of the coating solution. Is preferably 200 nm or less, more preferably 10 to 160 nm. Fine particles having an average agglomerated particle size of less than 10 nm are impractical in their preparation, and fine particles having an average agglomerated particle size of more than 160 nm readily agglomerate with each other in a coating solution, and the storage stability of the coating solution Is remarkable.

【0020】平均一次粒径としては塗布液の保存安定性
の観点から100nm以下、特に5〜80nm、が好ま
しい。平均一次粒径が5nm未満の微粒子は結晶性が低
く、かつ塗膜化した場合、膜中の金属微粒子同士の接触
抵抗が増大し、塗膜の導電性が劣る傾向がある。また、
平均一次粒径が80nm超の微粒子は、塗布液中で容易
に微粒子同士の凝集が生じ、塗布液の保存安定性が劣る
傾向が顕著である。
The average primary particle size is preferably 100 nm or less, particularly preferably 5 to 80 nm, from the viewpoint of storage stability of the coating solution. Fine particles having an average primary particle size of less than 5 nm have low crystallinity and, when formed into a coating, tend to increase the contact resistance between the metal fine particles in the film and deteriorate the conductivity of the coating. Also,
The fine particles having an average primary particle diameter of more than 80 nm have a remarkable tendency that the fine particles easily aggregate in the coating solution and the storage stability of the coating solution is deteriorated.

【0021】また、金属微粒子の分散性向上のために、
加熱、紫外線の照射、酸化剤への浸漬などにより金属微
粒子の表面を一部酸化してもよい。塗布液中の金属微粒
子の含有量は、特に限定されないが、通常は0.05〜
10重量%程度であり、形成される導電膜が所定の厚さ
となるように含有量を調整する。0.05重量%未満の
場合は所定の膜厚の導電膜が得られ難く、また、10重
量%超の場合は均一な膜厚の導電膜が得られ難い傾向
(特にスピンコート法では顕著である)があり、かつ液
の保存安定性が劣る傾向にある。
In order to improve the dispersibility of the metal fine particles,
The surface of the metal fine particles may be partially oxidized by heating, irradiation with ultraviolet light, immersion in an oxidizing agent, or the like. The content of the metal fine particles in the coating solution is not particularly limited, but is usually 0.05 to
The content is about 10% by weight, and the content is adjusted so that the formed conductive film has a predetermined thickness. When the content is less than 0.05% by weight, a conductive film having a predetermined thickness is difficult to obtain, and when the content is more than 10% by weight, a conductive film having a uniform thickness tends to be difficult to obtain (especially in a spin coating method. And the storage stability of the liquid tends to be poor.

【0022】本発明の塗布液の調製においては金属微粒
子を水や有機溶媒などに均一に分散させることが好まし
い。そのためには、溶媒と金属微粒子との接触を容易な
らしめるために充分な撹拌を行うことが必要である。撹
拌手段としては、例えば、コロイドミル、ボールミル、
サンドミル、ホモミキサーなどの市販の粉砕・分散機を
採用できる。また、分散させる際には、20〜200℃
の範囲で加熱することもできる。溶媒の沸点以上で撹拌
する場合には、加圧して液相が保持できるようにする。
こうして、Ruの金属微粒子がコロイド粒子として分散
した水性ゾルまたはオルガノゾルが得られる。
In preparing the coating solution of the present invention, it is preferable to uniformly disperse the metal fine particles in water, an organic solvent or the like. For that purpose, it is necessary to perform sufficient stirring to facilitate the contact between the solvent and the metal fine particles. As the stirring means, for example, a colloid mill, a ball mill,
A commercially available pulverizer / disperser such as a sand mill and a homomixer can be employed. In addition, when dispersing, 20 to 200 ° C.
Can be heated in the range described above. When stirring at a temperature equal to or higher than the boiling point of the solvent, pressurization is performed so that a liquid phase can be maintained.
Thus, an aqueous sol or organosol in which Ru metal fine particles are dispersed as colloid particles is obtained.

【0023】本発明においては、前記水性ゾルをそのま
ま本発明の塗布液として使用できるが、基体に対する塗
布性を増すために、金属微粒子を有機溶媒に分散させる
か、または水性ゾルの水分を有機溶媒で置換しても使用
できる。
In the present invention, the above-mentioned aqueous sol can be used as it is as the coating liquid of the present invention. However, in order to enhance the coating property on the substrate, fine metal particles are dispersed in an organic solvent or the water of the aqueous sol is dissolved in the organic solvent. Can be used even if replaced with

【0024】オルガノゾルの形成および上記の媒体の置
換などに使用される有機溶媒としては、親水性有機溶媒
が好ましく、例えば、メタノール、エタノール、プロピ
ルアルコール、ブタノールなどのアルコール類、エチル
セロソルブ、メチルセロソルブ、ブチルセロソルブ、プ
ロピレングリコールメチルエーテルなどのエーテル類、
2,4−ペンタンジオン、ジアセトンアルコールなどの
ケトン類、乳酸エチル、乳酸メチルなどのエステル類が
などが挙げられる。
As the organic solvent used for forming the organosol and substituting the above-mentioned medium, a hydrophilic organic solvent is preferable, for example, alcohols such as methanol, ethanol, propyl alcohol and butanol, ethyl cellosolve, methyl cellosolve, and the like. Ethers such as butyl cellosolve and propylene glycol methyl ether,
Examples include ketones such as 2,4-pentanedione and diacetone alcohol, and esters such as ethyl lactate and methyl lactate.

【0025】本発明の塗布液は、上記の有機溶媒や水を
含有しうるが、大面積の基体に光学薄膜を形成するため
に塗布液の粘度は0.1〜5cPが好ましい。5cPよ
り粘度が高い場合、均一な光学薄膜を形成しにくい傾向
にある。実用上特に0.2〜5cPが好ましい。
The coating solution of the present invention may contain the above-mentioned organic solvent and water, but the viscosity of the coating solution is preferably 0.1 to 5 cP in order to form an optical thin film on a large-area substrate. When the viscosity is higher than 5 cP, it tends to be difficult to form a uniform optical thin film. Practically, 0.2 to 5 cP is particularly preferable.

【0026】本発明の塗布液には、液の表面張力、拡が
り性等を調整する点から、Si(OR)y ・R'4-y(y
は3または4、R、R' はアルキル基)などの加水分解
性ケイ素化合物、またはその部分加水分解物(以下、
「加水分解性ケイ素化合物またはその部分加水分解物」
を単に「ケイ素化合物」という)を添加できる。金属微
粒子に対してケイ素化合物は任意の割合で添加できる
が、導電性および導電膜の強度を考慮すると、金属微粒
子/SiO2 換算の該ケイ素化合物(重量比)は1/6
〜10/1が好ましく、1/4〜5/1がさらに好まし
い。
The coating liquid of the present invention contains Si (OR) y.R'4 -y (y) in view of adjusting the surface tension, spreading property, etc. of the liquid.
Is 3 or 4, and R and R 'are alkyl groups, or a hydrolyzable silicon compound such as
"Hydrolysable silicon compound or its partial hydrolyzate"
Simply referred to as “silicon compound”). The silicon compound can be added at an arbitrary ratio to the metal fine particles. However, considering the conductivity and the strength of the conductive film, the ratio of the metal compound to the silicon compound in terms of SiO 2 (weight ratio) is 1/6.
Is preferably from 10 to 10/1, and more preferably from 1/4 to 5/1.

【0027】また、本発明の塗布液には、導電膜の膜厚
調整などのために、Sn、Sb、In、Zn、Ga、A
lおよびRuからなる群から選ばれる1種以上の金属の
酸化物を金属微粒子と同様なゾルの形で含有させること
もできる。金属酸化物は金属微粒子に対して任意の割合
で使用できるが、金属微粒子/金属酸化物(重量比)は
99/1〜60/40、さらには95/5〜70/3
0、が好ましい。
The coating liquid of the present invention contains Sn, Sb, In, Zn, Ga, and A for adjusting the thickness of the conductive film.
An oxide of one or more metals selected from the group consisting of l and Ru may be contained in the form of a sol similar to the metal fine particles. The metal oxide can be used at an arbitrary ratio to the metal fine particles, but the metal fine particle / metal oxide (weight ratio) is 99/1 to 60/40, and furthermore 95/5 to 70/3.
0 is preferred.

【0028】さらに、基体との濡れ性を向上させるため
に種々の界面活性剤を本発明の塗布液に添加できる。金
属微粒子とともにケイ素化合物や金属酸化物などを含む
場合の本発明の塗布液の濃度(固形分)は、0.05〜
10重量%程度が好ましい。0.05重量%未満の場合
は所定の膜厚の導電膜が得られ難く、また、10重量%
超の場合は均一な膜厚の導電膜が得られ難い傾向(特に
スピンコート法では顕著である)があり、かつ液の保存
安定性が劣る傾向にある。
Further, various surfactants can be added to the coating solution of the present invention in order to improve the wettability with the substrate. The concentration (solid content) of the coating solution of the present invention when containing a silicon compound or a metal oxide together with the metal fine particles is 0.05 to
About 10% by weight is preferable. When the content is less than 0.05% by weight, it is difficult to obtain a conductive film having a predetermined thickness.
In the case of exceeding, a conductive film having a uniform film thickness tends to be difficult to obtain (particularly remarkable in the spin coating method), and the storage stability of the liquid tends to be inferior.

【0029】こうして得られた本発明の塗布液を基体上
に、乾燥後に所定の厚さとなるように塗布し、加熱して
導電膜を形成させる。導電膜の厚さは、特に限定されな
いが、通常は50〜150nmが好ましい。50nm未
満では導電性が充分発現されない場合があり、150n
m超では透過率が低下しブラウン管のような表示装置へ
の適用が難しくなる。さらに、150nm超では、導電
膜上に低屈折率膜を形成し2層による低反射性導電膜を
形成する場合に所定の低反射性能が維持されにくいこと
がある。
The coating solution of the present invention thus obtained is applied on a substrate to a predetermined thickness after drying, and heated to form a conductive film. The thickness of the conductive film is not particularly limited, but is usually preferably 50 to 150 nm. If it is less than 50 nm, conductivity may not be sufficiently exhibited, and 150 n
If it exceeds m, the transmittance is reduced, and it is difficult to apply to a display device such as a cathode ray tube. Further, when the thickness exceeds 150 nm, when a low-refractive-index film is formed on the conductive film to form a two-layer low-reflective conductive film, it may be difficult to maintain a predetermined low reflection performance.

【0030】本発明の塗布液を基体に塗布する方法は、
特に限定されないが、例えば、スピンコート、ディップ
コート、スプレーコートなどの方法が好適に使用でき
る。また、スプレーコート法を用いて表面に凹凸を形成
し、防眩効果を付与してもよく、また、基体の上にシリ
カ被膜などのハードコートを設けてもよい。さらには、
本発明における導電膜をスピンコートまたはスプレーコ
ートのいずれかの方法で形成し、その上に前記したケイ
素化合物を含む溶液をスプレーコートして、表面に凹凸
を有するシリカ被膜のノングレアコートを設けてもよ
い。
The method of applying the coating solution of the present invention to a substrate is as follows.
Although not particularly limited, for example, methods such as spin coating, dip coating, and spray coating can be suitably used. Further, the surface may be formed to have an anti-glare effect by using a spray coating method, or a hard coat such as a silica coating may be provided on the substrate. Furthermore,
The conductive film in the present invention is formed by any of spin coating or spray coating, and a solution containing the silicon compound is spray-coated thereon, and a non-glare coat of a silica coating having irregularities on the surface may be provided. Good.

【0031】本発明の塗布液に低沸点溶媒を用いる場合
には、室温での乾燥で均一な塗膜が得られるが、沸点が
100〜250℃の範囲にある中〜高沸点溶媒を用いる
場合には、室温乾燥では溶媒が塗膜中に残留するため、
加熱処理を行う。加熱温度の上限は基体に用いるガラ
ス、プラスチックなどの基体の軟化点によって決定され
る。この点も考慮すると好ましい加熱温度範囲は100
〜500℃である。
When a low-boiling solvent is used in the coating solution of the present invention, a uniform coating film can be obtained by drying at room temperature, but a medium-high-boiling solvent having a boiling point in the range of 100 to 250 ° C. is used. In the case of drying at room temperature, the solvent remains in the coating film,
A heat treatment is performed. The upper limit of the heating temperature is determined by the softening point of the substrate such as glass or plastic used for the substrate. Considering this point, the preferable heating temperature range is 100.
500500 ° C.

【0032】本発明においては、上記方法で形成した導
電膜の上に、光の干渉作用を利用して低反射性膜を形成
できる。例えば、基体がガラスの場合(屈折率n=1.
52)、導電膜の上に、(導電膜の屈折率)/(低屈折
率膜の屈折率)の比の値が約1.23となるような低屈
折率膜を形成することによって反射率を最も低減させる
ことができる。反射率の低減には可視光領域において、
特に555nmの光の反射率を低減させることが好まし
いが、実用上は反射外観などを考慮して適宜決定するこ
とが好ましい。
In the present invention, a low-reflection film can be formed on the conductive film formed by the above method by utilizing the interference effect of light. For example, when the substrate is glass (refractive index n = 1.
52), forming a low-refractive-index film on the conductive film such that the ratio of (refractive index of the conductive film) / (refractive index of the low-refractive-index film) is about 1.23; Can be reduced most. To reduce the reflectivity in the visible light region,
In particular, it is preferable to reduce the reflectivity of light having a wavelength of 555 nm, but in practice, it is preferable to determine the reflectivity appropriately in consideration of the reflection appearance and the like.

【0033】こうした2層からなる低反射性導電膜の最
外層の低屈折率膜は、MgF2 ゾルを含む溶液やケイ素
化合物を含む溶液から選ばれる1種以上の溶液を用いて
形成した膜が好ましい。屈折率の点ではMgF2 が最も
低く、反射率低減のためにはMgF2 ゾルを含む溶液を
用いてなるMgF2 を主成分とする膜が好ましいが、膜
の硬度や耐擦傷性の点ではSiO2 を主成分とする膜が
好ましい。
The low-refractive-index film as the outermost layer of such a low-reflective conductive film having two layers is a film formed using at least one solution selected from a solution containing a MgF 2 sol and a solution containing a silicon compound. preferable. MgF 2 is the lowest in terms of the refractive index, and a film containing MgF 2 as a main component using a solution containing an MgF 2 sol is preferable for reducing the reflectance, but in terms of the hardness and scratch resistance of the film. A film mainly composed of SiO 2 is preferred.

【0034】低屈折率膜形成用のケイ素化合物を含む溶
液としては種々のものが使用できるが、例えば、シリコ
ンテトラエトキシド、シリコンテトラメトキシド、シリ
コンテトライソプロポキシド、シリコンテトラブトキシ
ドなどのモノマー、またはそれらの重合体が好ましい。
Various solutions can be used as the solution containing the silicon compound for forming the low refractive index film. Examples of the solution include monomers such as silicon tetraethoxide, silicon tetramethoxide, silicon tetraisopropoxide, and silicon tetrabutoxide; Or those polymers are preferred.

【0035】ケイ素化合物は、通常、アルコール、エス
テル、エーテルなどに溶解して用いるが、また、前記溶
液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、フッ
酸、またはアンモニア水溶液を添加して加水分解して用
いることもできる。溶液中のケイ素化合物の含有量は特
に限定されないが、固形分量が多すぎると保存安定性が
低下するので溶媒に対して30重量%以下の固形分量で
使用することが好ましい。
The silicon compound is usually used by dissolving it in an alcohol, an ester, an ether, or the like, and adding an aqueous solution of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, or ammonia to the above solution. It can be used after hydrolysis. The content of the silicon compound in the solution is not particularly limited. However, if the solid content is too large, the storage stability is reduced. Therefore, it is preferable to use the silicon compound at a solid content of 30% by weight or less based on the solvent.

【0036】また、低屈折率膜形成用にMgF2 を使用
する場合には、MgF2 の微粒子を用い、前記と同様に
して該微粒子を水や有機溶媒などの溶媒に安定なコロイ
ド粒子として均一に分散させた水性ゾル、またはオルガ
ノゾルして使用する。分散液中のMgF2 の好ましい濃
度はケイ素化合物の場合と同様である。有機溶媒として
は前記の有機溶媒が使用できる。
When MgF 2 is used for forming a low refractive index film, MgF 2 fine particles are used, and the fine particles are uniformly formed as colloid particles stable in a solvent such as water or an organic solvent in the same manner as described above. Used as an aqueous sol or an organosol. The preferred concentration of MgF 2 in the dispersion is the same as in the case of the silicon compound. As the organic solvent, the above-mentioned organic solvents can be used.

【0037】また、上記の溶液または分散液には膜の強
度を向上させるために、バインダとしてZr、Ti、S
n、Alなどのアルコキシドや、これらの部分加水分解
物を添加して、ZrO2 、TiO2 、SnO2 、Al2
3 などの1種または2種以上の複合物をMgF2 やS
iO2 と同時に析出させてもよい。上記溶液または分散
液へのこれらのアルコキシドなどバインダの添加量は、
ケイ素化合物および/またはMgF2 に対して0.1〜
10重量%が好ましい。
In order to improve the strength of the film, the above solution or dispersion contains Zr, Ti, and S as binders.
Alkoxides such as n and Al, and partial hydrolysates thereof are added, and ZrO 2 , TiO 2 , SnO 2 , Al 2
One or two or more composites such as O 3 are mixed with MgF 2 or S
It may be precipitated simultaneously with iO 2 . The amount of the binder such as these alkoxides added to the solution or dispersion is
0.1 to silicon compound and / or MgF 2
10% by weight is preferred.

【0038】さらに、必要により、基体との濡れ性を向
上させるために、上記の溶液または分散液に界面活性剤
を添加してもよい。添加される界面活性剤としては、例
えば、直鎖アルキルベンゼンスルホン酸ナトリウム、ア
ルキルエーテル硫酸エステルなどが挙げられる。
Further, if necessary, a surfactant may be added to the above solution or dispersion in order to improve the wettability with the substrate. Examples of the surfactant to be added include sodium linear alkylbenzene sulfonate, alkyl ether sulfate, and the like.

【0039】以上の低屈折率膜形成用溶液または分散液
を用い、導電膜形成の場合と同様の方法で導電膜上に低
屈折率膜を形成させる。本発明の低反射性導電膜の形成
方法は、多層干渉効果による低反射性の導電膜にも応用
できる。反射防止性能を有する多層の低反射性膜の構成
としては、例えば、反射防止をしたい光の波長をλとし
て、基体側より、高屈折率層−低屈折率層を光学厚みλ
/2−λ/4、またはλ/4−λ/4で形成した2層の
低反射性膜、基体側より中屈折率層−高屈折率層−低屈
折率層を光学厚みλ/4−λ/2−λ/4で形成した3
層の低反射性膜、基体側より低屈折率層−中屈折率層−
高屈折率層−低屈折率層を光学厚みλ/2−λ/2−λ
/2−λ/4で形成した4層の低反射性膜などが典型例
として知られている。
Using the above solution or dispersion for forming a low refractive index film, a low refractive index film is formed on the conductive film in the same manner as in the case of forming the conductive film. The method for forming a low-reflection conductive film of the present invention can be applied to a low-reflection conductive film by a multilayer interference effect. As a configuration of a multilayer low-reflection film having antireflection performance, for example, assuming that the wavelength of light to be antireflection is λ, from the substrate side, the high refractive index layer-the low refractive index layer, the optical thickness
/ 2−λ / 4 or λ / 4−λ / 4, two layers of low-reflection film, and a medium refractive index layer−high refractive index layer−low refractive index layer formed from the substrate side with an optical thickness of λ / 4− 3 formed by λ / 2−λ / 4
Low-reflective layer, lower refractive index layer from substrate side-middle refractive index layer-
The high refractive index layer-the low refractive index layer has an optical thickness of λ / 2-λ / 2-λ.
A typical example is a four-layer low-reflection film formed at / 2−λ / 4.

【0040】以上のように本発明の方法により、Ruの
金属微粒子を含有する導電膜は、可視光領域全般にわた
って吸収を生じるため、コントラストの向上にも寄与
し、かつ低反射性にも優れている。
As described above, according to the method of the present invention, the conductive film containing the fine metal particles of Ru absorbs over the entire visible light region, thus contributing to improvement of contrast and excellent in low reflectivity. I have.

【0041】本発明において、上記の導電膜または上記
の低反射性導電膜を形成する基体としては、1)ブラウ
ン管パネル、2)複写機用ガラス板、3)計算機用パネ
ル、4)クリーンルーム用ガラス、5)CRT、LCD
などの表示装置の前面板、などの各種ガラス基体、また
はプラスチック基体などが挙げられる。
In the present invention, as the substrate on which the conductive film or the low-reflective conductive film is formed, 1) a cathode ray tube panel, 2) a glass plate for a copying machine, 3) a panel for a computer, and 4) glass for a clean room. 5) CRT, LCD
And various kinds of glass substrates such as a front panel of a display device, and a plastic substrate.

【0042】[0042]

【実施例】以下に実施例および比較例を挙げて本発明を
さらに具体的に説明するが、本発明はこれらの例に限定
されない。なお、実施例および比較例における使用割合
および%は重量基準である。また、実施例および比較例
において得られた膜の評価方法は次のとおりであり、結
果は表1に示した。なお、表中の「7.2E2」なる記
載は、7.2×102 の意であり、他も同様である。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The percentages and percentages used in the examples and comparative examples are on a weight basis. The methods of evaluating the films obtained in the examples and comparative examples are as follows, and the results are shown in Table 1. Note that the description “7.2E2” in the table means 7.2 × 10 2 , and the same applies to other items.

【0043】1)導電性評価:ローレスタ抵抗測定器
(三菱化学社製)により膜表面の表面抵抗を測定した。 2)耐擦傷性:擦傷性測定器(LION社製50−5
0)により1kg荷重下で膜表面を50回往復後、その
表面の傷付きを目視で判断した。評価基準は、○:傷が
全くつかない、△:傷が多少つく、×:一部に膜剥離が
生じる、とした。
1) Conductivity evaluation: The surface resistance of the film surface was measured using a Loresta resistance meter (Mitsubishi Chemical Corporation). 2) Scratch resistance: Scratch resistance measuring device (50-5 manufactured by LION)
According to 0), the membrane surface was reciprocated 50 times under a load of 1 kg, and the scratches on the surface were visually judged. The evaluation criteria were as follows: :: no scratch at all, Δ: slight scratch, x: partial film peeling.

【0044】3)鉛筆硬度:1kg荷重下において種々
の硬度の鉛筆で膜表面を走査し、その後目視により表面
に傷が生じ始める鉛筆の硬度を膜の鉛筆硬度と判断し
た。 4)視感反射率:GAMMA分光反射率スペクトル測定
器により多層膜の400〜700nmでの視感反射率を
測定した。 5)視感透過率:スペクトロフォトメータU−3500
(日立製作所製)により380〜780nmでの視感透
過率を測定した。
3) Pencil hardness: The film surface was scanned with pencils of various hardnesses under a load of 1 kg, and the hardness of the pencil at which the surface began to be scratched visually was judged to be the pencil hardness of the film. 4) Luminous reflectance: The luminous reflectance of the multilayer film at 400 to 700 nm was measured with a GAMMA spectral reflectance spectrum measuring instrument. 5) Luminous transmittance: Spectrophotometer U-3500
The luminous transmittance at 380 to 780 nm was measured by (manufactured by Hitachi, Ltd.).

【0045】6)耐候性評価:フォトドライクリーナP
L7−200(センエンジニアリング社製)により25
4mmを主波長とする紫外線を200時間照射後の膜の
表面抵抗値を測定した。 7)耐薬品性評価:5%NaCl液に100時間浸漬し
た後の膜の表面抵抗値を測定した。
6) Evaluation of weather resistance: Photodry cleaner P
25 for L7-200 (Sen Engineering)
The surface resistance of the film after irradiation with ultraviolet light having a main wavelength of 4 mm for 200 hours was measured. 7) Evaluation of chemical resistance: The surface resistance of the film after immersion in a 5% NaCl solution for 100 hours was measured.

【0046】また、得られた金属微粒子の粉体体積抵抗
は4端子法により測定し、得られたゾルの平均凝集粒径
は大塚電子社製レーザー回折式粒径測定装置LPA−3
100により測定した。得られたゾルの平均一次粒径は
日本電子社製透過型電子顕微鏡100CXによって観察
して代表20個の粒子の粒径を平均して求めた。得られ
た膜の膜厚は膜破断面の走査型電子顕微鏡観察より測定
し、導電液の粘度はE型粘度計により20℃で測定し
た。
The powder volume resistance of the obtained metal fine particles was measured by a four-terminal method, and the average agglomerated particle size of the obtained sol was a laser diffraction particle size analyzer LPA-3 manufactured by Otsuka Electronics Co., Ltd.
100. The average primary particle size of the obtained sol was determined by observing with a transmission electron microscope 100CX manufactured by JEOL Ltd. and averaging the particle sizes of 20 representative particles. The film thickness of the obtained film was measured by observing a film fracture surface with a scanning electron microscope, and the viscosity of the conductive liquid was measured at 20 ° C. with an E-type viscometer.

【0047】[例1]三塩化ルテニウム水溶液(固形分
10%)に水素化ホウ素ナトリウム液をルテニウムに対
して4倍モル添加して金属ルテニウムを還元析出させ
た。この金属ルテニウムを充分洗浄した後、100℃で
24時間乾燥を行い金属ルテニウム粉末を得た。得られ
た金属ルテニウム粉末の粉体体積抵抗は0.0005Ω
cmであった。
[Example 1] A sodium borohydride solution was added to ruthenium trichloride aqueous solution (solid content: 10%) at a molar ratio of 4 times the amount of ruthenium to cause reduction and precipitation of metal ruthenium. After sufficiently washing the metal ruthenium, it was dried at 100 ° C. for 24 hours to obtain a metal ruthenium powder. The powder volume resistance of the obtained metal ruthenium powder is 0.0005Ω.
cm.

【0048】この金属ルテニウム粉末をサンドミルで2
0分間粉砕した。このときの液中の金属ルテニウムの平
均凝集粒経は89nmであった。また、平均一次粒径は
15nmであり、一次粒径の最大値と最小値との差は5
nm以内で粒径はきわめて均一であった。その後濃縮を
行い固形分5%の分散液を得た(A液)。
This metal ruthenium powder was sand-milled into 2
Milled for 0 minutes. At this time, the average agglomerated particle diameter of the metal ruthenium in the liquid was 89 nm. The average primary particle size is 15 nm, and the difference between the maximum value and the minimum value of the primary particle size is 5 nm.
The particle size was very uniform within nm. Thereafter, concentration was performed to obtain a dispersion having a solid content of 5% (Solution A).

【0049】シリコンテトラエトキシドをエタノールに
溶かし塩酸酸性水溶液で加水分解を行わせ、SiO2
算で5%となるようにエタノールで調整した(B液)。
A液とB液をA液/B液=8/2となるように混合し、
その後超音波を1時間照射して混合液を得た(C液)。 水:エタノール:メタノール:プロピレングリコールモ
ノメチルエーテル=50:42:5:3(重量比)の混
合液を調製した(D液)。 C液をD液で固形分(本例の場合はルテニウム金属微粒
子のみ)が1.0%となるように希釈した(E液)。E
液の粘度は0.98cPであった。E液を14インチブ
ラウン管パネル表面にスピンコート法で塗布し、180
℃で30分間加熱して導電膜を形成させた。得られた導
電膜の膜厚は90nmであった。
Silicon tetraethoxide was dissolved in ethanol, hydrolyzed with an aqueous hydrochloric acid solution, and adjusted to 5% in terms of SiO 2 with ethanol (solution B).
A solution and B solution are mixed so that A solution / B solution = 8/2,
Thereafter, the mixture was irradiated with ultrasonic waves for 1 hour to obtain a mixed solution (Solution C). A mixed solution of water: ethanol: methanol: propylene glycol monomethyl ether = 50: 42: 5: 3 (weight ratio) was prepared (Solution D). The solution C was diluted with the solution D so that the solid content (only ruthenium metal fine particles in this example) was 1.0% (solution E). E
The viscosity of the liquid was 0.98 cP. Solution E was applied to the surface of a 14-inch CRT panel by spin coating, and
Heating was performed at 30 ° C. for 30 minutes to form a conductive film. The thickness of the obtained conductive film was 90 nm.

【0050】[例2]三塩化ルテニウム水溶液(固形分
10%)にクエン酸ナトリウムをルテニウムに対し10
倍モル添加し、さらに水素化ホウ素ナトリウム液をルテ
ニウムに対して4倍モル添加し、金属ルテニウムを還元
析出させた。この後、余剰イオンを限外濾過で除去し、
金属ルテニウムを5.8%含有するルテニウムゾル液を
調製した(F液)。
Example 2 Sodium citrate was added to an aqueous ruthenium trichloride solution (solid content 10%) with respect to ruthenium.
The sodium borohydride solution was added four times as much as ruthenium, and the metal ruthenium was reduced and precipitated. After this, the excess ions are removed by ultrafiltration,
A ruthenium sol solution containing 5.8% of metal ruthenium was prepared (Solution F).

【0051】得られたゾルの平均凝集粒径は60nmで
あった。また、平均一次粒径は9nmであり、一次粒径
の最大値と最小値との差は5nm以内で粒径はきわめて
均一であった。また、このゾルを100℃で乾燥して得
られた金属粉末の粉体体積抵抗は0.0003Ωcmで
あった。
The average aggregate particle size of the obtained sol was 60 nm. The average primary particle size was 9 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. The powder volume resistance of the metal powder obtained by drying the sol at 100 ° C. was 0.0003 Ωcm.

【0052】水:ブチルセロソルブ:N−メチルピロリ
ドン=87:10:3(重量比)の混合液を調製した
(G液)。 F液をG液で固形分0.6%(本例の場合はルテニウム
金属微粒子のみ)となるように希釈した(H液)。H液
の粘度は1.02cPであった。 イソプロピルアルコール:プロピレングリコールモノエ
チルエーテルアセテート:ジアセトンアルコール=6:
3:1(重量比)の混合液を調製した(U1液)。 H液を14インチブラウン管表面にスピンコート法で塗
布した後、膜(導電膜)の上にB液をU1液で0.85
%に希釈したものをスピンコート法で塗布し、160℃
で30分焼成し低反射性導電膜を得た。なお、導電膜の
膜厚は70nmであった。
A mixed solution of water: butyl cellosolve: N-methylpyrrolidone = 87: 10: 3 (weight ratio) was prepared (Solution G). The solution F was diluted with the solution G to have a solid content of 0.6% (only ruthenium metal fine particles in this example) (solution H). The viscosity of the liquid H was 1.02 cP. Isopropyl alcohol: propylene glycol monoethyl ether acetate: diacetone alcohol = 6:
A mixed solution of 3: 1 (weight ratio) was prepared (U1 solution). The H solution was applied to the surface of a 14-inch cathode ray tube by spin coating, and then the B solution was applied on the film (conductive film) with the U1 solution at 0.85 μm.
%, Applied by spin coating, and heated to 160 ° C.
For 30 minutes to obtain a low reflective conductive film. Note that the thickness of the conductive film was 70 nm.

【0053】[例3]三塩化ルテニウム水溶液(固形分
10%)にギ酸をルテニウムに対し3倍モル添加し、そ
の後、クエン酸をルテニウムに対し10倍モル添加し、
さらに水素化ホウ素ナトリウム液をルテニウムに対して
4倍モル添加し、金属ルテニウムを還元析出させた。こ
の後、遠心分離で金属ルテニウムを分離し、蒸留水を加
え再分散させた後、イオン交換樹脂で余剰イオンを除去
し、金属ルテニウムを4.3%含有するルテニウムゾル
液を調製した(F2液)。
Example 3 To a ruthenium trichloride aqueous solution (solid content: 10%), formic acid was added in a three-fold molar amount relative to ruthenium, and then citric acid was added in a ten-fold molar amount relative to ruthenium.
Further, a sodium borohydride solution was added in a molar amount of 4 times the amount of ruthenium, and metal ruthenium was reduced and precipitated. Thereafter, the metal ruthenium was separated by centrifugation, and distilled water was added to redisperse the metal ruthenium. Then, excess ions were removed with an ion exchange resin to prepare a ruthenium sol solution containing 4.3% of metal ruthenium (F2 solution). ).

【0054】得られたゾルの平均凝集粒径は32nmで
あった。また、平均一次粒径は5nmであり、一次粒径
の最大値と最小値との差は5nm以内で粒径はきわめて
均一であった。また、このゾルを100℃で乾燥して得
られた金属粉末の粉体体積抵抗は0.0003Ωcmで
あった。
The average aggregate particle size of the obtained sol was 32 nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. The powder volume resistance of the metal powder obtained by drying the sol at 100 ° C. was 0.0003 Ωcm.

【0055】F2液をG液で固形分が0.45%(本例
の場合はルテニウム金属微粒子のみ)となるように希釈
した(H2液)。H2液の粘度は1.01cPであっ
た。H2液を14インチブラウン管表面にスピンコート
法で塗布した後、膜(導電膜)の上にB液をU1液で
0.85%に希釈したものをスピンコート法で塗布し、
160℃で30分焼成し低反射性導電膜を得た。なお、
導電膜の膜厚は60nmであった。
The solution F2 was diluted with the solution G so that the solid content was 0.45% (only ruthenium metal fine particles in this example) (solution H2). The viscosity of the H2 liquid was 1.01 cP. After applying the H2 solution to the surface of a 14-inch cathode ray tube by spin coating, the solution (liquid B) diluted to 0.85% with U1 solution is applied on the film (conductive film) by spin coating.
It was baked at 160 ° C. for 30 minutes to obtain a low reflective conductive film. In addition,
The thickness of the conductive film was 60 nm.

【0056】[例4]塩化第二スズ(SnCl4 )水溶
液とビス2アンチモン酸2カリウム(K2 (Sb2 (C
46 O)2 )・3H2 O)水溶液を、Sn/Sb=9
0/10(原子比)となるように混合し、この溶液をア
ンモニア水でpH11に調整し、60℃に保持した溶液
中に滴下し、沈殿析出させた。
[Example 4] An aqueous solution of stannic chloride (SnCl 4 ) and dipotassium bis diantimonate (K 2 (Sb 2 (C
4 H 6 O) 2) · 3H the 2 O) aqueous solution, Sn / Sb = 9
The solution was mixed so as to be 0/10 (atomic ratio), the solution was adjusted to pH 11 with aqueous ammonia, and dropped into a solution maintained at 60 ° C. to cause precipitation.

【0057】この沈殿物を洗浄濾別し、100℃で12
時間乾燥後、600℃で5時間大気中で焼成し、アンチ
モンドープ酸化スズ(Sb:SnO2 )微粒子を得た。
この粒子を液中の平均凝集粒径が50nm(平均一次粒
径は15nm)になるまで衝撃粉砕法で粉砕し、その後
濃縮し固形分が4.3%の液を得た(K1液)。
The precipitate was filtered off by washing, and the precipitate was dried at 100 ° C. for 12 hours.
After drying for an hour, the mixture was calcined at 600 ° C. for 5 hours in the air to obtain antimony-doped tin oxide (Sb: SnO 2 ) fine particles.
These particles were pulverized by an impact pulverization method until the average aggregate particle diameter in the liquid became 50 nm (the average primary particle diameter was 15 nm), and then concentrated to obtain a liquid having a solid content of 4.3% (K1 liquid).

【0058】例3記載の(F2液)と(K1液)をF2
液/K1液が95/5(重量比)となるように混合し
た。なお、ルテニウム金属微粒子の平均凝集粒径は32
nmであった。また、平均一次粒径は5nmであり、一
次粒径の最大値と最小値との差は5nm以内で粒径はき
わめて均一であった。その後この混合液をG液で固形分
(ルテニウム金属微粒子とSb:SnO2 微粒子との総
量)が0.5%となるように希釈した(H3液)。H3
液の粘度は1.10cPであった。なお、ルテニウム金
属微粒子/Sb:SnO2 微粒子(重量比)は95/5
であった。
The (F2 solution) and (K1 solution) described in Example 3 were replaced with F2
Liquid / K1 liquid was mixed so that it might become 95/5 (weight ratio). The average agglomerated particle size of the ruthenium metal fine particles was 32.
nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. Thereafter, this mixture was diluted with Liquid G such that the solid content (the total amount of ruthenium metal fine particles and Sb: SnO 2 fine particles) was 0.5% (H3 liquid). H3
The viscosity of the liquid was 1.10 cP. The ruthenium metal fine particles / Sb: SnO 2 fine particles (weight ratio) are 95/5.
Met.

【0059】H3液を14インチブラウン管表面にスピ
ンコート法で塗布した後、膜(導電膜)上にB液をU1
液で0.90%に希釈したものをスピンコート法で塗布
し、160℃で30分焼成し低反射性導電膜を得た。な
お、導電膜の膜厚は75nmであった。
After applying the H3 solution to the surface of a 14-inch cathode ray tube by spin coating, the B solution was applied on the film (conductive film) by U1.
A solution diluted to 0.90% with a solution was applied by a spin coating method and baked at 160 ° C. for 30 minutes to obtain a low-reflection conductive film. Note that the thickness of the conductive film was 75 nm.

【0060】[例5]塩化第二スズ(SnCl4 )水溶
液と硝酸インジウム水溶液を、Sn/In=15/85
(原子比)となるように混合し、この溶液をアンモニア
水でpH12に調整し、60℃に保持した溶液中に滴下
し、沈殿析出させた。この沈殿物を洗浄濾別し、100
℃で10時間乾燥後、600℃で5時間窒素中で焼成
し、スズドープ酸化インジウム(ITO)微粒子を得
た。この粒子を液中の平均凝集粒径が80nm(平均一
次粒径は30nm)になるまで衝撃粉砕法で粉砕し、そ
の後濃縮を行い固形分が4.3%の液を得た(K2
液)。
[Example 5] An aqueous solution of stannic chloride (SnCl 4 ) and an aqueous solution of indium nitrate were mixed with Sn / In = 15/85.
(Atomic ratio), the solution was adjusted to pH 12 with aqueous ammonia, and dropped into a solution maintained at 60 ° C. to precipitate. This precipitate is filtered off by washing, and 100
After drying at ℃ for 10 hours, baking in nitrogen at 600 ℃ for 5 hours to obtain tin-doped indium oxide (ITO) fine particles. These particles were pulverized by an impact pulverization method until the average aggregate particle diameter in the liquid became 80 nm (the average primary particle diameter was 30 nm), and then concentrated to obtain a liquid having a solid content of 4.3% (K2
liquid).

【0061】例3記載の(F2液)と(K2液)をF2
液/K2液が93/7(重量比)となるように混合し
た。なお、ルテニウム金属微粒子の平均凝集粒径は32
nmであった。また、平均一次粒径は5nmであり、一
次粒径の最大値と最小値との差は5nm以内で粒径はき
わめて均一であった。その後この混合液をG液で固形分
(ルテニウム金属微粒子とITO微粒子との総量)が
0.55%となるように希釈した(H4液)。H4液の
粘度は1.15cPであった。なお、ルテニウム金属微
粒子/ITO微粒子(重量比)は93/7であった。
The (F2 solution) and (K2 solution) described in Example 3 were replaced with F2
The liquid / K2 liquid was mixed so as to be 93/7 (weight ratio). The average agglomerated particle size of the ruthenium metal fine particles was 32.
nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. Thereafter, this mixture was diluted with Liquid G so that the solid content (the total amount of ruthenium metal fine particles and ITO fine particles) was 0.55% (H4 liquid). The viscosity of the H4 liquid was 1.15 cP. The ratio of ruthenium metal fine particles / ITO fine particles (weight ratio) was 93/7.

【0062】H4液を14インチブラウン管表面にスピ
ンコート法で塗布した後、膜上にB液をU1液で0.9
3%に希釈したものをスピンコート法で塗布し、160
℃で30分焼成し低反射性導電膜を得た。なお、導電膜
の膜厚は80nmであった。
After applying the H4 solution to the surface of a 14-inch cathode ray tube by a spin coating method, the B solution was applied to the film with the U1 solution at 0.9%.
The solution diluted to 3% is applied by spin coating,
C. for 30 minutes to obtain a low reflective conductive film. Note that the thickness of the conductive film was 80 nm.

【0063】[例6]塩化ルテニウム水溶液を、アンモ
ニア水でpH10に調整し、60℃に保持した溶液中に
滴下し、沈殿析出させた。この沈殿物を洗浄濾別し、1
00℃で10時間乾燥後、500℃で2時間大気中で焼
成し、酸化ルテニウム(RuO2 )微粒子を得た。この
粒子を液中の平均凝集粒径が95nm(平均一次粒径は
20nm)になるまで衝撃粉砕法で粉砕し、その後濃縮
を行い固形分が4.3%の液を得た(K3液)。
Example 6 An aqueous ruthenium chloride solution was adjusted to pH 10 with aqueous ammonia and dropped into a solution kept at 60 ° C. to precipitate. This precipitate is separated by washing and filtering.
After drying at 00 ° C. for 10 hours, it was calcined at 500 ° C. for 2 hours in the air to obtain ruthenium oxide (RuO 2 ) fine particles. These particles were pulverized by an impact pulverization method until the average agglomerated particle diameter in the liquid became 95 nm (the average primary particle diameter was 20 nm), and then concentrated to obtain a liquid having a solid content of 4.3% (K3 liquid). .

【0064】例3記載の(F2液)と(K3液)をF2
液/K3液が70/30となるように混合した。なお、
ルテニウム金属微粒子の平均凝集粒径は32nmであっ
た。また、平均一次粒径は5nmであり、一次粒径の最
大値と最小値との差は5nm以内で粒径はきわめて均一
であった。その後この混合液をG液で固形分(ルテニウ
ム金属微粒子とRuO2 微粒子との総量)が0.62%
となるように希釈した(H5液)。H5液の粘度は1.
35cPであった。なお、ルテニウム金属微粒子/Ru
2 微粒子(重量比)は70/30であった。
The (F2 solution) and (K3 solution) described in Example 3 were replaced with F2
The liquid / K3 liquid was mixed so as to be 70/30. In addition,
The average agglomerated particle size of the ruthenium metal fine particles was 32 nm. The average primary particle size was 5 nm, and the difference between the maximum value and the minimum value of the primary particle size was within 5 nm, and the particle size was extremely uniform. Thereafter, this mixed solution was subjected to solution G to have a solid content (total amount of ruthenium metal fine particles and RuO 2 fine particles) of 0.62%
(H5 solution). The viscosity of the H5 liquid is 1.
It was 35 cP. In addition, ruthenium metal fine particles / Ru
The O 2 fine particles (weight ratio) were 70/30.

【0065】H5液を14インチブラウン管表面にスピ
ンコート法で塗布した後、膜(導電膜)上にB液をU1
液で0.95%に希釈したものをスピンコート法で塗布
し、160℃で30分焼成し低反射性導電膜を得た。な
お、導電膜の膜厚は100nmであった。
After the H5 solution was applied to the surface of a 14-inch cathode ray tube by spin coating, the B solution was applied to the film (conductive film) using U1.
A solution diluted to 0.95% with a solution was applied by a spin coating method and baked at 160 ° C. for 30 minutes to obtain a low-reflection conductive film. Note that the thickness of the conductive film was 100 nm.

【0066】[例7(比較例)]塩化第二スズ(SnC
4 )と塩化アンチモンを、Sn/Sb=85/15
(原子比)となるように混合し、この溶液をアンモニア
水でpH10に調整し、50℃に保持した溶液中に添加
し、沈殿析出させた。この沈殿物を洗浄、濾別し、10
0℃で12時間乾燥後650℃で3時間大気中で焼成
し、アンチモンドープ酸化スズ微粒子を得た。この微粒
子をサンドミルで2時間粉砕した。このときの液中のア
ンチモンドープ酸化スズ微粒子の平均粒経は65nmで
あった。その後濃縮を行い固形分が5%の液を得た。
Example 7 (Comparative Example) Stannic chloride (SnC
l 4 ) and antimony chloride, Sn / Sb = 85/15
(Atomic ratio), the solution was adjusted to pH 10 with aqueous ammonia, and added to the solution maintained at 50 ° C. to precipitate. The precipitate is washed, filtered and filtered.
After drying at 0 ° C. for 12 hours, it was calcined at 650 ° C. for 3 hours in the air to obtain antimony-doped tin oxide fine particles. These fine particles were pulverized with a sand mill for 2 hours. At this time, the average particle diameter of the antimony-doped tin oxide fine particles in the liquid was 65 nm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5%.

【0067】この液をD液で固形分1.2%に希釈し、
14インチブラウン管パネル表面にスピンコートした。
さらにこの膜の上にB液をU1液で0.9%に希釈した
液をスピンコート法で塗布し、160℃で20分間焼成
し2層膜を形成させた。
This liquid was diluted with liquid D to a solid content of 1.2%,
Spin coating was performed on the surface of a 14-inch CRT panel.
Further, a solution obtained by diluting the solution B to 0.9% with the U1 solution was applied on the film by a spin coating method, and baked at 160 ° C. for 20 minutes to form a two-layer film.

【0068】[例8(比較例)]硝酸銀水溶液(銀換算
固形分10%)にクエン酸ナトリウムを銀に対して5倍
モル添加した後、硝酸鉄を銀に対して3倍モル添加し沈
殿析出させた。この沈殿物を遠心分離で分離した後、蒸
留水を加え再分散を行いその後イオン交換樹脂による脱
塩を行い固形分3.2%の銀ゾルを得た(I液)。I液
をG液で固形分が0.45%となるように希釈した(J
液)。J液を14インチブラウン管表面スピンコート法
で塗布し、その膜の上にB液をU1液で0.85%に希
釈したものをスピンコート法で塗布し、160℃で30
分焼成し低反射導電膜を得た。
Example 8 (Comparative Example) Sodium citrate was added to an aqueous silver nitrate solution (solid content: 10% in silver) at 5 times the mol of silver, and iron nitrate was added at 3 times the mol of silver to precipitate. Was deposited. After the precipitate was separated by centrifugation, distilled water was added for re-dispersion, followed by desalting with an ion exchange resin to obtain a silver sol having a solid content of 3.2% (Solution I). The solution I was diluted with the solution G so that the solid content was 0.45% (J
liquid). Solution J was applied by spin coating on the surface of a 14-inch cathode ray tube, and solution B diluted to 0.85% with solution U1 was applied on the film by spin coating.
By firing for a minute, a low reflection conductive film was obtained.

【0069】[0069]

【表1】 [Table 1]

【0070】[0070]

【発明の効果】本発明によれば、スプレーまたはスピン
コートなどの簡便な方法により効率よく優れた導電膜を
提供できる。本発明はRu金属微粒子による導電膜を提
供するため、電磁波を容易にシールドでき、かつ比較的
安価に製造できる。特に、CRTのパネルフェイス面な
どの大面積の基体にも充分適用でき、量産も可能である
ため工業的価値は非常に高い。
According to the present invention, an excellent conductive film can be efficiently provided by a simple method such as spraying or spin coating. Since the present invention provides a conductive film made of Ru metal fine particles, it can easily shield electromagnetic waves and can be manufactured relatively inexpensively. In particular, it can be sufficiently applied to a large-area substrate such as a panel face of a CRT, and can be mass-produced, so that its industrial value is very high.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Ruの金属微粒子のゾルを含有してなる導
電膜形成用塗布液。
1. A coating solution for forming a conductive film, comprising a sol of Ru metal fine particles.
【請求項2】金属微粒子の平均凝集粒径が、200nm
以下である請求項1記載の導電膜形成用塗布液。
2. The method according to claim 1, wherein the average agglomerated particle size of the metal fine particles is 200 nm.
The coating liquid for forming a conductive film according to claim 1, which is:
【請求項3】金属微粒子の粉体体積抵抗が、0.01Ω
cm以下である請求項1または2記載の導電膜形成用塗
布液。
3. The powder volume resistance of the metal fine particles is 0.01 Ω.
3. The coating liquid for forming a conductive film according to claim 1, wherein the coating liquid is not more than 1 cm.
【請求項4】塗布液が、ケイ素化合物を含む請求項1、
2または3記載の導電膜形成用塗布液。
4. The coating liquid according to claim 1, wherein the coating liquid contains a silicon compound.
4. The coating solution for forming a conductive film according to 2 or 3.
【請求項5】塗布液が、さらにSn、Sb、In、Z
n、Ga、AlおよびRuからなる群から選ばれる1種
以上の金属の酸化物を含む請求項1、2、3または4記
載の導電膜形成用塗布液。
5. The coating liquid further comprises Sn, Sb, In, Z
5. The coating solution for forming a conductive film according to claim 1, further comprising an oxide of at least one metal selected from the group consisting of n, Ga, Al and Ru.
【請求項6】請求項1、2、3、4または5記載の導電
膜形成用塗布液を基体上に塗布して加熱することを特徴
とする導電膜の形成方法。
6. A method for forming a conductive film, comprising applying the coating liquid for forming a conductive film according to claim 1, 2, 3, 4, or 5 onto a substrate and heating the substrate.
【請求項7】請求項6記載の形成方法により形成された
導電膜。
7. A conductive film formed by the method according to claim 6.
【請求項8】請求項7記載の導電膜上に、該導電膜より
低屈折率の膜を形成することを特徴とする低反射性導電
膜の形成方法。
8. A method for forming a low-reflection conductive film, comprising forming a film having a lower refractive index than the conductive film on the conductive film according to claim 7.
【請求項9】導電膜より低屈折率の膜として、SiO2
またはMgF2 からなる膜を用いる請求項8記載の低反
射性導電膜の形成方法。
As film 9. lower refractive index than the conductive film, SiO 2
9. The method according to claim 8, wherein a film made of MgF 2 is used.
【請求項10】請求項8または9記載の形成方法により
形成された低反射性導電膜。
10. A low-reflection conductive film formed by the method according to claim 8.
JP21785097A 1997-04-23 1997-08-12 Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity Withdrawn JPH115929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21785097A JPH115929A (en) 1997-04-23 1997-08-12 Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10637397 1997-04-23
JP9-106373 1997-04-23
JP21785097A JPH115929A (en) 1997-04-23 1997-08-12 Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30757799A Division JP3514192B2 (en) 1997-04-23 1999-10-28 Method for forming low reflective conductive film

Publications (1)

Publication Number Publication Date
JPH115929A true JPH115929A (en) 1999-01-12

Family

ID=26446482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21785097A Withdrawn JPH115929A (en) 1997-04-23 1997-08-12 Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Country Status (1)

Country Link
JP (1) JPH115929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
US6902815B2 (en) 2001-06-04 2005-06-07 Asahi Glass Company, Limited Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902815B2 (en) 2001-06-04 2005-06-07 Asahi Glass Company, Limited Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP2004203941A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film

Similar Documents

Publication Publication Date Title
KR100544252B1 (en) Transparent Conductive Film and Composition for Forming Same
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JP3514192B2 (en) Method for forming low reflective conductive film
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JP3460484B2 (en) Transparent conductive film
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JPH10182190A (en) Transparent black electroconducive film
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3315673B2 (en) CRT with conductive film
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP3266065B2 (en) Transparent conductive film composed of metal fine particles and composition for forming the same
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JP2003306615A (en) Coating solution for forming low-resistance film or low- refraction film, and method for producing the low- resistance film or low-reflection low-resistance film
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A761 Written withdrawal of application

Effective date: 20061018

Free format text: JAPANESE INTERMEDIATE CODE: A761