JPH05214544A - Highly corrosion-resistant galvanized steel sheet and its production - Google Patents

Highly corrosion-resistant galvanized steel sheet and its production

Info

Publication number
JPH05214544A
JPH05214544A JP4116733A JP11673392A JPH05214544A JP H05214544 A JPH05214544 A JP H05214544A JP 4116733 A JP4116733 A JP 4116733A JP 11673392 A JP11673392 A JP 11673392A JP H05214544 A JPH05214544 A JP H05214544A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
magnesium
molten salt
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116733A
Other languages
Japanese (ja)
Inventor
Shuji Gomi
修二 五味
Seiji Nakajima
清次 中島
Naomasa Nakakouji
尚匡 中小路
Nobuyuki Morito
延行 森戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4116733A priority Critical patent/JPH05214544A/en
Publication of JPH05214544A publication Critical patent/JPH05214544A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the plating adhesion and corrosion resistance by treating a galvanized steel sheet with a soln. contg. a magnesium alkoxide to form a magnesium oxide coating film. CONSTITUTION:A soln. contg. a magnesium alkoxide is applied on a galvanized steel sheet and heat-treated to form a magnesium oxide coating film of 0.1-10.0g/m<2>. Besides, >=1 kind among water, oxygen, oxide ion and hydroxide ion is incorporated into a molten salt bath consisting essentially of a magnesium salt, and a galvanized steel sheet is dipped in the bath to form a magnesium oxide coating film on the surface. Alternately, the galvanized steel sheet is cathodized in a molten salt bath consisting essentially of a magnesium salt and contg. >=1 kind among water, oxygen, oxide ion and hydroxide ion to form a magnesium oxide coating film on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車車体、家庭用電
気製品、建築物等に用いられる高耐食性かつ高めっき密
着性を有する亜鉛もしくは亜鉛系めっき鋼板(両者を合
わせて、以下単に亜鉛系めっき鋼板という)およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to zinc or zinc-based plated steel sheet having high corrosion resistance and high plating adhesion used for automobile bodies, household electric appliances, buildings, etc. It is called a plated steel sheet) and its manufacturing method.

【0002】[0002]

【従来の技術】亜鉛めっき鋼板は亜鉛の鉄に対する犠牲
防食作用を利用して鋼板に耐食性を付与したものであ
り、さらに電気亜鉛系めっきではニッケル、鉄などを添
加し、溶融亜鉛系めっきではアルミニウムなどを添加し
て防錆能力を向上させているが、いまだ十分な耐食性が
得られていない。
2. Description of the Related Art Galvanized steel sheets are those in which corrosion resistance is imparted to the steel sheets by utilizing the sacrificial anticorrosion effect of zinc on iron. Furthermore, galvanized galvanized sheets include nickel, iron, etc. Although the rust prevention ability has been improved by adding, etc., sufficient corrosion resistance has not yet been obtained.

【0003】近年、マグネシウムが亜鉛の防錆能を向上
させる働きがあるのに注目して、マグネシウムを用いた
亜鉛−マグネシウム合金めっきの開発がさかんに行われ
ている。このうち溶融めっき法としては特開昭56-96036
号公報、特開昭56−123359号公報等が知られているが、
これらの方法では亜鉛の融点 419℃に比べてマグネシウ
ムの融点が 650℃とはるかに高温でかつ共融点が高いの
で少量のマグネシウムしか添加できず耐食性が不十分な
こと、まためっき温度が高くなり鋼板自体の材料特性が
劣化して加工性が悪くなる等の問題がある。電気めっき
法としては特開昭58−144492号公報等が知られている
が、亜鉛とマグネシウムの単極電位が違いすぎることも
ありマグネシウム含有量が1wt%以下のものしか得られ
ておらず耐食性が不十分である。蒸着法としては特開昭
64-17851号公報、特開昭64-17852号公報等が知られてい
るが、高真空度とマグネシウムを蒸発させる高熱源が必
要であるため製造コストが高く、また均一なめっき層の
形成が困難である等の問題があり工業的な利用が難し
い。さらにマグネシウムを利用する方法として、鋼板表
面の下層に亜鉛、上層にマグネシウムをめっきする特開
昭62−109966号公報が知られているが、蒸着法でマグネ
シウムを被覆するために製造コストが高く、また亜鉛と
マグネシウムとの密着性にも問題があった。以上のよう
にマグネシウムを金属として利用するのには種々問題が
ある。
In recent years, the development of zinc-magnesium alloy plating using magnesium has been vigorously pursued, paying attention to the fact that magnesium has a function of improving the rust preventive ability of zinc. Among them, the hot dipping method is disclosed in JP-A-56-96036.
Japanese Patent Publication No. 56-123359, etc. are known,
With these methods, the melting point of magnesium is 650 ° C, which is much higher than the melting point of zinc, and the eutectic point is high. Therefore, only a small amount of magnesium can be added and corrosion resistance is insufficient. There is a problem that the material properties of itself deteriorate and the workability deteriorates. JP-A-58-144492 is known as an electroplating method, but since the unipolar potentials of zinc and magnesium are too different, only magnesium content of 1 wt% or less is obtained and corrosion resistance is obtained. Is insufficient. As a vapor deposition method,
Although 64-17851 and JP-A-64-17852 are known, the manufacturing cost is high because a high vacuum degree and a high heat source for evaporating magnesium are required, and a uniform plating layer can be formed. There are problems such as difficulty, and industrial use is difficult. Further, as a method of utilizing magnesium, there is known JP-A-62-109966 in which zinc is plated on the lower layer of the steel sheet surface, and magnesium is plated on the upper layer, but the manufacturing cost is high because the magnesium is coated by a vapor deposition method, There was also a problem with the adhesion between zinc and magnesium. As described above, there are various problems in using magnesium as a metal.

【0004】これらに対し、マグネシウムを酸化物とし
て利用する方法がある。これは、鋼板またはめっき鋼板
の表面にSiO2やMgO、ZrO2、 Al2O3などの酸化物被膜を
形成すると電気伝導度が低下するので腐食速度が遅くな
り、また耐磨耗性も改善されるので耐食性が向上するた
めである。このような酸化物被膜を形成する方法とし
て、特開昭57−174440号公報のように溶射によるものが
知られているが、密着性も加工性も悪く、ピンホールも
できやすい。また、特開昭64-65253号公報のようにイオ
ンプレーティングによる方法、特開平2-254178号公報の
ように亜鉛めっき被膜上に金属マグネシウムおよびその
酸化物からなる複合被膜を形成する蒸着法も知られてい
るが、材料を蒸発させるために高熱源が必要であり、ま
た高真空設備を使用するので製造コストが高い。特開昭
55−119157号公報のように酸化物粒子を水スラリーとし
て鋼板に塗布した後、加熱乾燥して酸化物被膜を形成す
る方法も知られているが、溶融亜鉛めっきの片面めっき
阻止剤としてのものであり、加工性、密着性に優れた鋼
板の保護被膜とはならない。電磁鋼板用絶縁被膜として
の酸化物被膜を、被膜組成物の塗布後乾燥して形成する
方法も公知であるが、耐食性向上を目的とした保護被膜
ではなく、加工性も悪い。以上述べたように、マグネシ
ウムを利用した亜鉛の犠牲防食性向上は十分でなく、耐
食性に優れた亜鉛系めっき鋼板は得られていない。
On the other hand, there is a method of utilizing magnesium as an oxide. This is because when an oxide film such as SiO 2 , MgO, ZrO 2 or Al 2 O 3 is formed on the surface of a steel plate or plated steel plate, the electrical conductivity decreases and the corrosion rate slows down and wear resistance also improves. This is because the corrosion resistance is improved. As a method of forming such an oxide film, a method of thermal spraying is known as in JP-A-57-174440, but the adhesion and workability are poor and pinholes are easily formed. Further, a method by ion plating as disclosed in JP-A-64-65253, and a vapor deposition method for forming a composite coating composed of metallic magnesium and its oxide on a galvanized coating as disclosed in JP-A-2-254178 can also be used. It is known, however, that a high heat source is required to evaporate the material, and high vacuum equipment is used, so the manufacturing cost is high. JPA
A method of applying oxide particles as a water slurry to a steel sheet and then drying by heating to form an oxide film as in JP-A-55-119157 is also known, but as a one-sided plating inhibitor for hot dip galvanizing. Therefore, it does not serve as a protective film for a steel sheet having excellent workability and adhesion. A method of forming an oxide coating as an insulating coating for magnetic steel sheets by coating and then drying the coating composition is also known, but it is not a protective coating intended to improve corrosion resistance and has poor workability. As described above, the improvement in sacrificial corrosion resistance of zinc using magnesium is not sufficient, and a zinc-based plated steel sheet excellent in corrosion resistance has not been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題点
を解決し、めっき密着性に優れ、高耐食性を有する亜鉛
系めっき鋼板およびその製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a zinc-based plated steel sheet having excellent plating adhesion and high corrosion resistance, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、マグネシ
ウムの耐食性向上効果を金属マグネシウムの状態で利用
するのは工業的に困難であることから、マグネシウム化
合物での利用を種々検討した結果、亜鉛系めっき上に酸
化マグネシウム被膜を 0.1〜10.0g/m2 形成させるこ
とで最も優れた耐食性及びめっき密着性を得られること
を新規に見出し本発明に到達した。すなわち、本発明
は、亜鉛もしくは亜鉛系めっき鋼板の表面に酸化マグネ
シウム被膜を 0.1〜10.0g/m2 形成したことを特徴と
する高耐食性亜鉛系めっき鋼板である。
Means for Solving the Problems Since it is industrially difficult to utilize the corrosion resistance improving effect of magnesium in the state of metallic magnesium, the present inventors have conducted various studies on the use of magnesium compounds, The present invention has been newly found that the best corrosion resistance and plating adhesion can be obtained by forming a magnesium oxide film on a zinc-based plating in the range of 0.1 to 10.0 g / m 2 . That is, the present invention is a highly corrosion resistant zinc-based plated steel sheet, characterized in that a magnesium oxide coating is formed on the surface of the zinc- or zinc-based plated steel sheet in a range of 0.1 to 10.0 g / m 2 .

【0007】そして、本発明の方法は、亜鉛もしくは亜
鉛系めっき鋼板の表面にマグネシウムアルコキシド化合
物を含有する溶液を塗布し、ついで加熱処理を施して酸
化マグネシウム被膜を 0.1〜10.0g/m2 形成すること
を特徴とする高耐食性亜鉛系めっき鋼板の製造方法であ
り、また、マグネシウム塩を主体とする溶融塩浴に、水
分および酸素、酸素イオン、水酸化物イオンの内の1種
または2種以上を含有させ、この溶融塩浴に亜鉛もしく
は亜鉛系めっき鋼板を浸漬して、このめっき鋼板の表面
に酸化マグネシウム被膜を 0.1〜10.0g/m2 形成する
ことを特徴とする高耐食性亜鉛系めっき鋼板の製造方法
であり、さらに、マグネシウム塩と亜鉛塩を主体とする
溶融塩浴に、水分および酸素、酸素イオン、水酸化物イ
オンの内の1種または2種以上を含有させ、この溶融塩
浴中で亜鉛もしくは亜鉛系めっき鋼板を陰極電解処理し
て、このめっき鋼板の表面に酸化マグネシウム被膜を
0.1〜10.0g/m2 形成することを特徴とする高耐食性
亜鉛系めっき鋼板の製造方法である。
According to the method of the present invention, a solution containing a magnesium alkoxide compound is applied to the surface of a zinc or zinc-based plated steel sheet, and then heat treatment is applied to form a magnesium oxide film of 0.1 to 10.0 g / m 2 . A method for producing a zinc-plated steel sheet with high corrosion resistance, characterized in that a molten salt bath mainly containing magnesium salt is used, and one or more of water and oxygen, oxygen ions, and hydroxide ions are used. And a zinc or zinc-based plated steel sheet is dipped in the molten salt bath to form a magnesium oxide coating on the surface of the plated steel sheet in the range of 0.1 to 10.0 g / m 2 with high corrosion resistance. In a molten salt bath mainly composed of magnesium salt and zinc salt, one or two of water and oxygen, oxygen ion, and hydroxide ion are further added. Is contained more, the zinc or zinc-plated steel sheet in the molten salt bath by the cathode electrolytic treatment, a magnesium oxide film on the surface of the plated steel sheet
It is a method for producing a zinc-plated steel sheet with high corrosion resistance, which is characterized by forming 0.1 to 10.0 g / m 2 .

【0008】[0008]

【作用】本発明によれば、金属マグネシウムではなく酸
化物である酸化マグネシウムだけを用いた酸化マグネシ
ウムと不可避的不純物だけからなる被膜を亜鉛もしくは
亜鉛系めっき鋼板の表面に形成させることにより耐食性
及びめっき密着性に優れためっき鋼板が得られる。
According to the present invention, corrosion resistance and plating can be achieved by forming a coating on the surface of zinc or a zinc-based plated steel sheet, which is composed of magnesium oxide and unavoidable impurities, which uses only magnesium oxide, which is an oxide, rather than metallic magnesium. A plated steel sheet with excellent adhesion can be obtained.

【0009】酸化マグネシウムが亜鉛の防錆能力を向上
させる理由は明確ではないが、亜鉛が犠牲防食作用によ
って優先的に溶出していくのをこの酸化マグネシウム被
膜が防ぎ、また酸化マグネシウムは大変安定した物質で
あるのでこの被膜自身が耐食性をもつからだと考えられ
る。
Although the reason why magnesium oxide improves the anticorrosive ability of zinc is not clear, this magnesium oxide coating prevents zinc from being preferentially eluted by the sacrificial anticorrosive action, and magnesium oxide is very stable. It is considered that this coating itself has corrosion resistance because it is a substance.

【0010】下層の亜鉛もしくは亜鉛系めっきの態様
は、電気めっきでも溶融めっきでも蒸着めっきでもよ
く、亜鉛系めっきとしては具体的にZn−Ni、Zn−Fe、Zn
−Cr、Zn−Co、Zn−Mn等の合金めっき、Zn−SiO2、Zn−
Co−Cr−Al2O3 等の分散めっき、Zn−Fe/Zn−Fe、Fe−
P/Zn−Fe等の二層めっきなど何でも可能である。下層
の亜鉛もしくは亜鉛系めっき量は10〜 100g/m2 の範
囲が好ましい。めっき量が10g/m2 未満では耐食性が
不十分であり、 100g/m2 以上になると耐食性能に対
して生産費が高くまた溶接性、加工性等が悪くなるから
である。
The form of the lower layer of zinc or zinc-based plating may be electroplating, hot dipping, or vapor deposition plating. Specific examples of zinc-based plating include Zn-Ni, Zn-Fe and Zn.
-Cr, Zn-Co, alloy plating such Zn-Mn, Zn-SiO 2 , Zn-
Dispersion plating of Co-Cr-Al 2 O 3 etc., Zn-Fe / Zn-Fe, Fe-
Anything such as two-layer plating of P / Zn-Fe is possible. The amount of zinc or zinc-based plating in the lower layer is preferably in the range of 10 to 100 g / m 2 . This is because if the plating amount is less than 10 g / m 2 , the corrosion resistance is insufficient, and if it is 100 g / m 2 or more, the production cost is high for the corrosion resistance and the weldability and workability deteriorate.

【0011】上層の酸化マグネシウム被膜の量は 0.1〜
10.0g/m2 の範囲とする。この被膜量が 0.1g/m2
未満であると耐食性の向上が不十分で通常の亜鉛系めっ
き程度の耐食性しか得られず、10.0g/m2 超であると
耐食性向上効果が飽和してしまい、また被膜が脆くなっ
て加工などによって被膜にひびが入りやすくなり耐食性
が劣化するからである。
The amount of the upper magnesium oxide film is 0.1 to
The range is 10.0 g / m 2 . This coating amount is 0.1 g / m 2
If it is less than 1.0, improvement in corrosion resistance is insufficient and only corrosion resistance equivalent to normal zinc-based plating can be obtained, and if it exceeds 10.0 g / m 2 , the effect of improving corrosion resistance is saturated and the coating becomes brittle, resulting in processing etc. This is because the coating is likely to crack and the corrosion resistance deteriorates.

【0012】金属表面に酸化物層を設ける一般的方法と
しては、溶射法, イオンプレーティング法、蒸着法など
が知られているが、以下の理由により好ましくない。溶
射法によって得られる酸化物層は密着性、加工性が悪
く、またピンホールもでき易い。イオンプレーティング
法、蒸着法では、高真空設備を使用しなければならず、
しかもイオンの加速装置や蒸発させるための熱源などの
大がかりな付帯設備も必要となり、製造コストがかさむ
問題がある。また、酸化物粒子を水スラリーとして鋼板
に塗布した後加熱、乾燥して酸化物被膜を形成する方法
も知られているが、このようにして得られた酸化物層は
金属との密着性が悪く、加工性も劣る。
As a general method for forming an oxide layer on a metal surface, a thermal spraying method, an ion plating method, a vapor deposition method and the like are known, but they are not preferable due to the following reasons. The oxide layer obtained by the thermal spraying method has poor adhesion and processability, and pinholes are easily formed. In the ion plating method and vapor deposition method, high vacuum equipment must be used,
Moreover, large-scale incidental equipment such as an ion accelerator and a heat source for vaporization is required, which causes a problem of increasing manufacturing cost. Further, a method of applying oxide particles as a water slurry to a steel sheet, followed by heating and drying to form an oxide film is also known, but the oxide layer thus obtained has good adhesion to a metal. Poor and poor in workability.

【0013】これに対し本願記載の方法によれば、亜鉛
めっき層上に密着性、加工性にすぐれ、かつ欠陥の著し
く少ない酸化マグネシウム被膜を形成することができ、
極めて有利である。酸化マグネシウムを亜鉛系めっき上
に形成する方法は、マグネシウムアルコキシド化合物を
用いたゾル−ゲル法コーティング、あるいは水分および
酸素、酸素イオン、水酸化物イオンの内の1種または2
種以上を含有させた溶融塩浴中の浸漬法または電析法を
用いるのが好ましい。なお、マグネシウムアルコキシド
化合物としては、マグネシウムエトキシド、マグネシウ
ムメトキシド、マグネシウムプロポキシドあるいはマグ
ネシウムブトキシドなどが好適である。
On the other hand, according to the method described in the present application, it is possible to form a magnesium oxide coating film having excellent adhesiveness and workability on the galvanized layer and having extremely few defects,
It is extremely advantageous. The method for forming magnesium oxide on the zinc-based plating is sol-gel coating using a magnesium alkoxide compound, or one or two of water and oxygen, oxygen ion, or hydroxide ion.
It is preferable to use an immersion method in a molten salt bath containing at least one species or an electrodeposition method. As the magnesium alkoxide compound, magnesium ethoxide, magnesium methoxide, magnesium propoxide, magnesium butoxide and the like are preferable.

【0014】また、鋼板を水分および酸素、酸素イオ
ン、水酸化物イオンの内の1種または2種以上を含有さ
せた亜鉛塩とマグネシウム塩を主として含有する溶融塩
浴中で陰極電解処理して、亜鉛系めっき層とその上に酸
化マグネシウム被膜を形成してもよい。浸漬または陰極
電解処理に用いるマグネシウム塩を主として含有する溶
融塩については特に限定しないが、鋼板の特性を変化さ
せたりめっき層を溶解させたりすることのないよう、出
来る限り低温であるのが望ましい。例えば、MgCl2 − N
aCl − KClの3成分浴を用いれば、 500℃以下で浸漬お
よび陰極電解処理が可能である。
Further, the steel sheet is subjected to cathodic electrolysis in a molten salt bath mainly containing zinc salt and magnesium salt containing one or more of water and oxygen, oxygen ions and hydroxide ions. Alternatively, a zinc-based plating layer and a magnesium oxide coating may be formed thereon. The molten salt mainly containing a magnesium salt used for the dipping or the cathodic electrolysis treatment is not particularly limited, but is preferably as low as possible so as not to change the characteristics of the steel sheet or dissolve the plating layer. For example, MgCl 2 − N
If a three-component aCl-KCl bath is used, dipping and cathodic electrolysis can be performed at 500 ° C or below.

【0015】溶融塩浴中への水分および酸素、酸素イオ
ン、水酸化物イオンの添加および添加量の調整は、以下
の方法によって行う。水分の添加は、溶融塩浴に接触す
る雰囲気に水蒸気を混合することによって溶融塩浴中に
H2Oを溶解する方法、溶融塩浴に水蒸気をバブリングす
る方法、結晶水付きの試薬を溶融塩浴に加える方法、吸
湿性の試薬を溶融前に吸湿させておく方法などがある。
酸素の添加は、溶融塩浴に接触する雰囲気にO2を混合す
ることによって溶融塩浴中にO2を溶解する方法、溶融塩
浴にO2をバブリングする方法等がある。酸素イオンの添
加は溶融塩浴に酸化物を溶解させることによって、水酸
化物イオンの添加は溶融塩浴に水酸化物を溶解させるこ
とによって行う。
Addition of water and oxygen, oxygen ions, and hydroxide ions to the molten salt bath and adjustment of the addition amount are carried out by the following method. Water is added to the molten salt bath by mixing steam with the atmosphere in contact with the molten salt bath.
There are a method of dissolving H 2 O, a method of bubbling water vapor into a molten salt bath, a method of adding a reagent with water of crystallization to the molten salt bath, a method of absorbing a hygroscopic reagent before melting.
The addition of oxygen includes a method of dissolving O 2 in the molten salt bath by mixing O 2 in an atmosphere in contact with the molten salt bath, a method of bubbling O 2 in the molten salt bath, and the like. Oxygen ions are added by dissolving the oxide in the molten salt bath, and hydroxide ions are added by dissolving the hydroxide in the molten salt bath.

【0016】酸化マグネシウム被覆量の制御は用いる溶
融塩の種類、浴温、亜鉛系めっき鋼板の種類によって異
なるが、電流密度、通電時間、浸漬時間、溶融塩浴中の
水分および酸素、酸素イオン、水酸化物イオン量を変化
させることによって行う。マグネシウム塩を主として含
有する溶融塩浴を用いて鋼板や亜鉛系めっき鋼板を陰極
電解処理すると浴中のマグネシウムイオンが表面に電着
されるのであるが、本発明においては酸化マグネシウム
被膜が形成される。これは電解により鋼板表面に付着し
たマグネシウムが溶融塩浴中の水分および酸素、酸素イ
オン、水酸化物イオンの内の1種または2種以上と反応
して酸化マグネシウムが生成するからだと考えられる。
また本発明によってマグネシウム塩を主として含有する
溶融塩浴中に鋼板および亜鉛系めっき鋼板を浸漬しても
鋼板表面に酸化マグネシウム被膜が形成される。この理
由はよく分からないが、鋼板表面の亜鉛または鉄等の金
属と溶融塩中のマグネシウムイオンとの間で置換反応の
ような現象が起こるのか、活性な金属表面上で溶融塩浴
中のマグネシウムイオンと溶融塩浴中の水分および酸
素、酸素イオン、水酸化物イオンの内の1種または2種
以上と反応して酸化マグネシウムが生成するからだと考
えられる。
The control of the magnesium oxide coating amount depends on the type of molten salt used, the bath temperature, and the type of zinc-plated steel sheet. Current density, energizing time, immersion time, water and oxygen in the molten salt bath, oxygen ions, It is performed by changing the amount of hydroxide ions. When a steel sheet or a zinc-based plated steel sheet is subjected to cathodic electrolysis using a molten salt bath containing mainly magnesium salt, magnesium ions in the bath are electrodeposited on the surface, but in the present invention, a magnesium oxide film is formed. .. It is considered that this is because magnesium attached to the surface of the steel sheet by electrolysis reacts with one or more of moisture and oxygen, oxygen ions, and hydroxide ions in the molten salt bath to produce magnesium oxide.
Further, according to the present invention, a magnesium oxide film is formed on the surface of a steel sheet even when the steel sheet and the zinc-based plated steel sheet are immersed in a molten salt bath containing mainly magnesium salt. The reason for this is not clear, but whether a phenomenon such as a substitution reaction occurs between the metal such as zinc or iron on the steel plate surface and the magnesium ion in the molten salt, or the magnesium in the molten salt bath on the active metal surface. It is considered that magnesium oxide is generated by reacting the ions with one or more of oxygen and water, oxygen ions, and hydroxide ions in the molten salt bath.

【0017】鋼板に対して、水分および酸素、酸素イオ
ン、水酸化物イオンの内の1種または2種以上を含有さ
せた亜鉛塩とマグネシウム塩を主として含有する溶融塩
浴を用いて陰極電解処理すると、亜鉛系めっき層とその
上に酸化マグネシウム被膜を同時に形成することも可能
である。
The steel sheet is subjected to cathodic electrolysis using a molten salt bath mainly containing zinc salt and magnesium salt containing one or more of water and oxygen, oxygen ions and hydroxide ions. Then, it is possible to simultaneously form the zinc-based plating layer and the magnesium oxide coating on it.

【0018】[0018]

【実施例】本発明の実施例を以下説明する。 (実施例1)亜鉛めっき鋼板に、マグネシウムエトキシ
ド 28.6gを純水で希釈して 200ccにした後さらにエチレ
ングリコールモノエチルエーテルで1リットルに希釈し
た浴を用いて、液を引き上げ法にて塗布し、乾燥後、熱
処理を 100〜 400℃で行い酸化マグネシウム被膜を形成
した。
EXAMPLES Examples of the present invention will be described below. (Example 1) 28.6 g of magnesium ethoxide was diluted to 200 cc with pure water on a galvanized steel sheet, and then the solution was pulled up using a bath diluted to 1 liter with ethylene glycol monoethyl ether. Then, after drying, heat treatment was performed at 100 to 400 ° C. to form a magnesium oxide film.

【0019】(実施例2)Zn−Ni合金めっき鋼板に、実
施例1と同様の方法で酸化マグネシウム被膜を形成し
た。 (実施例3)Zn−Fe合金めっき鋼板に、実施例1と同様
の方法で酸化マグネシウム被膜を形成した。
Example 2 A magnesium oxide coating was formed on a Zn-Ni alloy plated steel sheet by the same method as in Example 1. (Example 3) A magnesium oxide film was formed on a Zn-Fe alloy plated steel sheet by the same method as in Example 1.

【0020】(実施例4)Zn−Cr合金めっき鋼板に、実
施例1と同様の方法で酸化マグネシウム被膜を形成し
た。 (実施例5)Zn−Mn合金めっき鋼板に、実施例1と同様
の方法で酸化マグネシウム被膜を形成した。 (実施例6)Zn−Co−Cr−Al2O3 分散めっき鋼板に、実
施例1と同様の方法で酸化マグネシウム被膜を形成し
た。
(Example 4) A magnesium oxide film was formed on a Zn-Cr alloy plated steel sheet by the same method as in Example 1. (Example 5) A magnesium oxide film was formed on a Zn-Mn alloy-plated steel sheet by the same method as in Example 1. (Example 6) Zn-Co-Cr- Al 2 O 3 dispersion plating steel sheet, to form a magnesium oxide film in the same manner as in Example 1.

【0021】(実施例7)亜鉛めっき鋼板を脱脂、酸洗
したのち非酸化性雰囲気中で乾燥し、MgCl2 60mol%、
NaCl 20mol%、KCl 20mol %の 500℃に加熱溶解された
溶融塩浴を用いて、酸素を 20mol%以上含有する雰囲気
中において 180秒間浸漬処理した。 (実施例8)Zn−Ni合金めっき鋼板を脱脂、酸洗したの
ち非酸化性雰囲気中で乾燥し、MgCl2 60mol%、NaCl 2
0mol%、KCl 20mol %の 500℃に加熱溶解された溶融塩
浴を用いて、 H2Oの分圧が16mmHgである雰囲気中におい
て90秒間浸漬処理した。
Example 7 A galvanized steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere, and MgCl 2 60 mol%,
Immersion treatment was performed for 180 seconds in an atmosphere containing 20 mol% or more of oxygen using a molten salt bath in which 20 mol% of NaCl and 20 mol% of KCl were heated and dissolved at 500 ° C. (Example 8) degreased Zn-Ni alloy plated steel sheet, and dried in a non-oxidizing atmosphere After pickling, MgCl 2 60mol%, NaCl 2
Using a molten salt bath in which 0 mol% and 20 mol% KCl were dissolved by heating at 500 ° C., immersion treatment was performed for 90 seconds in an atmosphere in which the partial pressure of H 2 O was 16 mmHg.

【0022】(実施例9)Zn−Fe合金めっき鋼板を脱
脂、酸洗したのち非酸化性雰囲気中で乾燥し、溶融前に
大気中で充分に水分を吸湿させたMgCl2 60mol%、NaCl
20mol%、KCl 20mol %の 550℃に加熱溶解された溶融
塩浴を用いて60秒間浸漬処理した。 (実施例10)Zn−Cr合金めっき鋼板を脱脂、酸洗したの
ち非酸化性雰囲気中で乾燥し、MgCl2 60mol%、NaCl 1
8mol%、NaOH 2mol %、KCl 20mol %の 550℃に加熱溶
解された溶融塩浴を用いて30秒間浸漬処理した。
Example 9 MgCl 2 60 mol% and NaCl, in which Zn-Fe alloy plated steel sheet was degreased, pickled, dried in a non-oxidizing atmosphere, and sufficiently absorbed moisture in the air before melting.
Immersion treatment was performed for 60 seconds using a molten salt bath in which 20 mol% and 20 mol% KCl were heated and dissolved at 550 ° C. (Example 10) degreased Zn-Cr alloy plated steel sheet, and dried in a non-oxidizing atmosphere After pickling, MgCl 2 60mol%, NaCl 1
Immersion treatment was carried out for 30 seconds using a molten salt bath in which 8 mol%, 2 mol% of NaOH and 20 mol% of KCl were dissolved by heating at 550 ° C.

【0023】(実施例11)Zn−Mn合金めっき鋼板を脱
脂、酸洗したのち非酸化性雰囲気中で乾燥し、MgCl2 6
0mol%、NaCl 19mol%、Li2O 1mol %、KCl 20mol %の
550℃に加熱溶解された溶融塩浴を用いて90秒間浸漬処
理した。 (実施例12)Zn−Co−Cr−Al2O3 分散めっき鋼板を脱
脂、酸洗したのち非酸化性雰囲気中で乾燥し、MgCl2 6
0mol%、NaCl 20mol%、KCl 20mol %の 500℃に加熱溶
解された溶融塩を用いて、酸素を 20mol%以上含有する
雰囲気中において、電流密度 20A/dm2で陰極電解処理し
た。
(Example 11) A Zn-Mn alloy-plated steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere to obtain MgCl 2 6
0mol%, NaCl 19mol%, Li 2 O 1mol%, KCl 20mol%
Immersion treatment was performed for 90 seconds using a molten salt bath heated and dissolved at 550 ° C. (Example 12) Zn-Co-Cr- Al 2 O 3 degreased dispersion plating steel sheet, and dried in a non-oxidizing atmosphere After pickling, MgCl 2 6
Using molten salt of 0 mol%, 20 mol% of NaCl, and 20 mol% of KCl heated and dissolved at 500 ° C., cathodic electrolysis treatment was performed in an atmosphere containing 20 mol% or more of oxygen at a current density of 20 A / dm 2 .

【0024】(実施例13)Zn−SiO2分散めっき鋼板を脱
脂、酸洗したのち非酸化性雰囲気中で乾燥し、MgCl2 6
0mol%、NaCl 20mol%、KCl 20mol %の 500℃に加熱溶
解された溶融塩を用いて、 H2Oの分圧が16mmHgである雰
囲気中において、電流密度 20A/dm2で陰極電解処理し
た。 (実施例14)Zn−Fe/Fe−Zn二層めっき鋼板を脱脂、酸
洗したのち非酸化性雰囲気中で乾燥し、溶融前に大気中
で充分に水分を吸湿させたMgCl2 60mol%、NaCl 20mol
%、KCl 20mol %の 550℃に加熱溶解された溶融塩を用
いて、電流密度 20A/dm2で陰極電解処理した。
(Example 13) A Zn-SiO 2 dispersion-plated steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere, and MgCl 2 6
Using a molten salt of 0 mol%, 20 mol% of NaCl, and 20 mol% of KCl that were heated and dissolved at 500 ° C., cathodic electrolysis was performed at an electric current density of 20 A / dm 2 in an atmosphere with a partial pressure of H 2 O of 16 mmHg. (Example 14) Zn-Fe / Fe-Zn double-layer plated steel sheet was degreased, pickled, and then dried in a non-oxidizing atmosphere, and MgCl 2 60 mol% which had sufficiently absorbed moisture in the air before melting, NaCl 20mol
%, KCl 20 mol% molten salt heated to 550 ° C. and subjected to cathodic electrolysis at a current density of 20 A / dm 2 .

【0025】(実施例15)Zn−Ni合金めっき鋼板を脱
脂、酸洗したのち非酸化性雰囲気中で乾燥し、MgCl2 6
0mol%、NaCl 18mol%、NaOH 2mol %、KCl 20mol %の
550℃に加熱溶解された溶融塩を用いて、電流密度 20A
/dm2で陰極電解処理した。 (実施例16)亜鉛めっき鋼板を脱脂、酸洗したのち非酸
化性雰囲気中で乾燥し、MgCl2 60mol%、NaCl 19mol
%、Li2O 1mol %、KCl 20mol %の 550℃に加熱溶解さ
れた溶融塩を用いて、電流密度 20A/dm2で陰極電解処理
した。
Example 15 A Zn—Ni alloy-plated steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere, and MgCl 2 6
0mol%, NaCl 18mol%, NaOH 2mol%, KCl 20mol%
Using molten salt heated and dissolved at 550 ℃, current density 20A
Cathodic electrolysis treatment was carried out with / dm 2 . (Example 16) degreased galvanized steel sheet, and dried in a non-oxidizing atmosphere After pickling, MgCl 2 60mol%, NaCl 19mol
%, Li 2 O 1 mol%, KCl 20 mol%, which was heated and dissolved at 550 ° C., was subjected to cathodic electrolysis at a current density of 20 A / dm 2 .

【0026】(実施例17)冷延鋼板を脱脂、酸洗したの
ち非酸化性雰囲気中で乾燥し、ZnCl2 50mol%、MgCl2
10mol%、NaCl 20mol%、KCl 20mol %の 450℃に加熱
溶解された溶融塩を用いて、酸素を 20mol%以上含有す
る雰囲気中において、電流密度 20A/dm2で陰極電解処理
した。 (実施例18)冷延鋼板を脱脂、酸洗したのち非酸化性雰
囲気中で乾燥し、ZnCl2 50mol%、MgCl2 10mol%、Na
Cl 20mol%、KCl 20mol %の 450℃に加熱溶解された溶
融塩を用いて、 H2Oの分圧が16mmHgである雰囲気中にお
いて、電流密度 20A/dm2で陰極電解処理した。
Example 17 A cold-rolled steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere to obtain ZnCl 2 50 mol% and MgCl 2
A molten salt of 10 mol%, 20 mol% of NaCl and 20 mol% of KCl heated and dissolved at 450 ° C. was used to perform cathodic electrolysis at a current density of 20 A / dm 2 in an atmosphere containing 20 mol% or more of oxygen. (Example 18) A cold rolled steel sheet was degreased, pickled, and then dried in a non-oxidizing atmosphere to obtain ZnCl 2 50 mol%, MgCl 2 10 mol%, and Na.
Using molten salt of Cl 20 mol% and KCl 20 mol% heated and dissolved at 450 ° C., a cathodic electrolysis treatment was performed at a current density of 20 A / dm 2 in an atmosphere with a partial pressure of H 2 O of 16 mmHg.

【0027】(実施例19)冷延鋼板を脱脂、酸洗したの
ち非酸化性雰囲気中で乾燥し、溶融前に大気中で充分に
水分を吸湿させたZnCl2 50mol%、MgCl2 10mol%、Na
Cl 20mol%、KCl20mol %の 450℃に加熱溶解された溶
融塩を用いて、電流密度 20A/dm2で陰極電解処理した。
Example 19 A cold rolled steel sheet was degreased, pickled, dried in a non-oxidizing atmosphere, and sufficiently absorbed moisture in the atmosphere before melting ZnCl 2 50 mol%, MgCl 2 10 mol%, Na
Cathodic electrolysis treatment was performed at a current density of 20 A / dm 2 using a molten salt of Cl 20 mol% and KCl 20 mol% heated and dissolved at 450 ° C.

【0028】(実施例20)冷延鋼板を脱脂、酸洗したの
ち非酸化性雰囲気中で乾燥し、ZnCl2 50mol%、MgCl2
10mol%、NaCl 18mol%、NaOH 2mol %、KCl 20mol %
の 450℃に加熱溶解された溶融塩を用いて、電流密度 2
0A/dm2で陰極電解処理した。 (実施例21)冷延鋼板を脱脂、酸洗したのち非酸化性雰
囲気中で乾燥し、ZnCl2 50mol%、MgCl2 10mol%、Na
Cl 19mol%、Li2O 1mol %、KCl 20mol %の 450℃に加
熱溶解された溶融塩を用いて、電流密度 20A/dm2で陰極
電解処理した。
Example 20 A cold-rolled steel sheet was degreased, pickled, and dried in a non-oxidizing atmosphere to obtain 50 mol% ZnCl 2 and MgCl 2
10mol%, NaCl 18mol%, NaOH 2mol%, KCl 20mol%
Current density of 2 by using molten salt heated to 450 ℃
Cathodic electrolysis was performed at 0 A / dm 2 . (Example 21) A cold-rolled steel sheet was degreased, pickled, and then dried in a non-oxidizing atmosphere to obtain ZnCl 2 50 mol%, MgCl 2 10 mol%, and Na.
Cathodic electrolysis was performed at a current density of 20 A / dm 2 using a molten salt of Cl 19 mol%, Li 2 O 1 mol%, and KCl 20 mol% that were heated and dissolved at 450 ° C.

【0029】(比較例1)Zn−Ni合金めっき鋼板を実施
例14と同様の溶融塩浴を用いて陰極電解処理した。この
比較例は、酸化マグネシウム被膜量が本発明の範囲未満
の例である。 (比較例2)Zn−Ni合金めっき鋼板を実施例14と同様の
溶融塩浴を用いて陰極電解処理した。この比較例は、酸
化マグネシウム被膜量が本発明の範囲を超えた例であ
る。
(Comparative Example 1) A Zn-Ni alloy plated steel sheet was subjected to cathodic electrolytic treatment using the same molten salt bath as in Example 14. This comparative example is an example in which the amount of magnesium oxide coating is less than the range of the present invention. (Comparative Example 2) A Zn-Ni alloy plated steel sheet was subjected to cathodic electrolysis treatment using the same molten salt bath as in Example 14. This comparative example is an example in which the amount of magnesium oxide coating exceeds the range of the present invention.

【0030】(比較例3〜比較例8)これらの比較例
は、酸化マグネシウムを被覆しないめっき鋼板の例であ
り、各試料の条件は表1に示した。 (比較例9)冷延鋼板に蒸着法で Zn-Mg合金めっきをし
た。
Comparative Examples 3 to 8 These comparative examples are examples of plated steel sheets not coated with magnesium oxide, and the conditions of each sample are shown in Table 1. (Comparative Example 9) A cold-rolled steel sheet was plated with Zn-Mg alloy by vapor deposition.

【0031】(比較例10)亜鉛めっき鋼板上に溶射法に
より酸化マグネシウム被膜を形成した。 (比較例11)亜鉛めっき鋼板上にイオンプレーティング
法により酸化マグネシウム被膜を形成した。
Comparative Example 10 A magnesium oxide coating was formed on a galvanized steel sheet by a thermal spraying method. (Comparative Example 11) A magnesium oxide film was formed on a galvanized steel sheet by an ion plating method.

【0032】以上の試料に対して、めっき密着性及び耐
食性の評価を行い、その結果を表1ならびに表2に示し
た。なお、めっき密着性及び耐食性は次の基準で評価し
た。 (めっき密着性評価)180 °曲げテープ剥離法によりめ
っき剥離を評価した。 (評価) ◎:めっき剥離なし ○:めっき剥離小 ×:めっき剥離大 (耐食性評価)塩水噴霧試験により赤錆発生時間を測定
した。この時間は長ければ長いほどよいのはいうまでも
ないが、従来例よりみて 400時間以上の耐食性が好まし
い。
The above samples were evaluated for plating adhesion and corrosion resistance, and the results are shown in Tables 1 and 2. The plating adhesion and corrosion resistance were evaluated according to the following criteria. (Evaluation of Plating Adhesion) The peeling of plating was evaluated by the 180 ° bending tape peeling method. (Evaluation) ◎: No plating peeling ○: Small plating peeling ×: Large plating peeling (Evaluation of corrosion resistance) The red rust generation time was measured by a salt spray test. Needless to say, the longer this time is, the better, but it is preferable that the corrosion resistance is 400 hours or more as compared with the conventional example.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】各鋼板の諸性能を示した表1および表2か
ら明らかなように、本発明の実施例である表1の各例、
すなわちめっき鋼板の表面に 0.1〜10.0g/m2の酸化マ
グネシウム被膜を形成している亜鉛もしくは亜鉛系めっ
き鋼板は、表2に示す比較例に比べ格段に優れた耐食性
を示し、かつ優れためっき密着性を示す。なお、表1の
各例においても一層好ましい例としてめっき密着性が◎
と判定され、かつ耐食性評価が赤錆発生時間で 400時間
以上であるものについて検討すると、酸化マグネシウム
の被膜量は 0.5〜 6.0g/m2の範囲に限定することがで
きる。
As is clear from Tables 1 and 2 showing various properties of each steel sheet, each example of Table 1 which is an embodiment of the present invention,
That is, the zinc- or zinc-based plated steel sheet having a magnesium oxide film of 0.1 to 10.0 g / m 2 formed on the surface of the plated steel sheet shows significantly better corrosion resistance than the comparative examples shown in Table 2 and has excellent plating. Shows adhesion. In each of the examples shown in Table 1, the plating adhesion is more preferable as a more preferable example.
When the corrosion resistance is evaluated and the red rust generation time is 400 hours or more, the coating amount of magnesium oxide can be limited to the range of 0.5 to 6.0 g / m 2 .

【0036】[0036]

【発明の効果】以上説明したように、本発明によって亜
鉛もしくは亜鉛系めっき鋼板の表面に酸化マグネシウム
被膜を形成させることにより、耐食性と密着性が格段に
優れためっき鋼板が得られるという著しい効果が得られ
る。
As described above, by forming a magnesium oxide coating on the surface of a zinc or zinc-based plated steel sheet according to the present invention, a remarkable effect that a plated steel sheet having markedly excellent corrosion resistance and adhesion can be obtained. can get.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中小路 尚匡 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 森戸 延行 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inoue Nakataji, No. 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Morito Nobuyuki Kawasaki-cho, Chuo-ku, Chiba-shi No. 1 Kawasaki Steel Co., Ltd. Technical Research Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛もしくは亜鉛系めっき鋼板の表面に
酸化マグネシウム被膜を 0.1〜10.0g/m2 形成したこ
とを特徴とする高耐食性亜鉛系めっき鋼板。
1. A high corrosion resistant zinc-based plated steel sheet, characterized in that a magnesium oxide film is formed on the surface of the zinc- or zinc-based plated steel sheet in a range of 0.1 to 10.0 g / m 2 .
【請求項2】 亜鉛もしくは亜鉛系めっき鋼板の表面に
マグネシウムアルコキシド化合物を含有する溶液を塗布
し、ついで加熱処理を施して酸化マグネシウム被膜を
0.1〜10.0g/m2 形成することを特徴とする高耐食性
亜鉛系めっき鋼板の製造方法。
2. A magnesium oxide coating is formed by applying a solution containing a magnesium alkoxide compound onto the surface of a zinc or zinc-based plated steel sheet and then applying heat treatment.
A method for producing a highly corrosion-resistant galvanized steel sheet, which comprises forming 0.1 to 10.0 g / m 2 .
【請求項3】 マグネシウム塩を主体とする溶融塩浴
に、水分および酸素、酸素イオン、水酸化物イオンの内
の1種または2種以上を含有させ、この溶融塩浴に亜鉛
もしくは亜鉛系めっき鋼板を浸漬して、このめっき鋼板
の表面に酸化マグネシウム被膜を 0.1〜10.0g/m2
成することを特徴とする高耐食性亜鉛系めっき鋼板の製
造方法。
3. A molten salt bath mainly composed of magnesium salt contains one or more of moisture and oxygen, oxygen ions and hydroxide ions, and this molten salt bath is coated with zinc or zinc-based plating. A method for producing a highly corrosion-resistant galvanized steel sheet, which comprises immersing a steel sheet to form a magnesium oxide coating on the surface of the galvanized steel sheet in a range of 0.1 to 10.0 g / m 2 .
【請求項4】 マグネシウム塩を主体とする溶融塩浴
に、水分および酸素、酸素イオン、水酸化物イオンの内
の1種または2種以上を含有させ、この溶融塩浴中で亜
鉛もしくは亜鉛系めっき鋼板を陰極電解処理して、この
めっき鋼板の表面に酸化マグネシウム被膜を 0.1〜10.0
g/m2 形成することを特徴とする高耐食性亜鉛系めっ
き鋼板の製造方法。
4. A molten salt bath containing magnesium salt as a main component and one or more selected from water and oxygen, oxygen ions, and hydroxide ions, and zinc or a zinc-based compound in the molten salt bath. The galvanized steel sheet is subjected to cathodic electrolysis, and a magnesium oxide film is applied on the surface of the galvanized steel sheet for 0.1 to 10.0.
A method for producing a zinc-plated steel sheet with high corrosion resistance, which comprises forming g / m 2 .
【請求項5】 マグネシウム塩と亜鉛塩を主体とする溶
融塩浴に、水分および酸素、酸素イオン、水酸化物イオ
ンの内の1種または2種以上を含有させ、この溶融塩浴
中で亜鉛もしくは亜鉛系めっき鋼板を陰極電解処理し
て、このめっき鋼板の表面に酸化マグネシウム被膜を
0.1〜10.0g/m2 形成することを特徴とする高耐食性
亜鉛系めっき鋼板の製造方法。
5. A molten salt bath mainly containing a magnesium salt and a zinc salt is allowed to contain water and one or more of oxygen, oxygen ions and hydroxide ions, and zinc is contained in the molten salt bath. Alternatively, a zinc-based plated steel sheet is subjected to cathodic electrolytic treatment, and a magnesium oxide film is formed on the surface of this plated steel sheet.
A method for producing a highly corrosion-resistant galvanized steel sheet, which comprises forming 0.1 to 10.0 g / m 2 .
JP4116733A 1991-04-10 1992-04-10 Highly corrosion-resistant galvanized steel sheet and its production Pending JPH05214544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116733A JPH05214544A (en) 1991-04-10 1992-04-10 Highly corrosion-resistant galvanized steel sheet and its production

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3-77682 1991-04-10
JP7768291 1991-04-10
JP32429291 1991-12-09
JP3-324292 1991-12-09
JP4116733A JPH05214544A (en) 1991-04-10 1992-04-10 Highly corrosion-resistant galvanized steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH05214544A true JPH05214544A (en) 1993-08-24

Family

ID=27302490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116733A Pending JPH05214544A (en) 1991-04-10 1992-04-10 Highly corrosion-resistant galvanized steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH05214544A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500285A (en) * 2003-07-29 2007-01-11 フェストアルピネ シュタール ゲーエムベーハー Method for manufacturing hardened steel parts
WO2017002683A1 (en) * 2015-07-01 2017-01-05 日本パーカライジング株式会社 Surface treatment agent, surface treatment method, and surface treated metal material
KR20170118845A (en) * 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
JPWO2016159298A1 (en) * 2015-03-31 2018-02-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet
JP2018177625A (en) * 2017-04-10 2018-11-15 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Method of forming magnesium-containing layer of surface of metal support, catalyst support containing its coating layer, and catalyst device
JP2019151720A (en) * 2018-03-02 2019-09-12 東ソー株式会社 Composition, manufacturing method, and application thereof
WO2020049832A1 (en) * 2018-09-07 2020-03-12 Jfeスチール株式会社 Steel sheet for hot pressing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500285A (en) * 2003-07-29 2007-01-11 フェストアルピネ シュタール ゲーエムベーハー Method for manufacturing hardened steel parts
KR20170118845A (en) * 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
JPWO2016159298A1 (en) * 2015-03-31 2018-02-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2017002683A1 (en) * 2015-07-01 2017-01-05 日本パーカライジング株式会社 Surface treatment agent, surface treatment method, and surface treated metal material
JP2017014574A (en) * 2015-07-01 2017-01-19 日本パーカライジング株式会社 Surface treatment agent, surface treatment method, and surface-treated metallic material
CN108026646A (en) * 2015-07-01 2018-05-11 日本帕卡濑精株式会社 Surface conditioning agent, surface treatment method and surface treated metal material
JP2018177625A (en) * 2017-04-10 2018-11-15 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Method of forming magnesium-containing layer of surface of metal support, catalyst support containing its coating layer, and catalyst device
JP2019151720A (en) * 2018-03-02 2019-09-12 東ソー株式会社 Composition, manufacturing method, and application thereof
WO2020049832A1 (en) * 2018-09-07 2020-03-12 Jfeスチール株式会社 Steel sheet for hot pressing
JPWO2020049832A1 (en) * 2018-09-07 2020-09-10 Jfeスチール株式会社 Steel plate for hot pressing

Similar Documents

Publication Publication Date Title
JP2023528640A (en) Hot-dip zinc-aluminum-magnesium-plated steel sheet and its manufacturing method
KR20020074189A (en) Surface treated tin-plated steel sheet and chemical treatment solution
JP2001316791A (en) Hot dip zinc-aluminum plated steel sheet excellent in corrosion resistance and appearance
WO2019054483A1 (en) Hot-dip plated checkered plate and manufacturing method thereof
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP5983277B2 (en) Electrogalvanized steel sheet for high-definition paint base with excellent corrosion resistance and enamel hair resistance after painting and method for producing the same
JPH05214544A (en) Highly corrosion-resistant galvanized steel sheet and its production
JP2003055777A (en) Chromate-free treated hot dip zinc - aluminum alloy plated steel sheet having excellent weldability and corrosion resistance
EP0508479B1 (en) Corrosion resistant Zn or part-Zn plated steel sheet and method of producing the same
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPH0488176A (en) Galvanized steel sheet excellent in weldability, workability in pressing and chemical convertibility
JPH06158257A (en) Hot dip zn-al coated steel sheet having excellent appearance, age blackening resistance and corrosion resistance
JP2001020050A (en) HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE IN NONCOATED PART AND COATED EDGE PART AND ITS PRODUCTION
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
KR970000190B1 (en) Method for producing zinc coated steel sheet
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPH06158258A (en) Hot dip zn-al coated steel sheet having excellent appearance, age blackening resistance and corrosion resistance
JP2952835B2 (en) Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment
KR960009199B1 (en) Vacuum deposite mn/galvannealed steel sheets and the method therefor
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
KR930007927B1 (en) Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same
JPH0633295A (en) Manufacture of zn-fe alloy coated steel sheet having mgo layer on surface
JP3367454B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent organic resin film adhesion and edge creep resistance
JP2002205355A (en) Hot-dip zinc-plated steel sheet excellent in resistance to corrosion and blackening, and manufacturing method thereof