EP1065745A2 - Method of producing a dielectric strip line - Google Patents

Method of producing a dielectric strip line Download PDF

Info

Publication number
EP1065745A2
EP1065745A2 EP00112723A EP00112723A EP1065745A2 EP 1065745 A2 EP1065745 A2 EP 1065745A2 EP 00112723 A EP00112723 A EP 00112723A EP 00112723 A EP00112723 A EP 00112723A EP 1065745 A2 EP1065745 A2 EP 1065745A2
Authority
EP
European Patent Office
Prior art keywords
green sheet
resist material
dielectric
producing
dielectric line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00112723A
Other languages
German (de)
French (fr)
Other versions
EP1065745A3 (en
Inventor
Toshikazu Takeda, (A170) Intellectual Prop. Dept.
Yoshifumi Ogiso, (A170) Intellectual Prop. Dept.
Yukio Hamaji, (A170) Intellectual Prop. Dept.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of EP1065745A2 publication Critical patent/EP1065745A2/en
Publication of EP1065745A3 publication Critical patent/EP1065745A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • H01P3/165Non-radiating dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides

Definitions

  • the present invention relates to a method of producing transmission line used in the milli-wave or microwave band, and a dielectric line suitable for integrated circuits.
  • a conventional dielectric line comprises a dielectric strip provided between substantially parallel two conductive planes so that electromagnetic waves are propagated along the dielectric strip.
  • a non radiative dielectric waveguide (referred to as a "NRD guide” hereinafter) has been developed as a transmission line with less propagation loss, in which the distance between the two dielectric planes is set to a half wavelength or less of a propagated wave to form a cut-off region, for avoiding radiation of electromagnetic waves from the dielectric strip.
  • the electromagnetic wave transmission modes of such a NRD guide include LSM and LSE modes; the LSM mode causing less loss is generally used.
  • Figs. 2 and 3 are sectional views respectively showing two constructions of conventional NRD guides.
  • Fig. 2 shows the construction of a normal type NRD guide comprising a dielectric strip 53 provided two conductive plates 51 and 52 arranged in parallel, which is disclosed in, for example, Japanese Examined Patent Publication No. 62-35281.
  • Fig. 3 shows the construction of a so-called winged type NRD guide in which conductors 59 and 60 are formed on the outer planes of dielectric strips 57 and 58 having wings 55 and 56, respectively, by an evaporation method or a method of baking silver paste, the dielectric strips being opposed to each other, as disclosed in Japanese Unexamined Patent Publication No. 6-260814.
  • the winged type NRD guide has the advantages that the conductors and the dielectric strips can easily be aligned, and that characteristics have excellent reproducibility, as compared with the normal type NRD guide.
  • a synthetic resin such as Teflon (registered trademark of U.S. Dupont) and the like, dielectric ceramics are used.
  • Teflon registered trademark of U.S. Dupont
  • dielectric ceramics are used as the material of the dielectric strips.
  • the width w of each of the dielectric strips 57 and 58, and the thickness t of each of the wings 55 and 56 are defined by the dielectric constant of the dielectric material used, and the frequency of the electromagnetic wave used. Generally, the width w and thickness t decrease as the dielectric constant and the frequency used increase.
  • a previously burned ceramic flat plate is cut, or a green sheet laminated product formed by laminating a plurality of green sheets each having an aperture is burned to produce a NRD guide comprising dielectric strips having a desired shape, as disclosed in Japanese Unexamined Patent Publication No. 10-224120.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguides (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

The present invention provides a method of producing a dielectric line which is capable of producing a dielectric line at low cost with causing neither cracks nor chips in processing and high precision of each dimension of a dielectric strip. The method of producing a dielectric line having a dielectric strip provided between a plurality of substantially parallel conductive planes includes the step of forming a resist material on a green sheet containing at least an inorganic powder and an organic binder; the step of removing a desired amount of the green sheet corresponding to an aperture of the resist material used as a mask; the step of removing the resist material; and the step of burning the green sheet.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a method of producing transmission line used in the milli-wave or microwave band, and a dielectric line suitable for integrated circuits.
  • 2. Description of the Related Art
  • A conventional dielectric line comprises a dielectric strip provided between substantially parallel two conductive planes so that electromagnetic waves are propagated along the dielectric strip. Particularly, a non radiative dielectric waveguide (referred to as a "NRD guide" hereinafter) has been developed as a transmission line with less propagation loss, in which the distance between the two dielectric planes is set to a half wavelength or less of a propagated wave to form a cut-off region, for avoiding radiation of electromagnetic waves from the dielectric strip. The electromagnetic wave transmission modes of such a NRD guide include LSM and LSE modes; the LSM mode causing less loss is generally used.
  • Figs. 2 and 3 are sectional views respectively showing two constructions of conventional NRD guides. Fig. 2 shows the construction of a normal type NRD guide comprising a dielectric strip 53 provided two conductive plates 51 and 52 arranged in parallel, which is disclosed in, for example, Japanese Examined Patent Publication No. 62-35281. Fig. 3 shows the construction of a so-called winged type NRD guide in which conductors 59 and 60 are formed on the outer planes of dielectric strips 57 and 58 having wings 55 and 56, respectively, by an evaporation method or a method of baking silver paste, the dielectric strips being opposed to each other, as disclosed in Japanese Unexamined Patent Publication No. 6-260814. The winged type NRD guide has the advantages that the conductors and the dielectric strips can easily be aligned, and that characteristics have excellent reproducibility, as compared with the normal type NRD guide. As the material of the dielectric strips, a synthetic resin such as Teflon (registered trademark of U.S. Dupont) and the like, dielectric ceramics are used. By using a dielectric ceramic as the constituent material of the dielectric strips, it is possible to decrease a bend loss in a curved line, and attempt to reduce the size because its dielectric constant is generally lower than synthetic resins. Therefore, at present, the development of dielectric strips using dielectric ceramics is progress. The width w of each of the dielectric strips 57 and 58, and the thickness t of each of the wings 55 and 56 are defined by the dielectric constant of the dielectric material used, and the frequency of the electromagnetic wave used. Generally, the width w and thickness t decrease as the dielectric constant and the frequency used increase.
  • In producing the winged type NRD guide shown in Fig. 3 by using a dielectric ceramic, a previously burned ceramic flat plate is cut, or a green sheet laminated product formed by laminating a plurality of green sheets each having an aperture is burned to produce a NRD guide comprising dielectric strips having a desired shape, as disclosed in Japanese Unexamined Patent Publication No. 10-224120.
  • However, since burned ceramics are very hard, and thus have a problem in that much time and labor are required for cutting the ceramic flat plate in a desired shape after burning. There is also the problem of readily causing cracks or chips in the cutting process because the wings have a thin thickness t.
  • In the method of laminating green sheets each having an aperture, it is very difficult to precisely cut each of the green sheets to the width w of the dielectric strips, and precisely align the green sheets, thereby causing the problem of deteriorating workability (in the NRD guide frequently used as a high-frequency transmission line, the dielectric strips are required to have high dimensional precision).
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a method of producing a dielectric line which exhibits low production cost and neither cracking nor chipping in processing, and which is capable of producing a dielectric strip with high dimensional precision.
  • As a result of intensive research in consideration of the above-described problems, the inventors found that the problems can be resolved by forming a resist material on a green sheet containing an inorganic powder and an organic binder, removing a predetermined amount of the green sheet at a position corresponding to an aperture of the resist material used as a mask, removing the resist material, and then burning the green sheet, leading to the achievement of the present invention.
  • A method of producing a dielectric line of the present invention comprising a dielectric strip provided between substantially parallel two conductive planes, comprises the step of forming a resist material on a green sheet containing an inorganic powder and an organic binder, the step of removing a predetermined amount of the green sheet at a position corresponding to an aperture of the resist material used as a mask, the step of removing the resist material, and the step of burning the green sheet.
  • In the present invention, unlike in conventional examples, a hard ceramic flat plate after burning is not cut, but an unnecessary portion of the green sheet is removed in the state of the green sheet, thereby processing within a short time with causing neither cracking nor chipping. Also, unlike conventional examples, the dielectric strip is formed not by laminating a plurality of patterned thin green sheets, and thus accurate alignment of green sheets, which is required in conventional examples, is made unnecessary, simplifying the process of producing a dielectric line. In addition, since a photolithographic technique capable of precise patterning can be applied to patterning of the resist material, each of the dimensions of the dielectric line can precisely be defined, and the dimensional precision can be significantly improved, as compared with cases in which a dimensional value is defined by cutting.
  • In order to remove the green sheet, any of various methods such as sand blasting, wet etching, chemical milling, ion milling, RIE, etc. can be used. Particularly, from the viewpoints that a processing method using a vacuum process is relatively unsuitable for finely processing the green sheet containing moisture and organic components, and that high dimensional precision can be realized in relatively deep etching of 0.2 to 1.0 mm, which is required for producing the dielectric strip, the sand blasting process is most preferably used.
  • The step of removing the resist material and the step of burning the green sheet may be performed simultaneously. Namely, in burning the green sheet at high temperature, at the same time, the resist material may be removed by pyrolysis. This can further simplify the process.
  • In removing the green sheet by sand blasting or the like, from the viewpoints of improvement in workability, prevention of deformation of the green sheet in the removing step, etc., it is preferable to place the green sheet on a hard ceramic substrate which is previously burned, and then burn the green sheet. In this case, the ceramic substrate is left as a wing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a sectional view showing the steps of a method of producing a dielectric line of the present invention;
  • Fig. 2 is a sectional view showing the structure of an example of conventional dielectric lines; and
  • Fig. 3 is a sectional view showing the structure of another example of conventional dielectric lines.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Fig. 1 shows a method of producing a dielectric line of the present invention.
  • First, a ceramic green sheet 1 comprising an inorganic powder and an organic binder is prepared (Fig. 1A). As the inorganic powder used, ceramics such as alumina, cordierite, forsterite, spinel, and the like, and glass can be used, and any inorganic powder can be used as long as no problem occurs in processing precision and propagation properties. An inorganic material having a relative dielectric constant of 4 or more is preferably used because it permits miniaturization as compared with used of a synthetic resin such as Teflon (registered trade mark of U.S. Dupont) or the like. As the organic binder, butyral resins, acrylic resins, urethane resins, epoxy resins, vinyl resins, and the like can be used, and any resin can be used as long as it can more easily be ground than the resist material used in the step of removing the green sheet. In order to improve adhesion and bonding workability of a plurality of ceramic green sheets 1, a plasticizer such as DOP, DBP, α-turpeneol, or the like may be added to the inorganic powder and the organic binder. As the method of producing the green sheet 1, a doctor blade method, a comma coating method, a roll coating method, a casting method, and the like can be used. In producing the green sheet 1, the thickness of the green sheet 1 is previously controlled to several µm to several mm in the stage of the green sheet so that a desired thickness (which permits propagation of electromagnetic waves as a dielectric strip) is obtained after burning. However, the thickness may be controlled in the step of laminating and compressing a plurality of the green sheets 1 to form a green sheet laminated product (referred to as a "laminated product" hereinafter) 2, as shown in Fig. 1B.
  • Next, a resist is coated on the laminated product 2 so that a resist material 3 functioning as a mask in a predetermined region is formed by photolithography (Fig. 1C). Although the resist material 3 may be formed by a printing method or the like, the photolithographic technique is preferably used because a mask having excellent dimensional precision can be formed. As the resist material, any material can be used as long as it has sufficient resistance in removal of the ceramic green sheets in the subsequent step. More specifically, polyvinyl alcohol, polymethacrylate, cellulose resins, poly-α-methyl styrene, urethane resins, and the like can be used.
  • Then, a predetermined amount of the ceramic green sheets is removed by, for example, a sand blasting method or the like using the resist material 3 formed on the laminated product 2 as a mask (Fig. 1D). As the sand blasting method, a dry blasting method in which abrasive grains are blown together with a gas to remove a portion of the green sheet corresponding to an aperture, or a wet blasting method in which abrasive grains are blown together with a liquid to remove a portion of the green sheet can be used. In the sand blasting method, alumina, silicon carbide, carbon, rigid plastic, and the like can be used as the abrasive grains, air, nitrogen, argon, and the like can be used as the gas, and water, ethyl alcohol, isopropyl alcohol, and the like can be used as the liquid.
  • After the predetermined amount of the green sheets was removed, the resist material 3 is removed (Fig. 1E). Conceivable methods of removing the resist material 3 include a method of immersing the resist material 3 in a solvent to dissolve the resist material, a method of pyrolytically burning the resist material 3 in the step of burning the laminated product 2, and the like. Any method may be used as long as there is no possibility of causing deformation of the green sheets.
  • Next, the laminated product 2 is burned after removal of the resist material 3 (or the resist material 3 is removed by combustion at the same time as the step of burning the laminated product 2) to obtain a burned product 4 of dielectric ceramic (Fig. 1F). Burning can be carried out by using a general belt furnace, batch furnace, or the like in either a nonoxidizing atmosphere or an oxidizing atmosphere.
  • Then, a conductor 5 is formed over the entire surface of the lower plane of the ceramic burned product 4 by evaporation (Fig. 1G), and furthermore, a pair of the ceramic burned products 4 each having the conductor 5 formed on the back surface thereof are arranged so that the dielectric strips thereof are opposed to each other to obtain a dielectric line having the structure shown in Fig. 3.
  • Although, in the above description, the conductor 5 is formed on the back of the burned product 4 by evaporation after the ceramic burned product is formed, the method of forming the conductor 5 is not limited to this. For example, the conductor 5 may be formed by a method comprising forming conductor paste by printing or the like in the state of the green sheet 1 or the green sheet laminated product 2 before burning, and then baking the conductor paste at the same time as burning the laminated product 2, or a printing, sputtering, sol-gel, plating method or the like after burning. The conductor 5 may also be formed by bonding a conductor plate such as a metal plate to the back of the burned product 4.
  • The dielectric line produced according to the producing method of the present invention will be described in detail below with reference to examples.
  • Example 1
  • A spinel powder as a inorganic power, butyral resin BM-2 (produced by Sekisui Chemical Co., Ltd.) as an organic binder, DOP as a plasticizer, and ethyl alcohol and toluene as organic solvents were prepared, and predetermined amounts of these materials were weighed and mixed by ball milling in a poly pot. Then, a ceramic green sheet was formed in a thickness of 10 to 100 µm by the doctor blade method. Next, the green sheet was cut into a 70-mm square, and trimmed, and a plurality of square green sheets were compressed by a hydrostatic isotropic press to produce a green sheet laminated product. Next, the green sheet laminated product was heated to 80°C, and dry film resist BF-405 (Tokyo Ohka Kogyo Co., Ltd.) was laminated on the top of the laminated product, followed by exposure to ultraviolet rays through a predetermined pattern mask. Exposure was performed under conditions including 365 nm and 200 mJ/cm2. Then, spray development was performed by using a 0.3 wt% sodium carbonate aqueous solution at a liquid temperature of 30°C to obtain a resist material having an aperture on the green sheet laminated product.
  • Next, a portion of the green sheets corresponding to the aperture of the resist was removed by the sand blasting method using Pneuma-Blaster SC-3 type (Fuji Seisakusho Co., Ltd.) until the thickness t of a wing was a predetermined value. At this time, processing was performed by using fused alumina #1000 as abrasive grains under a discharge pressure of 3 kg/cm2 at a distance of 8 cm between the nozzle and the green sheets. Then, the laminated product was immersed in a 10 wt% monoethanolamine aqueous solution of a temperature of 45°C to remove the resist material, and the laminated product was burned by using a batch type electric furnace in air at 1600°C for 2 hours to obtain a dielectric strip having a wing.
  • The dielectric strip obtained in this example had neither cracks nor chips in the wing, and good width w variation (standard deviation) of 10 µm or less.
  • Example 2
  • A green sheet comprising spinel as an inorganic powder was formed by the same method as Example 1. The green sheet was cut in a 70-cm square, and a plurality of square green sheets were laminated and compressed by the same method as Example 1 to obtain a green sheet laminated product. Then, a resist material having a predetermined pattern (aperture) and made of polyvinyl alcohol was formed on the laminated product by the printing method. Next, a predetermined amount of the green sheet was removed from the aperture of the resist by the sand blasting method using the resist material as a mask. Next, the laminated product was burned by using the batch type electric furnace in air at 1600°C for 2 hours without removal of the resist material with a solvent or the like, and at the same time, the resist material was pyrolyzed to obtain a dielectric strip having a wing. The dielectric strip obtained in this example had neither cracks nor chips in the wing, and good width w variation (standard deviation) of 10 µm or less.
  • As described above, the method of producing a dielectric line of the present invention facilitates processing without causing cracks and chips by cutting, permitting production at low cost and production of a dielectric line with high precision. Furthermore, since a green sheet is placed on a previously burned ceramic substrate, and then processed, it is possible to prevent deformation of the green sheet and improve workability, and facilitate production of a dielectric line.

Claims (6)

  1. A method of producing a dielectric line comprising a dielectric strip provided between a plurality of substantially parallel conductive planes, the method comprising:
    the step of forming a resist material on a green sheet containing at least an inorganic powder and an organic binder;
    the step of removing a desired amount of the green sheet corresponding to an aperture of the resist material used as a mask;
    the step of removing the resist material; and
    the step of burning the green sheet.
  2. A method of producing a dielectric line comprising a dielectric strip provided between a plurality of substantially parallel conductive planes, the method comprising:
    the step of placing a green sheet containing at least an inorganic powder and an organic binder on a previously burned ceramic substrate;
    the step of forming a resist material on the green sheet;
    the step of removing a desired amount of the green sheet corresponding to an aperture of the resist material used as a mask;
    the step of removing the resist material; and
    the step of burning the green sheet.
  3. A method of producing a dielectric line according to Claim 2, wherein the substrate on which the green sheet is placed comprises the same material as the green sheet.
  4. A method of producing a dielectric line according to any one of Claims 1 to 3, wherein the desired amount of the green sheet is removed by a sand blasting method.
  5. A method of producing a dielectric line according to any one of Claims 1 to 4, wherein the green sheet comprises a green sheet laminated product formed by laminating a plurality of green sheet thin layers.
  6. A method of producing a dielectric line according to any one of Claims 1 to 5, wherein the step of removing the resist material is performed at the same time as the step of burning the green sheet.
EP00112723A 1999-06-24 2000-06-15 Method of producing a dielectric strip line Withdrawn EP1065745A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17879099A JP3356120B2 (en) 1999-06-24 1999-06-24 Method of manufacturing dielectric line
JP17879099 1999-06-24

Publications (2)

Publication Number Publication Date
EP1065745A2 true EP1065745A2 (en) 2001-01-03
EP1065745A3 EP1065745A3 (en) 2007-03-28

Family

ID=16054700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00112723A Withdrawn EP1065745A3 (en) 1999-06-24 2000-06-15 Method of producing a dielectric strip line

Country Status (2)

Country Link
EP (1) EP1065745A3 (en)
JP (1) JP3356120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360139A (en) * 2000-02-10 2001-09-12 Murata Manufacturing Co Method of manufacturing dielectric waveguides
EP1150377A1 (en) * 2000-04-26 2001-10-31 Murata Manufacturing Co., Ltd. Method for manufacturing a dielectric waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886459B2 (en) 2003-01-28 2007-02-28 株式会社神戸製鋼所 Dielectric line manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285570A (en) * 1993-04-28 1994-02-15 Stratedge Corporation Process for fabricating microwave and millimeter wave stripline filters
GB2275826A (en) * 1993-03-05 1994-09-07 Murata Manufacturing Co Dielectric waveguide
JPH10322110A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic component for high frequency
US5861782A (en) * 1995-08-18 1999-01-19 Murata Manufacturing Co., Ltd. Nonradiative dielectric waveguide and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275826A (en) * 1993-03-05 1994-09-07 Murata Manufacturing Co Dielectric waveguide
US5285570A (en) * 1993-04-28 1994-02-15 Stratedge Corporation Process for fabricating microwave and millimeter wave stripline filters
US5861782A (en) * 1995-08-18 1999-01-19 Murata Manufacturing Co., Ltd. Nonradiative dielectric waveguide and method of producing the same
JPH10322110A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic component for high frequency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DI NALLO C ET AL: "Properties of NRD-guide and H-guide higher-order modes: physical and nonphysical ranges" MICROWAVE SYMPOSIUM DIGEST, 1994., IEEE MTT-S INTERNATIONAL SAN DIEGO, CA, USA 23-27 MAY 1994, NEW YORK, NY, USA,IEEE, 23 May 1994 (1994-05-23), pages 469-472, XP010586629 ISBN: 0-7803-1778-5 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360139A (en) * 2000-02-10 2001-09-12 Murata Manufacturing Co Method of manufacturing dielectric waveguides
GB2360139B (en) * 2000-02-10 2002-01-23 Murata Manufacturing Co Method of manufacturing dielectric waveguide and dielectric waveguide
US6568067B2 (en) 2000-02-10 2003-05-27 Murata Manufacturing Co., Ltd. Method of manufacturing the dielectric waveguide
EP1150377A1 (en) * 2000-04-26 2001-10-31 Murata Manufacturing Co., Ltd. Method for manufacturing a dielectric waveguide
US6585566B2 (en) 2000-04-26 2003-07-01 Murata Manufacturing Co. Ltd Method for manufacturing dielectric wave guide

Also Published As

Publication number Publication date
JP2001007611A (en) 2001-01-12
JP3356120B2 (en) 2002-12-09
EP1065745A3 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US6810577B2 (en) Method of manufacturing a dielectric waveguide
US5285570A (en) Process for fabricating microwave and millimeter wave stripline filters
AU2019344542B2 (en) High efficiency compact slotted antenna with a ground plane
KR100521941B1 (en) Method of manufacturing a multi-layered ceramic substrate
KR20210002356A (en) Low insertion loss rf transmission line
EP1065745A2 (en) Method of producing a dielectric strip line
JP3407710B2 (en) Method of manufacturing dielectric line
CN114061786A (en) Surface acoustic wave temperature sensor and preparation method thereof
JP3757885B2 (en) Dielectric line manufacturing method
JP2003110326A (en) Method of manufacturing dielectric line
JP2004166118A (en) Manufacturing method of dielectric line
JPH07283619A (en) Dielectric substrate
JPS59191902A (en) Filter
JP3522097B2 (en) Stacked stripline resonator
JP3464109B2 (en) Manufacturing method of ceramic planar antenna
JP3389383B2 (en) High frequency composite circuit block and method of manufacturing the same
JP3250945B2 (en) Matching device
JPH104024A (en) Method for manufacturing ceramic electronic component
CN115566414A (en) Multilayer microwave dielectric ceramic filter antenna and preparation method thereof
JP2002290037A (en) Method of manufacturing circuit board
KR100484848B1 (en) Method for manufacturing Band pass filter
EP0957530A1 (en) Dielectric resonator, dielectric filter, dielectric duplexer, and method for manufacturing dielectric resonator
JPH06232612A (en) Dielectric resonator
JPH05314845A (en) Manufacture of lamination structure ceramic element
JPH10190324A (en) Laminated type strip line resonator and its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000615

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MURATA MANUFACTURING CO., LTD.

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20071121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090114