EP0704097B1 - Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers - Google Patents

Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers Download PDF

Info

Publication number
EP0704097B1
EP0704097B1 EP95913053A EP95913053A EP0704097B1 EP 0704097 B1 EP0704097 B1 EP 0704097B1 EP 95913053 A EP95913053 A EP 95913053A EP 95913053 A EP95913053 A EP 95913053A EP 0704097 B1 EP0704097 B1 EP 0704097B1
Authority
EP
European Patent Office
Prior art keywords
switching means
energy
phase
consumer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95913053A
Other languages
English (en)
French (fr)
Other versions
EP0704097A1 (de
Inventor
Torsten Henke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0704097A1 publication Critical patent/EP0704097A1/de
Application granted granted Critical
Publication of EP0704097B1 publication Critical patent/EP0704097B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2072Bridge circuits, i.e. the load being placed in the diagonal of a bridge to be controlled in both directions

Definitions

  • the invention relates to an apparatus and a method to control an electromagnetic consumer according to the preambles of the independent claims.
  • a device and a method for controlling a electromagnetic consumer is from US 3 896 346 known.
  • This document shows one method and one Device for controlling an electromagnetic Consumer by means of a half bridge. It is provided that two consumers switched on alternately and turned off. When you turn off the energy released in the consumer at the same time reloaded other consumers to be switched on. Since the The drop in power and the increase in power are not completely congruent are a small part of the energy in a capacitor cached. This capacitor is parallel to the Half bridge or connected in parallel to the voltage source.
  • EP 088 445 shows a method and an apparatus for Actuation of a consumer.
  • Here is one H-bridge circuit used. This is done with a view to Task that a current flow in different Directions is desired by the consumer. The Problem that the consumer as quickly as possible is not to be activated.
  • a device for controlling an electromagnetic Consumer is known from DE-OS 37 02 680.
  • One in line to the consumer arranged electronic switching element is by a Extinguishing circuit can be bridged.
  • This extinguishing circuit contains one Energy storage in the form of a capacitor for receiving the energy stored in the consumer.
  • a disadvantage of this Circuit arrangement is that it is component-intensive and a voluminous capacitor for intermediate energy storage requires that constantly at least on supply voltage is loaded.
  • Next to the capacitor are at least two Series diodes required.
  • the invention has for its object in a device to control an electromagnetic consumer to provide a facility that is as simple as possible, with which the start-up process is accelerated and the total energy consumption is minimized.
  • circuit arrangement according to the invention with the features of the independent claims has the advantage that results in lossless deletion. Furthermore, by the reuse of those saved during the deletion process Energy when turned on, the current rise will be increased. This in turn leads to the solenoid valve switching time decreased. These advantages are low Component effort reached. Further advantageous configurations are marked in the subclaims.
  • the device according to the invention is based on the Embodiments illustrated in the drawing. 1 shows a circuit arrangement of the invention Device, Figure 2 different plotted over time Signals and Figures 3 and 4 improved circuitry.
  • the device according to the invention is preferred for internal combustion engines, especially with self-igniting internal combustion engines, used.
  • This electromagnetic valves are referred to below as consumers designated.
  • the invention is not for this application limited, it can be used anywhere where fast switching electromagnetic valves are required become.
  • the switching time is the period between the activation of the Solenoid valve and the actual opening or closing of the solenoid valve.
  • the Switching time is as short as possible.
  • a first connection of the consumer 100 stands with a node 105 and the second connection with a connection point 110 in connection.
  • the node 105 is via a first switching means 115 connected to the ground terminal 120.
  • the second Link point 110 is with the cathode of a first Diode 125 in contact.
  • the anode of the first diode 125 is located to ground potential.
  • connection point 105 is with the anode a second diode 130 in contact.
  • the link point 110 is connected to the cathode via a second switching means 135 the second diode 130 in contact.
  • connection point between the cathode of the second diode 130 and the switching means 135 is in contact with the cathode of a third diode 140 and the one connection of a capacitor 145.
  • the second connection of the capacitor 145 and the anode of the third diode 140 are connected to a voltage source which supplies them with supply voltage U bat .
  • the arrangement of the consumer 100, the two switching means 115 and 135 and the first and second diodes 125 and 130 is commonly referred to as a half bridge.
  • the cathode is another diode 131 connected to the cathode of the diode 130.
  • the anode of the further diode 131 is with a switching means 116 and the a connection of the further consumer 101 in contact.
  • the second connection of the consumer 101 is with the Cathode of diode 125 or with node 110 contacted.
  • a first phase the usually only when switched on for the first time, when the battery is discharged Capacitor 145 occurs are the first switching means 115 and the second switching means 135 closed and give the flow of electricity through the consumer freely.
  • the current flows over the path consisting of the third, Diode 140, second switching means 135, consumer 100 and the first switching means 115.
  • a second phase also known as the deletion phase the first switching means 115 and the second switching means 135 in its open state.
  • a current flows over the path consisting of the first Diode 125, consumer 100, second diode 130 and the capacitor 145.
  • that in the consumer 100 stored energy in capacitor 145 as well reloaded the voltage source.
  • the aim of the deletion phase is it, the current flowing through the consumer in as much as possible decrease to zero in a short time.
  • a third phase the first switching means 115 and the second switching means 135 is closed and the current flows through the path consisting of capacitor 145, the second Switching means 135, the consumer 100 and the first Switching means 115.
  • this phase that in the capacitor 145 stored energy returned to the consumer as well as energy from the voltage source into the consumer transfer.
  • This phase is also known as the tightening phase. Their goal is to achieve a high level of electricity To keep the closing time of the solenoid valve as short as possible.
  • a fourth phase the current flows through the path from the third diode 140, the second switching means 135, the consumer 100 and the first switching means 115.
  • This phase is the energy loss from the voltage source provided.
  • the third diode 140 prevents capacitor 145 charges positively.
  • the so-called holding current phase remains the second switching means 135 in its closed State and the switching means 115 is operated clocked, this means it is opened and closed alternately. This is usually done in such a way that A certain current value.
  • this Clocking phase alternating between energizing and freewheeling capacitor 145 remains in its discharged state Status.
  • the operation of this arrangement is described below of Figure 2 described.
  • the first line is a control signal for the second switching means 135 is applied, that the control of the solenoid valve and thus the beginning and defines the end of fuel metering.
  • the second line is the one flowing through the solenoid valve Current, and on the third line, at the cathode of the Diode 140 against voltage applied to ground. This voltage corresponds when the first switch is closed 115 and second switch 135, which abut the solenoid valve Tension.
  • the third phase begins at the time T1. This means that the current I applied in the third line, which flows through the solenoid valve, increases sinusoidally. At the same time, the voltage U K applied to the cathode of the third diode 140, which is shown in the fourth line, drops cosine. This third phase ends at time T2.
  • the voltage U k applied to the cathode of the third diode 140 has dropped to a value U bat . This means that the capacitor 145 is no longer discharged, since the voltage U c applied to the capacitor assumes the value zero. Furthermore, the third diode 140 prevents positive charging of the capacitor 145.
  • the device is in the fourth phase, in which the supply voltage provides the required energy.
  • the voltage applied to the third diode 140 or to the capacitor 140 remains at zero.
  • the current increases linearly over time until it reaches its specified starting current setpoint i 1 .
  • the current is adjusted to the pull-in current setpoint i 1 as in the fifth phase.
  • the device reaches the fifth phase, the so-called clocking phase.
  • the current flowing through the consumer is regulated to a predefinable holding current setpoint i 2 .
  • a two-point controller is preferably used here, the the current flowing through the consumer with a predefinable Compares value. If the current exceeds an upper one Value, only the switching means 115 opens the current has a lower value, the switching means opens 115. This leads to the current in this fifth phase oscillates between the upper and lower values. The second switching means remains in this fifth phase 135 closed, so there is no energy transfer between Capacitor 140 and consumer 100 instead.
  • the timing phase is followed by the second phase from time T4.
  • the control signals plotted in the first and second lines of FIG. 2 end. This means that both switching means are opened. As a result, the current decreases sinusoidally.
  • the voltage U k on the capacitor 145 or on the cathode of the third diode 140 rises to a value U D above the supply voltage U bat . This means the capacitor is recharged.
  • the capacitor 145 and the consumer form 100 a resonant circuit in which the energy in the second phase from the consumer into the voltage source and the Capacitor 145 and in the third phase from the voltage source and the capacitor 145 reloaded into the consumer becomes. None occurs during the clocking in the fifth phase Reloading between the consumer and the capacitor.
  • capacitor 145 is self-discharging very low. The case can only be started occur that the capacitor is partially discharged. this leads to to the fact that when the consumer is energized, this first Current build-up is slower. To fix this disadvantage the further embodiment shown in FIG Invention proposed.
  • the same as that shown in Figure 1 is another Switching means 200 between the supply voltage and the Capacitor 145 arranged.
  • the connection point between this switching means 200 is an additional switching means 220 connected to ground.
  • the additional Switching means 220 closed and the other switching means 200 also open. This will open the capacitor Supply voltage charged so that for the first current build-up additional energy for acceleration after a long standstill of the current structure is available.
  • FIG. 3b A further embodiment is shown in FIG. 3b.
  • This Circuit has the advantage that the capacitor through the resonant circuit formed from inductor 210 and capacitor 145 charged to a voltage double that Supply voltage corresponds.
  • FIG 4 shows a further embodiment of the invention.
  • the components already described in Figure 1 the the same as that shown in Figure 1 is another Switching means 200 between the supply voltage and the Capacitor 145 arranged.
  • the connection point between this switching means 200 and the capacitor 145 is included the connection point between diode 130, consumer 100 and Switching means 115 in contact.
  • connection point 110 is via a switching means 400 connected to ground.
  • the switching means 135 and 115 open, the switching means 200 and 400 closed. This will cause the capacitor to reach a voltage that the double supply voltage corresponds to charged.
  • the consumer 100 takes over Tasks of the throttle 210.
  • the switching means are preferably in the form of transistors, in particular realized as field effect transistors.
  • the switching means are from a control unit, not shown acted upon with control signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Es wird eine Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers (100), insbesondere eines Magnetventils zur Steuerung der einzuspritzenden Kraftstoffmenge beschrieben. Zwischen einer Halbbrücke und einer Spannungsquelle (Ubat) ist ein energiespeicherndes Element (145) angeordnet.

Description

Stand der Technik
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers gemäß den Oberbegriffen der unabhängigen Ansprüche.
Eine Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers ist aus der US 3 896 346 bekannt. Diese Schrift zeigt ein Verfahren und eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers mittels einer Halbbrücke. Dabei ist vorgesehen, daß zwei Verbraucher abwechselnd eingeschaltet und ausgeschaltet werden. Dabei wird die beim Ausschalten des einen Verbrauchers freiwerdende Energie in den gleichzeitig einzuschaltenden anderen Verbraucher umgeladen. Da der Stromabfall und der Stromanstieg nicht völlig deckungsgleich sind, wird ein kleiner Teil der Energie in einem Kondensator zwischengespeichert. Dieser Kondensator ist parallel zur Halbbrücke bzw. parallel zu der Spannungsquelle geschaltet.
Nachteilig an dieser Anordnung ist, daß sich die Vorteile dieser Schaltung nur dann ergeben, wenn zwei Verbraucher komplementär geschaltet werden. Sollen zwei Verbraucher unabhängig voneinander ein- und ausgeschaltet werden, so kann diese Anordnungen nicht verwendet werden.
Die EP 088 445 zeigt ein Verfahren und eine Vorrichtung zur Ansteuerung eines Verbrauchers. Hier wird eine H-Brückenschaltung verwendet. Dies erfolgt mit Blick auf die Aufgabgenstellung, daß ein Stromfluß in unterschiedliche Richtungen durch den Verbraucher gewünscht wird. Die Problematik, daß der Verbraucher möglichst schnell einschalten soll, wird nicht angesprochen.
Ferner sind Vorrichtungen und Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers (100), insbesondere eines Magnetventils zur Steuerung der einzuspritzenden Kraftstoffmenge, mittels einer Halbbrücke bekannt. Bei diesen Vorrichtungen wird die beim Abschalten freiwerdende Energie mittels Zenerdioden in Wärme umgesetzt und geht verloren.
Eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbraucher ist aus der DE-OS 37 02 680 bekannt. Dort wird eine Schaltungsanordnung zur Ansteuerung eines elektromagnetischen Verbrauchers beschrieben. Eine in Reihe zum Verbraucher angeordnetes elektronisches Schaltelement ist durch einen Löschkreis überbrückbar. Dieser Löschkreis enthält einen Energiespeicher in Form eines Kondensators zur Aufnahme, der im Verbraucher gespeicherten Energie. Nachteilhaft bei dieser Schaltungsanordnung ist, daß sie bauteileaufwendig ist und zur Energiezwischenspeicherung einen voluminösen Kondensator erfordert, der ständig mindestens auf Versorgungsspannung geladen ist. Neben dem Kondensator sind wenigstens zwei Seriendioden erforderlich.
Bei dieser Einrichtung wird bei jedem Schaltvorgang, die in dem Verbraucher gespeicherte Energie in einem Kondensator gespeichert. Diese zwischengespeicherte Energie wird bei der nächsten Ansteuerung in einen zweiten Verbraucher geleitet.
Ferner ist eine Vorrichtung zur Ansteuerung eines Verbrauchers aus der DE-OS-37 34 415 bekannt. Dort wird die beim Abschalten frei werdende Energie in einem Kondensator gespeichert. Beim Einschalten wird die gespeicherte Energie dem Verbraucher zugeführt. Hierzu sind gegenüber einer Einrichtung ohne Energierückführung wenigstens zwei weitere Schaltmittel erforderlich.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einer Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers eine möglichst einfach aufgebaute Einrichtung bereitzustellen, mit der der Einschaltvorgang beschleunigt und der Gesamtenergieverbrauch minimiert wird.
Vorteile der Erfindung
Die erfindungsgemäße Schaltungsanordnung mit den Merkmalen der unabhängigen Ansprüche weist den Vorteil auf, daß sich eine verlustfreie Löschung ergibt. Desweiteren kann, durch die Wiederverwendung der beim Löschvorgang gespeicherten Energie beim Einschalten, der Stromanstieg vergrößert werden. Dies führt wiederum dazu, daß sich die Magnetventilschaltzeit verringert. Diese Vorteile werden bei einem geringen Bauteileaufwand erreicht. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.
Zeichnung
Die erfindungsgemäße Einrichtung wird nachstehend anhand den in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 eine Schaltungsanordnung der erfindungsgemäßen Einrichtung, Figur 2 verschiedene über der Zeit aufgetragenen Signale und die Figuren 3 und 4 verbesserte Schaltungsanordnungen.
Beschreibung der Ausführungsbeispiele
Die erfindungsgemäße Einrichtung wird bevorzugt bei Brennkraftmaschinen, insbesondere bei selbstzündenden Brennkraftmaschinen, eingesetzt. Dort wird die Kraftstoffzumessung mittels elektromagnetischer Ventile gesteuert. Diese elektromagnetischen Ventile werden im Folgenden als Verbraucher bezeichnet. Die Erfindung ist aber nicht auf diese Anwendung beschränkt, sie kann überall dort eingesetzt werden, wo schnell schaltende elektromagnetische Ventile benötigt werden.
Bei solchen Anwendungen legen der Öffnungs- und Schließzeitpunkt eines Magnetventils den Einspritzbeginn bzw. das Einspritzende fest.
Üblicherweise wird der Zeitraum zwischen der Ansteuerung des Magnetventils und dem tatsächlichen Öffnen bzw. Schließen des Magnetventils als Schaltzeit bezeichnet. Insbesondere bei Dieselbrennkraftmaschinen ist es wünschenswert, daß die Schaltzeit möglichst gering ist.
Zur Erzielung möglichst kleiner Schaltzeiten ist ein möglichst schneller Kraftaufbau bzw. Kraftabbau im Verbraucher erforderlich. Ein solcher schneller Kraftaufbau bzw. Kraftabbau kann durch einen entsprechend schnellen Stromaufbau bzw, Stromabbau erzielt werden.
In Figur 1 sind die wesentlichsten Elemente der erfindungsgemäßen Einrichtung dargestellt. Mit 100 ist der anzusteuernde Verbraucher bezeichnet. Ein erster Anschluß des Verbrauchers 100 steht mit einem Verknüpfungspunkt 105 und der zweite Anschluß mit einem Verknüpfungspunkt 110 in Verbindung. Der Verknüpfungspunkt 105 ist über ein erstes Schaltmittel 115 mit dem Masseanschluß 120 verbunden. Der zweite Verknüpfungspunkt 110 steht mit der Kathode einer ersten Diode 125 in Kontakt. Die Anode der ersten Diode 125 liegt auf Massepotential.
Des weiteren steht der Verknüpfungspunkt 105 mit der Anode einer zweiten Diode 130 in Kontakt. Der Verknüpfungspunkt 110 steht über ein zweites Schaltmittel 135 mit der Kathode der zweiten Diode 130 in Kontakt.
Der Verbindungspunkt zwischen der Kathode der zweiten Diode 130 und dem Schaltmittel 135 steht zum einen mit der Kathode einer dritten Diode 140 und dem einen Anschluß eines Kondensators 145 in Kontakt. Der zweite Anschluß des Kondensators 145 und die Anode der dritten Diode 140 stehen mit einer Spannungsquelle in Verbindung, die diese mit Versorgungsspannung Ubat beaufschlagt.
Die Anordnung des Verbrauchers 100, der beiden Schaltmittel 115 und 135 sowie der ersten und zweiten Diode 125 und 130 wird üblicherweise als Halbbrücke bezeichnet.
Üblicherweise werden bei der Kraftstoffzumessung in Brennkraftmaschinen mehrere Magnetventile benötigt. Gestrichelt ist eine Ausführungsform mit zwei Magnetventilen dargestellt. In diesem Fall ist die Kathode einer weiteren Diode 131 mit der Kathode der Diode 130 verbunden. Die Anode der weiteren Diode 131 steht mit einem Schaltmittel 116 und dem einen Anschluß des weiteren Verbrauchers 101 in Kontakt. Über das Schaltmittel 116 steht die Anode der Diode 131 und der eine Anschluß des Verbrauchers 101 mit Masse in Verbindung. Der zweite Anschluß des Verbrauchers 101 ist mit der Kathode der Diode 125 bzw. mit dem Verknüpfungspunkt 110 kontaktiert.
In entsprechender Weise können noch weitere Verbraucher beschaltet werden.
Bei der Ansteuerung des Verbrauchers in dieser Schaltungsanordnung mit charakteristischem Stromprofil kann man verschiedene Phasen unterscheiden. In einer ersten Phase, die in der Regel lediglich beim ersten Einschalten, bei entladenem Kondensator 145 auftritt, sind das erste Schaltmittel 115 und das zweite Schaltmittel 135 geschlossen und geben den Stromfluß durch den Verbraucher frei. In dieser Phase fließt der Strom über den Pfad bestehend aus der dritten, Diode 140, dem zweiten Schaltmittel 135, dem Verbraucher 100 und dem ersten Schaltmittel 115.
In einer zweiten Phase, die auch als Löschphase bezeichnet wird, sind das erste Schaltmittel 115 und das zweite Schaltmittel 135 in ihrem geöffneten Zustand. In dieser Phase fließt ein Strom über den Pfad bestehend aus der ersten Diode 125, dem Verbraucher 100, der zweiten Diode 130 und dem Kondensator 145. Während dieser Phase wird die im Verbraucher 100 gespeicherte Energie in den Kondensator 145 sowie der Spannungsquelle umgeladen. Ziel der Löschphase ist es, den durch den Verbraucher fließenden Strom in möglichst kurzer Zeit auf den Wert Null zu verringern.
In einer dritten Phase ist das erste Schaltmittel 115 und das zweite Schaltmittel 135 geschlossen und der Strom fließt durch den Pfad bestehend aus dem Kondensator 145, dem zweiten Schaltmittel 135, dem Verbraucher 100 und dem ersten Schaltmittel 115. In dieser Phase wird die im Kondensator 145 gespeicherte Energie in den Verbraucher zurückgeführt sowie Energie aus der Spannungsquelle in den Verbraucher übertragen. Diese Phase wird auch als Anzugsphase bezeichnet. Deren Ziel es ist, durch ein hohes Stromniveau die Schließzeit des Magnetventils möglichst gering zu halten.
In einer vierten Phase fließt der Strom über den Pfad bestehend aus der dritten Diode 140, dem zweitem Schaltmittel 135, dem Verbraucher 100 und dem erstem Schaltmittel 115. In dieser Phase wird die Verlustenergie von der Spannungsquelle bereitgestellt. Die dritte Diode 140 verhindert, daß sich der Kondensator 145 positiv auflädt.
In einer fünften Phase, der sogenannten Haltestromphase verbleibt das zweite Schaltmittel 135 in seinem geschlossenen Zustand und das Schaltmittel 115 wird getaktet betrieben, dies bedeutet, es wird abwechselnd geöffnet und geschlossen. Diese erfolgt in der Regel derart, daß sich im zeitlichen Mittel ein bestimmter Stromwert einstellt. Während dieser Taktungsphase, in der zwischen Bestromen und Freilauf abgewechselt wird, verbleibt der Kondensator 145 in seinem entladenen Zustand. In der Haltestromphase, wird die Verlustleistung durch Absenken des Soll-Stromniveaus und durch das Takten reduziert.
Die Funktionsweise dieser Anordnung wird im folgenden anhand der Figur 2 beschrieben. In Figur 2 sind verschiedene Signale über der Zeit aufgetragen. In der ersten Zeile ist ein Ansteuersignal für das zweite Schaltmittel 135 aufgetragen, das die Ansteuerung des Magnetventils und damit den Beginn und das Ende der Kraftstoffzumessung definiert. In der zweiten Zeile ist, der durch das Magnetventil fließende Strom, und in der dritten Zeile, die an der Kathode der Diode 140 gegen Masse anliegende Spannung, aufgetragen. Diese Spannung entspricht bei geschlossenem ersten Schalter 115 und zweitem Schalter 135, der über dem Magnetventil anliegenden Spannung.
In Figur 2 sind ferner die verschiedenen Phasen dargestellt. Zum Zeitpunkt T1 gibt ein nicht dargestellte Ansteuereinheit, das in der ersten Zeile der Figur 2 dargestellte Steuersignal ab. Bei Vorliegen dieses Signals schließt das Schaltmittel 135. Bei Vorliegen des in der zweiten Zeile aufgetragenen Signals gibt das erste Schaltmittel 115 den Stromfluß frei.
Ist der Kondensator 145 bereits von einer früheren Löschphase aufgeladen, so beginnt zum Zeitpunkt T1 die dritte Phase. Dies bedeutet, der in der dritten Zeile aufgetragene Strom I, der durch das Magnetventil fließt, steigt sinusförmig an. Gleichzeitig fällt die an der Kathode der dritten Diode 140 gegen Masse anliegende Spannung UK, die in der vierten Zeile dargestellt ist, cosinusförmig ab. Zum Zeitpunkt T2 endet diese dritte Phase.
Zum Zeitpunkt T2 ist die an der Kathode der dritten Diode 140 anliegende Spannung Uk bis auf einen Wert Ubat abgefallen. Dies bedeutet, der Kondensator 145 wird nicht mehr weiter entladen, da die am Kondensator anliegende Spannung Uc den Wert Null annimmt. Des weiteren verhindert die dritte Diode 140 eine positive Aufladung des Kondensators 145.
Ab dem Zeitpunkt T2 bis zu dem Zeitpunkt T3 befindet sich die Einrichtung in der vierten Phase, in der die Versorgungsspannung die erforderliche Energie bereitstellt. Die an der dritten Diode 140 bzw. am Kondensator 140 anliegende Spannung bleibt auf dem Wert Null. Der Strom steigt während dieser Phase linear über der Zeit an, bis er seinen vorgegebenen Anzugstromsollwert i1 erreicht.
Abhängig von dem Typ des elektromagnetischen Verbrauchers 100 kann auch vorgesehen sein, daß in dieser Phase der Strom auf den Anzugstromsollwert i1 entsprechend wie in der fünften Phase eingeregelt wird.
Zum dem Zeitpunkt T3 erreicht die Einrichtung die fünfte Phase, die sogenannte Taktungsphase. In dieser Phase wird durch Öffnen und Schließen des ersten Schaltmittels 115 der Strom, der durch den Verbraucher fließt, auf einen vorgebbaren Haltestromsollwert i2 eingeregelt.
Vorzugsweise wird hier ein Zweipunktregler eingesetzt, der den durch den Verbraucher fließenden Strom mit einem vorgebbaren Wert vergleicht. Überschreitet der Strom einen oberen Wert, so öffnet lediglich das Schaltmittel 115. Unterschreitet der Strom einen unteren Wert, so öffnet das Schaltmittel 115. Dies führt dazu, daß der Strom in dieser fünften Phase zwischen dem oberen und dem unteren Wert hin und her pendelt. In dieser fünften Phase bleibt das zweite Schaltmittel 135 geschlossen, daher findet keine Energieumladung zwischen Kondensator 140 und Verbraucher 100 statt.
An die Taktungsphase schließt sich ab dem Zeitpunkt T4 die zweite Phase an. Zum Zeitpunkt T4 enden, die in der ersten und zweiten Zeile der Figur 2 aufgetragenen Ansteuersignale. Dies bedeutet, daß beide Schaltmittel geöffnet werden. Dies hat zur Folge, daß der Strom sinusförmig abnimmt. Gleichzeitig steigt die Spannung Uk am Kondensator 145 bzw. an der Kathode der dritten Diode 140 auf einen Wert UD oberhalb der Versorgungsspannung Ubat an. Dies bedeutet, der Kondensator wird wieder aufgeladen.
Erfindungsgemäß bilden der Kondensator 145 und der Verbraucher 100 einen Schwingkreis, bei dem die Energie in der zweiten Phase vom Verbraucher in die Spannungsquelle und den Kondensator 145 und in der dritten Phase aus der Spannungsquelle und dem Kondensator 145 in den Verbraucher umgeladen wird. Während der Taktung in der fünften Phase erfolgt keine Umladung zwischen dem Verbraucher und dem Kondensator.
Hieraus ergibt sich der Vorteil daß bei Beginn und Ende der Bestromung des Verbrauchers in den Phasen zwei und drei sich eine schnelle Änderung des durch den Verbraucher fließenden Stroms ergibt, was zu sehr kurzen Schaltzeiten des Verbrauchers führt. Dadurch, daß zusätzlich zum Kondensator 145 auch die Spannungsquelle einen Teil des Schwingkreises bildet, verkürzt sich die Löschphase und die Anzugsphase und damit auch die Schaltzeiten zusätzlich. Dadurch ergibt sich bei gleicher Schaltzeit eine kleinere Bauform.
Neben den verkürzten Ein/Ausschaltzeiten treten keine Energieverluste durch den Löschvorgang auf. Die beim Löschvorgang in den Kondensator zurückgeführte Energie wird beim Einschalten zurückgewonnen.
Diese Vorteile ergeben sich im wesentlichen durch die erfindungsgemäßen Kombination einer Halbbrücke und einem geeignet geschalteten energiespeichernden Element sowie der Diode 140. Dieses energiespeichernde Element 145 ist in Reihe zwischen der Versorgungsspannung und der Halbbrücke geschaltet.
In der Regel ist die Selbstentladung des Kondensators 145 sehr gering. Lediglich beim in Gang setzen kann der Fall eintreten, daß der Kondensator teilentladen ist. Dies führt dazu, daß beim Bestromen des Verbrauchers dieser erste Stromaufbau langsamer erfolgt. Um diesen Nachteil zu beheben wird die in Figur 3a dargestellte weitere Ausgestaltung der Erfindung vorgeschlagen.
Neben den bereits in Figur 1 beschriebenen Bauelementen, die gleich wie in Figur 1 bezeichnet sind, ist ein weiteres Schaltmittel 200 zwischen der Versorgungsspannung und dem Kondensator 145 angeordnet. Der Verbindungspunkt zwischen diesem Schaltmittel 200 steht ein zusätzliches Schaltmittel 220 mit Masse in Verbindung. Um den Kondensator aufzuladen, werden die Schaltmittel 135 und 115 geöffnet, das zusätzliche Schaltmittel 220 geschlossen und das weitere Schaltmittel 200 ebenfalls geöffnet. Dadurch wird der Kondensator auf Versorgungsspannung aufgeladen, so daß für den ersten Stromaufbau nach längerem Stillstand zusätzliche Energie zur Beschleunigung des Stromaufbaus zur Verfügung steht.
In Figur 3b ist eine weitere Ausführungsform dargestellt. Neben den bereits in Figur 3a gezeigten Elementen ist zwischen dem zusätzlichen Schaltmittel 220 und dem weiteren Schaltmittel 200 eine Induktivität 210 angeordnet. Diese Schaltung besitzt den Vorteil, daß der Kondensator durch den aus Induktivität 210 und Kondensator 145 gebildeten Schwingkreis auf eine Spannung aufgeladen wird, die der doppelten Versorgungsspannung entspricht.
Figur 4 zeigt eine weitere Ausgestaltung der Erfindung. Neben den bereits in Figur 1 beschriebenen Bauelementen, die gleich wie in Figur 1 bezeichnet sind, ist ein weiteres Schaltmittel 200 zwischen der Versorgungsspannung und dem Kondensator 145 angeordnet. Der Verbindungspunkt zwischen diesem Schaltmittel 200 und dem Kondensator 145 steht mit dem Verbindungspunkt zwischen Diode 130, Verbraucher 100 und Schaltmittel 115 in Kontakt.
Ferner steht der Verbindungspunkt 110 über ein Schaltmittel 400 mit Masse in Verbindung.
Um den Kondensator 145 aufzuladen, werden die Schaltmittel 135 und 115 geöffnet, die Schaltmittel 200 und 400 geschlossen. Dadurch wird der Kondensator auf eine Spannung, die der doppelten Versorgungsspannung entspricht aufgeladen. Bei dieser Ausführungsform übernimmt der Verbraucher 100 die Aufgaben der Drossel 210.
Bei dieser Ausführungsform ist vorteilhaft, daß eine entsprechende Aufladung des Kondensators, wie bei der Einrichtung gemäß Figur 3b möglich ist, wobei aber keine zusätzliche Drossel benötigt wird.
Die Schaltmittel sind vorzugsweise als Transistoren, insbesondere als Feldeffekttransistoren, realisiert. Die Schaltmittel werden von einer nicht dargestellten Steuereinheit mit Ansteuersignalen beaufschlagt.

Claims (10)

  1. Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers (100), insbesondere eines Magnetventils zur Steuerung der einzuspritzenden Kraftstoffmenge, mittels einer Halbbrücke, dadurch gekennzeichnet, daß zwischen der Halbbrücke und einer Spannungungsquelle (Ubat) in Reihe ein energiespeicherndes Element (145) angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als energiespeicherndes Element (145) ein Kondensator verwendet wird.
  3. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß parallel zu dem energiespeichernden Element (145) eine Diode (140) geschaltet ist.
  4. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zwischen dem energiespeichernden Element (145) und der Spannungsquelle ein weiteres Schaltmittel (200) angeordnet ist.
  5. Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers (100), insbesondere eines Magnetventils zur Steuerung der einzuspritzenden Kraftstoffmenge, mittels einer Halbbrücke dadurch gekennzeichnet, daß Schaltmittel der Halbbrücke so ansteuerbar sind, daß ein zwischen der Halbbrücke und einer Spannungssquelle Ubat in Reihe angeordnetes energiespeicherndes Element (145) und/oder eine Spannungsquelle mit dem Verbraucher (100) Energie austauschen.
  6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß in einer zweiten Phase (Löschphase) Energie vom Verbraucher (100) in das energiespeichernde Element (145) und/oder die Spannungsquelle überführt wird.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß in der zweiten Phase das erste Schaltmittel (115) und das zweite Schaltmittel (135) derart ansteuerbar ist, daß sich ein Stromfluß in einem Pfad bestehend aus einer ersten Diode (125), dem Verbraucher (100), einer zweiten Diode (130) und dem energiespeichernden Element (145) und/oder der Spannungsquelle einstellt.
  8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß in einer dritten Phase Energie vom energiespeichernde Element (145) und/oder der Spannungsquelle in den Verbraucher (100) überführt wird.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß in einer dritten Phase das erste Schaltmittel (115) und das zweite Schaltmittel (135) derart ansteuerbar sind, daß sich ein Stromfluß in einem Pfad bestehend aus dem energiespeichernden Element (145), dem zweiten Schaltmittel (135), dem Verbraucher (100) und dem ersten Schaltmittel (115) über eine Diode (140) einstellt.
  10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß Schaltmittel (200, 220) derart angesteuert werden, daß das energiespeichernde Element (145) in einer Phase mit Energie aus der Spannungsquelle beaufschlagt wird.
EP95913053A 1994-04-16 1995-03-24 Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers Expired - Lifetime EP0704097B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4413240A DE4413240A1 (de) 1994-04-16 1994-04-16 Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4413240 1994-04-16
PCT/DE1995/000408 WO1995028721A1 (de) 1994-04-16 1995-03-24 Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers

Publications (2)

Publication Number Publication Date
EP0704097A1 EP0704097A1 (de) 1996-04-03
EP0704097B1 true EP0704097B1 (de) 2000-02-16

Family

ID=6515630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95913053A Expired - Lifetime EP0704097B1 (de) 1994-04-16 1995-03-24 Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers

Country Status (5)

Country Link
US (1) US5729422A (de)
EP (1) EP0704097B1 (de)
JP (1) JPH08512436A (de)
DE (2) DE4413240A1 (de)
WO (1) WO1995028721A1 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955622B2 (ja) * 1995-03-02 2007-08-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 少なくとも1つの電磁的負荷の制御装置
US5907466A (en) * 1995-09-23 1999-05-25 Robert Bosch Gmbh Device and process for activating at least two electromagnetic loads
DE19634342B4 (de) * 1996-08-24 2007-05-16 Bosch Gmbh Robert Vorrichtung zur Ansteuerung wenigstens zweier elektromagnetischer Verbraucher
GB9619786D0 (en) * 1996-09-20 1996-11-06 Lucas Ind Plc Drive circuit
DE19701471A1 (de) 1997-01-17 1998-07-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19711768B4 (de) * 1997-03-21 2007-04-05 Bosch Rexroth Aktiengesellschaft Elektromagnetischer Stellantrieb
DE19742283A1 (de) * 1997-09-25 1999-04-08 Veit Zoeppig Pneumatikventil
IT1296664B1 (it) * 1997-12-19 1999-07-14 Fiat Ricerche Dispositivo di comando di elettroattuatori.
DE59901216D1 (de) 1998-08-13 2002-05-16 Siemens Ag Einrichtung zum steuern eines stellgeräts
DE19922485B4 (de) * 1999-05-15 2008-06-12 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Ansteuerung eines Doppelspulen-Hochdruckeinspritzmagnetventils für die Kraftstoffeinspritzung
DE19947958C1 (de) * 1999-10-06 2001-06-21 Uni Geraete E Mangelmann Elekt Magnetventil
DE10123519A1 (de) * 2001-05-15 2002-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern
DE10140550B4 (de) * 2001-08-17 2007-08-02 Robert Bosch Gmbh Verfahren zur Funktionsüberwachung schnellschaltender Einspritzventile
GB0200027D0 (en) 2002-01-02 2002-02-13 Bae Systems Plc Improvements relating to operation of a current controller
GB0200030D0 (en) * 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
GB0200024D0 (en) * 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
DE10202279A1 (de) * 2002-01-22 2003-08-07 Siemens Ag Steuerschaltung für einen Aktor
US6850402B2 (en) * 2002-03-01 2005-02-01 Honeywell International Inc. Circuit and method for controlling current flow through a solenoid
DE10232742A1 (de) * 2002-07-19 2004-02-05 Ina-Schaeffler Kg Treiberstufe für ein Solenoidventil
DE10232741A1 (de) * 2002-07-19 2004-02-05 Ina-Schaeffler Kg Treiberstufe für ein Solenoidventil
FR2846808B1 (fr) * 2002-11-04 2005-06-24 Renault Sa Dispositif d'actionnement muni d'une topologie electronique de pilotage
JP2004197629A (ja) * 2002-12-18 2004-07-15 Denso Corp 電磁負荷駆動装置
US7057870B2 (en) * 2003-07-17 2006-06-06 Cummins, Inc. Inductive load driver circuit and system
US7690395B2 (en) * 2004-01-12 2010-04-06 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
FR2878090A1 (fr) * 2004-11-16 2006-05-19 Renault Sas Procede de commande d'un actionneur magnetostrictif, dispositif commandable en position mettant en oeuvre le procede
DE102005021174B4 (de) * 2005-05-06 2009-11-26 Daimler Ag Verfahren zur Ansteuerung eines Taktventils in einer Hochdruckpumpe eines Kraftfahrzeug-Verbrennungsmotors
US9243392B2 (en) 2006-12-19 2016-01-26 Delta Faucet Company Resistive coupling for an automatic faucet
US7806141B2 (en) 2007-01-31 2010-10-05 Masco Corporation Of Indiana Mixing valve including a molded waterway assembly
US8944105B2 (en) 2007-01-31 2015-02-03 Masco Corporation Of Indiana Capacitive sensing apparatus and method for faucets
WO2008118402A1 (en) 2007-03-28 2008-10-02 Masco Corporation Of Indiana Improved capacitive touch sensor
US8613419B2 (en) * 2007-12-11 2013-12-24 Masco Corporation Of Indiana Capacitive coupling arrangement for a faucet
JP4859951B2 (ja) * 2009-05-14 2012-01-25 三菱電機株式会社 車載エンジン制御装置
US8561626B2 (en) 2010-04-20 2013-10-22 Masco Corporation Of Indiana Capacitive sensing system and method for operating a faucet
US8776817B2 (en) 2010-04-20 2014-07-15 Masco Corporation Of Indiana Electronic faucet with a capacitive sensing system and a method therefor
DE102012211994A1 (de) * 2012-07-10 2014-01-16 Continental Automotive Gmbh Steuergerät zur Ansteuerung zumindest einen Kraftstoffeinspritzventils und Schaltungsanordnung mit einem solchen Steuergerät
DE102012024862B3 (de) * 2012-12-19 2013-07-04 Audi Ag Aktor, Kraftfahrzeug mit einem derartigen Aktor und Verfahren zum Betreiben eines Aktors
EP3005381B1 (de) * 2013-05-27 2019-07-10 Electrolux Appliances Aktiebolag Treiberschaltung für elektromagnetischen spender
CN109901508B (zh) * 2019-04-02 2021-01-19 北京天地玛珂电液控制***有限公司 液压支架控制***

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1115785B (de) * 1960-08-13 1961-10-26 Standard Elektrik Lorenz Ag Schaltungsanordnung zum Betaetigen und Halten eines Relais mittels Kondensator
DE1288194B (de) * 1964-07-01 1969-01-30 Morat Gmbh Franz Schaltungsanordnung zur Schnellerregung von gleichstrombetriebenen Elektromagneten
DE1219977B (de) * 1965-01-21 1966-06-30 Philips Patentverwaltung Elektronische Schaltvorrichtung zum schnellen Abschalten und Wiedereinschalten von stromdurchflossenen Induktivitaeten
USRE30150E (en) * 1971-08-02 1979-11-13 Ncr Corporation Inductor drive means
US3896346A (en) * 1972-11-21 1975-07-22 Electronic Camshaft Corp High speed electromagnet control circuit
US4041546A (en) * 1976-06-04 1977-08-09 Ncr Corporation Solenoid driver circuit
SU729743A1 (ru) * 1978-05-16 1980-04-25 Предприятие П/Я М-5170 Устройство дл форсированного включени электромагнитного реле
JPS58154345A (ja) * 1982-03-09 1983-09-13 三菱電機株式会社 コイル間エネルギ−転送回路
DE3327393A1 (de) * 1983-07-29 1985-02-14 Robert Bosch Gmbh, 7000 Stuttgart Steuereinrichtung zum schnelleren schalten eines elektromagnetischen verbrauchers, insbesondere in verbindung mit brennkraftmaschinen
JPS6057729A (ja) * 1983-09-08 1985-04-03 Nippon Soken Inc 携帯用送信器
DE3702680A1 (de) * 1986-02-18 1987-10-29 Bosch Gmbh Robert Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
DE3734415A1 (de) * 1987-10-12 1989-04-20 Bosch Gmbh Robert Schaltungsanordnung zur beschleunigung der versorgung eines elektromagnetischen verbrauchers
JPH01167008U (de) * 1988-05-13 1989-11-22
DE3939547C2 (de) * 1989-11-30 1999-07-01 Bosch Gmbh Robert Vorrichtung zur Kraftstoffeinspritzung in Brennkraftmaschine
IT1251259B (it) * 1991-12-23 1995-05-05 Elasis Sistema Ricerca Fiat Circuito di comando di carichi prevalentemente induttivi, in particolare elettroiniettori.

Also Published As

Publication number Publication date
EP0704097A1 (de) 1996-04-03
DE59507809D1 (de) 2000-03-23
JPH08512436A (ja) 1996-12-24
US5729422A (en) 1998-03-17
WO1995028721A1 (de) 1995-10-26
DE4413240A1 (de) 1995-10-19

Similar Documents

Publication Publication Date Title
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
DE19539071A1 (de) Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
EP0812461B1 (de) Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
DE60011038T2 (de) Zeit und Fall-kontrolliertes Aktivierungssystem für die Aufladung und die Entladung von piezoelektrischen Elementen
EP0985814B1 (de) Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
DE102006014276B4 (de) Elektromagnetventil und Elektromagnetventil-Antriebsschaltung
DE102009006179B4 (de) Schaltungsanordnung zur Ansteuerung eines Einspritzventils
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
WO2011131467A2 (de) Verfahren zum betreiben einer brennkraftmaschine, bei dem ein magnetventil zum einspritzen von kraftstoff betätigt wird
DE602004004664T2 (de) Vorrichtung zum Steuern der Elektroeinspritzventile und Elektroventile einer Brennkraftmaschine und eine Methode dafür
DE10304083A1 (de) Antriebssystem für ein Einspritzventil und Verfahren zur Steuerung des Antriebssystems
EP1108120A1 (de) Einrichtung zum steuern eines stellgeräts
DE19831599A1 (de) Verfahren und Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes
DE102008040860A1 (de) Schaltungsanordnung zum Betreiben einer Anzahl Einspritzventile
DE19634342A1 (de) Vorrichtung zur Ansteuerung wenigstens zweier elektromagnetischer Verbraucher
DE19808780A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
DE10359272A1 (de) Elektromagnetisches Lastantriebsgerät
DE4332995C1 (de) Verfahren zur Ansteuerung von parallel angeordneten Relais
DE19617264A1 (de) Vorrichtung und Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers
DE10341582B4 (de) Schaltungsanordnung zum schnellen Schalten induktiver Lasten
DE10357872A1 (de) Verfahren und Vorrichtung zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils
DE10245135A1 (de) Piezobetätigungsglied-Antriebsschaltung
WO1990009518A1 (de) Schaltungsanordnung und verfahren für das beschleunigte schalten von elektromagnetischen verbrauchern
EP0945610A2 (de) Verfahren und Vorrichtung zum Schalten einer Induktivität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19960426

17Q First examination report despatched

Effective date: 19981012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59507809

Country of ref document: DE

Date of ref document: 20000323

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040322

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050325

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090526

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110324

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110324