EP1651789B1 - Method for producing hardened parts from sheet steel - Google Patents

Method for producing hardened parts from sheet steel Download PDF

Info

Publication number
EP1651789B1
EP1651789B1 EP20040739756 EP04739756A EP1651789B1 EP 1651789 B1 EP1651789 B1 EP 1651789B1 EP 20040739756 EP20040739756 EP 20040739756 EP 04739756 A EP04739756 A EP 04739756A EP 1651789 B1 EP1651789 B1 EP 1651789B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
component
sheet
forming
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040739756
Other languages
German (de)
French (fr)
Other versions
EP1651789A1 (en
Inventor
Martin Fleischanderl
Siegfried Kolnberger
Gerald Landl
Anna Elisabeth Raab
Werner BRANDSTÄTTER
Josef Faderl
Robert Vehof
Wolfgang Stall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Original Assignee
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34275147&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1651789(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AT0120303A external-priority patent/AT412878B/en
Priority claimed from AT12022003A external-priority patent/AT412403B/en
Application filed by Voestalpine Stahl GmbH, Voestalpine Metal Forming GmbH filed Critical Voestalpine Stahl GmbH
Priority to PL04739756T priority Critical patent/PL1651789T3/en
Priority to EP20090015813 priority patent/EP2177641B1/en
Priority to PL09015813T priority patent/PL2177641T3/en
Publication of EP1651789A1 publication Critical patent/EP1651789A1/en
Application granted granted Critical
Publication of EP1651789B1 publication Critical patent/EP1651789B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/04Stamping using rigid devices or tools for dimpling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for producing hardened components from sheet steel.
  • the most widely used raw material in bodybuilding is steel. With no other material can be in such large areas cost components with different material properties available.
  • a perspective, in particular for bodies in the automotive industry are components made of steel sheet with a strength depending on the alloy composition in a range of 1000 up to 2000 MPa.
  • a scale layer forms on the surface. This is removed after forming and cooling. This is usually done with sandblasting. Before or after this descaling, the final trimming and the insertion of holes is carried out. If the final trimming and the insertion of the holes are carried out before sandblasting, it is disadvantageous that the cut edges and hole edges are affected. Irrespective of the order of the processing steps after curing, it is disadvantageous in the case of final scaling by sandblasting and comparable methods that the component is often distorted as a result. After said processing steps, a so-called piece coating with a corrosion protection layer takes place. For example, a cathodically effective corrosion protection layer is applied.
  • the post-processing of the cured component is extremely expensive and is subject to very high wear due to the hardening of the component. Further is disadvantageous that the piece coating usually causes a corrosion protection, which is not particularly pronounced. In addition, the layer thicknesses are not uniform, but fluctuate over the component surface.
  • this method it is also known to cold form a component from a sheet metal blank and then heat to the Austenitmaschinestemperatur and then cool rapidly in a calibration tool, wherein the calibration tool is responsible for the component, which is warped by the warm-up, with respect the reshaped areas are calibrated. Subsequently, the post-processing described above. Compared with the method described above, this method allows more complex geometries, since essentially only linear shapes can be produced during simultaneous forming and hardening, but complex shapes can not be realized in such forming processes.
  • a method for producing a hardened steel component in which a sheet of hardenable steel is heated to the hardening temperature and then placed in a shaping device in which the sheet is formed into the desired final shape, wherein simultaneously cooled rapidly during the forming, so that a martensitic or bainitic structure is obtained while the sheet remains in the molding apparatus.
  • a starting material for example, a boron-alloyed carbon steel or carbon manganese steel is used.
  • the deformation is preferably a compression but can also be used with other methods.
  • the forming and cooling should preferably be carried out and carried out so rapidly that a fine-grained martensitic or bainitic structure is obtained.
  • From the EP 1 253 208 A1 is a method for producing a hardened sheet metal profile from a board, which is hot formed and cured in a pressing tool to the sheet metal profile known.
  • On the sheet metal profile projecting reference points or collars are generated from the plane of the board, which serve for positional orientation of the sheet metal profile in subsequent manufacturing operations.
  • the collars should be formed during the forming process of non-perforated areas of the board, the reference points are generated in the form of marginal stampings or as enforcements or collar in the sheet metal profile.
  • the hot forming and hardening in the pressing tool should generally have advantages due to the efficient by the combination of forming and tempering process in a tool operation. Due to the clamping of the sheet metal profile in the tool and due to thermal stresses, however, it should come to not exactly predeterminable delay on the component. This can adversely affect downstream manufacturing operations, which is why the reference points are created on the sheet metal profile.
  • a method of making steel sheet products wherein a steel sheet product is molded in a pair of cooled tools while hot and hardened into a martensitic structure while still in the tool so that the tools act as a fixture during the process Hardening serve.
  • the steel shall be kept in the mild steel area, with inserts in the tools used to prevent rapid cooling and thereby a martensitic structure in these areas.
  • the same effect should also be achieved by recesses in the tools, so that a gap between the steel sheet and the tools occurs.
  • this method is disadvantageous because of the significant delay that can occur here, the present method for press hardening of components with more complex structure is disabled.
  • a method for producing locally reinforced sheet metal formed parts wherein the base sheet of the structural part connected in a flat state with the reinforcing sheet and defined this so-called patched composite sheet is then formed together.
  • the patched composite sheet is heated to at least about 800 to 850 ° C before forming, quickly inserted, rapidly formed in the hot state and then with mechanical maintenance of the forming state by Contacting with the internally forced-cooled forming tool defines cooled.
  • the extent relevant temperature range 800 to 500 ° C is to be traversed with a defined cooling rate.
  • the step of connecting reinforcing sheet and base sheet should be readily integrated in the forming process, wherein the parts are brazed together whereby an effective corrosion protection at the contact zone can be achieved at the same time.
  • the tools are very expensive, in particular due to the defined internal cooling.
  • a method and a device for pressing and hardening a steel part are known.
  • the aim is to press and harden sheet steel pieces in the form of avoiding the disadvantages of known methods, in particular that parts made of steel sheet are produced in successive separate steps for compression molding and hardening.
  • the hardened or quenched products to the desired shape show a delay, so that additional steps are required.
  • it is intended to place a piece of steel, after the piece has been heated to a temperature attaining its austenitic condition, between a pair of cooperating mold members, whereupon the piece is pressed and at the same time heat is rapidly dissipated from the piece to the mold pieces.
  • the mold parts are kept at a cooling temperature throughout the process, so that a quenching effect is exerted on the piece under a molding pressure.
  • a method of producing a part having very high mechanical properties is known, wherein the part is to be produced by punching a strip from a rolled steel sheet, and in particular a hot rolled and coated part is coated with a metal or metal alloy covering the surface of the steel to protect, wherein the steel sheet is cut to obtain a steel sheet preform, the steel sheet preform is cold or hot formed and is either cooled and hardened after hot working or heated after cold working and then cooled.
  • An intermetallic alloy is supposed to be on the surface before or after
  • this intermetallic mixture can also have a lubricating function. Subsequently, the supernatant material is removed from the molding.
  • the coating should generally be based on zinc or zinc-aluminum. In this case, a steel can be used which is electrolytically galvanized on both sides, with an austenitization to take place at 950 ° C. This electrolytically galvanized layer is completely converted into an iron-zinc alloy during austenitisation. It is stated that during forming and while being held for cooling, the coating does not hinder the heat flow through the tool and even improves heat dissipation.
  • this document proposes as an alternative to an electrolytically galvanized tape to use a coating of 45% to 50% zinc, balance aluminum.
  • a cathodic corrosion protection is practically no longer available.
  • such a layer is so brittle that cracks occur during forming.
  • a coating with a mixture of 45 to 50% zinc and 55 to 45% aluminum also exhibits no significant cathodic corrosion protection. While it is claimed in this reference that the use of zinc or zinc alloys as a coating would provide galvanic protection even to the edges, this can not be achieved in practice. In practice, the coatings described can not even achieve sufficient galvanic protection in the surface.
  • a method of manufacturing a rolled steel strip component, and in particular a hot rolled strip is known.
  • the aim is to be able to offer rolled steel sheets of 0.2 to 2.0 mm in thickness, which are coated, inter alia, after hot rolling and the one Deformation, either cold or hot, followed by a thermal treatment, whereby the increase in temperature without steel decarburization and without oxidation of the surface of the aforementioned sheets is to be ensured before, during and after the hot working or the thermal treatment.
  • the sheet should be provided with a metal or a metal alloy, which ensures the protection of the surface of the sheet, then the sheet is subjected to a temperature increase for the forming, then a transformation of the sheet are performed and the part are finally cooled.
  • the coated sheet is to be pressed while hot and the part formed by the deep drawing to be cooled to be cured and that at a speed which is higher than the critical curing rate.
  • a steel alloy which should be suitable, said steel sheet to be austenitized at 950 ° C before it is deformed and hardened in the tool.
  • the applied coating should consist in particular of aluminum or an aluminum alloy, whereby not only an oxidation and decarburization protection, but also a lubricating effect should result.
  • the steel used should be an air-hardening steel, which may be heated under a protective gas atmosphere in order to avoid scaling during heating. Otherwise, a scale layer is descaled in front of the mold component after hot working of the mold component.
  • the component blank is shaped close to the final contour, "near net shape" being understood to mean that those parts of the geometry of the finished component which are associated with a macroscopic flow of material completely into the component blank after completion of the cold forming process are formed. After completion of the cold forming process Thus, for the production of the three-dimensional shape of the component only slight form adjustments to be necessary, which require a minimum local material flow.
  • the object of the invention is to provide a method for producing hardened components made of sheet steel, which is simple and quick to carry out and which makes it possible to produce hardened components made of sheet steel in particular steel sheet with a cathodic corrosion protection dimensionally accurate and without finishing such as descaling and sandblasting.
  • the forming of the components as well as the trimming and punching of the components is carried out essentially in the uncured state.
  • the relatively good deformability of the particular material used in the unhardened state allows the realization of complex component geometries and replaces expensive subsequent trimming in the cured state by significantly less expensive mechanical cutting operations before the hardening process.
  • the unavoidable dimensional changes due to the heating of the component are already taken into account in forming the cold sheet, so that the component is made approximately 0.5 to 2% smaller than the final dimensions. At least the expected thermal expansion during forming is considered.
  • the areas of high complexity and forming depth and possibly the narrow toleranced areas of the component such as in particular the cut edges, the shape edges, the forming surfaces and possibly the hole pattern, such as
  • the reference holes with the desired final tolerances, in particular the trimming and position tolerances, of the finished, hardened component, in which case the thermal expansion of the component is taken into account or compensated for by the heating.
  • the component after the cold forming is about 0.5% to 2% smaller than the nominal final dimensions of the finished, hardened component.
  • Smaller here means that the component after cold forming in all three spatial axes is thus three-dimensionally finished molded.
  • the thermal expansion is thus considered equally for all three spatial axes.
  • the thermal expansion can not be taken into account for example by the incomplete closure of the mold for all spatial axes, since only in the Z direction, by an incomplete formation, an elongation could be considered.
  • the three-dimensional geometry or contour of the tool is preferably made smaller in all three spatial axes.
  • the corrosion protection according to the invention for steel sheets, which are first subjected to a heat treatment and then reformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc.
  • an oxygen-affine element such as magnesium, silicon, titanium, calcium and aluminum are added to the zinc forming the coating. It has been found that such small amounts of an oxygen-affine element as magnesium, silicon, titanium, calcium and aluminum induce a surprising effect in this particular application.
  • oxygen-affine elements at least Mg, Al, Ti, Si, Ca in question.
  • aluminum is mentioned below, this is representative of the other elements mentioned.
  • an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer, with a high proportion of zinc and an oxidation protective layer of an oxide (Al 2 O 3 , MgO, CaO, TiO , SiO 2 ) is protected against oxidation and evaporation.
  • an oxidation protective layer of an oxide Al 2 O 3 , MgO, CaO, TiO , SiO 2
  • This means that the heat treatment must be carried out in an oxidized atmosphere.
  • protective gas oxygen-free atmosphere
  • the corrosion protection layer according to the invention for the press-hardening process also has such a high mechanical stability that a forming step following the austenitizing of the sheets this Layer not destroyed.
  • the cathodic protection is at least significantly greater than the protective effect of the known anticorrosive layers for the press hardening process.
  • a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel plate, in particular an alloyed steel sheet are applied, whereupon in a second step, parts of the coated sheet are machined and in particular cut out or punched out and heated on access of atmospheric oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and then cooled at an increased speed.
  • a transformation of the cut out of the sheet metal part (the board) can be carried out before or after the heating of the sheet to the Austenitmaschinestemperatur.
  • a thin barrier phase is formed, in particular Fe 2 Al 5 -x Zn x , which forms the Fe-Zn Diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C, hindered.
  • the sheet is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having.
  • the metal layer on the sheet is liquefied for the time being.
  • the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the concentration of aluminum metal, which causes a steady diffusion of aluminum towards depletion, that is to the distal region.
  • This Tonerdeanreichtation, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.
  • the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer.
  • the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.
  • Well suited is for example a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably of size 0.26 but less than 2.5 wt .-%.
  • the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal locking phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it takes place thus also an improvement of the thermoforming properties of the sheet material.
  • An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of for example greater than 0.15 mm and having a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon to 1.9, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0.9, preferably 0.1 to 0.5 nickel to 0.9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities is used.
  • the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.
  • such a zinc layer is apparently not significantly impaired during cold forming. Rather, in the invention in an advantageous manner when trimming and punching the cold board zinc material is carried by the tool from the zinc layer in the cutting edge and smeared along the cutting edge.
  • a coating with zinc also has the advantage that the component loses less heat after heating and when transferred to a mold hardening tool, so that the component does not have to be heated so high. As a result, lower thermal expansions occur, so that a tolerance-accurate production is simplified, since the total strains are smaller.
  • the component at the lower temperature has a higher stability which allows better handling and faster insertion into the mold.
  • the uncured, galvanized special sheet is first cut into blanks.
  • the processed boards may be rectangular, trapezoidal or shaped boards. All can be used for cutting the boards known cutting processes are applied. Preferably, cutting processes are used which do not introduce heat into the sheet during the cutting process.
  • the final trimming is carried out in said conventional tools.
  • the molded part which has been formed in the cold state, is made smaller by 0.5 to 2% than the nominal geometry of the end component, so that the thermal expansion during heating is thereby compensated.
  • the moldings produced by the processes mentioned should be cold formed, the dimensions of which are within the required by the customer for the finished part tolerance field. If larger tolerances occur in the aforesaid cold forming, they may be partially corrected later, minimally, during the molding hardening process, which will be discussed later.
  • the tolerance correction in the form hardening process is preferably performed only for shape deviations. Such form deviations can thus be corrected in the manner of a hot calibration.
  • the correction process should as far as possible be limited to one bending operation, wherein cutting edges that are dependent on the amount of material (in relation to the forming edge) should not and can not subsequently be influenced, ie, if the geometry of the cutting edges in the parts is not correct , in the form hardening tool no correction can be made.
  • the tolerance range with respect to the cutting edges corresponds to the tolerance range during the cold forming and the shape hardening process.
  • no distinctive folds should be present within a molded part, because then the uniformity of the printed image and a uniform shape hardening process can not be guaranteed.
  • the deformed and cut part is heated to an annealing temperature above 780 ° C, especially 800 ° C to 950 ° C, and held at that temperature for a few seconds to a few minutes, at least until a desired austenitization has occurred ,
  • the component is subjected to the inventive form hardening step.
  • the component is inserted into a tool within a press, wherein this mold hardening tool preferably corresponds to the desired final geometry of the finished component, that is to say the size of the cold-formed component including the thermal expansion.
  • the shape-hardening tool has a geometry or contour that substantially corresponds to the geometry or contour of the cold-forming tool, but is 05 to 2% larger (with respect to all three spatial axes).
  • the aim is to form-hardening a full-surface fit between the mold hardening tool and the workpiece or component to be cured immediately after de close the tool.
  • the molding is placed at a temperature of about 740 ° C to 910 ° C, preferably 780 ° C to 840 ° C in the mold hardening tool, the previous cold forming as already considered takes into account the thermal expansion of the part at this EinlegeTemperatur range.
  • an insertion temperature of 780 ° C to 840 ° C can be achieved even if the annealing temperature of the cold-formed component between 800 ° C and 850 ° C, since the special zinc coating according to the invention - compared to uncoated Sheet metal - reduces rapid cooling.
  • This has the advantage that the parts must be heated less high and in particular a heating to over 900 ° C can be avoided. This in turn results in an interaction with the zinc coating since the zinc coating is less affected at somewhat lower temperatures.
  • a part is first removed by a robot from a conveyor belt and placed in a marking station, so that each part can be traceably marked before it is hardened. Then the robot places the part on an intermediate carrier, wherein the intermediate carrier passes over a conveyor belt in an oven and the part is heated.
  • a continuous furnace with convection heating for example, a continuous furnace with convection heating is used.
  • any other heat aggregates or ovens can be used, in particular ovens, in which the moldings are heated electromagnetically or with microwaves.
  • the molding passes through the furnace on the support, the support being provided so that the corrosion protection coating is not transferred to rolls of the continuous furnace or is rubbed off by it during heating.
  • the parts are heated to a temperature which is above the austenitizing temperature of the alloy used.
  • the maximum temperature of the parts is kept as low as possible, which, as already stated, is made possible in particular by the part being cooled more slowly by the zinc layer.
  • a robot takes the part, depending on the thickness at 780 ° C to 950 ° C, especially 860 ° C to 900 ° C from the oven and places it in the mold hardening tool.
  • the molded part loses approximately 10 ° C. to 80 ° C., in particular 40 ° C., whereby the insertion robot is preferably designed such that it inserts the part accurately into the mold hardening tool at high speed.
  • the molding is The robot places it on a part lifter and then quickly shuts down the press, displacing the lifter and fixing the part. This will ensure that the component is properly positioned and guided until the tool is closed.
  • the part still has a temperature of at least 780 ° C.
  • the surface of the tool has a temperature of less than 50 ° C, whereby the part is rapidly cooled to 80 ° C to 200 ° C. The longer the part is held in the tool, the better the dimensional accuracy.
  • the tool is subjected to thermal shock, wherein the method according to the invention makes it possible to design the tool with respect to its base material for a high thermal shock resistance, in particular if no forming steps are carried out during the mold hardening step.
  • the tools In conventional methods, the tools must also have a high abrasion resistance, but in the present case does not play a significant role and thus reduces the cost of the tool.
  • a robot takes the parts out of the press and places them on a rack, where they continue to cool down.
  • the Cooling may, if desired, be accelerated by additional blowing on of air.
  • the inventive mold hardening without appreciable forming steps and with a substantially full-surface fit of the tool and the tool piece, it is ensured that all areas of the workpiece are defined and uniformly cooled on all sides.
  • a comprehensible defined cooling takes place only when the forming process has progressed so far that the material rests against both mold halves.
  • the material is preferably immediately on all sides positively against the mold halves.
  • An additional advantage is the low stress on the mold hardening tool due to the complete cold end geometry. This can be a much higher Tool life and dimensional accuracy can be achieved, which in turn means a cost reduction.
  • the form hardening is performed so that a concern of the workpiece to the mold halves or a positive connection between the workpiece and tool only at the narrow toleranced areas such as the cutting and shaping edges, the forming surfaces and optionally in the areas of the Lochndues done.
  • the positive connection in these areas is brought about such that these areas are held and clamped so securely that less tightly tolerated areas can hot working in the tooling process, without the already dimensionally accurate and tolerated narrowly tolerated areas are adversely affected and warped in particular.
  • the not tightly tolerated areas either by not applying one or both mold halves slower to cool down and reach there by the slower cooling other degrees of hardness, or to achieve a desired hot forming in these areas, without the tightly tolerated areas are affected. This can be done for example by additional stamp in the mold halves. It is essential, as already stated, however, also in this preferred embodiment, that the tightly tolerated areas remain unaffected in terms of shape hardening with respect to forming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)

Abstract

Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection by: (a) application of a Zn coating to a hardenable steel alloy sheet; (b) roll profiling of the coated sheet with shaping into a roll-shaped profile strand; (c) heating of the coated steel sheet to the hardening temperature with admission of atmospheric oxygen, formation of a superficial oxide skin from oxygen-affine elements; and (d) cooling. Independent claims are included for: (1) a corrosion protection Zn layer for a steel sheet; (2) a hardened and profiled component in hardenable steel with a cathodically protected layer obtained as above.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech.The invention relates to a method for producing hardened components from sheet steel.

Im Bereich des Automobilbaus besteht ein Bestreben das Fahrzeuggesamtgewicht abzusenken oder bei verbesserten Ausstattungen das Fahrzeuggesamtgewicht nicht ansteigen zu lassen. Dies kann nur realisiert werden, wenn das Gewicht bestimmter Fahrzeugkomponenten abgesenkt wird. Hierbei wird insbesondere versucht das Gewicht der Fahrzeugrohkarosserie deutlich gegenüber früher abzusenken. Gleichzeitig sind jedoch die Anforderungen an die Sicherheit, insbesondere die Personensicherheit im Kraftfahrzeug und an das Verhalten bei Verunfallung des Fahrzeuges gestiegen. Während für die Absenkung des Karosserierohgewichts die Anzahl der Teile verringert und insbesondere auch die Dicke reduziert wird, wird erwartet, dass die Rohkarosserie mit verringertem Gewicht bei einer Verunfallung eine erhöhte Festigkeit und Steifigkeit bei einem definierten Verformungsverhalten zeigt.In the automotive industry there is a desire to lower the total vehicle weight or not to increase the total vehicle weight with improved equipment. This can only be realized if the weight of certain vehicle components is lowered. In this case, in particular the weight of the vehicle bodywork is trying to lower significantly compared to earlier. At the same time, however, the requirements for safety, in particular personal safety in the motor vehicle and the behavior at accident of the vehicle have increased. While the number of parts is reduced and, in particular, the thickness is reduced for the lowering of the body weight, it is expected that the reduced weight body of an accident will show increased strength and rigidity with a defined deformation behavior.

Der am meisten angewandte Rohstoff bei der Karosseriehersteldung ist Stahl. Mit keinem anderen Werkstoff lassen sich in derart großen Bereichen kostengünstig Bauteile mit den unterschiedlichsten Werkstoffeigenschaften zur Verfügung stellen.The most widely used raw material in bodybuilding is steel. With no other material can be in such large areas cost components with different material properties available.

Aus den geänderten Anforderungen resultiert, dass bei hohen Festigkeiten, auch hohe Dehnungswerte und damit eine verbesserte Kaltumformbarkeit gewährleistet ist. Ferner ist der Bereich der darstellbaren Festigkeiten für Stähle erweitert worden.From the changed requirements results that with high strengths, also high strain values and thus an improved Cold workability is guaranteed. Furthermore, the range of representable strengths for steels has been extended.

Eine Perspektive insbesondere für Karosserien im Automobilbau sind dabei Bauteile aus Stahlfeinblech mit einer Festigkeit in Abhängigkeit der Legierungszusammensetzung in einem Bereich von 1000 bis zu 2000 MPa. Um derart hohe Festigkeiten im Bauteil zu erreichen, ist es bekannt, aus Blechen entsprechende Platinen zu schneiden, die Platinen auf eine Temperatur zu erwärmen die über der Austenitisierungstemperatur liegt und anschließend das Bauteil in einer Presse umzuformen, wobei während des Umformvorganges gleichzeitig ein rasches Abkühlen zum Härten des Werkstoffes durchgeführt wird.A perspective, in particular for bodies in the automotive industry are components made of steel sheet with a strength depending on the alloy composition in a range of 1000 up to 2000 MPa. In order to achieve such high strengths in the component, it is known to cut from sheets corresponding boards to heat the boards to a temperature above the Austenitisierungstemperatur and then to reshape the component in a press, during the forming simultaneously a rapid cooling to Hardening of the material is performed.

Während des Glühens, um die Bleche zu austenitisieren, bildet sich an der Oberfläche eine Zunderschicht. Diese wird nach dem Umformen und Abkühlen entfernt. Dies geschieht üblicherweise mit Sandstrahlverfahren. Vor oder nach diesem Entzundern wird der Endbeschnitt und das Einfügen von Löchern durchgeführt. Werden der Endbeschnitt und das Einfügen der Löcher vor dem Sandstrahlen durchgeführt, ist von Nachteil, dass die Schnittkanten und Lochkanten in Mitleidenschaft gezogen werden. Unabhängig von der Reihenfolge der Bearbeitungsschritte nach dem Härten ist beim Endzundern durch Sandstrahlen und vergleichbaren Verfahren von Nachteil, dass hierdurch das Bauteil häufig verzogen wird. Nach dem genannten Bearbeitungsschritten erfolgt eine sogenannte Stückbeschichtung mit einer Korrosionsschutzschicht. Beispielsweise wird eine kathodisch wirksame Korrosionsschutzschicht aufgebracht.During annealing to austenitize the sheets, a scale layer forms on the surface. This is removed after forming and cooling. This is usually done with sandblasting. Before or after this descaling, the final trimming and the insertion of holes is carried out. If the final trimming and the insertion of the holes are carried out before sandblasting, it is disadvantageous that the cut edges and hole edges are affected. Irrespective of the order of the processing steps after curing, it is disadvantageous in the case of final scaling by sandblasting and comparable methods that the component is often distorted as a result. After said processing steps, a so-called piece coating with a corrosion protection layer takes place. For example, a cathodically effective corrosion protection layer is applied.

Hierbei ist von Nachteil, dass die Nachbearbeitung des gehärteten Bauteils außerordentlich aufwendig ist und aufgrund der Härtung des Bauteils sehr hohem Verschleiß unterliegt. Ferner ist von Nachteil, dass die Stückbeschichtung üblicherweise einen Korrosionsschutz bewirkt, der nicht besonders stark ausgeprägt ist. Zudem sind die Schichtdicken nicht einheitlich, sondern schwanken über die Bauteilfläche.It is disadvantageous that the post-processing of the cured component is extremely expensive and is subject to very high wear due to the hardening of the component. Further is disadvantageous that the piece coating usually causes a corrosion protection, which is not particularly pronounced. In addition, the layer thicknesses are not uniform, but fluctuate over the component surface.

In einer Abwandlung dieses Verfahrens ist es auch bekannt, ein Bauteil aus einer Blechplatine kalt umzuformen und anschließend auf die Austenitisierungstemperatur aufzuheizen und dann in einem Kalibrierwerkzeug schnell abzukühlen, wobei das Kalibrierwerkzeug dafür verantwortlich ist, dass das Bauteil, welches durch das Aufwärmen verzogen wird, bezüglich der umgeformten Bereiche kalibriert wird. Anschließend erfolgt die zuvor beschriebene Nachbearbeitung. Dieses Verfahren ermöglicht gegenüber dem zuvor beschriebenen Verfahren komplexere Geometrien, da sich beim gleichzeitigen Umformen und Härten im Wesentlichen nur lineare Formen erzeugen lassen, komplexe Formen jedoch bei derartigen Umformvorgängen nicht realisierbar sind.In a modification of this method, it is also known to cold form a component from a sheet metal blank and then heat to the Austenitisierungstemperatur and then cool rapidly in a calibration tool, wherein the calibration tool is responsible for the component, which is warped by the warm-up, with respect the reshaped areas are calibrated. Subsequently, the post-processing described above. Compared with the method described above, this method allows more complex geometries, since essentially only linear shapes can be produced during simultaneous forming and hardening, but complex shapes can not be realized in such forming processes.

Aus der GB 1 490 535 ist ein Verfahren zum Herstellen eines gehärteten Stahlbauteils bekannt, bei dem ein Blech aus härtbaren Stahl auf die Härtetemperatur erhitzt wird und anschließend in einer Formgebungseinrichtung angeordnet wird in der das Blech in die gewünschte Endform geformt wird, wobei während der Umformung simultan schnell abgekühlt wird, so dass eine martensitische oder bainitische Struktur erhalten wird während das Blech in der Formvorrichtung verbleibt. Als Ausgangsmaterial wird beispielsweise ein borlegierter Kohlenstoffstahl oder Kohlenstoffmanganstahl verwendet. Nach dieser Druckschrift ist die Umformung vorzugsweise eine Pressung kann aber auch mit anderen Verfahren angewendet werden. Die Umformung und das Abkühlen sollen vorzugsweise so ausgeführt werden und so schnell durchgeführt werden, dass eine feinkörnige martensitische oder bainitische Struktur erhalten wird.From the GB 1 490 535 a method for producing a hardened steel component is known, in which a sheet of hardenable steel is heated to the hardening temperature and then placed in a shaping device in which the sheet is formed into the desired final shape, wherein simultaneously cooled rapidly during the forming, so that a martensitic or bainitic structure is obtained while the sheet remains in the molding apparatus. As a starting material, for example, a boron-alloyed carbon steel or carbon manganese steel is used. According to this document, the deformation is preferably a compression but can also be used with other methods. The forming and cooling should preferably be carried out and carried out so rapidly that a fine-grained martensitic or bainitic structure is obtained.

Aus der EP 1 253 208 A1 ist ein Verfahren zur Herstellung eines gehärteten Blechprofils aus einer Platine, die in einem Presswerkzeug zum Blechprofil warm umgeformt und gehärtet wird, bekannt. Am Blechprofil werden hierbei aus der Ebene der Platine vorstehende Referenzpunkte beziehungsweise Kragen erzeugt, die zur Lageorientierung des Blechprofils in nachfolgenden Fertigungsoperationen dienen. Die Kragen sollen beim Umformvorgang aus ungelochten Bereichen der Platine ausgeformt werden, wobei die Referenzpunkte in Form von randseitigen Verprägungen oder als Durchstellungen beziehungsweise Kragen im Blechprofil erzeugt werden. Das Warmumformen und Härten im Presswerkzeug soll aufgrund der durch die Kombination von Umform- und Vergütungsvorgang in einem Werkzeug rationellen Arbeitsweise generell Vorteile haben. Aufgrund der Einspannung des Blechprofils im Werkzeug und aufgrund von Wärmespannungen soll es jedoch zu nicht exakt vorhehrbestimmbaren Verzug am Bauteil kommen. Dieser kann sich nachteilig auf nachgeschaltete Fertigungsoperationen auswirken, weshalb die Referenzpunkte am Blechprofil geschaffen werden.From the EP 1 253 208 A1 is a method for producing a hardened sheet metal profile from a board, which is hot formed and cured in a pressing tool to the sheet metal profile known. On the sheet metal profile projecting reference points or collars are generated from the plane of the board, which serve for positional orientation of the sheet metal profile in subsequent manufacturing operations. The collars should be formed during the forming process of non-perforated areas of the board, the reference points are generated in the form of marginal stampings or as enforcements or collar in the sheet metal profile. The hot forming and hardening in the pressing tool should generally have advantages due to the efficient by the combination of forming and tempering process in a tool operation. Due to the clamping of the sheet metal profile in the tool and due to thermal stresses, however, it should come to not exactly predeterminable delay on the component. This can adversely affect downstream manufacturing operations, which is why the reference points are created on the sheet metal profile.

Aus der DE 197 23 655 A1 ist ein Verfahren zur Herstellung von Stahlblechprodukten bekannt, wobei ein Stahlblechprodukt in einem Paar gekühlter Werkzeuge geformt wird, solange es heiß ist und in eine martensitische Struktur gehärtet wird, während es immer noch im Werkzeug befindlich ist, so dass die Werkzeuge als eine Fixierung während des Härtens dienen. In den Bereichen in denen nach dem Härten eine Bearbeitung stattfinden soll, soll der Stahl im Flussstahlbereich gehalten werden, wobei Einsätze in den Werkzeugen dazu verwendet werden, eine schnelle Abkühlung und dadurch eine martensitische Struktur in diesen Bereichen zu verhindern. Die gleiche Wirkung soll auch durch Ausnehmungen in den Werkzeugen erreicht werden können, so dass ein Spalt zwischen dem Stahlblech und den Werkzeugen auftritt. Bei diesem Verfahren ist von Nachteil, dass aufgrund des erheblichen Verzuges, der hierbei auftreten kann, das vorliegende Verfahren zum Presshärten von Bauteilen mit komplexerer Struktur untauglich ist.From the DE 197 23 655 A1 For example, a method of making steel sheet products is known wherein a steel sheet product is molded in a pair of cooled tools while hot and hardened into a martensitic structure while still in the tool so that the tools act as a fixture during the process Hardening serve. In the areas where machining is to take place after hardening, the steel shall be kept in the mild steel area, with inserts in the tools used to prevent rapid cooling and thereby a martensitic structure in these areas. The same effect should also be achieved by recesses in the tools, so that a gap between the steel sheet and the tools occurs. In this method is disadvantageous because of the significant delay that can occur here, the present method for press hardening of components with more complex structure is disabled.

Aus der DE 100 49 660 A1 ist ein Verfahren zum Herstellen lokalverstärkter Blechumformteile bekannt, wobei das Basisblech des Strukturteils im Flachzustand mit dem Verstärkungsblech lagedefiniert verbunden und dieses sogenannte gepatchte Verbundblech anschließend gemeinsam umgeformt wird. Um das Herstellungsverfahren hinsichtlich Verfahrenserzeugnis und Ergebnis zu verbessern, sowie bezüglich der verfahrensübenden Mittel zu entlasten wird das gepatchte Verbundblech vor dem Umformen mindestens auf etwa 800 bis 850°C erwärmt, rasch eingelegt, im warmen Zustand zügig umgeformt und anschließend bei mechanischer Aufrechterhaltung des Umformzustandes durch Kontaktierung mit dem von innen her zwangsgekühlten Umformwerkzeug definiert abgekühlt. Insbesondere der insoweit maßgebende Temperaturbereich 800 bis 500°C soll mit einer definierten Abkühlgeschwindigkeit durchfahren werden. Der Schritt des Verbindens von Verstärkungsblech und Basisblech soll ohne weiteres in dem Umformprozess integriert werden können, wobei die Teile miteinander hartverlötet werden wodurch zugleich ein wirksamer Korrosionsschutz an der Kontaktzone erreicht werden kann. Bei diesem Verfahren ist von Nachteil, dass die Werkzeuge insbesondere durch die definierte Innenkühlung sehr aufwendig sind.From the DE 100 49 660 A1 a method for producing locally reinforced sheet metal formed parts is known, wherein the base sheet of the structural part connected in a flat state with the reinforcing sheet and defined this so-called patched composite sheet is then formed together. In order to improve the manufacturing process in terms of process product and result, as well as to relieve the procedural means the patched composite sheet is heated to at least about 800 to 850 ° C before forming, quickly inserted, rapidly formed in the hot state and then with mechanical maintenance of the forming state by Contacting with the internally forced-cooled forming tool defines cooled. In particular, the extent relevant temperature range 800 to 500 ° C is to be traversed with a defined cooling rate. The step of connecting reinforcing sheet and base sheet should be readily integrated in the forming process, wherein the parts are brazed together whereby an effective corrosion protection at the contact zone can be achieved at the same time. In this method, it is disadvantageous that the tools are very expensive, in particular due to the defined internal cooling.

Aus der DE 2 003 306 sind ein Verfahren und eine Einrichtung zum Pressen und Härten eines Stählteils bekannt. Ziel ist es Stahlblechstücke in Form zu pressen und zu härten, wobei die Nachteile bekannter Verfahren vermieden werden sollen, insbesondere, dass Teile aus Stahlblech in aufeinanderfolgenden gesonderten Schritten zum Formpressen und Härten hergestellt werden. Insbesondere soll vermieden werden, dass die gehärteten oder abgeschreckten Erzeugnisse gegenüber der gewünschten Form einen Verzug zeigen, so dass zusätzliche Arbeitsschritte erforderlich sind. Zur Verwirklichung ist es vorgesehen ein Stahlstück, nachdem das Stück auf eine seinen austenitischen Zustand herbeiführenden Temperatur erwärmt worden ist, zwischen einem Paar zusammenwirkender Formelemente zu legen, worauf das Stück gepresst und gleichzeitig schnell Wärme von dem Stück in die Formteile abgeleitet wird. Die Formteile werden während des gesamten Vorganges auf einer Kühltemperatur gehalten, so dass auf das Stück eine Abschreckwirkung unter einem Formdruck ausgeübt wird.From the DE 2 003 306 For example, a method and a device for pressing and hardening a steel part are known. The aim is to press and harden sheet steel pieces in the form of avoiding the disadvantages of known methods, in particular that parts made of steel sheet are produced in successive separate steps for compression molding and hardening. In particular, it should be avoided that the hardened or quenched products to the desired shape show a delay, so that additional steps are required. To accomplish this, it is intended to place a piece of steel, after the piece has been heated to a temperature attaining its austenitic condition, between a pair of cooperating mold members, whereupon the piece is pressed and at the same time heat is rapidly dissipated from the piece to the mold pieces. The mold parts are kept at a cooling temperature throughout the process, so that a quenching effect is exerted on the piece under a molding pressure.

Aus der DE 101 20 063 C2 ist es bekannt, metallische Profilbauteile für Kraftfahrzeuge aus einem in Bandform bereitgestelltem Ausgangsmaterial einer Walzprofiliereinheit zuzuführen und zu einem Walzprofil umzuformen, wobei nach dem Austritt aus der Walzprofiliereinheit partielle Bereiche des Walzprofils induktiv auf eine zum Härten erforderliche Temperatur erwärmt und anschließend in einer Abkühleinheit abgeschreckt werden. Im Anschluss hieran sollen die Walzprofile zu den Profilbauteilen abgelängt werden.From the DE 101 20 063 C2 It is known to feed metallic profiled components for motor vehicles from a strip-formulated starting material of a roll forming and to form a rolled profile, wherein after exiting the Walzprofiliereinheit partial areas of the rolled section are inductively heated to a temperature required for curing and then quenched in a cooling unit. Following this, the rolled sections are to be cut to the profile components.

Aus der US 6,564,604 B2 ist ein Verfahren zum Herstellen eines Teils mit sehr hohen mechanischen Eigenschaften bekannt, wobei das Teil durch das Stanzen eines Streifens aus einem gewalzten Stahlblech hergestellt werden soll und insbesondere ein warmgewalztes und beschichtetes Bauteil mit einer Metall- oder Metalllegierung beschichtet ist, welches die Oberfläche des Stahls schützen soll, wobei das Stahlblech geschnitten wird, um ein Stahlblechvorformling zu erhalten, der Stahlblechvorformling kalt oder warm umgeformt wird und entweder nach dem Warmumformen gekühlt und gehärtet wird oder nach dem Kaltumformen erhitzt und anschließend abgekühlt wird. Eine intermetallische Legierung soll auf die Oberfläche vor oder nach demFrom the US 6,564,604 B2 For example, a method of producing a part having very high mechanical properties is known, wherein the part is to be produced by punching a strip from a rolled steel sheet, and in particular a hot rolled and coated part is coated with a metal or metal alloy covering the surface of the steel to protect, wherein the steel sheet is cut to obtain a steel sheet preform, the steel sheet preform is cold or hot formed and is either cooled and hardened after hot working or heated after cold working and then cooled. An intermetallic alloy is supposed to be on the surface before or after

Umformen aufgebracht werden und einen Schutz gegen Korrosion und Stahlentkohlung bieten, wobei diese intermetallische Mischung zudem eine Schmierfunktion haben kann. Anschließend wird das überstehende Material von dem Formling abgenommen. Die Beschichtung soll hierbei allgemein auf der Basis von Zink oder Zink-Aluminium beruhen. Hierbei kann ein Stahl verwendet werden der beidseitig elektrolytisch verzinkt ist, wobei eine Austenitisierung bei 950°C erfolgen soll. Diese elektrolytisch verzinkte Schicht wird bei der Austenitisierung komplett in eine Eisen-Zink-Legierung umgesetzt. Es wird ausgeführt, dass beim Umformen und während des Haltens zum Kühlen die Beschichtung den Wärmeabfluss durch das Werkzeug nicht behindert und den Wärmeabfluss sogar verbessert. Zudem schlägt diese Druckschrift vor als Alternative zu einem elektrolytisch verzinkten Band eine Beschichtung aus 45 % bis 50 % Zink, Rest Aluminium zu verwenden. Bei dem genannten Verfahren in seinen beiden Ausführungsformen ist von Nachteil, dass ein kathodischer Korrosionsschutz praktisch nicht mehr vorhanden ist. Zudem ist eine derartige Schicht so spröde, dass beim Umformen Risse auftreten. Eine Beschichtung mit einer Mischung aus 45 bis 50 % Zink und 55 bis 45 % Aluminium entfaltet ebenfalls keinen nennenswerten kathodischen Korrosionsschutz. Zwar wird in dieser Druckschrift behauptet, dass die Verwendung von Zink oder Zink-Legierungen als Beschichtung sogar für die Kanten einen galvanischen Schutz ergeben würde, dies kann jedoch in der Praxis nicht erreicht werden. In der Praxis kann durch die beschriebenen Beschichtungen nicht einmal ein ausreichender galvanischer Schutz in der Fläche erreicht werden.Forming applied and provide protection against corrosion and steel decarburization, this intermetallic mixture can also have a lubricating function. Subsequently, the supernatant material is removed from the molding. The coating should generally be based on zinc or zinc-aluminum. In this case, a steel can be used which is electrolytically galvanized on both sides, with an austenitization to take place at 950 ° C. This electrolytically galvanized layer is completely converted into an iron-zinc alloy during austenitisation. It is stated that during forming and while being held for cooling, the coating does not hinder the heat flow through the tool and even improves heat dissipation. In addition, this document proposes as an alternative to an electrolytically galvanized tape to use a coating of 45% to 50% zinc, balance aluminum. In the aforementioned method in its two embodiments is disadvantageous that a cathodic corrosion protection is practically no longer available. In addition, such a layer is so brittle that cracks occur during forming. A coating with a mixture of 45 to 50% zinc and 55 to 45% aluminum also exhibits no significant cathodic corrosion protection. While it is claimed in this reference that the use of zinc or zinc alloys as a coating would provide galvanic protection even to the edges, this can not be achieved in practice. In practice, the coatings described can not even achieve sufficient galvanic protection in the surface.

Aus der EP 1 013 785 A1 ist ein Herstellungsverfahren eines Bauteils aus einem gewalzten Stahlband und insbesondere einem warmgewalzten Band bekannt. Ziel soll es sein, gewalzte Stahlbleche von 0,2 bis 2,0 mm Dicke anbieten zu können, die unter anderem nach der Warmwalzung beschichtet werden und die einer Verformung entweder kalt oder warm, gefolgt von einer thermischen Behandlung unterworfen werden, wobei der Anstieg der Temperatur ohne Stahlentkohlung und ohne Oxidation der Oberfläche der vorgenannten Bleche vor, während und nach der Warmverformung oder der thermischen Behandlung gesichert werden soll. Hierzu soll das Blech mit einem Metall oder einer Metalllegierung, die den Schutz der Oberfläche des Bleches sichert, versehen werden, anschließend das Blech einer Temperaturerhöhung für die Umformung unterworfen werden, anschließend eine Umformung des Bleches durchgeführt werden und das Teil abschließend abgekühlt werden. Insbesondere soll das beschichtete Blech in heißem Zustand gepresst werden und das durch das Tiefziehen entstandene Teil abgekühlt werden um gehärtet zu werden und zwar mit einer Geschwindigkeit die höher ist als die kritische Härtungsgeschwindigkeit. Es wird ferner eine Stahllegierung angegeben, welche geeignet sein soll, wobei dieses Stahlblech bei 950°C austenitisiert werden soll, bevor es im Werkzeug verformt und gehärtet wird. Die aufgebrachte Beschichtung soll insbesondere aus Aluminium oder einer Aluminiumlegierung bestehen, wobei hierdurch nicht nur ein Oxidations- und Entkohlungsschutz, sondern auch eine Schmierwirkung resultieren soll. Bei diesem Verfahren kann es zwar im Gegensatz zu den anderen bekannten Verfahren vermieden werden, dass das Blechteil nach dem Aufheizen auf die Austenitisierungstemperatur verzundert, ein Kaltumformen wie dies in dieser Schrift dargestellt ist, ist jedoch mit feueraluminierten Blechen grundsätzlich nicht möglich, da die feueraluminierte Schicht eine zu geringe Duktilität für eine größere Verformung aufweist. Insbesondere Tiefziehprozesse komplexerer Formen sind mit derartigen Blechen im kalten Zustand nicht realisierbar. Mit einer derartigen Beschichtung sind Warmumformungen, dass heißt das Umformen und Härten in einem einzigen Werkzeug möglich, das Bauteil weist danach jedoch keinen kathodischen Schutz auf. Zu dem muss auch ein solches Bauteil nach dem Härten mechanisch oder mittels Laser bearbeitet werden, so dass der bereits beschriebene Nachteil eintritt, dass nachfolgende Bearbeitungsschritte durch die Härte des Materials sehr aufwendig sind. Darüber hinaus ist von Nachteil, dass alle Bereiche des Formteils, welche mittels Laser oder mechanisch geschnitten werden über keinerlei Korrosionsschutz mehr verfügen.From the EP 1 013 785 A1 For example, a method of manufacturing a rolled steel strip component, and in particular a hot rolled strip, is known. The aim is to be able to offer rolled steel sheets of 0.2 to 2.0 mm in thickness, which are coated, inter alia, after hot rolling and the one Deformation, either cold or hot, followed by a thermal treatment, whereby the increase in temperature without steel decarburization and without oxidation of the surface of the aforementioned sheets is to be ensured before, during and after the hot working or the thermal treatment. For this purpose, the sheet should be provided with a metal or a metal alloy, which ensures the protection of the surface of the sheet, then the sheet is subjected to a temperature increase for the forming, then a transformation of the sheet are performed and the part are finally cooled. In particular, the coated sheet is to be pressed while hot and the part formed by the deep drawing to be cooled to be cured and that at a speed which is higher than the critical curing rate. There is further provided a steel alloy, which should be suitable, said steel sheet to be austenitized at 950 ° C before it is deformed and hardened in the tool. The applied coating should consist in particular of aluminum or an aluminum alloy, whereby not only an oxidation and decarburization protection, but also a lubricating effect should result. In this method, it can indeed be avoided in contrast to the other known methods that the sheet metal part after heating to the austenitizing temperature verzallert, cold forming as shown in this document, but is basically not possible with hot-dip aluminized sheets, as the feueraluminierte layer has too low ductility for greater deformation. In particular, deep-drawing processes of more complex shapes can not be realized with such sheets in the cold state. With such a coating hot forming, that is, the forming and curing in a single tool possible, but then the component has no cathodic protection. In addition, such a component must after hardening be processed mechanically or by laser, so that the disadvantage already described occurs that subsequent processing steps are very expensive due to the hardness of the material. In addition, it is disadvantageous that all areas of the molded part which are cut by laser or mechanically no longer have any corrosion protection.

Aus der DE 102 54 695 B3 ist es bekannt, zur Herstellung eines metallischen Formbauteils, insbesondere eines Karosseriebauteils aus einem Halbzeug, aus einem ungehärteten warmformbaren Stahlblech, das Halbzeug zunächst durch ein Kaltumformverfahren, insbesondere durch Tiefziehen zu einem Bauteilrohling umzuformen. Anschließend soll der Bauteilrohling randseitig auf eine dem herzustellenden Bauteil näherungsweise entsprechende Berandungskontur beschnitten werden. Schließlich wird der beschnittene Bauteilrohling erwärmt und in einem Warmumformwerkzeug pressgehärtet. Das dabei erzeugte Bauteil weist bereits nach dem Warmumformen die gewünschte Berandungskontur auf, so dass eine abschließende Beschneidung des Bauteilrandes entfällt. Auf diese Weise sollen die Zykluszeiten bei der Herstellung gehärteter Bauteile aus Stahlblech erheblich gesenkt werden. Der verwendete Stahl soll ein lufthärtender Stahl sein, der ggf. unter einer Schutzgasatmosphäre aufgeheizt wird, um eine Verzunderung während des Aufheizens zu vermeiden. Anderenfalls wird eine Zunderschicht vor das Formbauteil nach dem Warmumformen des Formbauteils entzundert. In dieser Druckschrift wird erwähnt, dass im Rahmen des Kaltumformprozesses der Bauteilrohling endkonturennah ausgeformt wird, wobei unter "endkonturnah" verstanden werden soll, dass diejenigen Teile der Geometrie des fertigen Bauteils, welche mit einem makroskopischen Materialfluss einhergehen, nach Abschluss des Kaltumformprozesses vollständig in den Bauteilrohling eingeformt sind. Nach Abschluss des Kaltumformprozesses sollen somit zur Herstellung der dreidimensionalen Form des Bauteils nur noch geringe Formanpassungen notwendig sein, welche einen minimalen lokalen Materialfluss erfordern. Bei diesem Verfahren ist von Nachteil, dass nach wie vor ein Endformschritt der gesamten Kontur im warmen Zustand erfolgt, wobei zur Vermeidung von Verzunderung entweder der bekannte Weg gegangen werden muss, das unter Schutzgas geglüht werden muss oder die Teile entzundert werden müssen. Beiden Prozessen muss eine anschließende Korrosionsstückbeschichtung nachfolgen.From the DE 102 54 695 B3 It is known for the production of a metallic mold component, in particular a body component from a semi-finished, from an uncured thermoformable steel sheet, the semi-finished first by a cold forming process, in particular by deep drawing to form a component blank. Subsequently, the component blank is intended to be trimmed on the edge side to a boundary contour approximately corresponding to the component to be produced. Finally, the clipped component blank is heated and press-cured in a hot-forming tool. The component produced thereby already has the desired boundary contour after hot forming, so that a final trimming of the component edge is eliminated. In this way, the cycle times in the production of hardened steel sheet components are to be significantly reduced. The steel used should be an air-hardening steel, which may be heated under a protective gas atmosphere in order to avoid scaling during heating. Otherwise, a scale layer is descaled in front of the mold component after hot working of the mold component. In this document, it is mentioned that, as part of the cold forming process, the component blank is shaped close to the final contour, "near net shape" being understood to mean that those parts of the geometry of the finished component which are associated with a macroscopic flow of material completely into the component blank after completion of the cold forming process are formed. After completion of the cold forming process Thus, for the production of the three-dimensional shape of the component only slight form adjustments to be necessary, which require a minimum local material flow. In this method, it is disadvantageous that there is still a final forming step of the entire contour in the warm state, which must be done to avoid scaling either the known way, which must be annealed under protective gas or the parts must be descaled. Both processes must be followed by a subsequent corrosive coating.

Zusammenfassend kann gesagt werden, dass bei allen vorgenannten Verfahren sämtlichst von Nachteil ist, dass die hergestellten Teile nach dem Umformen und Härten weiter bearbeitet werden müssen was teuer und aufwendig ist. Zudem besitzen die Bauteile entweder keinen oder nur einen ungenügenden Korrosionsschutz.In summary, it can be stated that in all the above-mentioned methods, it is extremely disadvantageous that the produced parts have to be further processed after forming and hardening, which is expensive and expensive. In addition, the components have either no or only insufficient corrosion protection.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech zu schaffen, welches einfach und schnell durchführbar ist und welches es ermöglicht, gehärtete Bauteile aus Stahlblech insbesondere Stahlfeinblech mit einem kathodischen Korrosionsschutz dimensionsgenau und ohne Nachbearbeitung wie Entzundern und Sandstrahlen herzustellen.The object of the invention is to provide a method for producing hardened components made of sheet steel, which is simple and quick to carry out and which makes it possible to produce hardened components made of sheet steel in particular steel sheet with a cathodic corrosion protection dimensionally accurate and without finishing such as descaling and sandblasting.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.The object is achieved by a method having the features of claim 1. Advantageous developments are characterized in the subclaims.

Erfindungsgemäß wird das Umformen der Bauteile sowie das Beschneiden und Lochen der Bauteile im Wesentlichen im ungehärteten Zustand durchgeführt. Die relativ gute Verformbarkeit des verwendeten speziellen Materials im ungehärteten Zustand lässt die Realisierung komplexer Bauteilgeometrien zu und ersetzt teures nachträgliches Beschneiden im gehärteten Zustand durch wesentlich preisgünstigere mechanische Schneidoperationen vor dem Härteprozess.According to the invention, the forming of the components as well as the trimming and punching of the components is carried out essentially in the uncured state. The relatively good deformability of the particular material used in the unhardened state allows the realization of complex component geometries and replaces expensive subsequent trimming in the cured state by significantly less expensive mechanical cutting operations before the hardening process.

Die unvermeidlichen Dimensionsänderungen durch das Erhitzen des Bauteils werden bei dem Umformen des kalten Blechs bereits berücksichtigt, so dass das Bauteil circa 0,5 bis 2 % kleiner hergestellt wird, als es die Endabmessungen sind. Zumindest wird die erwartete Wärmedehnung bei der Umformung berücksichtigt.The unavoidable dimensional changes due to the heating of the component are already taken into account in forming the cold sheet, so that the component is made approximately 0.5 to 2% smaller than the final dimensions. At least the expected thermal expansion during forming is considered.

Bei dem kaltem Bearbeiten des Bauteils, das heißt dem Umformen, Schneiden und Lochen ist es ausreichend, die Bereiche mit hoher Komplexität und Umformtiefe und gegebenenfalls die eng tolerierten Bereiche des Bauteils wie insbesondere die Schnittkanten, die Formkanten, die Formflächen und gegebenenfalls das Lochbild, wie insbesondere die Referenzlöcher mit den gewünschten Endtoleranzen, insbesondere den Beschnitt- und Lagetoleranzen, des fertigen, gehärteten Bauteils zu fertigen, wobei hierbei die Wärmedehnung des Bauteils durch das Aufheizen berücksichtigt bzw. kompensiert wird.In the cold working of the component, that is, the forming, cutting and punching, it is sufficient, the areas of high complexity and forming depth and possibly the narrow toleranced areas of the component such as in particular the cut edges, the shape edges, the forming surfaces and possibly the hole pattern, such as In particular, to manufacture the reference holes with the desired final tolerances, in particular the trimming and position tolerances, of the finished, hardened component, in which case the thermal expansion of the component is taken into account or compensated for by the heating.

Dies bedeutet, dass das Bauteil nach dem kalten Umformen ca. 0,5 % bis 2 % kleiner ist als die Soll-Endabmessungen des fertigen, gehärteten Bauteils. Kleiner bedeutet hierbei, dass das Bauteil nach dem kalten Umformen in allen drei Raumachsen also dreidimensional fertiggeformt ist. Die Wärmedehnung wird somit für alle drei Raumachsen gleichermaßen berücksichtigt. Im Stand der Technik kann die Wärmedehnung durch beispielsweise das nicht vollständige Schließen der Form nicht für alle Raumachsen berücksichtigt werden, da hier nur in Z-Richtung, durch eine unvollständige Ausformung, eine Dehnung berücksichtigt werden könnte. Erfindungsgemäß wird vorzugsweise die dreidimensionale Geometrie bzw. Kontur des Werkzeugs in allen drei Raumachsen kleiner gefertigt.This means that the component after the cold forming is about 0.5% to 2% smaller than the nominal final dimensions of the finished, hardened component. Smaller here means that the component after cold forming in all three spatial axes is thus three-dimensionally finished molded. The thermal expansion is thus considered equally for all three spatial axes. In the prior art, the thermal expansion can not be taken into account for example by the incomplete closure of the mold for all spatial axes, since only in the Z direction, by an incomplete formation, an elongation could be considered. According to the invention, the three-dimensional geometry or contour of the tool is preferably made smaller in all three spatial axes.

Bislang ist die Fachwelt davon ausgegangen, dass verzinkte Stahlbleche für derartige Prozesse, bei denen vor oder nach dem Umformen ein Aufheizschritt stattfindet, nicht geeignet sind. Dies liegt zum einen daran, dass Zinkschichten oberhalb der bislang üblicherweise angewendeten Ofentemperatur von etwa 900 bis 950°C stark oxidieren oder unter Schutzgas (sauerstofffreie Atmosphäre) flüchtig sind.So far, the art has assumed that galvanized steel sheets are not suitable for such processes in which a heating step takes place before or after the forming. This is partly due to the fact that zinc layers above the previously commonly used furnace temperature of about 900 to 950 ° C strongly oxidize or under protective gas (oxygen-free atmosphere) are volatile.

Der erfindungsgemäße Korrosionsschutz für Stahlbleche, die zunächst einer Wärmebehandlung unterzogen und anschließend umgeformt und dabei gehärtet werden, ist ein kathodischer Korrosionsschutz, der im Wesentlichen auf Zink basiert. Erfindungsgemäß sind dem die Beschichtung ausbildenden Zink 0,1% bis 15% eines sauerstoffaffinen Elements wie Magnesium, Silizium, Titanium, Calcium und Aluminium zugefügt. Es konnte herausgefunden werden, dass derart geringe Mengen eines sauerstoffaffinen Elements wie Magnesium, Silizium, Titanium, Calcium und Aluminium bei dieser speziellen Anwendung einen überraschenden Effekt herbeiführen.The corrosion protection according to the invention for steel sheets, which are first subjected to a heat treatment and then reformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc. According to the invention, 0.1% to 15% of an oxygen-affine element such as magnesium, silicon, titanium, calcium and aluminum are added to the zinc forming the coating. It has been found that such small amounts of an oxygen-affine element as magnesium, silicon, titanium, calcium and aluminum induce a surprising effect in this particular application.

Als sauerstoffaffine Elemente kommen erfindungsgemäß zumindest Mg, Al, Ti, Si, Ca in Frage. Wenn nachfolgend Aluminium genannt wird, steht dies stellvertretend auch für die genannten anderen Elemente.As oxygen-affine elements according to the invention at least Mg, Al, Ti, Si, Ca in question. When aluminum is mentioned below, this is representative of the other elements mentioned.

Es hat sich überraschend herausgestellt, dass sich trotz der geringen Menge eines sauerstoffaffinen Elements wie insbesondere Aluminium, beim Aufheizen offensichtlich eine im Wesentlichen aus Al2O3 bzw. einem Oxid des sauerstoffaffinen Elements (MgO, CaO, TiO, SiO2) bestehende, sehr wirksame und nachheilende oberflächliche Schutzschicht bildet. Diese sehr dünne OxidSchicht schützt die darunter liegende Zn-haltige Korrosionsschutzschicht selbst bei sehr hohen Temperaturen vor Oxidation. D.h., dass sich während der speziellen Weiterverarbeitung des verzinkten Bleches im Presshärteverfahren, eine angenähert zweischichtige Korrosionsschutzschicht ausbildet, die aus einer kathodisch hochwirksamen Schicht, mit hohem Anteil Zink besteht und von einer Oxidationsschutzschicht aus einem Oxid (Al2O3, MgO, CaO, TiO, SiO2) gegenüber Oxidation und Abdampfen geschützt ist. Es ergibt sich somit eine kathodische Korrosionsschutzschicht mit einer überragenden chemischen Beständigkeit. Dies bedeutet, dass die Wärmebehandlung in einer oxidierten Atmosphäre zu erfolgen hat. Unter Schutzgas (sauerstofffreie Atmosphäre) kann eine Oxidation zwar vermieden werden, das Zink würde jedoch aufgrund des hohen Dampfdrucks abdampfen.It has surprisingly been found that, despite the small amount of an oxygen-affine element such as aluminum in particular, an essentially consisting of Al 2 O 3 or an oxide of the oxygen-affine element (MgO, CaO, TiO, SiO 2 ) during heating, very much forms an effective and healing superficial protective layer. This very thin oxide layer protects the underlying Zn-containing corrosion protection layer from oxidation even at very high temperatures. That is, during the special processing of the galvanized sheet in the press hardening process, an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer, with a high proportion of zinc and an oxidation protective layer of an oxide (Al 2 O 3 , MgO, CaO, TiO , SiO 2 ) is protected against oxidation and evaporation. This results in a cathodic corrosion protection layer with a superior chemical resistance. This means that the heat treatment must be carried out in an oxidized atmosphere. Although under protective gas (oxygen-free atmosphere) oxidation can be avoided, the zinc would evaporate due to the high vapor pressure.

Es hat sich zudem herausgestellt, dass die erfindungsgemäße Korrosionsschutzschicht für das Presshärteverfahren auch eine so große mechanische Stabilität aufweist, dass ein auf das Austenitisieren der Bleche folgender Umformschritt diese Schicht nicht zerstört. Selbst wenn Mikrorisse auftreten, ist die kathodische Schutzwirkung jedoch zumindest deutlich stärker als die Schutzwirkung der bekannten Korrosionsschutzschichten für das Presshärteverfahren.It has also been found that the corrosion protection layer according to the invention for the press-hardening process also has such a high mechanical stability that a forming step following the austenitizing of the sheets this Layer not destroyed. However, even if microcracks occur, the cathodic protection is at least significantly greater than the protective effect of the known anticorrosive layers for the press hardening process.

Um ein Blech mit dem erfindungsgemäßen Korrosionsschutz zu versehen, kann in einem ersten Schritt eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,1 jedoch geringer als 15%, insbesondere geringer als 10%, weiter bevorzugt geringer als 5% auf ein Stahlblech, insbesondere ein legiertes Stahlblech aufgebracht werden, worauf in einem zweiten Schritt Teile aus dem beschichteten Blech herausgearbeitet und insbesondere herausgeschnitten oder herausgestanzt werden und bei Zutritt von Luftsauerstoff auf eine Temperatur oberhalb der Austenitisierungstemperatur der Blechlegierung erwärmt und danach mit erhöhter Geschwindigkeit abgekühlt werden. Eine Umformung des aus dem Blech herausgeschnittenen Teils (der Platine) kann vor oder nach dem Erwärmen des Bleches auf die Austenitisierungstemperatur erfolgen.To provide a sheet with the corrosion protection according to the invention, in a first step, a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel plate, in particular an alloyed steel sheet are applied, whereupon in a second step, parts of the coated sheet are machined and in particular cut out or punched out and heated on access of atmospheric oxygen to a temperature above the Austenitisierungstemperatur the sheet metal alloy and then cooled at an increased speed. A transformation of the cut out of the sheet metal part (the board) can be carried out before or after the heating of the sheet to the Austenitisierungstemperatur.

Es wird angenommen, dass im ersten Schritt des Verfahrens, und zwar bei der Beschichtung des Bleches an der Blechoberfläche bzw. im proximalen Bereich der Schicht, eine dünne Sperrphase aus insbesondere Fe2Al5-xZnx gebildet wird, die die Fe-Zn-Diffusion bei einem Flüssigmetallbeschichtungsverfahren, welches insbesondere bei einer Temperatur bis 690°C erfolgt, behindert. Somit wird im ersten Verfahrensschritt das Blech mit einer Zink-Metallbeschichtung mit einer Zugabe von Aluminium erstellt, welche nur zur Blechoberfläche hin, als im proximalen Bereich der Auflage eine äußerst dünne Sperrphase, welche gegen ein rasches Wachsen einer Eisen-Zink-Verbindungsphase wirksam ist, aufweist. Zudem ist denkbar, dass allein die Anwesenheit von Aluminium die Eisen-Zink-Diffusionsneigung im Bereich der Grenzschicht senkt.It is assumed that in the first step of the process, namely when the sheet is coated on the sheet surface or in the proximal region of the layer, a thin barrier phase is formed, in particular Fe 2 Al 5 -x Zn x , which forms the Fe-Zn Diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C, hindered. Thus, in the first process step, the sheet is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having. In addition, it is conceivable that only the presence of aluminum lowers the iron-zinc diffusion tendency in the region of the boundary layer.

Erfolgt nun im zweiten Schritt ein Anwärmen des mit einer Zink-Aluminium-Metallschicht versehenen Bleches auf die Austenitisierungstemperatur des Blechwerkstoffes unter Luftsauerstoffzutritt, so wird vorerst die Metallschicht am Blech verflüssigt. An der distalen Oberfläche reagiert das sauerstoffafinere Aluminium aus dem Zink mit Luftsauerstoff unter Bildung von festem Oxid bzw. Tonerde, wodurch in dieser Richtung ein Abfall der Aluminiummetallkonzentration entsteht, welche eine stetige Diffusion von Aluminium zur Abreicherung hin, also zum distalen Bereich hin bewirkt. Diese Tonerdeanreicherung, an dem der Luft ausgesetzte Schichtbereich wirkt nun als Oxidationsschutz für das Schichtmetall und als Abdampfungssperre für das Zink.If, in the second step, heating of the sheet provided with a zinc-aluminum-metal layer to the austenitizing temperature of the sheet metal material with access of atmospheric oxygen occurs, the metal layer on the sheet is liquefied for the time being. At the distal surface, the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the concentration of aluminum metal, which causes a steady diffusion of aluminum towards depletion, that is to the distal region. This Tonerdeanreicherung, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.

Zudem wird beim Anwärmen das Aluminium aus der proximalen Sperrphase durch stetige Diffusion zum distalen Bereich hin abgezogen und steht dort zur Bildung der oberflächlichen Al2O3-Schicht zur Verfügung. Somit wird die Ausbildung einer Blechbeschichtung erreicht, welche eine kathodisch hochwirksame Schicht mit hohem Zinkanteil hinterlässt.In addition, during heating, the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer. Thus, the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.

Gut geeignet ist beispielweise eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,2 jedoch kleiner als 4, vorzugsweise von Größe 0,26 jedoch kleiner 2,5 Gew.-%.Well suited is for example a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably of size 0.26 but less than 2.5 wt .-%.

Wenn in günstiger Weise im ersten Schritt die Aufbringung der Zinklegierungsschicht auf die Blechoberfläche im Durchlauf durch ein Flüssigmetallbad bei einer Temperatur von höher als 425°C, jedoch niedriger als 690°C, insbesondere bei 440°C bis 495°C erfolgt, mit anschließender Abkühlung des beschichteten Blechs, kann nicht nur die proximale Sperrphase wirkungsvoll gebildet werden, bzw. eine sehr gute Diffusionsbehinderung im Bereich der Sperrschicht beobachtet werden, sondern es erfolgt damit auch eine Verbesserung der Warmvorformungseigenschaften des Blechmaterials.Conveniently, in the first step, the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal locking phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it takes place thus also an improvement of the thermoforming properties of the sheet material.

Eine vorteilhafte Ausgestaltung der Erfindung ist bei einem Verfahren gegeben, bei welchem ein warm- oder kaltgewalztes Stahlband mit einer Dicke von beispielsweise größer als 0,15 mm und mit einem Konzentrationsbereich mindestens einer der Legierungselemente in den Grenzen in Gew.-% Kohlenstoff bis 0,4, vorzugsweise 0,15 bis 0,3 Silizium bis 1,9, vorzugsweise 0,11 bis 1,5 Mangan bis 3,0, vorzugsweise 0,8 bis 2,5 Chrom bis 1,5, vorzugsweise 0,1 bis 0,9 Molybdän bis 0,9, vorzugsweise 0,1 bis 0,5 Nickel bis 0,9, Titan bis 0,2 vorzugsweise 0,02 bis 0,1 Vanadin bis 0,2 Wolfram bis 0,2, Aluminium bis 0,2, vorzugsweise 0,02 bis 0,07 Bor bis 0,01, vorzugsweise 0,0005 bis 0,005 Schwefel Max. 0,01, vorzugsweise Max. 0,008 Phosphor Max. 0,025, vorzugsweise Max. 0,01 Rest Eisen und Verunreinigungen eingesetzt wird.An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of for example greater than 0.15 mm and having a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon to 1.9, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0.9, preferably 0.1 to 0.5 nickel to 0.9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities is used.

Es konnte festgestellt werden, dass die Oberflächenstruktur des erfindungsgemäßen kathodischen Korrosionsschutzes besonders günstig für eine hohe Haftfähigkeit von Farben und Lacken ist.It has been found that the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.

Die Haftung der Beschichtung am Stahlblechgegenstand kann weiter verbessert werden, wenn die Oberflächenschicht eine zinkreiche, intermetallische Zink -Eisen-Aluminium-Phase und eine eisenreich Eisen-Zink-Aluminium-Phase besitzt, wobei die eisenreiche Phase ein Verhältnis Zink zu Eisen von höchstens 0,95 (Zn/Fe ≤ 0,95), vorzugsweise von 0,20 bis 0,80 (Zn/Fe = 0,20 bis 0,80) und die zinkreiche Phase ein Verhältnis Zink zu Eisen von mindestens 2,0 (Zn/Fe ≥ 2,0) vorzugsweise von 2,3 bis 19,0 (Zn/Fe = 2,3 bis 19,0) aufweist.The adhesion of the coating to the steel sheet article can be further improved if the surface layer comprises a zinc-rich, zinc-iron-aluminum intermetallic phase and a iron-zinc-aluminum phase, the iron-rich phase having a zinc to iron ratio of at most 0.95 (Zn / Fe ≦ 0.95), preferably from 0.20 to 0.80 (Zn / Fe = 0, 20 to 0.80) and the zinc rich phase has a zinc to iron ratio of at least 2.0 (Zn / Fe ≥ 2.0), preferably from 2.3 to 19.0 (Zn / Fe = 2.3 to 19.0 ) having.

Bei dem erfindungsgemäßen Verfahren wird eine solche Zinkschicht beim kalten Umformen offenbar nicht wesentlich beeinträchtigt. Vielmehr wird bei der Erfindung in vorteilhafter Weise beim Beschneiden und Lochen der kalten Platine Zinkmaterial durch das Werkzeug aus der Zinkschicht in die Schnittkante getragen und an der Schnittkante entlang verschmiert.In the method according to the invention, such a zinc layer is apparently not significantly impaired during cold forming. Rather, in the invention in an advantageous manner when trimming and punching the cold board zinc material is carried by the tool from the zinc layer in the cutting edge and smeared along the cutting edge.

Eine Beschichtung mit Zink hat zudem den Vorteil, dass das Bauteil nach dem Erhitzen und beim Überführen in ein Formhärtewerkzeug weniger Wärme verliert, so dass das Bauteil nicht so hoch aufgeheizt werden muss. Hierdurch treten geringere thermische Dehnungen auf, so dass eine toleranzgenaue Fertigung vereinfacht wird, da die Gesamtdehnungen geringer sind.A coating with zinc also has the advantage that the component loses less heat after heating and when transferred to a mold hardening tool, so that the component does not have to be heated so high. As a result, lower thermal expansions occur, so that a tolerance-accurate production is simplified, since the total strains are smaller.

Zudem hat das Bauteil bei der geringeren Temperatur eine höhere Stabilität was eine besseres Handling und ein schnelleres Einlegen in die Form ermöglicht.In addition, the component at the lower temperature has a higher stability which allows better handling and faster insertion into the mold.

Die Erfindung wird beispielhaft anhand einer Zeichnung erläutert. Die einzige Figur zeigt den Verfahrensablauf des erfindungsgemäßen Verfahrens.The invention will be explained by way of example with reference to a drawing. The single figure shows the procedure of the method according to the invention.

Zur Durchführung des Verfahrens wird das ungehärtete, verzinkte spezielle Feinblech zunächst in Platinen geschnitten.To carry out the process, the uncured, galvanized special sheet is first cut into blanks.

Die verarbeiteten Platinen können, Rechteck-, Trapez- oder Formplatinen sein. Für das Schneiden der Platinen können alle bekannten Schneidprozesse angewandt werden. Vorzugsweise werden Scheidprozesse angewandt, die während des Schneidprozesses keine Wärme in das Blech einbringen.The processed boards may be rectangular, trapezoidal or shaped boards. All can be used for cutting the boards known cutting processes are applied. Preferably, cutting processes are used which do not introduce heat into the sheet during the cutting process.

Aus den geschnittenen Platinen werden anschließend mittels Kalt-Umformwerkzeugen Formteile hergestellt. Diese Herstellung von Formteilen umfasst alle Verfahren und/oder Prozesse, die in der Lage sind, diese Formteile herzustellen. Beispielsweise sind folgende Verfahren und/oder Prozesse geeignet:

  • Folgeverbundwerkzeuge,
  • Einzelwerkzeuge in Verkettung,
  • Stufenfolgewerkzeuge,
  • Hydraulische Pressestraße,
  • Mechanische Pressestraße,
  • Explosionsumformen, elektromagnetisches Umformen, Rohr-Hydroformen, Platinen-Hydroformen
  • und alle Kaltumformprozesse.
The cut blanks are then used to produce molded parts by means of cold forming tools. This production of moldings includes all processes and / or processes capable of producing these moldings. For example, the following methods and / or processes are suitable:
  • Progressive dies,
  • Individual tools in a chain,
  • Gradation tools,
  • Hydraulic press line,
  • Mechanical Press Street,
  • Explosion forming, electromagnetic forming, tube hydroforming, sink hydroforming
  • and all cold forming processes.

Nach dem Umformen und insbesondere dem Tiefziehen erfolgt der Endbeschnitt in den genannten herkömmlichen Werkzeugen.After forming, and in particular deep drawing, the final trimming is carried out in said conventional tools.

Erfindungsgemäß wird das Formteil, welches im kalten Zustand geformt wurde um 0,5 bis 2 % kleiner hergestellt als die nominale Geometrie des Endbauteils, so dass die Wärmedehnung beim Aufheizen hierdurch kompensiert wird.According to the invention, the molded part, which has been formed in the cold state, is made smaller by 0.5 to 2% than the nominal geometry of the end component, so that the thermal expansion during heating is thereby compensated.

Die durch die genannten Prozesse hergestellten Formteile sollen kalt umgeformt sein, wobei deren Dimensionen innerhalb des vom Kunden für das Fertigteil geforderten Toleranzfeldes liegen. Wenn bei der vorgenannten Kaltumformung größere Toleranzen auftreten, so können diese teilweise nachträglich, geringfügigst, während des Formhärteprozesses, auf den noch eingegangen wird, korrigiert werden. Die Toleranzkorrektur im Formhärteprozess wird jedoch vorzugsweise nur für Formabweichungen durchgeführt. Derartige Formabweichungen können somit nach Art eines Warmkalibrierens korrigiert werden. Der Korrekturprozess soll jedoch möglichst nur auf einen Biegevorgang beschränkt werden, wobei Schneidkanten, die von der Werkstoffmenge abhängig sind (in Relation zur Formkante) nachträglich nicht beeinflusst werden sollen und können, d.h., dass, wenn die Geometrie der Schneidkanten in den Teilen nicht korrekt ist, im Formhärtewerkzeug keine Korrektur durchgeführt werden kann. Zusammenfassend kann man somit feststellen, dass der Toleranzbereich bzgl. der Schneidkanten dem Toleranzbereich während des Kaltumformens und des Formhärteprozesses entspricht.The moldings produced by the processes mentioned should be cold formed, the dimensions of which are within the required by the customer for the finished part tolerance field. If larger tolerances occur in the aforesaid cold forming, they may be partially corrected later, minimally, during the molding hardening process, which will be discussed later. The tolerance correction in the form hardening process However, it is preferably performed only for shape deviations. Such form deviations can thus be corrected in the manner of a hot calibration. However, the correction process should as far as possible be limited to one bending operation, wherein cutting edges that are dependent on the amount of material (in relation to the forming edge) should not and can not subsequently be influenced, ie, if the geometry of the cutting edges in the parts is not correct , in the form hardening tool no correction can be made. In summary, it can thus be stated that the tolerance range with respect to the cutting edges corresponds to the tolerance range during the cold forming and the shape hardening process.

Vorzugsweise sollen innerhalb eines Formteils keine markanten Falten vorhanden sein, da dann die Gleichmäßigkeit des Druckbildes und ein gleichmäßiger Formhärteprozess nicht zu gewährleisten sind.Preferably, no distinctive folds should be present within a molded part, because then the uniformity of the printed image and a uniform shape hardening process can not be guaranteed.

Nachdem das Bauteil vollständig geformt wurde wird das verformte und beschnitte Teil auf eine Glühtemperatur von über 780°C insbesondere 800°C bis 950°C erhitzt und einige Sekunden bis zu einigen Minuten auf dieser Temperatur gehalten, zumindest jedoch solange bis eine gewünschte Austenitisierung stattgefunden hat.After the component has been fully formed, the deformed and cut part is heated to an annealing temperature above 780 ° C, especially 800 ° C to 950 ° C, and held at that temperature for a few seconds to a few minutes, at least until a desired austenitization has occurred ,

Nach dem Glühprozess wird das Bauteil dem erfindungsgemäßen Formhärteschritt unterzogen. Für den erfindungsgemäßen Formhärteschritt wird das Bauteil in ein Werkzeug innerhalb einer Presse eingelegt, wobei dieses Formhärtewerkzeug der Soll-Endgeometrie des fertigen Bauteils, das heißt der Größe des kalt hergestellten Bauteils inklusive der Wärmedehnung vorzugsweise entspricht.After the annealing process, the component is subjected to the inventive form hardening step. For the inventive mold hardening step, the component is inserted into a tool within a press, wherein this mold hardening tool preferably corresponds to the desired final geometry of the finished component, that is to say the size of the cold-formed component including the thermal expansion.

Hierzu besitzt das Formhärtewerkzeug eine Geometrie bzw. Kóntur die im Wesentlichen der Geometrie bzw. Kontur des Kalt-Umformwerkzeuges entspricht, jedoch 05, bis 2 % größer ist (bezüglich aller drei Raumachsen). Angestrebt wird beim Formhärten ein vollflächiger Formschluss zwischen dem Formhärtewerkzeug und dem zu härtenden Werkstück bzw. Bauteil unmittelbar nach de schließen des Werkzeuges.For this purpose, the shape-hardening tool has a geometry or contour that substantially corresponds to the geometry or contour of the cold-forming tool, but is 05 to 2% larger (with respect to all three spatial axes). The aim is to form-hardening a full-surface fit between the mold hardening tool and the workpiece or component to be cured immediately after de close the tool.

Das Formteil wird mit einer Temperatur von ca. 740°C bis 910°C, vorzugsweise 780°C bis 840°C in das Formhärtewerkzeug gelegt, wobei die vorhergegangene Kaltumformung wie bereits ausgeführt die Wärmedehnung des Teiles bei diesem EinlegeTemperatur-Bereich berücksichtigt.The molding is placed at a temperature of about 740 ° C to 910 ° C, preferably 780 ° C to 840 ° C in the mold hardening tool, the previous cold forming as already considered takes into account the thermal expansion of the part at this EinlegeTemperatur range.

Durch die erfindungsgemäße Verzinkung des Bauteils kann eine Einlegetemperatur von 780°C bis 840°C auch noch dann erreicht werden, wenn die Glühtemperatur des kalt umgeformten Bauteils zwischen 800°C und 850°C liegt, da die spezielle, erfindungsgemäße Zinkschicht - gegenüber nicht beschichteten Blechen - eine schnelle Auskühlung vermindert. Dies hat zum Vorteil, dass die Teile weniger hoch erhitzt werden müssen und insbesondere eine Erhitzung auf über 900°C vermieden werden kann. Dies hat wiederum eine Wechselwirkung mit der Zinkbeschichtung zur Folge, da die Zinkbeschichtung bei etwas niedrigeren Temperaturen weniger in Mitleidenschaft gezogen wird.Due to the galvanizing of the component according to the invention, an insertion temperature of 780 ° C to 840 ° C can be achieved even if the annealing temperature of the cold-formed component between 800 ° C and 850 ° C, since the special zinc coating according to the invention - compared to uncoated Sheet metal - reduces rapid cooling. This has the advantage that the parts must be heated less high and in particular a heating to over 900 ° C can be avoided. This in turn results in an interaction with the zinc coating since the zinc coating is less affected at somewhat lower temperatures.

Nachfolgend wird das Aufheizen und Formhärten beispielhaft näher erläutert.Hereinafter, the heating and mold hardening will be explained in more detail by way of example.

Für die Durchführung des Formhärteprozesses wird insbesondere ein Teil zunächst von einem Roboter von einem Transportband abgenommen und in eine Markierstation eingelegt, damit jedes Teil nachvollziehbar vor dem Formhärten markiert werden kann. Anschließend legt der Roboter das Teil auf einen Zwischenträger, wobei der Zwischenträger über ein Transportband in einem Ofen läuft und das Teil erwärmt wird.For carrying out the mold hardening process, in particular, a part is first removed by a robot from a conveyor belt and placed in a marking station, so that each part can be traceably marked before it is hardened. Then the robot places the part on an intermediate carrier, wherein the intermediate carrier passes over a conveyor belt in an oven and the part is heated.

Für das Aufheizen wird beispielsweise ein Durchlaufofen mit Konvektionserwärmung verwendet. Jedoch sind auch jegliche andere Wärmeaggregate bzw. Öfen verwendbar, insbesondere auch Öfen, in denen die Formteile elektromagnetisch oder mit Mikrowellen aufgeheizt werden. Das Formteil durchläuft auf dem Träger den Ofen, wobei der Träger vorgesehen ist, damit die Korrosionsschutzbeschichtung beim Erwärmen nicht auf Rollen des Durchlaufofens übertragen oder von diesem abgerieben wird.For heating, for example, a continuous furnace with convection heating is used. However, any other heat aggregates or ovens can be used, in particular ovens, in which the moldings are heated electromagnetically or with microwaves. The molding passes through the furnace on the support, the support being provided so that the corrosion protection coating is not transferred to rolls of the continuous furnace or is rubbed off by it during heating.

Im Ofen werden die Teile auf eine Temperatur erwärmt, die über der Austenitisierungstemperatur der verwendeten Legierung liegt. Da die Zinkschicht, wie bereits ausgeführt, nicht besonders stabil ist, wird die maximale Temperatur der Teile so niedrig wie möglich gehalten, wobei dies, wie bereits ausgeführt, insbesondere dadurch ermöglicht wird, dass das Teil durch die Zinkschicht anschließend langsamer auskühlt.In the oven, the parts are heated to a temperature which is above the austenitizing temperature of the alloy used. As already stated, since the zinc layer is not particularly stable, the maximum temperature of the parts is kept as low as possible, which, as already stated, is made possible in particular by the part being cooled more slowly by the zinc layer.

Nach dem Erwärmen der Teile auf Maximaltemperatur muss, um eine vollständige Härtung und einen ausreichenden Korrosionsschutz zu erhalten, ab einer bestimmten Mindesttemperatur (>700°C) mit einer minimalen Abkühlgeschwindigkeit von >20K/s abgekühlt werden. Diese Abkühlgeschwindigkeit wird beim anschließenden Formhärten erreicht.After heating the parts to their maximum temperature, they must be cooled above a certain minimum temperature (> 700 ° C) with a minimum cooling rate of> 20K / s to ensure complete hardening and adequate corrosion protection. This cooling rate is achieved during the subsequent mold hardening.

Hierfür nimmt ein Roboter das Teil, abhängig auch von der Dicke bei 780°C bis 950°C, insbesondere 860°C bis 900°C aus dem Ofen und legt es in das Formhärtewerkzeug ein. Während des Manipulierens verliert das Formteil ungefähr 10°C bis 80°C insbesondere 40°C, wobei der Roboter zum Einlegen vorzugsweise so ausgeführt ist, dass er mit hoher Geschwindigkeit das Teil maßgenau in das Formhärtewerkzeug einlegt. Das Formteil wird vom Roboter auf einem Teileheber abgelegt und anschließend die Presse rasch heruntergefahren, wobei der Teilheber verdrängt und das Teil fixiert wird. Hierdurch wird sichergestellt, dass das Bauteil sauber positioniert und geführt wird, bis das Werkzeug geschlossen ist. Zu dem Zeitpunkt zu dem die Presse und somit das Formhärtewerkzeug geschlossen sind, hat das Teil noch eine Temperatur von mindestens 780°C. Die Oberfläche des Werkzeuges hat eine Temperatur von weniger als 50°C, wodurch das Teil rasch auf 80°C bis 200°C abgekühlt wird. Je länger das Teil im Werkzeug festgehalten wird, desto besser ist die Maßgenauigkeit.For this purpose, a robot takes the part, depending on the thickness at 780 ° C to 950 ° C, especially 860 ° C to 900 ° C from the oven and places it in the mold hardening tool. During the manipulation, the molded part loses approximately 10 ° C. to 80 ° C., in particular 40 ° C., whereby the insertion robot is preferably designed such that it inserts the part accurately into the mold hardening tool at high speed. The molding is The robot places it on a part lifter and then quickly shuts down the press, displacing the lifter and fixing the part. This will ensure that the component is properly positioned and guided until the tool is closed. By the time the press and thus the mold hardening tool are closed, the part still has a temperature of at least 780 ° C. The surface of the tool has a temperature of less than 50 ° C, whereby the part is rapidly cooled to 80 ° C to 200 ° C. The longer the part is held in the tool, the better the dimensional accuracy.

Das Werkzeug wird hierbei durch Thermoschock belastet, wobei es das erfindungsgemäße Verfahren ermöglicht, insbesondere wenn beim Formhärteschritt keine Umformschritte durchgeführt werden, das Werkzeug bzgl. seines Grundwerkstoffs auf eine hohe Thermoschockbeständigkeit auszulegen. Bei herkömmlichen Verfahren müssen die Werkzeuge zudem noch eine hohe Abrasionsbeständigkeit aufweisen, die jedoch im vorliegenden Fall keine wesentliche Rolle spielt und insofern das Werkzeug verbilligt.In this case, the tool is subjected to thermal shock, wherein the method according to the invention makes it possible to design the tool with respect to its base material for a high thermal shock resistance, in particular if no forming steps are carried out during the mold hardening step. In conventional methods, the tools must also have a high abrasion resistance, but in the present case does not play a significant role and thus reduces the cost of the tool.

Beim Einlegen des Formteils ist darauf zu achten, dass das komplett beschnittene und gelochte Teil korrekt passend in das Formhärtewerkzeug eingelegt wird, wobei kein überschlüssiges Material und kein Materialüberstand vorhanden sein soll. Winkel können durch einfaches Biegen korrigiert werden, es kann jedoch kein überschüssiger Werkstoff eliminiert werden. Deshalb müssen am kaltumgeformten Teil die Schnittkanten in Relation zu den Formkanten maßgenau geschnitten sein. Die Beschneidkanten sollen beim Formhärten fixiert werden, um Versetzungen der Schnittkanten zu vermeiden.When inserting the molded part, make sure that the completely trimmed and perforated part fits correctly into the mold hardening tool, with no excess material and no material overhang. Angles can be corrected by simple bending, but no excess material can be eliminated. Therefore, the cut edges must be accurately cut in relation to the shape edges on cold-formed part. The trimming edges should be fixed during mold hardening to avoid dislocations of the cut edges.

Anschließend nimmt ein Roboter die Teile aus der Presse und legt diese auf einem Gestell ab, wo sie weiter abkühlen. Die Abkühlung kann, wenn dies gewünscht ist, durch zusätzliches Anblasen von Luft beschleunigt werden.Then a robot takes the parts out of the press and places them on a rack, where they continue to cool down. The Cooling may, if desired, be accelerated by additional blowing on of air.

Durch die erfindungsgemäße Formhärtung ohne nennenswerte Umformschritte und bei einem im Wesentlichen vollflächigen Formschluss von Werkzeug und Werkzeugstück ist es gewährleistet, dass alle Bereiche des Werkstücks definiert und von allen Seiten gleichzeitig uniform gekühlt werden. Bei üblichen Umformprozessen erfolgt eine nachvollziehbare definierte Abkühlung erst dann, wenn der Umformprozess soweit gediehen ist, dass das Material an beiden Formhälften anliegt. Im vorliegenden Fall liegt das Material jedoch vorzugsweise sofort allseitig formschlüssig an den Formhälften an.By means of the inventive mold hardening without appreciable forming steps and with a substantially full-surface fit of the tool and the tool piece, it is ensured that all areas of the workpiece are defined and uniformly cooled on all sides. In conventional forming processes, a comprehensible defined cooling takes place only when the forming process has progressed so far that the material rests against both mold halves. In the present case, however, the material is preferably immediately on all sides positively against the mold halves.

Zudem ist von Vorteil, dass auf der Blechoberfläche vorhandene Korrosionsschutzschichten und insbesondere Schichten, die durch das Feuerverzinken aufgebracht wurden, nicht verletzt werden.In addition, it is advantageous that existing on the sheet surface corrosion protection layers and in particular layers that were applied by the hot-dip galvanizing, are not violated.

Ferner ist von Vorteil, dass im Gegensatz zu bisherigen Verarbeitungsprozessen ein teures Endbeschneiden nach dem Härten nicht mehr notwendig ist. Hierdurch ergibt sich ein erheblicher Kostenvorteil. Da das Verformen beziehungsweise Umformen im Wesentlichen im kaltem Zustand vor dem Härten geschieht, wird die Komplexität des Bauteils im Wesentlichen nur durch die Verformungseigenschaften des kaltem ungehärteten Materials bestimmt. Mit dem erfindungsgemäßen Verfahren lassen sich dadurch erheblich komplexere gehärtete Bauteile in höherer Qualität herstellen, als bisher.Furthermore, it is advantageous that, in contrast to previous processing processes, expensive end cutting after hardening is no longer necessary. This results in a significant cost advantage. Since the deformation or deformation occurs substantially in the cold state before curing, the complexity of the component is essentially determined only by the deformation properties of the cold uncured material. With the method according to the invention, significantly more complex hardened components of higher quality can be produced than hitherto.

Ein zusätzlicher Vorteil ist die geringe Beanspruchung des Formhärtewerkzeugs aufgrund der vollständig vorhandenen Endgeometrie im kalten Zustand. Hierdurch kann eine wesentlich höhere Werkzeugstandzeit und Maßhaltigkeit erreicht werden, was wiederum eine Kostenreduktion bedeutet.An additional advantage is the low stress on the mold hardening tool due to the complete cold end geometry. This can be a much higher Tool life and dimensional accuracy can be achieved, which in turn means a cost reduction.

Dadurch, dass die Teile nicht so hoch geglüht werden müssen kann Energie gespart werden.The fact that the parts do not have to be so highly annealed saves energy.

Aufgrund der definierten Abkühlung des Werkstücks in allen Teilen ohne einen die Kühlung negativ beeinflussenden zusätzlichen Umformprozess kann die Anzahl der Bauteile die nicht innerhalb der Vorgaben liegen deutlich gesenkt werden, so dass wiederum die Herstellkosten gesenkt werden können.Due to the defined cooling of the workpiece in all parts without a cooling process negatively influencing additional forming process, the number of components that are not within the specifications can be significantly reduced, so that in turn the manufacturing cost can be reduced.

Bei einer weiteren vorteilhaften Ausführungsform der Erfindung wird das Formhärten so durchgeführt, dass ein Anliegen des Werkstücks an den Formhälften bzw. ein Formschluss zwischen Werkstück und Werkzeug lediglich an den eng tolerierten Bereichen wie den Schnitt- und Formkanten, den Formflächen und gegebenenfalls in den Bereichen des Lochbildes erfolgt.In a further advantageous embodiment of the invention, the form hardening is performed so that a concern of the workpiece to the mold halves or a positive connection between the workpiece and tool only at the narrow toleranced areas such as the cutting and shaping edges, the forming surfaces and optionally in the areas of the Lochbildes done.

Hierbei wird der Formschluss in diesem Bereichen derart herbeigeführt, dass diese Bereiche so sicher gehalten und geklemmt werden, dass weniger eng tolerierte Bereiche eine Warmumformung im Werkzeug Verfahren können, ohne dass die bereits maß- und lagegenau eng tolerierten Bereiche negativ beeinflusst und insbesondere Verzogen werden.In this case, the positive connection in these areas is brought about such that these areas are held and clamped so securely that less tightly tolerated areas can hot working in the tooling process, without the already dimensionally accurate and tolerated narrowly tolerated areas are adversely affected and warped in particular.

Selbstverständlich wird auch bei dieser vorteilhaften Ausführungsform die Wärmedehnung, die das Bauteil beim Einlegen in das Formwerkzeug noch inne hat, in bereits beschriebener Weiseberücksichtigt.Of course, in this advantageous embodiment, too, the thermal expansion which the component still has when it is inserted into the mold is taken into account in the manner already described.

Bei dieser vorteilhaften Ausführungsform ist es jedoch zudem möglich, die nicht eng tolerierten Bereiche, entweder durch Nichtanliegen einer oder beiden Formwerkzeughälften langsamer abzukühlen und dort durch das langsamere Abkühlen andere Härtegrade zu erreichen, oder in diesen Bereichen eine gewünschte Warmumformung zu erzielen, ohne dass die eng tolerierten Bereiche beeinflusst werden. Dies kann beispielsweise durch zusätzliche Stempel in den Formwerkzeughälften erfolgen. Wesentlich ist, wie bereits ausgeführt jedoch auch bei dieser bevorzugten Ausführungsform, dass die eng tolerierten Bereiche beim Formhärten bzgl. einer Umformung unbeeinflusst bleiben.In this advantageous embodiment, however, it is also possible, the not tightly tolerated areas, either by not applying one or both mold halves slower to cool down and reach there by the slower cooling other degrees of hardness, or to achieve a desired hot forming in these areas, without the tightly tolerated areas are affected. This can be done for example by additional stamp in the mold halves. It is essential, as already stated, however, also in this preferred embodiment, that the tightly tolerated areas remain unaffected in terms of shape hardening with respect to forming.

Claims (10)

  1. Method for producing hardened components from steel sheet, comprising the method steps:
    cold forming of formed parts from a steel sheet provided with a corrosion protection; followed by a heat treatment for the purpose of austenitization, characterised in that
    a) a final trimming of the formed part and necessary punching processes or the production of a hole pattern are being carried out prior to, during or subsequent to the cold forming of the formed part, wherein
    b) the cold forming and the trimming as well as the punching processes and the arrangement of the hole pattern on the component are carried out such that the formed part is 0.5 % to 2% smaller than the finished hardened component, wherein
    c) the formed part cold-formed for heat treatment is then heated at least in partial areas under the admission of atmospheric oxygen to a temperature which permits an austenitization of the steel material, and
    d) the heated component is then transferred to a form hardening tool, and a form hardening is carried out in the form hardening tool, wherein the component is cooled by contacting and pressing (holding) of the component by the form hardening tools and is hardened thereby, and
    e) the cathodic corrosion-protective coating consists of a mixture of, substantially, zinc, and the mixture additionally contains one or more oxygen-affine elements in a total amount of 0.1 % by wt to 15 % by wt relative to the total mixture, wherein magnesium and/or silicon and/or titanium and/or calcium and/or aluminium are used as oxygen-affine elements in the mixture.
  2. Method according to claim 1, characterised in that the cathodic corrosion-protective coating is a coating which is applied by means of the hot-dip process, wherein a surface skin of an oxide of the oxygen-affine element(s) is formed on the coating during the heating of the steel sheet to the temperature required for hardening.
  3. Method according to any one of the preceding claims, characterised in that 0.2 % by wt to 5 % by wt of the oxygen-affine elements are used.
  4. Method according to any one of the preceding claims, characterised in that 0.26 % by wt to 2.5 % by wt of the oxygen-affine elements are used.
  5. Method according to one of the preceding claims, characterised in that, substantially, aluminium is used as the oxygen-affine element.
  6. Method according to any one of the preceding claims, characterised in that coating is carried out with the mixture of zinc and the oxygen-affine elements in the course of passing through a liquid metal bath at a temperature of 425°C to 690°C, with subsequent cooling of the coated sheet.
  7. Method according to any one of the preceding claims, characterised in that coating is carried out with the mixture of zinc and the oxygen-affine elements in the course of passing through a liquid metal bath at a temperature of 440°C to 495°C, with subsequent cooling of the coated sheet.
  8. Method according to any one of the preceding claims, characterised in that the holding time above the austenitizing temperature is up to 10 minutes.
  9. Method according to any one of the preceding claims, characterised in that the holding temperature in the heating phase is maximally 780 to 950°C.
  10. Method according to any one of the claims 1 to 10, characterised in that the formed part is pressed and hardened by the forming tool halves substantially simultaneously over the entire surface and with the same force.
EP20040739756 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel Expired - Lifetime EP1651789B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL04739756T PL1651789T3 (en) 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel
EP20090015813 EP2177641B1 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer
PL09015813T PL2177641T3 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0120303A AT412878B (en) 2003-07-29 2003-07-29 Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction
AT12022003A AT412403B (en) 2003-07-29 2003-07-29 Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
PCT/EP2004/006252 WO2005021821A1 (en) 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09015813.0 Division-Into 2009-12-21

Publications (2)

Publication Number Publication Date
EP1651789A1 EP1651789A1 (en) 2006-05-03
EP1651789B1 true EP1651789B1 (en) 2010-08-25

Family

ID=34275147

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04739755.9A Expired - Lifetime EP1658390B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened steel part
EP04736386.6A Expired - Lifetime EP1660693B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened profile part
EP20040739756 Expired - Lifetime EP1651789B1 (en) 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel
EP20090015813 Expired - Lifetime EP2177641B1 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04739755.9A Expired - Lifetime EP1658390B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened steel part
EP04736386.6A Expired - Lifetime EP1660693B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened profile part

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20090015813 Expired - Lifetime EP2177641B1 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer

Country Status (14)

Country Link
US (4) US8021497B2 (en)
EP (4) EP1658390B1 (en)
JP (2) JP5054378B2 (en)
KR (2) KR100825975B1 (en)
CN (3) CN1829816A (en)
AT (1) ATE478971T1 (en)
BR (2) BRPI0412601B1 (en)
CA (2) CA2533633C (en)
DE (1) DE502004011583D1 (en)
ES (4) ES2421182T3 (en)
MX (2) MXPA06000826A (en)
PL (2) PL1651789T3 (en)
PT (2) PT1660693E (en)
WO (3) WO2005021822A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085253A2 (en) 2010-12-24 2012-06-28 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and/or ductility
DE102011056444B3 (en) * 2011-12-14 2013-01-03 Voestalpine Automotive Gmbh Method and device for partial hardening of sheet metal components
DE102011053941A1 (en) 2011-09-26 2013-03-28 Voestalpine Stahl Gmbh Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
DE102011053939A1 (en) 2011-09-26 2013-03-28 Voestalpine Stahl Gmbh Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
DE102013204449A1 (en) * 2013-03-14 2014-09-18 Zf Friedrichshafen Ag Method for producing a corrosion-protected sheet-metal part
DE102014110564A1 (en) * 2014-07-25 2016-01-28 Thyssenkrupp Ag Method for producing a profile and a production line for producing a profile
WO2016192993A1 (en) 2015-05-29 2016-12-08 Voestalpine Stahl Gmbh Method for contactlessly cooling steel sheets and device therefor
DE102015113056A1 (en) 2015-08-07 2017-02-09 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
DE102017110864B3 (en) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet steel components with different sheet thicknesses
DE102021123279A1 (en) 2021-09-08 2023-03-09 Voestalpine Metal Forming Gmbh Process for producing hardened sheet steel components
WO2023180543A1 (en) 2022-03-25 2023-09-28 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet-steel components

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333165A1 (en) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Production of press-quenched components, especially chassis parts, made from a semi-finished product made from sheet steel comprises molding a component blank, cutting, heating, press-quenching, and coating with a corrosion-protection layer
PL1651789T3 (en) * 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
US7685907B2 (en) * 2004-08-13 2010-03-30 Vip Tooling, Inc. Method for manufacturing extrusion die tools
US20100199738A1 (en) * 2004-08-13 2010-08-12 Vip Tooling, Inc., (An Indiana Corporation) Modular extrusion die tools
DE102005041741B4 (en) * 2005-09-02 2010-03-18 Daimler Ag Method for producing a press-hardened component
JP4690848B2 (en) * 2005-10-13 2011-06-01 新日本製鐵株式会社 High-tensile hot-dip Zn-plated steel material excellent in appearance, workability, and weldability, and its manufacturing method
WO2007048883A1 (en) 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
US20100057254A1 (en) * 2006-11-13 2010-03-04 Salamanca Hugo P Methods for using robotics in mining and post-mining processing
DE102005059614A1 (en) * 2005-12-12 2007-06-14 Nano-X Gmbh Anti-corrosion and/or anti-scaling coating for metals (especially steel) is applied by wet methods and heat treated to give a weldable coating
SE531379C2 (en) * 2006-06-08 2009-03-17 Nord Lock Ab Method for hardening and coating steel washers for locking and steel lock washer
MX2009008557A (en) * 2007-02-23 2009-08-21 Corus Staal Bv Method of thermomechanical shaping a final product with very high strength and a product produced thereby.
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
DE102007022174B3 (en) * 2007-05-11 2008-09-18 Voestalpine Stahl Gmbh Method for creating and removing a temporary protective layer for a cathodic coating
CN105821199B (en) * 2007-07-19 2018-09-04 穆尔和本德公司 For the method to annealing in length direction steel band with different thickness
CN101802230B (en) * 2007-07-19 2012-10-17 塔塔钢铁艾默伊登有限责任公司 A strip of steel having a variable thickness in length direction
DE102007038214A1 (en) 2007-08-13 2009-02-19 Volkswagen Ag Method for corrosion protection of body, chassis, engine components or exhaust systems
DE102007038215A1 (en) * 2007-08-13 2009-02-19 Nano-X Gmbh Process for producing an active corrosion protection coating on steel components
EP2025771A1 (en) * 2007-08-15 2009-02-18 Corus Staal BV Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
DE102007043154B4 (en) * 2007-09-11 2017-01-26 Voestalpine Krems Gmbh Method and device for hardening profiles
DE102007048504B4 (en) 2007-10-10 2013-11-07 Voestalpine Stahl Gmbh Anti-corrosion coating for steel sheets and method of conditioning a corrosion protection coating
DE102007050907A1 (en) 2007-10-23 2009-04-30 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
SE531689C2 (en) * 2007-11-26 2009-07-07 Gestamp Hardtech Ab Ways to make a lacquered high-strength product
DE102007061489A1 (en) 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Process for producing hardened hardenable steel components and hardenable steel strip therefor
CN101910374B (en) * 2007-12-28 2015-11-25 格雷特波因特能源公司 For the petroleum coke compositions of catalytic gasification
US8453482B2 (en) * 2008-04-22 2013-06-04 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet and method of hot-stamping plated steel sheet
DE102008037442B3 (en) * 2008-10-13 2010-02-25 Thyssenkrupp Steel Ag Method for determining changes in shape of a workpiece
BRPI0923188A2 (en) * 2008-12-19 2018-06-05 Tata Steel Ijmuiden Bv method for producing a coated part using hot forming techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009007909A1 (en) 2009-02-06 2010-08-12 Thyssenkrupp Steel Europe Ag A method of producing a steel component by thermoforming and by hot working steel component
DE102009016852A1 (en) * 2009-04-08 2010-10-14 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of heat-treated sheet metal parts from a steel sheet material with a corrosion protection coating and such sheet metal part
CN101985199B (en) * 2009-07-29 2012-09-05 比亚迪股份有限公司 Method for preparing shell of electronics
PL2290133T3 (en) 2009-08-25 2012-09-28 Thyssenkrupp Steel Europe Ag Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
CN101935789B (en) * 2009-11-19 2012-03-07 江苏麟龙新材料股份有限公司 Hot-dipped cast aluminum alloy containing Al-Zn-Si-Mg-RE-Ti-Ni and manufacturing method thereof
DE102009056443A1 (en) * 2009-12-02 2011-06-09 Benteler Automobiltechnik Gmbh Crashbox and method for its production
KR101171450B1 (en) 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
DE102010004823B4 (en) * 2010-01-15 2013-05-16 Benteler Automobiltechnik Gmbh Method for producing a metallic molded component for motor vehicle components
CA2789925C (en) 2010-02-19 2016-06-07 Tata Steel Nederland Technology Bv Strip, sheet or blank suitable for hot forming and process for the production thereof
DE102010017354A1 (en) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
DE102010037077B4 (en) 2010-08-19 2014-03-13 Voestalpine Stahl Gmbh Process for conditioning the surface of hardened corrosion-protected steel sheet components
KR20130099042A (en) * 2010-08-31 2013-09-05 타타 스틸 이즈무이덴 베.뷔. Method for hot forming a coated metal part and formed part
JP5611922B2 (en) 2010-09-30 2014-10-22 株式会社神戸製鋼所 Press-formed product and manufacturing method thereof
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
CN103443317A (en) * 2011-03-18 2013-12-11 新日铁住金株式会社 Steel sheet for hot-tamped member and process for producing same
ES2389188B1 (en) * 2011-03-29 2013-09-02 Rovalma Sa CATHODIC PROTECTION THROUGH COATING FOR COOLING CIRCUITS OR OTHER HOLES OR CHANNELS.
DE202011107125U1 (en) 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Thermoformable strip, sheet or blank and thermoformed product
EP2703511B1 (en) * 2011-04-27 2018-05-30 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping members and method for producing same
WO2012167930A1 (en) * 2011-06-07 2012-12-13 Tata Steel Ijmuiden B.V. Hot formable strip, sheet or blank, process for the production thereof, method for hot forming a product and hot formed product
DE102011108162B4 (en) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel
US9677145B2 (en) 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
JP2015504005A (en) * 2011-12-20 2015-02-05 アクティエボラゲット・エスコーエッフ Method for producing steel components by flash butt welding, and components created using this method
DE102012101018B3 (en) 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Process for hot dip coating a flat steel product
JP5965344B2 (en) 2012-03-30 2016-08-03 株式会社神戸製鋼所 Hot-dip galvanized steel sheet for press forming excellent in cold workability, mold hardenability and surface properties, and method for producing the same
DE102012024616A1 (en) * 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Sheet steel and molded part thereof
TR201818914T4 (en) 2013-05-17 2019-01-21 Ak Steel Properties Inc Manufacturing method of zinc coated steel for press hardening application.
CN103320745B (en) * 2013-07-08 2014-01-08 湖北交投四优钢科技有限公司 Aluminized steel and preparation method thereof
CN103342012B (en) * 2013-07-08 2015-12-02 湖北交投四优钢科技有限公司 A kind of alumetized steel expanded metals and preparation method
DE102013108046A1 (en) * 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Method and device for partial hardening of semi-finished products
CN105018923B (en) * 2014-04-29 2018-10-02 宝山钢铁股份有限公司 One kind covering titanium low-carbon steel composite board preparation method
DE102014210008A1 (en) * 2014-05-26 2015-11-26 Muhr Und Bender Kg Method and plant for producing a hardened molded part
DE102014109315C5 (en) 2014-07-03 2022-02-24 Thyssenkrupp Ag Process for manufacturing metal profiles
DE102014109553A1 (en) * 2014-07-08 2016-01-14 Thyssenkrupp Ag Hardening tool and method for producing hardened profile moldings
US9850553B2 (en) 2014-07-22 2017-12-26 Roll Forming Corporation System and method for producing a hardened and tempered structural member
DE102014110415B4 (en) 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Method for heating steel sheets and apparatus for carrying out the method
WO2016071399A1 (en) * 2014-11-04 2016-05-12 Voestalpine Stahl Gmbh Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
CN104635748B (en) * 2014-12-18 2017-11-17 温州泓呈祥科技有限公司 Punching type solar power generation tracking rotary table
CN105296862A (en) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 High-strength antiseptic steel plate for shuttle car shelf and machining process thereof
CN104651728A (en) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 Anticorrosion steel sheet for storing equipment and preparation method of steel sheet
CN107690483A (en) 2015-06-03 2018-02-13 德国沙士基达板材有限公司 The method that the strain hardening part made of galvanized steel, its production method and production are applied to the steel band of part distortion hardening
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
EP3159419B1 (en) 2015-10-21 2018-12-12 Voestalpine Krems Gmbh Method of fabrication of roll formed partly hardened profiles
EP3162558A1 (en) 2015-10-30 2017-05-03 Outokumpu Oyj Component made of metallic composite material and method for the manufacture of the component by hot forming
DE102015016656A1 (en) 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) A method of making a coated hot worked cured body and a body made by the method
DE102016102504A1 (en) * 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminum-based coating for steel sheets or steel strips and method of making same
DE102016102344B4 (en) * 2016-02-10 2020-09-24 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
TWI601849B (en) * 2016-06-08 2017-10-11 China Steel Corp Method for manufacturing thermoformed zinc-based plated steel sheet and hot stamping method thereof
US10837072B2 (en) 2016-08-29 2020-11-17 Magna Powertrain Inc. Splined power transmission components made using heat-assisted calibration process and method of forming such splined power transmission components
DE102017214561B4 (en) 2016-08-29 2019-05-16 Magna Powertrain Inc. A method of forming a spline in a component using ultra high strength steel
US10371646B2 (en) * 2016-09-19 2019-08-06 The Boeing Company Method and system for automated data collection and part validation
DE102016122323A1 (en) * 2016-11-21 2018-05-24 Illinois Tool Works Inc. Weldable threaded plate
HUE051081T2 (en) 2017-02-10 2021-03-01 Outokumpu Oy Steel component manufactured by hot forming, method of manufacturing and use of the component
WO2019169198A1 (en) * 2018-03-01 2019-09-06 Nucor Corporation Zinc alloy coated press-hardenable steels and method of manufacturing the same
US10481052B2 (en) 2018-03-28 2019-11-19 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts
US11084169B2 (en) * 2018-05-23 2021-08-10 General Electric Company System and method for controlling a robotic arm
KR102176342B1 (en) * 2018-09-28 2020-11-09 주식회사 포스코 Method for manufacturing the electrical steel sheet product
EP3726206B1 (en) 2019-03-26 2022-11-02 FEI Company Methods and systems for inclusion analysis
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes
US20230026647A1 (en) * 2019-12-20 2023-01-26 Autotech Engineering S.L. Process and production line for forming objects
WO2021154240A1 (en) * 2020-01-29 2021-08-05 Nucor Corporation Zinc alloy coating layer of press-hardenable steel
TWI741613B (en) * 2020-05-21 2021-10-01 元大興企業有限公司 Weather-resistant steel material and its manufacturing equipment
CN112011752B (en) * 2020-08-20 2022-06-21 马鞍山钢铁股份有限公司 High-corrosion-resistance hot-formed steel part and manufacturing method thereof
CN112846665A (en) * 2021-01-06 2021-05-28 *** Production method of axial metal sealing ring
EP4029964A1 (en) 2021-01-14 2022-07-20 Hilti Aktiengesellschaft Hardening of a zinc coated screw body

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630792A (en) * 1969-04-28 1971-12-28 Cominco Ltd Process for the production of colored coatings
US3791801A (en) * 1971-07-23 1974-02-12 Toyo Kohan Co Ltd Electroplated steel sheet
SE435527B (en) 1973-11-06 1984-10-01 Plannja Ab PROCEDURE FOR PREPARING A PART OF Hardened Steel
JPS52120252A (en) * 1976-04-02 1977-10-08 Honda Motor Co Ltd Method and device for forging thin plate member
JPS55110783A (en) * 1979-02-15 1980-08-26 Sumitomo Metal Ind Ltd Surface treated steel plate with excellent spot weldability
JPS569386A (en) * 1979-07-02 1981-01-30 Nippon Kokan Kk <Nkk> Production of electro-zinc plated steel plate
JPS58189363A (en) * 1982-04-26 1983-11-05 Nisshin Steel Co Ltd Manufacture of steel plate coated with alloyed zinc by galvanization
FR2534161B1 (en) * 1982-10-06 1985-08-30 Maubeuge Fer PROCESS AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A GALVANIZED AND PROFILED METAL STRIP
JPS61119693A (en) * 1984-11-14 1986-06-06 Sumitomo Metal Ind Ltd Laminated plate steel sheet
JPS62142755A (en) * 1985-12-17 1987-06-26 Nippon Steel Corp Alloyed hot dip galvanized steel sheet and its manufacture
JPS6362855A (en) * 1986-09-03 1988-03-19 Toyota Motor Corp Production of differential thickness alloyed hot dip zinc coated steel sheet
EP0269005B1 (en) * 1986-11-21 1993-09-08 NIPPON MINING &amp; METALS COMPANY, LIMITED Colored zinc coating
US4830683A (en) * 1987-03-27 1989-05-16 Mre Corporation Apparatus for forming variable strength materials through rapid deformation and methods for use therein
BE1001029A3 (en) * 1987-10-22 1989-06-13 Bekaert Sa Nv STEEL SUBSTRATE WITH METAL COATINGS TO STRENGTHEN vulcanisable elastomers.
JPH01242714A (en) * 1988-03-25 1989-09-27 Mitsubishi Heavy Ind Ltd Heat treatment of steel part
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet having superior press formability
JPH042758A (en) 1990-04-18 1992-01-07 Nippon Steel Corp Production of hot-dip zinc alloy coated steel sheet excellent in press formability and corrosion resistance after coating
US5972522A (en) * 1991-04-10 1999-10-26 Kawasaki Steel Corporation Corrosion resistant Zn or part-Zn plated steel sheet with MgO coating free of Mg
JPH05214544A (en) * 1991-04-10 1993-08-24 Kawasaki Steel Corp Highly corrosion-resistant galvanized steel sheet and its production
AT402032B (en) * 1991-07-17 1997-01-27 Evg Entwicklung Verwert Ges MACHINE FOR THE PROCESSING OF GRID MATS FROM LENGTHED AND CROSSWIRE WELDED TOGETHER
JP3106635B2 (en) * 1991-11-28 2000-11-06 日本鋼管株式会社 Method for producing galvannealed steel sheet with excellent press formability and spot weldability
JPH05171491A (en) * 1991-12-26 1993-07-09 Sumitomo Metal Ind Ltd Double layer plated steel excellent in corrosion resistance after coating
AT397815B (en) * 1992-03-31 1994-07-25 Voest Alpine Ind Anlagen METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD
JPH06256925A (en) * 1993-03-08 1994-09-13 Nippon Steel Corp Zinc-iron hot dip galvannealed steel excellent in press formability
JP2962973B2 (en) * 1993-08-09 1999-10-12 滲透工業株式会社 Hot dip galvanizing equipment materials
JPH08325689A (en) 1995-05-30 1996-12-10 Nippon Steel Corp Equipment for manufacturing hot dip galvanized hot rolled steel sheet excellent in lubricity and chemical conversion
JP3345219B2 (en) 1995-06-15 2002-11-18 酒井医療株式会社 Standing training bed
SE9602257L (en) 1996-06-07 1997-12-08 Plannja Hardtech Ab Ways to produce steel detail
JP3400289B2 (en) * 1997-03-26 2003-04-28 川崎製鉄株式会社 Manufacturing method of galvannealed steel sheet with excellent plating adhesion
IT1291883B1 (en) * 1997-04-18 1999-01-21 Sviluppo Materiali Spa PROCEDURE FOR THE CONTINUOUS PRODUCTION, THROUGH PHYSICAL DEPOSITION FROM THE STEAM PHASE, OF METALLIC TAPES COATED WITH HIGH
US6178800B1 (en) * 1998-07-14 2001-01-30 Msp Industries Corporation Zone heating methods and apparatuses for metal workpieces for forging
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
JP2000336467A (en) * 1999-03-24 2000-12-05 Kawasaki Steel Corp Galvanized steel sheet and production thereof
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP3675313B2 (en) 1999-07-15 2005-07-27 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP2001109121A (en) 1999-10-06 2001-04-20 Konica Corp Automatic developing device for silver halide photographic sensitive material
KR20010039405A (en) * 1999-10-30 2001-05-15 이계안 Manufacturing method of coating steel using Zn-Fe alloy
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2001264591A (en) 2000-03-22 2001-09-26 Yasuhiro Koike Light emitting composite parts for optical communication
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
EP1288325B1 (en) * 2000-04-24 2014-10-15 JFE Steel Corporation Method for production of galvannealed sheet steel
DE10023312C1 (en) * 2000-05-15 2001-08-23 Thyssenkrupp Stahl Ag Galvannealed sheet and method of making such sheet
JP2001329352A (en) * 2000-05-19 2001-11-27 Sumitomo Metal Ind Ltd Galvannealed steel sheet excellent in slidability
DE10039375A1 (en) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Corrosion-protected steel sheet and process for its manufacture
JP4489273B2 (en) * 2000-10-02 2010-06-23 本田技研工業株式会社 Body panel manufacturing method
DE10049660B4 (en) 2000-10-07 2005-02-24 Daimlerchrysler Ag Method for producing locally reinforced sheet-metal formed parts
JP4174320B2 (en) * 2000-12-19 2008-10-29 ポスコ High strength steel sheet having excellent electrical and magnetic shielding properties and method for producing the same
KR100455083B1 (en) * 2000-12-22 2004-11-08 주식회사 포스코 Zn-Co-W alloy electroplated steel sheet with excellent corrosion resistance and welding property and electrolyte therefor
DE10065495C2 (en) 2000-12-28 2002-11-14 Semikron Elektronik Gmbh The power semiconductor module
DE10120063C2 (en) 2001-04-24 2003-03-27 Benteler Automobiltechnik Gmbh Process for the production of metallic profile components for motor vehicles
DE10120919A1 (en) 2001-04-27 2002-10-31 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
JP3582504B2 (en) * 2001-08-31 2004-10-27 住友金属工業株式会社 Hot-press plated steel sheet
KR100646619B1 (en) * 2001-10-23 2006-11-23 수미도모 메탈 인더스트리즈, 리미티드 Method for press working, plated steel product for use therein and method for producing the steel product
JP3582512B2 (en) * 2001-11-07 2004-10-27 住友金属工業株式会社 Steel plate for hot pressing and method for producing the same
DE10209264B4 (en) * 2002-03-01 2005-06-02 Ab Skf Method for producing a metal component
DE10254695B3 (en) 2002-09-13 2004-04-15 Daimlerchrysler Ag Production of a metallic component, especially a vehicle body component, from a semifinished product made of non-hardened heat-deformable sheet steel comprises cold-forming, trimming, hot-forming and press-hardening processes
DE10246614A1 (en) 2002-10-07 2004-04-15 Benteler Automobiltechnik Gmbh Method of making vehicle component with metallic coating from steel sheet or strip, involves coating metal from non-aqueous organic solution before cold forming, hot forming and hardening
DE10257737B3 (en) * 2002-12-10 2004-02-26 Thyssenkrupp Stahl Ag Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate
PL1651789T3 (en) * 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640838B2 (en) 2010-12-24 2020-05-05 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and/or ductility
WO2012085253A2 (en) 2010-12-24 2012-06-28 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and/or ductility
DE102011053939B4 (en) * 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Method for producing hardened components
DE102011053939A1 (en) 2011-09-26 2013-03-28 Voestalpine Stahl Gmbh Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
DE102011053941B4 (en) * 2011-09-26 2015-11-05 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and / or ductility
DE102011053941A1 (en) 2011-09-26 2013-03-28 Voestalpine Stahl Gmbh Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
WO2013087274A1 (en) 2011-12-14 2013-06-20 Voestalpine Metal Forming Gmbh Method and device for partially hardening sheet metal components
DE102011056444A1 (en) * 2011-12-14 2013-08-08 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
DE102011056444C5 (en) * 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
US10000823B2 (en) 2011-12-14 2018-06-19 Voestalpine Metal Forming Gmbh Method and device for partially hardening sheet metal components
DE102011056444B3 (en) * 2011-12-14 2013-01-03 Voestalpine Automotive Gmbh Method and device for partial hardening of sheet metal components
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
DE102013204449A1 (en) * 2013-03-14 2014-09-18 Zf Friedrichshafen Ag Method for producing a corrosion-protected sheet-metal part
US10190184B2 (en) 2014-07-25 2019-01-29 Thyssenkrupp Steel Europe Ag Method for producing a profile and a manufacturing system for producing a profile
DE102014110564B4 (en) * 2014-07-25 2016-12-22 Thyssenkrupp Ag Method for producing a profile and a production line for producing a profile
DE102014110564A1 (en) * 2014-07-25 2016-01-28 Thyssenkrupp Ag Method for producing a profile and a production line for producing a profile
WO2016192993A1 (en) 2015-05-29 2016-12-08 Voestalpine Stahl Gmbh Method for contactlessly cooling steel sheets and device therefor
DE102015113056A1 (en) 2015-08-07 2017-02-09 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
DE102015113056B4 (en) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
DE102017110864B3 (en) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet steel components with different sheet thicknesses
DE102021123279A1 (en) 2021-09-08 2023-03-09 Voestalpine Metal Forming Gmbh Process for producing hardened sheet steel components
WO2023036882A1 (en) 2021-09-08 2023-03-16 Voestalpine Metal Forming Gmbh Method for producing hardened steel sheet components
WO2023180543A1 (en) 2022-03-25 2023-09-28 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet-steel components
DE102022107131A1 (en) 2022-03-25 2023-09-28 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel sheet components

Also Published As

Publication number Publication date
CA2533633C (en) 2009-08-25
BRPI0412601B1 (en) 2013-07-23
CN1829817A (en) 2006-09-06
US20070271978A1 (en) 2007-11-29
ATE478971T1 (en) 2010-09-15
US7938949B2 (en) 2011-05-10
US8021497B2 (en) 2011-09-20
US20070000117A1 (en) 2007-01-04
EP2177641A1 (en) 2010-04-21
CN104372278A (en) 2015-02-25
CN1829816A (en) 2006-09-06
EP2177641B1 (en) 2013-04-24
ES2421182T3 (en) 2013-08-29
WO2005021821A1 (en) 2005-03-10
BRPI0412599A (en) 2006-09-19
CA2533633A1 (en) 2005-03-10
KR20060033921A (en) 2006-04-20
PL1651789T3 (en) 2011-03-31
US20070256808A1 (en) 2007-11-08
DE502004011583D1 (en) 2010-10-07
PT1651789E (en) 2010-11-05
EP1658390A1 (en) 2006-05-24
JP5054378B2 (en) 2012-10-24
BRPI0412601A (en) 2006-09-19
PL2177641T3 (en) 2013-09-30
WO2005021822A1 (en) 2005-03-10
CA2533327C (en) 2009-08-18
EP1660693A1 (en) 2006-05-31
CN1829817B (en) 2015-01-07
MXPA06000826A (en) 2006-08-23
US8181331B2 (en) 2012-05-22
EP1660693B1 (en) 2014-09-17
JP2007505211A (en) 2007-03-08
JP5113385B2 (en) 2013-01-09
US7832242B2 (en) 2010-11-16
US20110045316A1 (en) 2011-02-24
PT1660693E (en) 2015-01-05
EP1651789A1 (en) 2006-05-03
KR20060036111A (en) 2006-04-27
EP1658390B1 (en) 2014-09-17
ES2525731T3 (en) 2014-12-29
ES2350931T3 (en) 2011-01-28
KR100834555B1 (en) 2008-06-02
MXPA06000825A (en) 2006-08-23
JP2007500285A (en) 2007-01-11
WO2005021820A1 (en) 2005-03-10
CA2533327A1 (en) 2005-03-10
KR100825975B1 (en) 2008-04-28
ES2524324T3 (en) 2014-12-05
BRPI0412599B1 (en) 2016-05-17

Similar Documents

Publication Publication Date Title
EP1651789B1 (en) Method for producing hardened parts from sheet steel
EP1786936B1 (en) Method for press quenching components consisting of sheet steel
EP2655675B1 (en) Method for producing hardened structural elements
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP2227570B1 (en) Method for producing a shaped component comprising at least two joining areas having different ductility
DE102013010946B3 (en) Method and plant for producing a press-hardened sheet steel component
DE102013100682B3 (en) A method of producing cured components and a structural component made by the method
DE102011053939B4 (en) Method for producing hardened components
EP3004401B1 (en) Method for producing a component by hot forming a pre-product made of steel
EP2896466A1 (en) Method and device for producing a metal component
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
EP2580358A1 (en) Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
DE102017110864B3 (en) Method and device for producing hardened sheet steel components with different sheet thicknesses
DE102014112448B4 (en) Production method for Al-Si coated sheet steel parts and Al-Si coated steel sheet strip
DE102011053941A1 (en) Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
DE102010056264B4 (en) Method for producing hardened components
EP3365469B1 (en) Method for producing a steel component for a vehicle
EP2457673A1 (en) Method for producing workpieces by hot forming blanks
DE102019130381A1 (en) Motor vehicle component with increased strength
DE102007030388A1 (en) Method for the production of a hardened sheet metal component comprises deforming a flexible rolled metal strip with different thickness regions in a deforming tool and pressure hardening
DE102017110851B3 (en) Method for producing steel composite materials
EP4038215B1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
EP3414072B1 (en) Method and device for producing hardened steel components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE AUTOMOTIVE HOLDING GMBH

Owner name: VOESTALPINE STAHL GMBH

17Q First examination report despatched

Effective date: 20061115

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STALL, WOLFGANG

Inventor name: LANDL, GERALD

Inventor name: FADERL, JOSEF

Inventor name: FLEISCHANDERL, MARTIN

Inventor name: RAAB, ANNA, ELISABETH

Inventor name: VEHOF, ROBERT

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: BRANDSTAETTER, WERNER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

Owner name: VOESTALPINE AUTOMOTIVE GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011583

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20101015

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 8114

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E009113

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BENTELER AUTOMOBILTECHNIK GMBH

Effective date: 20110525

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004011583

Country of ref document: DE

Effective date: 20110525

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011583

Country of ref document: DE

Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: VOESTALPINE STAHL GMBH, AT

Free format text: FORMER OWNER: VOESTALPINE STAHL GMBH, AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011583

Country of ref document: DE

Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: VOESTALPINE STAHL GMBH, AT

Free format text: FORMER OWNER(S): VOESTALPINE AUTOMOTIVE GMBH, AT

Ref country code: HU

Ref legal event code: HC9C

Owner name: SCIL TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER(S): VOESTALPINE AUTOMOTIVE GMBH, AT

Ref country code: HU

Ref legal event code: HC9C

Owner name: VOESTALPINE METAL FORMING GMBH, AT

Free format text: FORMER OWNER(S): VOESTALPINE AUTOMOTIVE GMBH, AT

27O Opposition rejected

Effective date: 20121128

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20130529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011583

Country of ref document: DE

Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE

Effective date: 20130506

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011583

Country of ref document: DE

Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE

Effective date: 20130125

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011583

Country of ref document: DE

Owner name: VOESTALPINE STAHL GMBH, AT

Free format text: FORMER OWNER: VOESTALPINE AUTOMOTIVE GMBH, VOESTALPINE STAHL GMBH, , AT

Effective date: 20130506

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011583

Country of ref document: DE

Owner name: VOESTALPINE METAL FORMING GMBH, AT

Free format text: FORMER OWNER: VOESTALPINE AUTOMOTIVE GMBH, VOESTALPINE STAHL GMBH, , AT

Effective date: 20130506

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011583

Country of ref document: DE

Owner name: VOESTALPINE METAL FORMING GMBH, AT

Free format text: FORMER OWNER: VOESTALPINE AUTOMOTIVE GMBH, VOESTALPINE METAL FORMING GMBH, , AT

Effective date: 20130506

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011583

Country of ref document: DE

Owner name: VOESTALPINE METAL FORMING GMBH, AT

Free format text: FORMER OWNERS: VOESTALPINE AUTOMOTIVE GMBH, LINZ, AT; VOESTALPINE STAHL GMBH, LINZ, AT

Effective date: 20130506

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011583

Country of ref document: DE

Owner name: VOESTALPINE STAHL GMBH, AT

Free format text: FORMER OWNERS: VOESTALPINE AUTOMOTIVE GMBH, LINZ, AT; VOESTALPINE STAHL GMBH, LINZ, AT

Effective date: 20130506

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: VOESTALPINE METAL FORMING GMBH, AT

Effective date: 20130527

Ref country code: FR

Ref legal event code: CD

Owner name: VOESTALPINE STAHL GMBH, AT

Effective date: 20130527

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20130603

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: VOESTALPINE METAL FORMING GMBH

Effective date: 20130627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502004011583

Country of ref document: DE

Effective date: 20121128

REG Reference to a national code

Ref country code: SK

Ref legal event code: TC4A

Ref document number: E 8114

Country of ref document: SK

Owner name: VOESTALPINE METAL FORMING GMBH, KREMS AN DER D, AT

Effective date: 20130808

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230525

Year of fee payment: 20

Ref country code: PT

Payment date: 20230529

Year of fee payment: 20

Ref country code: NL

Payment date: 20230626

Year of fee payment: 20

Ref country code: FR

Payment date: 20230626

Year of fee payment: 20

Ref country code: DE

Payment date: 20230626

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230526

Year of fee payment: 20

Ref country code: SK

Payment date: 20230518

Year of fee payment: 20

Ref country code: SE

Payment date: 20230627

Year of fee payment: 20

Ref country code: PL

Payment date: 20230523

Year of fee payment: 20

Ref country code: LU

Payment date: 20230627

Year of fee payment: 20

Ref country code: HU

Payment date: 20230525

Year of fee payment: 20

Ref country code: AT

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 20

Ref country code: GB

Payment date: 20230627

Year of fee payment: 20

Ref country code: ES

Payment date: 20230703

Year of fee payment: 20

Ref country code: CH

Payment date: 20230702

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004011583

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20240608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240608