EP1108120B1 - Einrichtung zum steuern eines stellgeräts - Google Patents

Einrichtung zum steuern eines stellgeräts Download PDF

Info

Publication number
EP1108120B1
EP1108120B1 EP99945923A EP99945923A EP1108120B1 EP 1108120 B1 EP1108120 B1 EP 1108120B1 EP 99945923 A EP99945923 A EP 99945923A EP 99945923 A EP99945923 A EP 99945923A EP 1108120 B1 EP1108120 B1 EP 1108120B1
Authority
EP
European Patent Office
Prior art keywords
coil
output stage
power output
operating state
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99945923A
Other languages
English (en)
French (fr)
Other versions
EP1108120A1 (de
Inventor
Joachim Melbert
Stefan Butzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1108120A1 publication Critical patent/EP1108120A1/de
Application granted granted Critical
Publication of EP1108120B1 publication Critical patent/EP1108120B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a device for controlling a Actuator, in particular for controlling an internal combustion engine is provided.
  • a known actuator (DE 195 26 683 A1) has an actuator, which is designed as a gas exchange valve, and one Actuator.
  • the actuator has two electromagnets, between which each against the force of a restoring means an armature plate by switching off the coil current to the holding electromagnet and switching on the coil current on catching electromagnet can be moved.
  • the coil current each of the catching electromagnets is set to a predetermined one Catch value regulated and that during a predetermined Time that is dimensioned so that the anchor plate within the length of time on a contact surface on the catching electromagnet meets. Then the coil current of the trapping Electromagnet regulated to a holding value.
  • the force that acts on the anchor plate depends significantly the position of the armature plate and the excitation of the coil of the catching electromagnet.
  • the excitement of the The coil in turn depends on the current through the coil.
  • the The current increase through the coil increases steeply due to the voltage drop across the coil.
  • Motor vehicles usually have a voltage supply on the a predetermined operating voltage the electrical Provides consumers of the motor vehicle. Both usual operating voltages from 12 to a maximum of 42 volts it so an undesirable drop in the anchor plate into a Come to rest position. The time can also be changed if necessary "Gas exchange valve open” or “Gas exchange valve closed” cannot be set sufficiently precisely.
  • DE 44 13 240 A1 also describes a device for control of an electromagnetic consumer known that comprises a half-bridge and an energy-storing element, that is placed between the half-bridge and a voltage source is.
  • the object of the invention is a device for control of an actuator that is simple and one ensures safe and reliable operation of the actuator.
  • An actuator 1 ( Figure 1) comprises an actuator 11 and an actuator 12, which is preferably designed as a gas exchange valve and has a shaft 121 and a plate 122.
  • the Actuator 11 has a housing 111 in which a first and a second electromagnet are arranged.
  • the first electromagnet has a first core 112 in which in an annular A first coil 113 is embedded.
  • the second Electromagnet has a second core 114, in which in a another annular groove, a second coil 115 is embedded is.
  • An anchor is provided, the anchor plate 116 in the Housing 111 is movable between a first contact surface 115a of the first electromagnet and a second contact surface 115b of the second electromagnet is arranged.
  • the anchor further includes an anchor shaft 117 which is formed by recesses of the first and second core 112, 114 and which can be mechanically coupled to the shaft 121 of the actuator 12 is.
  • a first reset means 118a and a second Reset means 118b clamp the anchor plate 116 in a predetermined one Rest position N before.
  • Actuator 1 is with a Cylinder head 21 rigidly connected.
  • the cylinder head 21 is a Intake channel 22 and a cylinder 23 associated with a piston 24.
  • the piston 24 is connected to a connecting rod 25 with a Crankshaft 26 coupled.
  • a control device 3 is provided, the signals from sensors detected and / or signals from a not shown higher-level control device for engine operating functions detected and control signals generated, depending on the first and second coil 113, 115 of the actuator 1 controlled become.
  • the sensors assigned to the control device 3 are designed as a first ammeter 34, the one Actual value I_AV1 of the current through the first coil is detected, or its second ammeter 35, which has an actual value I_AV2 of Current detected by the second coil 115.
  • Sensors can also have other sensors.
  • the control device further comprises a control unit 31 and a first power output stage 32 and a second power output stage 33.
  • the control unit 31 generates depending on control commands the higher-level control device and depending on the actual values I_AV1, I_AV2 of the current through the first and the second coil 113, 115 control signals for the control lines L1, L2, L3, via which the control unit 31 is electrically conductive is connected to the first output stage 32, and control signals for the control lines L1 ', L2', L3 ', via which the control unit 31 electrically conductive with the second output stage 33 connected is.
  • the first and second power output stages 32, 33 differ only in that the first power stage 32 for driving the first coil 113 and the second power output stage for driving the second coil 115 are provided. The circuit arrangement and mode of operation their components are equivalent.
  • the first power stage 32 ( Figure 2a) has a first transistor T1, the gate terminal of which Control line L1 is electrically connected, one second transistor T2, whose gate terminal is electrically conductive is connected to the control line L2, and a third Transistor T3, whose gate connection is electrically conductive is connected to a control line L3.
  • the first power stage 32 also includes diodes D1, D3, D4, a free-wheeling diode D2 is an electrical capacitor Energy storage and a resistor R, which acts as a measuring resistor is provided for the ammeter 34.
  • the first Power output stage can be in five different operating states BZ1 can be controlled, which are each characterized by the respective switching state of the transistors T1, T2, T3.
  • the five operating states BZ1 are in Figure 2e with the associated switching states of Transistors T1, T2, T2 applied.
  • the five operating states BZ1 are an idle state RZ, normal energizing NB, free running FL, fast current withdrawal SSR and fast energizing SB.
  • the Operating states BZ1 of the power output stage 32 are as follows explained in more detail with reference to FIGS. 2a to 2d.
  • the transistors T1, T2, T3 are all non-conductive.
  • the actual value I_AV1 of the current through the first coil is zero and the voltage drop U L at the first coil is also zero.
  • the transistors T1 and T2 are operated in a conductive (ON) and transistor T3 are operated in a non-conductive (OFF) manner.
  • Current then flows from a voltage source with the potential of the supply voltage U B through the transistor T1, the diode D1, the connection AL1 of the first coil 113, through the first coil 113 to the connection AL2 of the first coil 113, through the transistor T2 and the resistor R to a ground connection that is at a reference potential.
  • the current increases in accordance with the ratio of the voltage drop UL across the first coil 113 and the inductance of the first coil 113.
  • the transistor T2 In the operating state of the freewheeling device FL, the transistor T2 is operated in a conductive state (ON), the transistors T1, T3, however, are not operated in a conductive state (OFF). If a current flows from the connection AL1 through the first coil 113 to the connection AL2 at the time of the transition into the operating state of the freewheel FL, the freewheeling diode D2 becomes conductive and the current through the first coil 113 increases depending on the losses in the coil 113 , in the transistor T2, the resistor R and the freewheeling diode D2. The voltage drop U L at the first coil 113 is then given by the forward voltages of the freewheeling diode and the transistor T2 and the voltage drop across the resistor R (a total of, for example, 2 volts).
  • the transistors T1, T2 and T3 are operated in a non-conductive manner. If a current flows through the first coil 113 during the transition into the operating state BZ1 of the rapid current reduction SSR, the freewheeling diode D2 and the diode D3 become conductive. The current then flows from the reference potential via the freewheeling diode D2 to the connection AL1 of the first coil 113 and then through the first coil 113 to the connection AL2. From there, the current flows through the diode D3 to the capacitor C and charges it.
  • the current through the first coil decreases in the operating state of the rapid current reduction SSR much faster than in the operating state BZ1 of the freewheeling FL, since the negative supply voltage U B at the first coil 113 is reduced by the voltage drop U C across the capacitor C and the forward voltages the freewheeling diode D2 and the diode D3 drop.
  • the first coil 113 and the capacitor C form a first resonant circuit.
  • the first transistor T1 is operated in a non-conductive manner (OFF) and the transistors T2 and T3 are operated in a conductive manner (ON).
  • Current flows from the voltage source via the capacitor C, which is thereby discharged, the transistor T3 to the connection AL1 of the first coil through the first coil to the connection AL2 of the first coil 113 through the transistor T2 and the resistor R to the reference potential ,
  • the voltage drop U L at the first coil 113 is equal to the sum of the supply voltage U B and the voltage drop U C at the capacitor C reduced by the forward voltages of the transistors T2 and T3 and the voltage drop across the resistor R.
  • the voltage drop U L at the first coil 113 is then, for example, approximately 80 V at a supply voltage U V of approximately 42 V.
  • the increase in the current through the first coil 113 is then approximately twice as high as if only the supply voltage U B were present the first coil 113 drops.
  • a diode D4 is connected in parallel with the capacitor C, this ensures that the voltage potential at the drain terminal of the transistor T3 does not fall below the supply voltage U B by more than the forward voltage of the diode D4.
  • FIG. 3 shows the first and second power output stages 32, 33 in one embodiment, in the two power output stages 32, 33 a common capacitor C is assigned.
  • This Embodiment has the advantage that only one capacitor is provided, whereby the power output stages as a whole are inexpensive, and the capacitor C in an operating state Z1 of the first power output stage 32 of the fast one Current withdrawal SSR can be loaded, and then in an operating state BZ2 of the fast energization SB of the second Power output stage 34 can be discharged again. This vice versa is also possible.
  • the reference numerals of the first Power output stage 32 corresponding elements of the second Power output stage 33 are each provided with a "'".
  • FIG. 4 shows a flow diagram of a first program, that is processed in the control unit 31.
  • the program is started in a step S1. It becomes the current one Target position of the anchor plate 116 read in by the higher-level control device is specified.
  • Step S2 is checked whether the target position of the Anchor plate 116 since the last call of the first program the closed position S has changed to the open position O. If this is the case, the first power output stage becomes step S3 32 in the operating state BZ1 rapid current withdrawal SSR controlled. The first power stage 32 goes into the operating state BZ1 of the idle state RZ as soon as the current through the first coil 113 becomes zero.
  • the first program is then ended in step S5.
  • step S7 checked whether since the last call of the first Program a transition from the target position of the anchor plate 116 from the open position O to the closed position S. is. If this is the case, the first step is S8 Controller R1 activated.
  • the controlled variable of the first controller R1 is the current through the first coil 113.
  • a setpoint I_SP1 of the current through the first coil 113 becomes a catch value I_F assigned.
  • a control difference RD is calculated from the Difference between the setpoint I_SP1 and the actual value I_AV1 of the Current through the first coil 113.
  • the first regulator is R1 preferably designed as a two-point controller.
  • the first regulator R1 controls the first output stage 32 depending on the control difference RD either in the operating state BZ1 of the normal current supply NB or the freewheel FL. Controller R1 remains activated until a predetermined condition is met, the one Signs of anchor plate 116 striking the first Contact surface 115a is.
  • the specified condition can for example, be that the anchor plate a predetermined position has reached or exceeded. This predetermined position is chosen so that it is very close to the Close position S is.
  • step S9 in which the first Controller is reactivated, the setpoint I_SP1 of the Current through the first coil 113 an increased hold value I_HE is.
  • the first controller R1 controls the first in step S9 Power output stage 32 depending on the control difference RD either in the operating state BZ1 of the fast current supply SB or in the operating state BZ1 of the freewheel FL or if the capacitor C is discharged into the operating state BZ1 normal current NB.
  • the first controls Controller in step S9 the first power output stage 32 first in the operating state of the rapid current supply SB, until the actual value I_AV1 of the current through the first coil is larger than the increased hold value I_HE, and / or in the operating state of normal energization as soon as the capacitor C discharges until the actual value I_AV1 of the current through the first coil is larger than the increased holding value I_HE.
  • the processing is continued in a step S10.
  • step S10 the first controller R1 is activated
  • the setpoint I_SP1 of the current through the first coil 113 is Hold value I_H and the controller controls the first power stage 32 depending on the control difference RD either in the State of the operating state BZ1 of the normal current NB or the freewheel FL until a transition from the target position of the anchor plate from the closed position S to the open position O.
  • the processing of the program in the Step S5 ends.
  • step S11 in which it is checked whether the target position of the anchor plate 116 is the closed position S or whether the capacitor C is charged to a predetermined value. Checking whether the capacitor C is charged to the predetermined value can be carried out particularly simply by evaluating a counter which is incremented each time step S13 is processed and which is reset in step S8. It is advantageous if a sensor is provided which detects the voltage drop U C across the capacitor C and the charge on the capacitor C is determined from the detected voltage drop U C. If the condition of step S11 is met, the first controller R1 remains active as in step S10 if the target position of the anchor plate 116 is the closed position S, and the first program is ended in step S11.
  • step S13 in which the first power output stage 32 is controlled into an operating state BZ1 of the normal current supply NB, either for a predetermined period of time or until the actual value I_AV1 of the current through the first coil 113 has reached a predetermined value.
  • the power output stage 32 is then controlled in a step S14 in the operating state BZ1 of the rapid current reduction SSR.
  • the capacitor C can thus simply be charged while the first coil 113 is not energized to catch or hold the armature plate 116.
  • the processing of the program is then ended in step S5.
  • the first program is called cyclically, either at predetermined intervals or after a predetermined Change in the crankshaft angle. While the target position anchor plate 116 is the open position O thus the first power stage 32 once in step S3 in the operating state BZ1 of the rapid current withdrawal SSR and several times in step S14 the operating state BZ1 controlled rapid current withdrawal and thus the capacitor C within a predetermined period of time to the predetermined Value loaded.
  • the first coil 113 in the step S8 is controlled in the operating state of the freewheel as soon as the energy required to reach the closed position S. the anchor plate has been fed.
  • the coil first 113 is then in freewheeling FL when the specified condition is met which is a sign of the impact of the anchor plate 116 onto the first contact surface 115a.
  • FIG. 5 A flow chart of a second program for controlling the second coil 115 is shown in Figure 5, which in the Control unit 31 is processed.
  • the second program has the same structure as the first program ( Figure 4). in the The following are just the differences from the first program described.
  • step S2 is checked whether the target position the anchor plate 116 since the last call of the first program the open position O changed to the closed position S. Has. If this is the case, then in a step S3 ' second power stage 34 in the operating state BZ2 controlled SSR rapid current withdrawal. The second power stage 34 goes into the operating state BZ2 of the idle state RZ over once the current through the second coil 115 becomes zero becomes.
  • step S7 If the condition of step S2 'is not fulfilled, then in a step S7 'checked whether since the last call of the second program a transition of the target position of the anchor plate 116 from the closed position S to the open position O is done.
  • a second controller R2 is activated, whose controlled variable is the current through the second coil 115.
  • a control difference RD ' is calculated from the difference of Setpoint I_SP2 and the actual value I_AV2 of the current through the second coil 115.
  • the second regulator R2 is preferably as Two-point controller designed. The second controller R2 controls the second output stage 33 depending on the control difference RD 'accordingly how the first controller R1 controls the first output stage.
  • the controller R2 remains activated in step S8 'until one predetermined condition is met, which is an indication of a Impact of the anchor plate 116 on the second contact surface Is 115b.
  • step S7 ' If the condition of step S7 'is not met, then the processing continues in a step S11 'in which checked whether the target position of the anchor plate 116 is the open position Is O or whether the capacitor C is at a predetermined Value is loaded.
  • step S11 ' If the condition of step S11 'is not met, then the processing is continued in a step S13 ', in which the second power output stage 33 in an operating state BZ1 des Normal energizing NB is controlled, either for the predefined period of time or until the actual value I_AV2 of the Current through the second coil 115 reaches a predetermined value Has. Then the second becomes in a step S14 ' Power output stage 33 in the operating state BZ2 controlled SSR rapid current withdrawal.
  • FIGS. 6a to 6e signal profiles are plotted over time t.
  • the time course of the actual value I_AV1 of the current through the first coil 113 is plotted in FIG. 6a.
  • FIG. 6b shows the time profile of the voltage difference UGS T1 between the gate and the source connection of the transistor T1.
  • FIG. 6c shows the time profile of the voltage difference UGS T2 between the gate connection and the source connection of the transistor T2.
  • FIG. 6d shows the time profile of the voltage difference UGS T3 between the gate connection and the source connection on the transistor T3.
  • the target position of the armature plate 116 is the open position O.
  • the actual value I_AV1 of the current through the coil is zero.
  • the first power output stage 32 is controlled into an operating state of the normal current NB up to the point in time t 2 .
  • the first power output stage 32 is controlled into the operating state BZ1 of the rapid current reduction SSR.
  • the voltage drop U C across the capacitor C has increased to a value U C1 .
  • the first power output stage 32 is then controlled again into the operating state BZ1 of the normal current supply NB, namely up to a time t 4 .
  • the first power output stage 32 is then controlled again into the operating state BZ1 of the rapid current reduction SSR, so that at time t 5 the voltage drop U C across the capacitor C has the value U C2 .
  • the first power output stage 32 is then controlled again into the operating state BZ1 of the normal current supply, namely up to a time t 6 , in which it is then again controlled into the operating state BZ1 of the rapid current reduction SSR until the time t 7 .
  • the setpoint I_SP1 of the current through the first coil is the catch value I_F and the first controller R1 is activated as in step S8 (FIG. 4), namely up to a time t 10 the position of the armature plate 116 is a predetermined value has reached near or directly to the first contact surface 115a.
  • the first power output stage 32 is controlled in the operating state of the fast current supply SB in order to very quickly bring the actual value I_AV1 of the current through the first coil to the new setpoint I_SP1, namely the increased holding value I_HE and thus possibly an impending one To prevent the armature from falling into the rest position N or to prevent the armature plate 116 from bouncing strongly.
  • the capacitor C is discharged and the voltage drop across the capacitor U C correspondingly decreases to the value zero at the time t 11 .
  • the first coil 113 is then energized with the increased holding current I_HE until time t 12 .
  • the hold value I_H is specified as the setpoint I_SP1 of the current through the first coil, and from the time t 14 the open position O is set as the setpoint position. Accordingly, the first power output stage 32 is controlled from the time t 14 into the operating state BZ1 of the rapid current reduction SSR.
  • the energy stored in the first coil 113 is supplied to the capacitor C, the voltage drop of which is increased to a value U C1 * by a time t 15 .
  • the capacitor C is charged again until the capacitor has a voltage drop with the value U C3 at time t 20 .
  • the capacitor then has the predetermined charge and is only charged again when the charge on the capacitor C has decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Control Of Linear Motors (AREA)

Abstract

Ein Stellgerät umfaßt ein Gaswechselventil und einen elektromagnetischen Stellantrieb (11) mit mindestens einem Elektromagneten, der eine Spule (113) hat, mit einem Anker, dessen Ankerplatte (116) zwischen einer ersten Anlagefläche (115a) an dem Elektromagneten und einer zweiten Anlagefläche (115b) beweglich ist. Eine Einrichtung zum Steuern des Stellgeräts umfaßt eine Leistungsendstufe (32), die zum Ansteuern der Spule (113) vorgesehen ist. Die Leistungsendstufe (32) hat einen elektrischen Energiespeicher, der von der Spule (113) in einem vorgegebenen Betriebszustand geladen wird. Die Steuereinheit (31) steuert die Leistungsendstufe (32) in einen Betriebszustand (BZ1) des Schnell-Bestromens (SB), wenn eine vorgegebene Bedingung erfüllt ist, die ein Anzeichen für ein Auftreffen der Ankerplatte (116) auf die erste Anlagefläche (115a) ist oder einen drohenden Abfall der Ankerplatte (116) in eine Ruheposition (R) ist, wobei in dem Betriebszustand (BZ1) des Schnell-Bestromens (SB) die in dem elektrischen Energiespeicher gespeicherte Energie der Spule (113) zugeführt wird.

Description

Die Erfindung betrifft eine Einrichtung zum Steuern eines Stellgeräts, das insbesondere zum Steuern einer Brennkraftmaschine vorgesehen ist.
Ein bekanntes Stellgerät (DE 195 26 683 A1) hat ein Stellglied, das als Gaswechselventil ausgebildet ist, und einen Stellantrieb. Der Stellantrieb weist zwei Elektromagnete auf, zwischen denen jeweils gegen die Kraft eines Rückstellmittels eine Ankerplatte durch Abschalten des Spulenstroms an den haltenden Elektromagneten und Einschalten des Spulenstroms am fangenden Elektromagneten bewegt werden kann. Der Spulenstrom des jeweils fangenden Elektromagneten wird auf einen vorgegebenen Fangwert geregelt und zwar während einer vorgegebenen Zeitdauer, die so bemessen ist, daß die Ankerplatte innerhalb der Zeitdauer auf eine Anlagefläche am fangenden Elektromagneten trifft. Anschließend wird der Spulenstrom des fangenden Elektromagneten auf einen Haltewert geregelt.
Die Kraft, die auf die Ankerplatte wirkt, hängt wesentlich von der Position der Ankerplatte und der Erregung der Spule des jeweils fangenden Elektromagneten ab. Die Erregung der Spule hängt wiederum ab von dem Strom durch die Spule. Die Steilheit des Stromanstieg des Stroms durch die Spule ist gegeben durch den Spannungsabfall an der Spule.
Kraftfahrzeuge weisen üblicherweise eine Spannungsversorgung auf, die eine vorgegebene Betriebsspannung den elektrischen Verbrauchern des Kraftfahrzeugs zur Verfügung stellt. Bei den üblichen Betriebsspannungen von 12 bis maximal 42 Volt kann es so zu einem unerwünschten Abfall der Ankerplatte in eine Ruheposition kommen. Ebenso kann ggf. der Zeitpunkt "Gaswechselventil offen" oder "Gaswechselventil geschlossen" nicht ausreichend genau eingestellt werden.
Aus der DE 197 01 471 A1 ist eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers bekannt mit einem Kondensator, der jeweils zu Beginn der Ansteuerung des Verbrauchers entladen wird. Dies führt zu einem hohen Stromanstieg in dem elektromagnetischen Verbraucher.
Aus der DE 44 13 240 A1 ist ferner eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers bekannt, die eine Halbbrücke und ein energiespeicherndes Element umfaßt, das zwischen der Halbbrücke und einer Spannungsquelle angeordnet ist.
Die Aufgabe der Erfindung ist es, eine Einrichtung zum Steuern eines Stellgeräts zu schaffen, die einfach ist und einen sicheren und zuverlässigen Betrieb des Stellgeräts gewährleistet.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnung näher erläutert. Es zeigen:
Figur 1:
eine Anordnung eines Stellgeräts und einer Steuereinrichtung in einer Brennkraftmaschine,
Figur 2a:
eine Leistungsendstufe der Steuereinrichtung in einem Betriebszustand des Normal-Bestromens,
Figur 2b:
die Leistungsendstufe in dem Betriebszustand des Freilaufs,
Figur 2c:
die Leistungsendstufe in dem Betriebszustand schnelle Stromrücknahme,
Figur 2d:
die Leistungsendstufe in dem Betriebszustand des Schnellbestromens,
Figur 2e:
eine Tabelle der Betriebszustände einer ersten Leistungsendstufe,
Figur 2e:
eine Tabelle der Betriebszustände einer zweiten Leistungsendstufe,
Figur 3:
die erste Leistungsendstufe und eine zweite Leistungsendstufe,
Figur 4:
ein Ablaufdiagramm zum Steuern der ersten Spule,
Figur 5:
ein Ablaufdiagramm eines Diagramms zum Steuern der zweiten Spule, und
Figur 6:
Signalverläufe des Stroms und der Spannungen.
Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.
Ein Stellgerät 1 (Figur 1) umfaßt einen Stellantrieb 11 und ein Stellglied 12, das bevorzugt als Gaswechselventil ausgebildet ist und einen Schaft 121 und einen Teller 122 hat. Der Stellantrieb 11 hat ein Gehäuse 111, in dem ein erster und ein zweiter Elektromagnet angeordnet sind. Der erste Elektromagnet hat einen ersten Kern 112, in den in einer ringförmigen Nut eine erste Spule 113 eingebettet ist. Der zweite Elektromagnet hat einen zweiten Kern 114, in den in einer weiteren ringförmigen Nut eine zweite Spule 115 eingebettet ist. Ein Anker ist vorgesehen, dessen Ankerplatte 116 in dem Gehäuse 111 beweglich zwischen einer ersten Anlagefläche 115a des ersten Elektromagneten und einer zweiten Anlagefläche 115b des zweiten Elektromagneten angeordnet ist. Der Anker umfaßt desweiteren einen Ankerschaft 117, der durch Ausnehmungen des ersten und zweiten Kerns 112, 114 geführt ist und der mit dem Schaft 121 des Stellglieds 12 mechanisch koppelbar ist. Ein erstes Rückstellmittel 118a und ein zweites Rückstellmittel 118b spannen die Ankerplatte 116 in eine vorgegebene Ruheposition N vor. Das Stellgerät 1 ist mit einem Zylinderkopf 21 starr verbunden. Dem Zylinderkopf 21 ist ein Ansaugkanal 22 und ein Zylinder 23 mit einem Kolben 24 zugeordnet. Der Kolben 24 ist über eine Pleuelstange 25 mit einer Kurbelwelle 26 gekoppelt.
Eine Steuereinrichtung 3 ist vorgesehen, die Signale von Sensoren erfaßt und/ oder Signale von einer nicht dargestellten übergeordneten Steuereinrichtung für Motorbetriebsfunktionen erfaßt und Stellsignale erzeugt, in deren Abhängigkeit die erste und zweite Spule 113, 115 des Stellgeräts 1 gesteuert werden. Die Sensoren, die der Steuereinrichtung 3 zugeordnet sind, sind ausgebildet als ein erster Strommesser 34, der einen Istwert I_AV1 des Stroms durch die erste Spule erfaßt, oder sein zweiter Strommesser 35, der einen Istwert I_AV2 des Stroms durch die zweite Spule 115 erfaßt. Neben den erwähnten Sensoren können auch noch weitere Sensoren vorhanden sein.
Die Steuereinrichtung umfaßt ferner eine Steuereinheit 31 und eine erste Leistungsendstufe 32 und eine zweite Leistungsendstufe 33. Die Steuereinheit 31 erzeugt abhängig von Steuerbefehlen der übergeordneten Steuereinrichtung und abhängig von den Istwerten I_AV1, I_AV2 des Stroms durch die erste und die zweite Spule 113, 115 Steuersignale für die Steuerleitungen L1, L2, L3, über die die Steuereinheit 31 elektrisch leitend mit der ersten Endstufe 32 verbunden ist, und Steuersignale für die Steuerleitungen L1', L2', L3', über die die Steuereinheit 31 elektrisch leitend mit der zweiten Endstufe 33 verbunden ist. Die erste und zweite Leistungsendstufe 32, 33 unterscheiden sich lediglich dadurch, daß die erste Leistungsendstufe 32 zum Ansteuern der ersten Spule 113 und die zweite Leistungsendstufe zum Ansteuern der zweiten Spule 115 vorgesehen sind. Die Schaltungsanordnung und Funktionsweise ihrer Bauelemente ist äquivalent.
Im folgenden wird beispielhaft die erste Leistungsendstufe 32 beschrieben. Die erste Leistungsendstufe 32 (Figur 2a) hat einen ersten Transistor T1, dessen Gate-Anschluß mit der Steuerleitung L1 elektrisch leitend verbunden ist, einen zweiten Transistor T2, dessen Gate-Anschluß elektrisch leitend mit der Steuerleitung L2 verbunden ist, und einen dritten Transistor T3, dessen Gate-Anschluß elektrisch leitend mit einer Steuerleitung L3 verbunden ist. Die erste Leistungsendstufe 32 umfaßt ferner Dioden D1, D3, D4, eine Freilaufdiode D2 einen als Kondensator C ausgebildeten elektrischen Energiespeicher und einen Widerstand R, der als Meßwiderstand für den Strommesser 34 vorgesehen ist. Die erste Leistungsendstufe kann in fünf verschiedene Betriebszustände BZ1 gesteuert werden, die jeweils charakterisiert sind durch den jeweiligen Schaltzustand der Transistoren T1, T2, T3. Liegt an den Gate-Anschlüssen der vorzugsweise als MOS-Transistor ausgebildeten Transistoren T1, T2, T3 ein hohes Spannungspotential an, so ist der jeweilige Transistor T1, T2, T3 von seinem Drain-Anschluß hin zum Source-Anschluß leitend (ON). Liegt hingegen an dem jeweiligen Transistor T1, T2, T3 an dessen Gate-Anchluß ein niedriges Spannungspotential an, so sperrt der Transistor von seinem Drain-Anschluß zu seinem Source-Anschluß (OFF). Die fünf Betriebszustände BZ1 sind in Figur 2e mit den zugehörigen Schaltzuständen der Transistoren T1, T2, T2 aufgetragen. Die fünf Betriebszustände BZ1 sind ein Ruhezustand RZ, Normal-Bestromen NB, Freilauf FL, schnelle Stromrücknahme SSR und Schnell-Bestromen SB. Die Betriebszustände BZ1 der Leistungsendstufe 32 werden im folgenden anhand der Figuren 2a bis 2d näher erläutert.
In dem Betriebszustand BZ1 des Ruhezustandes RZ sind die Transistoren T1, T2, T3 alle nicht leitend. Der Istwert I_AV1 des Stroms durch die erste Spule ist Null und der Spannungsabfall UL an der ersten Spule ist ebenfalls Null.
In dem Betriebszustand BZ1 des Normal-Bestromens NB werden die Transistoren T1 und T2 leitend (ON) betrieben und der Transistor T3 nicht leitend betrieben (OFF). Strom fließt dann von einer Spannungsquelle mit dem Potential der Versorgungsspannung UB durch den Transistor T1 die Diode D1 den Anschluß AL1 der ersten Spule 113, durch die erste Spule 113 hin zu dem Anschluß AL2 der ersten Spule 113, durch den Transistor T2 und den Widerstand R hin zu einem Masseanschluß, der auf einem Bezugspotential ist. Solange die Spule nicht in Sättigung betrieben wird, fällt nahezu die gesamte Versorgungsspannung UB an der ersten Spule 113 ab. Der Strom steigt entsprechend des Verhältnisses des Spannungsabfalls UL an der ersten Spule 113 und der Induktivität der ersten Spule 113 an.
In dem Betriebszustand des Freilaufs FL wird der Transistor T2 leitend betrieben (ON), die Transistoren T1, T3 hingegen nicht leitend betrieben (OFF). Fließt im Zeitpunkt des Übergangs in den Betriebszustand des Freilaufs FL ein Strom von dem Anschluß AL1 durch die erste Spule 113 hin zum Anschluß AL2, so wird die Freilaufdiode D2 leitend und der Strom durch die erste Spule 113 nimmt abhängig von den Verlusten in der Spule 113, in dem Transistor T2, dem Widerstand R und der Freilaufdiode D2 ab. Der Spannungsabfall UL an der ersten Spule 113 ist dann gegeben durch die Durchlaßspannungen der Freilaufdiode und des Transistors T2 und den Spannungsabfall an dem Widerstand R (insgesamt beispielsweise 2 Volt).
In einem Betriebszustand BZ1 der schnellen Stromrücknahme SSR (Figur 2c) der ersten Leistungsendstufe 32 werden die Transistoren T1, T2 und T3 nicht leitend betrieben. Fließt bei dem Übergang in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR ein Strom durch die erste Spule 113, so werden die Freilaufdiode D2 und die Diode D3 leitend. Der Strom fließt dann von dem Bezugspotential über die Freilaufdiode D2 hin zum Anschluß AL1 der ersten Spule 113 und dann durch die erste Spule 113 hin zum Anschluß AL2. Von dort fließt der Strom über die Diode D3 hin zum Kondensator C und lädt diesen auf. Der Strom durch die erste Spule verringert sich in dem Betriebszustand der schnellen Stromrücknahme SSR wesentlich schneller als in dem Betriebszustand BZ1 des Freilaufs FL, da an der ersten Spule 113 die negative Versorgungsspannung UB verringert um den Spannungsabfall UC an dem Kondensator C und den Durchlaßspannungen der Freilaufdiode D2 und der Diode D3 abfällt. In dem Betriebszustand der schnellen Stromrücknahme SSR bilden die erste Spule 113 und der Kondensator C einen ersten Schwingkreis.
In dem Betriebszustand des schnellen Bestromens SB (Figur 2d) wird der erste Transistor T1 nicht leitend betrieben (OFF) und die Transistoren T2 und T3 leitend betrieben (ON). Strom fließt von der Spannungsquelle über den Kondensator C, der dabei entladen wird, den Transistor T3 hin zu dem Anschluß AL1 der ersten Spule durch die erste Spule hin zu dem Anschluß AL2 der ersten Spule 113 durch den Transistor T2 und den Widerstand R zu dem Bezugspotential. In dem Betriebszustand des Schnellbestromens SB ist der Spannungsabfall UL an der ersten Spule 113 gleich der Summe aus der Versorgungsspannung UB und dem Spannungsabfall UC an dem Kondensator C verringert um die Durchlaßspannungen des Transistors T2 und T3 und den Spannungsabfall an dem Widerstand R.
Der Spannungsabfall UL an der ersten Spule 113 beträgt dann bei einer Versorgungsspannung UV von etwa 42 V beispielsweise etwa 80 V. Der Anstieg des Stromes durch die erste Spule 113 ist dann in etwa doppelt so hoch, als wenn lediglich die Versorgungsspannung UB an der ersten Spule 113 abfällt.
Eine Diode D4 ist dem Kondensator C parallel geschaltet, dadurch ist sichergestellt, daß das Spannungspotential am Drain Anschluß des Transistors T3 nicht um mehr als die Durchlaßspannung der Diode D4 unter die Versorgungsspannung UB fällt.
Figur 3 zeigt die erste und zweite Leistungsendstufe 32, 33 in einer Ausführungsform, in der beiden Leistungsendstufen 32, 33 ein gemeinsamer Kondensator C zugeordnet ist. Diese Ausführungsform hat den Vorteil, daß lediglich ein Kondensator vorgesehen ist, wodurch die Leistungsendstufen insgesamt kostengünstig sind, und der Kondensator C in einem Betriebszustand Z1 der ersten Leistungsendstufe 32 der schnellen Stromrücknahme SSR geladen werden kann, und anschließend in einem Betriebszustand BZ2 des schnell Bestromens SB der zweiten Leistungsendstufe 34 wieder entladen werden kann. Dies ist ebenso umgekehrt möglich. Die Bezugszeichen der der ersten Leistungsendstufe 32 entsprechenden Elemente der zweiten Leistungsendstufe 33 sind jeweils mit einem "'" versehen.
In Figur 4 ist ein Ablaufdiagramm eines ersten Programms dargestellt, das in der Steuereinheit 31 abgearbeitet wird. In einem Schritt S1 wird das Programm gestartet. Es wird die aktuelle Soll-Position der Ankerplatte 116 eingelesen, die von der übergeordneten Steuereinrichtung vorgegeben wird. In einem Schritt S2 wird geprüft, ob sich die Soll-Position der Ankerplatte 116 seit dem letzten Aufruf des ersten Programmes der Schließposition S zu der Offenposition O verändert hat. Ist dies der Fall, so wird in einem Schritt S3 die erste Leistungsendstufe 32 in den Betriebszustand BZ1 schnellen Stromrücknahme SSR gesteuert. Die erste Leistungsendstufe 32 geht in den Betriebszustand BZ1 des Ruhezustands RZ über, sobald der Strom durch die erste Spule 113 null wird. Das erste Programm wird dann im Schritt S5 beendet.
Ist die Bedingung des Schrittes S2 nicht erfüllt, so wird in einem Schritt S7 geprüft, ob seit dem letzten Aufruf des ersten Programms ein Übergang der Soll-Position der Ankerplatte 116 von der Offenposition O in die Schließposition S erfolgt ist. Ist dies der Fall, so wird in einem Schritt S8 ein erster Regler R1 aktiviert. Die Regelgröße des ersten Reglers R1 ist der Strom durch die erste Spule 113. Einem Sollwert I_SP1 des Stroms durch die erste Spule 113 wird ein Fangwert I_F zugeordnet. Eine Regeldifferenz RD wird berechnet aus der Differenz des Sollwertes I_SP1 und des Istwertes I_AV1 des Stroms durch die erste Spule 113. Der erste Regler R1 ist vorzugsweise als Zweipunktregler ausgebildet. Der erste Regler R1 steuert die erste Endstufe 32 abhängig von der Regeldifferenz RD entweder in den Betriebszustand BZ1 des Normal-Bestromens NB oder des Freilaufs FL. Der Regler R1 bleibt aktiviert bis eine vorgegebene Bedingung erfüllt ist, die ein Anzeichen für ein Auftreffen der Ankerplatte 116 auf die erste Anlagefläche 115a ist. Die vorgegebene Bedingung kann beispielsweise sein, daß die Ankerplatte eine vorgegebene Position erreicht hat oder überschreitet. Diese vorgegebene Position ist dabei so gewählt, daß sie sehr nahe an der Schließposition S liegt.
Sobald die vorgegebene Bedingung erfüllt ist, wird die Bearbeitung in einem Schritt S9 fortgesetzt, in dem der erste Regler wieder aktiviert wird, wobei der Sollwert I_SP1 des Stroms durch die erste Spule 113 ein erhöhter Haltewert I_HE ist. Der erste Regler R1 steuert in dem Schritt S9 die erste Leistungsendstufe 32 abhängig von der Regeldifferenz RD entweder in den Betriebszustand BZ1 des Schnell-Bestromens SB oder in den Betriebszustand BZ1 des Freilaufs FL oder falls der Kondensator C entladen ist, in den Betriebszustand BZ1 des Normal-Bestromens NB. Da der erhöhte Haltewert I_HE vorzugsweise größer ist als der Fangwert I_F, steuert der erste Regler in dem Schritt S9 die erste Leistungsendstufe 32 zuerst in den Betriebszustand des Schnell-Bestromens SB, bis der Istwert I_AV1 des Stroms durch die erste Spule größer ist als der erhöhte Haltewert I_HE, und/oder in den Betriebszustand des Normal-Bestromens, sobald der Kondensator C entladen ist und zwar bis der Istwert I_AV1 des Stroms durch die erste Spule größer ist als der erhöhte Haltewert I_HE.
Zum Zeitpunkt des Aktivierens des ersten Reglers R1 in dem Schritt S9 ist die Ist-Position der Ankerplatte 116 sehr nahe oder an der Schließposition S. Es muß für einen sicheren und zuverlässigen Betrieb des Stellgeräts gewährleistet sein, daß die Ankerplatte an der ersten Anlagefläche zuverlässig anliegt und weder abprallt noch vor Erreichen der Schließposition S in die Ruheposition N abfällt. Durch das Steuern des Betriebszustandes BZ1 des Schnell-Bestromens SB kann der Istwert I_AV1 des Stroms durch die erste Spule 113 sehr schnell auf den erhöhten Haltewert I_HE eingestellt werden. Dies hat den Vorteil, daß der erste Regler R1 in dem Schritt S9 unmittelbar vor dem Auftreffen der Ankerplatte 116 auf die erste Anlagefläche 115a aktiviert werden kann, so daß die Geschwindigkeit der Ankerplatte nicht mehr wesentlich erhöht wird und damit das Auftreffgeräusch der Ankerplatte auf die erste Anlagefläche 115a gering ist. Nach Ablauf einer vorgegebenen Zeitdauer, die vorzugsweise durch Versuche ermittelt ist, wird die Bearbeitung in einem Schritt S10 fortgesetzt.
In dem Schritt S10 wird der erste Regler R1 aktiviert, der Sollwert I_SP1 des Stroms durch die erste Spule 113 ist der Haltewert I_H und der Regler steuert die erste Leistungsendstufe 32 abhängig von der Regeldifferenz RD entweder in den Zustand des Betriebszustand BZ1 des Normal-Bestromens NB oder den Freilauf FL bis ein Übergang der Soll-Position der Ankerplatte von der Schließposition S in die Offenposition O erfolgt. Anschließend wird die Bearbeitung des Programms in dem Schritt S5 beendet.
Ist die Bedingung des Schrittes S7 nicht erfüllt, so wird die Bearbeitung in einem Schritt S11 fortgesetzt, in dem geprüft wird, ob die Soll-Position der Ankerplatte 116 die Schließposition S ist oder ob der Kondensator C auf einen vorgegebenen Wert geladen ist. Das Prüfen, ob der Kondensator C auf den vorgegebenen Wert geladen ist, kann besonders einfach erfolgen durch Auswerten eines Zählers, der bei jeder Bearbeitung eines Schrittes S13 erhöht wird und der in dem Schritt S8 zurückgesetzt wird. Vorteilhaft ist, wenn ein Sensor vorgesehen ist, der den Spannungsabfall UC am Kondensator C erfaßt, und aus dem erfaßten Spannungsabfall UC die Ladung des Kondensators C ermittelt wird. Ist die Bedingung des Schrittes S11 erfüllt, so bleibt der erste Regler R1 wie in Schritt S10 aktiv, falls die Soll-Position der Ankerplatte 116 die Schließposition S ist, und das erste Programm wird in dem Schritt S11 beendet. Ist die Bedingung des Schrittes S11 jedoch nicht erfüllt, so wird die Bearbeitung in einem Schritt S13 fortgesetzt, in dem die erste Leistungsendstufe 32 in einen Betriebszustand BZ1 des Normal-Bestromens NB gesteuert wird, und zwar entweder für eine fest vorgegebene Zeitdauer oder bis der Istwert I_AV1 des Stroms durch die erste Spule 113 einen vorgegebenen Wert erreicht hat. Anschließend wird in einem Schritt S14 die Leistungsendstufe 32 in dem Betriebszustand BZ1 der schnellen Stromrücknahme SSR gesteuert. So kann einfach der Kondensator C geladen werden, während die erste Spule 113 nicht zum Fangen oder Halten der Ankerplatte 116 bestromt wird. Die Bearbeitung des Programms wird dann in dem Schritt S5 beendet.
Das erste Programm wird zyklisch aufgerufen und zwar entweder in vorgegebenen Zeitabständen oder nach einer vorgegebenen Veränderung des Kurbelwellenwinkels. Während die Soll-Position der Ankerplatte 116 die Offen-Position O ist, wird somit die erste Leistungsendstufe 32 einmal in dem Schritt S3 in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR und mehrfach in dem Schritt S14 den Betriebszustand BZ1 der schnellen Stromrücknahme gesteuert und somit der Kondensator C innerhalb einer vorgegebenen Zeitdauer auf den vorgegebenen Wert geladen.
Vorteilhaft ist es, wenn die erste Spule 113 in dem Schritt S8 in den Betriebszustand des Freilaufs gesteuert wird, sobald die zum Erreichen der Schließposition S notwendige Energie der Ankerplatte zugeführt worden ist. Die Spule erste 113 ist dann im Freilauf FL, wenn die vorgegebene Bedingung erfüllt wird, die ein Anzeichen ist für das Auftreffen der Ankerplatte 116 auf die erste Anlagefläche 115a.
Ein Ablaufdiagramm eines zweiten Programms zum Steuern der zweiten Spule 115 ist in Figur 5 dargestellt, das in der Steuereinheit 31 abgearbeitet wird. Das zweite Programm hat die gleiche Struktur wie das erste Programm (Figur 4). Im folgenden werden nur die Unterschiede zu dem ersten Programm beschrieben.
In einem Schritt S2' wird geprüft, ob sich die Soll-Position der Ankerplatte 116 seit dem letzten Aufruf des ersten Programmes der Offenposition O zu der Schließposition S verändert hat. Ist dies der Fall, so wird in einem Schritt S3' die zweite Leistungsendstufe 34 in den Betriebszustand BZ2 schnellen Stromrücknahme SSR gesteuert. Die zweite Leistungsendstufe 34 geht in den Betriebszustand BZ2 des Ruhezustands RZ über, sobald der Strom durch die zweite Spule 115 null wird.
Ist die Bedingung des Schrittes S2' nicht erfüllt, so wird in einem Schritt S7' geprüft, ob seit dem letzten Aufruf des zweiten Programms ein Übergang der Soll-Position der Ankerplatte 116 von der Schließposition S in die Offenposition O erfolgt ist.
In einem Schritt S8' wird ein zweiter Regler R2 aktiviert, dessen Regelgröße der Strom durch die zweite Spule 115 ist. Eine Regeldifferenz RD' wird berechnet aus der Differenz des Sollwertes I_SP2 und des Istwertes I_AV2 des Stroms durch die zweite Spule 115. Der zweite Regler R2 ist vorzugsweise als Zweipunktregler ausgebildet. Der zweite Regler R2 steuert die zweite Endstufe 33 abhängig von der Regeldifferenz RD' entsprechend wie der erste Regler R1 die erste Endstufe steuert.
Der Regler R2 bleibt in dem Schritt S8' aktiviert bis eine vorgegebene Bedingung erfüllt ist, die ein Anzeichen für ein Auftreffen der Ankerplatte 116 auf die zweite Anlagefläche 115b ist.
Zum Zeitpunkt des Aktivierens des zweiten Reglers R2 in dem Schritt S9' ist die Ist-Position der Ankerplatte 116 sehr nahe oder an der Offenposition O. Es muß für einen sicheren und zuverlässigen Betrieb des Stellgeräts gewährleistet sein, daß die Ankerplatte an der zweiten Anlagefläche zuverlässig anliegt und weder abprallt noch vor Erreichen der Offenposition O in die Ruheposition N abfällt.
Ist die Bedingung des Schrittes S7' nicht erfüllt, so wird die Bearbeitung in einem Schritt S11' fortgesetzt, in dem geprüft wird, ob die Soll-Position der Ankerplatte 116 die Offenposition O ist oder ob der Kondensator C auf einen vorgegebenen Wert geladen ist.
Ist die Bedingung des Schrittes S11' nicht erfüllt, so wird die Bearbeitung in einem Schritt S13' fortgesetzt, in dem die zweite Leistungsendstufe 33 in einen Betriebszustand BZ1 des Normal-Bestromens NB gesteuert wird, und zwar entweder für die fest vorgegebene Zeitdauer oder bis der Istwert I_AV2 des Stroms durch die zweite Spule 115 einen vorgegebenen Wert erreicht hat. Anschließend wird in einem Schritt S14' die zweite Leistungsendstufe 33 in den Betriebszustand BZ2 der schnellen Stromrücknahme SSR gesteuert.
In den Figuren 6a bis 6e sind Signalverläufe aufgetragen über die Zeit t. In Figur 6a ist der zeitliche Verlauf des Istwertes I_AV1 des Stroms durch die erste Spule 113 aufgetragen. In Figur 6b ist der zeitliche Verlauf der Spannungsdifferenz UGST1 zwischen dem Gate- und dem Source-Anschluß des Transistors T1 aufgetragen. In Figur 6c ist der zeitliche Verlauf der Spannungsdifferenz UGST2 zwischen dem Gate-Anschluß und dem Source-Anschluß des Transistors T2 aufgetragen. In Figur 6d ist der zeitliche Verlauf der Spannungsdifferenz UGST3 zwischen dem Gate-Anschluß und dem Source-Anschluß am Transistor T3 aufgetragen.
Falls die Spannungsdifferenz UGST1 einen hohen Pegel HI hat, ist der Transistor T1 leitend (T1=ON). Falls die Spannungsdifferenz UGST1 an dem Transistor T1 einen niedrigen Pegel LO hat, sperrt der Transistor, also ist nicht leitend (T1 = OFF). Ebenso leitet der Transistor T2, falls die Spannungsdifferenz UGST2 einen hohen Pegel HI hat (T2=ON) und sperrt der Transistor T2, falls die Spannungsdifferenz UGST2 einen niedrigen Pegel LO hat (T2=OFF). Falls die Spannungsdifferenz UGST3 zwischen dem Gate-Anschluß und dem Source-Anschluß des Transistors T3 einen hohen Pegel hat, so ist der Transistor T3 leitend (T3 = ON). Falls die Spannungsdifferenz UGST3 zwischen dem Gate-Anschluß und dem Source-Anschluß des Transistors T3 einen niedrigen Pegel hat, so sperrt der Transistor T3, das heißt er ist nicht leitend (T3 = OFF).
Zu einem Zeitpunkt t0 ist die Soll-Position der Ankerplatte 116 die Offenposition O. Der Istwert I_AV1 des Stroms durch die Spule ist null. Zu einem Zeitpunkt t1 wird die erste Leistungsendstufe 32 in einen Betriebszustand des Normal-Bestromens NB gesteuert und zwar bis zu dem Zeitpunkt t2.
Von dem Zeitpunkt t2 an wird die erste Leistungsendstufe 32 in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR gesteuert. Bis zu dem Zeitpunkt t3 hat sich der Spannungsabfall UC an dem Kondensator C auf einen Wert UC1 erhöht. Ab dem Zeitpunkt t3 wird die erste Leistungsendstufe 32 dann wieder in den Betriebszustand BZ1 des Normal-Bestromens NB gesteuert und zwar bis zu einem Zeitpunkt t4. Ab dem Zeitpunkt t5 wird die erste Leistungsendstufe 32 dann wieder in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR gesteuert, so daß am Zeitpunkt t5 der Spannungsabfall UC an dem Kondensator C den Wert UC2 hat.
Ab dem Zeitpunkt t5 wird die erste Leistungsendstufe 32 dann wieder in den Betriebszustand BZ1 des Normal-Bestromens gesteuert und zwar bis zu einem Zeitpunkt t6, in dem sie dann wieder in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR bis zum Zeitpunkt t7 gesteuert wird. Ab dem Zeitpunkt t7 ist der Sollwert I_SP1 des Stroms durch die erste Spule der Fangwert I_F und der erste Regler R1 wird wie in dem Schritt S8 (Figur 4) aktiviert und zwar bis zu einem Zeitpunkt t10 die Position der Ankerplatte 116 einen vorgegebenen Wert nahe bei oder direkt an der ersten Anlagefläche 115a erreicht hat. Ab dem Zeitpunkt t10 wird die erste Leistungsendstufe 32 in den Betriebszustand des Schnell-Bestromens SB gesteuert um sehr schnell den Istwert I_AV1 des Stroms durch die erste Spule auf den neuen Sollwert I_SP1 und zwar des erhöhten Haltewertes I_HE zu bringen und damit ggf. ein drohendes Abfallen des Ankers in die Ruhelage N oder ein starkes Prellen der Ankerplatte 116 zu verhindern. Dabei wird der Kondensator C entladen und der Spannungsabfall am Kondensator UC verringert sich dementsprechend auf den Wert Null zum Zeitpunkt t11. Die erste Spule 113 wird dann bis zum Zeitpunkt t12 mit dem erhöhten Haltestrom I_HE bestromt. Ab dem Zeitpunkt t12 wird als Sollwert I_SP1 des Stroms durch die erste Spule der Haltewert I_H vorgegeben und ab dem Zeitpunkt t14 wird als Soll-Position die Offenposition O vorgegeben. Demnach wird die erste Leistungsendstufe 32 ab dem Zeitpunkt t14 in den Betriebszustand BZ1 der schnellen Stromrücknahme SSR gesteuert. Dabei wird die in der ersten Spule 113 gespeicherte Energie dem Kondensator C zugeführt, dessen Spannungsabfall sich bis zu einem Zeitpunkt t15 auf einen Wert UC1* erhöht wird. Zwischen dem Zeitpunkt t17 und t18 und den Zeitpunkten t19, t20 erfolgt erneut das Laden des Kondensators C bis der Kondensator zum Zeitpunkt t20 einen Spannungsabfall mit dem Wert UC3 aufweist. Der Kondensator hat dann die vorgegebene Ladung und wird erst wieder weitergeladen, wenn die Ladung des Kondensators C sich verringert hat.

Claims (10)

  1. Einrichtung zum Steuern eines Stellgeräts, das ein Gaswechselventil und einen elektromagnetischen Stellantrieb (11) umfaßt mit einem Elektromagneten, der eine Spule (113) hat, mit einem Anker, dessen Ankerplatte (116) zwischen einer ersten Anlagefläche (115a) an dem Elektromagneten und einer zweiten Anlagefläche (115b) beweglich ist, wobei die Einrichtung eine Leistungsendstufe (32) umfaßt, die zum Ansteuern der Spule (113) vorgesehen ist, dadurch gekennzeichnet, daß die Leistungsendstufe (32) einen elektrischen Energiespeicher hat, der von der Spule (113) in einem vorgegebenen Betriebszustand geladen wird, und
    daß die Steuereinheit (31) die Leistungsendstufe (32) in einen Betriebszustand (BZ1) des Schnell-Bestromens (SB) steuert, wenn eine vorgegebene zweite Bedingung erfüllt ist, die ein Anzeichen für ein Auftreffen der Ankerplatte (116) auf die erste Anlagefläche (115a) ist oder einen drohenden Abfall der Ankerplatte (115a) von der ersten Anlagefläche (115a) in eine Ruheposition (N) ist, wobei in dem Betriebszustand (BZ1) des Schnell-Bestromens (SB) die in dem elektrischen Energiespeicher gespeicherte Energie der Spule (113) zugeführt wird.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Leistungsendstufe (32) in einem Betriebszustand (BZ1) der schnellen Stromrücknahme (SSR) geladen wird.
  3. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsendstufe (32) in den Betriebszustand (BZ1) der schnellen Stromrücknahme (SSR) innerhalb einer Zeitdauer gesteuert wird, in der die Soll-Position der Ankerplatte (116) an der zweiten Anlagefläche (115b) ist.
  4. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß eine Steuereinheit (31) vorgesehen ist, die die Leistungsendstufe (32) nach einem Wechsel der Soll-Position der Ankerplatte hin zu der zweiten Anlagefläche (115b) in einen Betriebszustand (BZ1) der schnellen Stromrücknahme (SSR) von einem Haltewert (I_H) auf einen Nullwert (I_N) des Stroms durch die Spule (113) steuert, wobei ein gleichzeitiges Laden des elektrischen Energiespeichers erfolgt.
  5. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Steuereinheit (31) die Leistungsendstufe (32) abwechselnd in den Betriebszustand (BZ1) des Normal-Bestromens (NB) und der schnellen Stromrücknahme (SSR) steuert während des Bewegens der Ankerplatte (116) weg von der ersten Anlagefläche (115a) oder der Anlage der Ankerplatte (116) an der zweiten Anlagefläche (115b) und zwar bis eine vorgegebene erste Bedingung erfüllt ist, die charakteristisch ist für eine vorgegebene Ladung des elektrischen Energiespeichers.
  6. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsendstufe (32) einen ersten Schwingkreis hat, der eine Reihenschaltung einer Freilaufdiode (D1,D1'), der Spule (113), einer Diode (D3) und des elektrischen Energiespeichers in der Reihenfolge der Aufzählung von einem Bezugspotential bis zu dem Anschluß (UB) einer Spannungsquelle ist.
  7. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsendstufe (32) einen zweiten Schwingkreis hat, der eine Reihenschaltung eines ersten Schaltmittels, der Spule (113), eines zweiten Schaltmittels und des elektrischen Energiespeichers in der Reihenfolge der Aufzählung von einem Bezugspotential bis zu der Spannungsquelle ist.
  8. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stellantrieb (11) einen zweiten Elektromagneten mit einer zweiten Spule (115) umfaßt, und daß eine zweite Leistungsendstufe (33) vorgesehen ist.
  9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, daß für beide Leistungsendstufen (32,33) ein gemeinsamer elektrischer Energiespeicher vorgesehen ist.
  10. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der elektrische Energiespeicher ein Kondensator(C) ist.
EP99945923A 1998-08-13 1999-07-05 Einrichtung zum steuern eines stellgeräts Expired - Lifetime EP1108120B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19836779 1998-08-13
DE19836779 1998-08-13
PCT/DE1999/002085 WO2000009867A1 (de) 1998-08-13 1999-07-05 Einrichtung zum steuern eines stellgeräts

Publications (2)

Publication Number Publication Date
EP1108120A1 EP1108120A1 (de) 2001-06-20
EP1108120B1 true EP1108120B1 (de) 2002-04-10

Family

ID=7877464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99945923A Expired - Lifetime EP1108120B1 (de) 1998-08-13 1999-07-05 Einrichtung zum steuern eines stellgeräts

Country Status (5)

Country Link
US (1) US6363895B1 (de)
EP (1) EP1108120B1 (de)
JP (1) JP2002522911A (de)
DE (1) DE59901216D1 (de)
WO (1) WO2000009867A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076946A (zh) * 2009-01-26 2011-05-25 欧陆汽车有限责任公司 操控喷油阀的电路布置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648297B1 (en) * 1999-06-18 2003-11-18 Siemens Aktiengesellschaft Method for controlling an electromechanical actuator
DE10045768C1 (de) * 2000-09-15 2002-03-21 Siemens Ag Verfahren zum Steuern eines elektromechanischen Stellantriebs
JP3927043B2 (ja) * 2002-02-13 2007-06-06 株式会社山武 フィードバック機構およびバルブポジショナ
DE10259796B4 (de) * 2002-12-19 2006-03-09 Siemens Ag Verfahren zum Steuern eines elektromechanischen Stellantriebs
US7054737B2 (en) * 2004-03-18 2006-05-30 Ford Global Technologies, Llc Power electronics circuit with voltage regulator for electromechanical valve actuator of an internal combustion engine
US7509931B2 (en) * 2004-03-18 2009-03-31 Ford Global Technologies, Llc Power electronics circuit for electromechanical valve actuator of an internal combustion engine
US6971346B2 (en) 2004-03-18 2005-12-06 Ford Global Technologies, Llc System for controlling electromechanical valves in an engine
US6948461B1 (en) 2004-05-04 2005-09-27 Ford Global Technologies, Llc Electromagnetic valve actuation
US7295417B2 (en) * 2004-05-04 2007-11-13 Ford Global Technologies, Llc Electromagnetic valve actuation with series connected electromagnet coils
US7036469B2 (en) * 2004-06-21 2006-05-02 Ford Global Technologies, Llc Bi-directional power electronics circuit for electromechanical valve actuator of an internal combustion engine
US7021255B2 (en) * 2004-06-21 2006-04-04 Ford Global Technologies, Llc Initialization of electromechanical valve actuator in an internal combustion engine
US6978745B1 (en) 2004-07-13 2005-12-27 Ford Global Technologies, Llc System for controlling electromechanical valves in an engine
JP4609401B2 (ja) * 2006-09-20 2011-01-12 株式会社デンソー 電磁弁駆動装置
US7549438B2 (en) * 2006-11-03 2009-06-23 Gm Global Technology Operations, Inc. Valve heated by split solenoid
US20110203744A1 (en) * 2010-02-22 2011-08-25 Ya-Fen Lee Venetian Blind
CN103617864B (zh) * 2013-10-28 2016-01-20 北京二十一世纪科技发展有限公司 一种控制电磁线圈快速工作的双电源激磁电路
CN103632803B (zh) * 2013-10-31 2016-01-20 北京二十一世纪科技发展有限公司 一种电磁线圈驱动电路
DE102014206353A1 (de) * 2014-04-03 2015-10-08 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung der Temperatur des Spulendrahtes eines Magnetventils
DE102017222463A1 (de) * 2017-12-12 2019-06-13 Robert Bosch Gmbh Ventilelektronik und Ventilanordnung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2021276A1 (de) * 1970-04-30 1971-11-11 Bosch Gmbh Robert Impulsgeber zur Steuerung der Ventile einer Brennkraftmaschine
AT325345B (de) * 1971-01-15 1975-10-10 Bosch Gmbh Robert Impulsgeber fur eine elektrohydraulische oder elektropneumatische steuervorrichtung
DE3702680A1 (de) 1986-02-18 1987-10-29 Bosch Gmbh Robert Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
US4794890A (en) * 1987-03-03 1989-01-03 Magnavox Government And Industrial Electronics Company Electromagnetic valve actuator
DE3734415A1 (de) 1987-10-12 1989-04-20 Bosch Gmbh Robert Schaltungsanordnung zur beschleunigung der versorgung eines elektromagnetischen verbrauchers
DE3844193A1 (de) 1988-12-29 1990-07-05 Bosch Gmbh Robert Elektronische schaltungsanordnung
JPH0621530B2 (ja) * 1988-12-29 1994-03-23 いすゞ自動車株式会社 バルブ駆動装置
JP2610187B2 (ja) * 1989-04-28 1997-05-14 株式会社いすゞセラミックス研究所 バルブの駆動装置
GB8924238D0 (en) 1989-10-27 1989-12-13 Gec Alsthom Ltd Electrical energy storage system
FR2714998B1 (fr) 1994-01-07 1996-02-09 Peugeot Procédé de commande d'un actionneur électromagnétique bistable et dispositif pour sa mise en Óoeuvre.
DE4413240A1 (de) 1994-04-16 1995-10-19 Bosch Gmbh Robert Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4434684A1 (de) 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung
JP3134724B2 (ja) * 1995-02-15 2001-02-13 トヨタ自動車株式会社 内燃機関の弁駆動装置
FR2735591B1 (fr) 1995-06-16 1997-07-11 Siemens Automotive Sa Procede et dispositif de commande auto survolteur pour un actionneur comportant une self inductance
DE19526683A1 (de) 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Ankerauftreffens an einem elektromagnetisch betätigbaren Stellmittel
DE19701471A1 (de) 1997-01-17 1998-07-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19706247B4 (de) 1997-02-18 2005-05-19 Burgert, Markus Schaltungsanordnung zur Steuerung von Elektromagneten und Regelung des Spulenstroms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076946A (zh) * 2009-01-26 2011-05-25 欧陆汽车有限责任公司 操控喷油阀的电路布置
CN102076946B (zh) * 2009-01-26 2014-07-23 大陆汽车有限公司 操控喷油阀的电路布置

Also Published As

Publication number Publication date
JP2002522911A (ja) 2002-07-23
US6363895B1 (en) 2002-04-02
DE59901216D1 (de) 2002-05-16
WO2000009867A1 (de) 2000-02-24
EP1108120A1 (de) 2001-06-20

Similar Documents

Publication Publication Date Title
EP1108120B1 (de) Einrichtung zum steuern eines stellgeräts
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
DE102006014276B4 (de) Elektromagnetventil und Elektromagnetventil-Antriebsschaltung
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
EP1099260B1 (de) Verfahren und vorrichtung zum ansteuern wenigstens eines kapazitiven stellgliedes
EP0986704B1 (de) Vorrichtung und verfahren zum ansteuern wenigstens eines kapazitiven stellgliedes
DE19954023A1 (de) Hochdruckkraftstoffeinspritzvorrichtung
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
EP1042767B1 (de) Einrichtung zum steuern eines elektromechanischen stellgeräts
DE102004026250B4 (de) Ansteuerschaltung für Piezoaktoren
EP1023533B1 (de) Verfahren zum steuern eines elektromechanischen stellgeräts
DE102013222327A1 (de) Kraftstoffeinspritzvorrichtung
DE19836769C1 (de) Verfahren zum Bestimmen der Position eines Ankers
EP1032950B1 (de) Entladeschaltung für ein kapazitives stellglied
WO1992000447A1 (de) Verfahren und einrichtung zur ansteuerung eines elektromagnetischen verbrauchers
EP1212761B1 (de) Verfahren zum steuern eines elektromechanischen stellantriebs
DE102004029906B4 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils und Computerprogramm
DE10002322C1 (de) Verfahren zum Steuern eines Stellgeräts
DE19834213B4 (de) Verfahren zum Steuern eines elektromechanischen Stellgeräts
DE102005014210A1 (de) Verfahren und Vorrichtung zum Überprüfen eines elektrischen Kopplungszustands einer induktiven Last
DE19962629C2 (de) Einrichtung zum Steuern eines Stellgeräts
DE19746980A1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE19709715A1 (de) Vorrichtung und Verfahren zum Ansteuern wenigstens eines kapazitiven Stellgliedes
DE10045768C1 (de) Verfahren zum Steuern eines elektromechanischen Stellantriebs
DE3415556A1 (de) Elektronisches regelsystem fuer eine kraftstoffpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010921

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020412

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59901216

Country of ref document: DE

Date of ref document: 20020516

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1108120E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090705

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202