EP0564794A1 - Elektromechanischer Doppelhubmagnet - Google Patents

Elektromechanischer Doppelhubmagnet Download PDF

Info

Publication number
EP0564794A1
EP0564794A1 EP93102605A EP93102605A EP0564794A1 EP 0564794 A1 EP0564794 A1 EP 0564794A1 EP 93102605 A EP93102605 A EP 93102605A EP 93102605 A EP93102605 A EP 93102605A EP 0564794 A1 EP0564794 A1 EP 0564794A1
Authority
EP
European Patent Office
Prior art keywords
double
armature
tube
coils
magnet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93102605A
Other languages
English (en)
French (fr)
Other versions
EP0564794B1 (de
Inventor
Hermann Sanzenbacher
Roland Schempp
Berthold Dipl.-Ing. Pfuhl (Fh)
Volkmar Dipl.-Ing. Leutner
Friedhelm Dr. Dipl.-Ing. Zehner
Frank Dipl.-Ing. Simon
Joachim Dipl.-Ing. Zumbraegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0564794A1 publication Critical patent/EP0564794A1/de
Application granted granted Critical
Publication of EP0564794B1 publication Critical patent/EP0564794B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1684Armature position measurement using coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Definitions

  • the invention relates to an electromechanical double-stroke magnet according to the type specified in the preamble of claim 1.
  • Such an electromechanical double-stroke magnet is already known from the publication WO 91/05957, the double-stroke magnet, which is designed in a wet design, being used to control a multi-way control valve.
  • the proportional double-stroke magnet has two electromagnetic coils, each of which is supplied with a bias current in the rest position of the armature, which is approximately half the maximum current.
  • This double solenoid therefore achieves a high level of dynamics and manages with a low control current. It does not require polarized permanent magnets and can also generate pulling and pushing forces.
  • a disadvantage of this double-stroke magnet is that, with its wet design, the sealing of several components must be carried out and is therefore difficult.
  • the proportional double-stroke magnet has relatively complex pole pieces with complex ring geometries, which lead to an expensive construction. Furthermore, no position transducer system is provided on the double stroke magnet, so that it is used for position control loops is not immediately usable. Furthermore, the double-stroke magnet has a relatively long construction, its axial length almost corresponding to twice the diameter of the coils. In many applications, such long magnets cannot be used.
  • a proportional magnet for the electrical control of hydraulic valves is known from the document EP 0 278 227 A3, which in addition to a pressure tube construction also has an integrated displacement measuring system.
  • This proportional magnet is a single-acting design with a single coil, in which no pulling and pushing forces can be generated. The dynamics of such single-acting proportional magnets is therefore not sufficient in certain applications, although this design also requires higher control currents.
  • this proportional magnet is too long in the axial direction for some applications, since its displacement sensor system is arranged relatively far away from the electromagnetic coil. Due to the asymmetrical force relationships in the single-acting magnet, the design of a position control is also made more difficult.
  • the electromechanical double-stroke magnet according to the invention with the characterizing features of the main claim has the advantage that, while maintaining its special properties such as high dynamics, low drive current and symmetrical force ratios, it enables a cost-effective and particularly compact design in the axial direction.
  • the use of a pressure pipe makes it easier to master the problems associated with sealing and integrating a measuring system.
  • relatively simple magnetic pole shapes can be used in the pressure tube, and in connection with different armature pole ring covers a favorable course of the force-displacement characteristic curves can be achieved. It is advantageous that the magnetic flux is essentially guided over radial air gaps.
  • armature design ie its length in relation to the diameter
  • this double-stroke magnet whereby its armature mass can be reduced while maintaining a high level of force.
  • the design of the double-stroke magnet enables a reduction in the magnetic leakage flux, in particular in the area of the position measuring system.
  • a particularly short design of the double lifting magnet in the axial direction results when the fastening point of the pickup tube in the armature tube lies essentially in the same radial plane in which there is also a housing wall which conducts the magnetic flux of the internal coil and which at the same time supports the pressure tube in the housing.
  • a precise operation of the displacement measuring system in connection with a short construction is favored in that in addition to the sheathing of the pick-up coils an additional shielding disk is arranged between them and the housing wall which conducts the magnetic flux. It is furthermore expedient for a compact construction if the adjustably arranged pick-up coils are supported on the pressure pipe via plate springs.
  • FIG. 1 An embodiment of the invention is shown in the drawing and explained in more detail in the following description.
  • the single figure shows a longitudinal section through an embodiment of an electromechanical double-stroke magnet according to the invention.
  • the figure shows a longitudinal section through an electromechanical double-stroke magnet 10, which essentially consists of a double-acting proportional magnet 11 and a displacement measuring system 12, which are arranged in a common housing 13 made of magnetically conductive material.
  • the housing 13 has a valve-side, first end face 14, on which a proportional valve, not shown, can be attached in a manner known per se.
  • a continuous hollow bore 15 extends in the longitudinal direction in the housing 13 to an opposite, valve-facing, second end face 16.
  • This hollow bore 15 is offset several times and forms a first section 17 with a larger diameter that is open towards the valve-side end face 14, which receives, among other things, two electromagnetic coils 18 and 19 of the proportional magnet 11.
  • the first section 17 is followed by a second section 20 with a smaller diameter in the hollow bore 15, in which a pressure tube 21 of the double-stroke magnet 10 is guided and supported.
  • the second section 20 of the hollow bore 15 merges into a third section 22 with a larger diameter, which is open to the second end face 16.
  • the pressure tube 21 inserted into the recessed hollow bore 15 consists of several individual parts which are put together, soldered to one another and then machined so that the pressure tube 21 results in a one-piece component after it has been machined.
  • the one-piece pressure tube 21 essentially consists of a multi-section anchor tube 23 and a one-section pick-up tube 24 with a smaller diameter and firmly connected to it.
  • the anchor tube 23 with a larger diameter than the pick-up tube 24 there are between an external pressure tube piece 25 and an internal one Pressure tube part 26 arranged two sleeve-shaped intermediate pieces 27, 28, between which a hollow cylindrical middle piece 29 is located.
  • the pressure pipe piece 25 the pressure pipe part 26 and the middle piece 29 are made of magnetically conductive material.
  • the pressure tube piece 25 can therefore work in its hollow cylindrical region as a pole piece 31, while the pressure tube part 26 forms a corresponding pole piece 32, which each cooperate with an armature 33 arranged in the armature tube 23.
  • the pressure pipe section 25 has an outwardly projecting ring flange 34 with which the pressure pipe 21 is guided in the first section 17 of the hollow bore 15, while on the other hand the pressure pipe part 26 is guided on its outer circumference in the region of the second section 19 of the hollow bore 15.
  • the intermediate pieces 27, 28 and the middle piece 29 have simple, hollow cylindrical shapes with flat, radially extending end faces, so that complicated ring geometries are eliminated.
  • the two electromagnetic coils 18, 19 are arranged on the outer circumference of the pressure tube 21 in the annular space which lies between the first section 17 of the hollow bore 15 and the armature tube 23.
  • the coils 18, 19 are identical to one another, are concentric with one another and are arranged one behind the other on the armature tube 23, being separated from one another by a pole disk 35 made of magnetic flux-conducting material, which is located radially between the inner wall of the housing 13 and the outer diameter of the center piece 29 extends.
  • the coils 18, 19, which are identical to one another have a particularly short overall length in the axial direction, so that their common axial length corresponds approximately to the outer diameter of the coils 18, 19.
  • the armature 33 is mounted twice with the aid of a plunger 36. That part of the tappet 36 which projects outwards through the pressure pipe piece 25 forms a first bearing point 37 in a magnetic core 38 which is inserted into the pressure tube piece 25 from the first end face 14. An opposite end 39 of the plunger 36 is guided in a second bearing 41 which is formed in the pressure tube part 26. Immediately adjacent to the second bearing point 41, there is a fastening point 42 in the pressure tube part 26, in which the cup-shaped pickup tube 24 with its open end, on which a thickened outer collar is arranged, is tightly fastened in the anchor tube 23.
  • the pickup tube 24, which consists of magnetically non-conductive material, is usually brazed in the fastening point 42.
  • the fastening point 42 lies in the same radial plane as the second section 20 of the hollow bore 15 and thus also in the region of the pressure tube part 26 serving as pole shoe 32.
  • a housing wall 43 assigned to the second section 20 of the hollow bore 15, which is affected by the magnetic flux of the internal coil 19 is flowed through, is relatively thin. In this way, the position measuring system 12 arranged in the third section 22 of the hollow bore 15 can be built relatively close to the inner coil 19, so that a particularly short construction results in the axial direction.
  • the measuring system 12 has a coil body 45 which carries the measuring coils 44 and is arranged on the pickup tube 24 so as to be axially displaceable.
  • the coil body 45 is surrounded on all sides by an iron-metallic sheathing 46, from which an assigned connecting cable is only led upwards through an opening in a manner not shown.
  • the sheathing 46 is supported on the side facing the armature tube 23 via a non-magnetic spacer 47, a shielding disk 48 made of annealed, soft magnetic material and disc springs 49 on the armature tube 23, so that the bobbin 45 together with its sheathing 46 with the aid of a self-locking nut 51 is axially adjustable.
  • an anti-rotation device is on the outside of the casing 46 52 arranged.
  • the outer diameter of the shielding disk 48 is chosen to be as large as possible and makes full use of the diameter of the third section 22. In this way, the outer diameter of the shielding disk 48 is substantially larger than the diameter of the casing 46 and also larger than the inner diameter of the coil 17.
  • the third section 22 of the hollow bore 15 is closed to the outside by an end cap 53.
  • a ferrite core 54 is arranged in the interior of the pick-up tube 24 as part of the position measuring system 12 and is fixed non-positively on a core carrier 56 with the aid of a compression spring 55.
  • the core carrier 56 is fastened in the end 39 of the plunger 36, the axial fixing thereof being easy to carry out with the aid of a caulking 57.
  • the caulking 57 is expediently in the area between the fastening point 42 and the second bearing point 41.
  • a through hole 58 arranged in the magnetic core 38, a longitudinal hole 59 arranged in the armature 33 and a blind hole 61 running in the pressure tube part 26 ensure that, in the case of a double-stroke magnet attached to a valve, 10 pressure medium inside the pressure tube 21 reaches into the interior of the sensor tube 24 and pressure equalization between the individual rooms can take place.
  • the longitudinal bore 59 is placed radially as far out as possible in order to reduce the electrical eddy currents occurring in the magnetic circuit.
  • the armature 33 of the double solenoid 10 has a short design, based on its axial length in relation to its diameter, whereby a reduction in the armature mass can be achieved with a constant high level of force.
  • the magnetic force characteristic curves can be influenced by the geometric overlap with which the armature end faces the associated intermediate pieces 27 and 28 protrude and thereby form radially extending working air gaps 62 and 63 in the region of the pole shoes 31 and 32 respectively.
  • the mode of operation of the double-stroke magnet 10 basically corresponds to the function of previously known double-stroke magnets, so that only shortly thereafter is it dealt with.
  • the armature 33 is acted upon with the aid of the two coils 18, 19 with two separate magnetic circuits, which each generate a force in the working air gaps 62 and 63. These two forces are directed against each other, so that the double-stroke magnet 10 can generate pulling and pushing forces in contrast to single-acting proportional magnets.
  • the two coils 18, 19 are each supplied with a bias current in the rest position of the armature 33, which is approximately half the maximum current. The opposing forces acting on the armature 33 keep it in the rest position.
  • the magnetic flux of the inner coil 19 flows through the housing wall 43 during operation and flows in the pressure tube part 26 past the fastening point 42 to the pole shoe 32. Despite the relatively close Axial position of the measuring coils 44 to the housing wall 43 prevents the sheathing 46 and the additional shielding disk 48 from interfering stray flux from the housing 13 into the measuring coils 44, so that the measuring system 12 can work precisely and properly despite the compact design of the double-stroke magnet 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electromagnets (AREA)

Abstract

Es wird ein elektromechanischer Doppelhubmagnet (10) mit integriertem Wegmeßsystem (12) vorgeschlagen, der bei einer nassen Ausführungsart neben hoher Dynamik mit geringem Ansteuerstrom auskommt und klein baut. Der Doppelhubmagnet (10) weist ein einstückiges Druckrohr (21) bestehend aus einem zwei Spulen (18, 19) tragenden Ankerrohr (23) und einem in einer Befestigungsstelle (42) dicht und fest mit dem Ankerrohr (23) verbundenen Aufnehmerrohr (24) auf, das durch eine Ummantelung (46) geschützte Meßspulen (44) des Wegmeßsystems (12) trägt. Das Ankerrohr (23) weist zwischen zwei magnetisch nicht leitenden Zwischenstücken (27, 28) ein magnetflußleitendes Mittelstück (29) auf, und hat ein als Polschuh (32) arbeitendes, vom Magnetfluß der innenliegenden Spule (19) durchströmtes Druckrohrteil (26), in dem die Befestigungsstelle (42) liegt, wodurch sich eine axial besonders kurze Bauform erreichen lässt. <IMAGE>

Description

    Stand der Technik
  • Die Erfindung geht aus von einem elektromechanischen Doppelhubmagnet nach der im Oberbegriff des Anspruchs 1 näher angegebenen Gattung.
  • Es ist schon ein solcher elektromechanischer Doppelhubmagnet aus der Druckschrift WO 91/05957 bekannt, wobei der in nasser Bauweise ausgeführte Doppelhubmagnet zum Ansteuern eines Mehrwege-Regelventils verwendet wird. Der proportional arbeitende Doppelhubmagnet weist zwei elektromagnetische Spulen auf, die in Ruhestellung des Ankers jeweils mit einem Vorstrom beaufschlagt werden, der etwa die Hälfte des Maximalstroms beträgt. Dieser Doppelhubmagnet erreicht daher eine hohe Dynamik und kommt mit geringem Ansteuerstrom aus. Er benötigt keine polarisierten Permanentmagnete und kann zudem ziehende und drückende Kräfte erzeugen. Bei diesem Doppelhubmagnet ist nun von Nachteil, daß bei seiner nassen Bauweise die Abdichtung von mehreren Bauelementen übernommen werden muß und sich daher schwierig gestaltet. Dabei weist der proportional arbeitende Doppelhubmagnet relativ aufwendige Polschuhe mit komplexen Ringgeometrien auf, die zu einer kostspieligen Bauweise führen. Ferner ist an dem Doppelhubmagnet kein Wegaufnehmersystem vorgesehen, so daß er für Lageregelkreise nicht unmittelbar verwendbar ist. Ferner baut der Doppelhubmagnet verhältnismäßig lang, wobei seine axiale Länge nahezu dem doppelten Durchmesser der Spulen entspricht. In vielen Einsatzfällen sind solche lang bauenden Magnete nicht verwendbar.
  • Ferner ist aus der Druckschrift EP 0 278 227 A3 ein Proportionalmagnet zur elektrischen Ansteuerung hydraulischer Ventile bekannt, der neben einer Druckrohrbauweise auch ein integriertes Wegmeßsystem aufweist. Bei diesem Proportionalmagnet handelt es sich um eine einfach wirkende Bauweise mit einer einzigen Spule, bei der auch keine ziehenden und drückenden Kräfte erzeugbar sind. Die Dynamik solcher einfach wirkender Proportionalmagnete reicht daher in bestimmten Anwendungsfällen nicht aus, wobei diese Bauform auch höhere Ansteuerströme erfordert. Hinzu kommt, daß dieser Proportionalmagnet für manche Einsatzfälle in axialer Richtung zu lang baut, da sein Wegaufnehmersystem relativ weit entfernt von der elektromagnetischen Spule angeordnet ist. Durch die unsymmetrischen Kraftverhältnisse beim einfach wirkenden Magneten wird auch die Auslegung einer Lageregelung erschwert.
  • Vorteile der Erfindung
  • Der erfindungsgemäße elektromechanische Doppelhubmagnet mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß er unter Beibehaltung seiner besonderen Eigenschaften wie hohe Dynamik, geringer Ansteuerstrom und symmetrische Kraftverhältnisse eine kostengünstige und in axialer Richtung besonders kompakte Bauform ermöglicht. Durch die Verwendung eines Druckrohrs lassen sich die Probleme bezüglich Abdichtung und Integration eines Wegmeßsystems leichter beherrschen. Ferner lassen sich im Druckrohr relativ einfache Magnetpolformen verwenden, wobei in Verbindung mit unterschiedlichen Anker-Polringüberdeckungen ein günstiger Verlauf der Kraft-Weg-Kennlinien erzielbar ist. Dabei ist von Vorteil daß der Magnetfluß im wesentlichen über radiale Luftspalte geführt wird. Zudem lässt sich bei diesem Doppelhubmagnet eine kurze Ankerbauform, d.h. seine Länge im Verhältnis zum Durchmesser, realisieren, wodurch dessen Ankermasse bei gleichbleibend hohem Kraftniveau reduziert werden kann. Fernerhin ermöglicht die Bauform des Doppelhubmagneten eine Reduzierung des Magnetstreuflußes, insbesondere im Bereich des Wegmeßsystems. Eine in axialer Richtung besonders kurze Bauform des Doppelhubmagneten ergibt sich, wenn die Befestigungsstelle des Aufnehmerrohrs im Ankerrohr im wesentlichen in der gleichen radialen Ebene liegt, in welcher auch eine den Magnetfluß der innenliegenden Spule leitende Gehäusewand liegt, welche zugleich das Druckrohr im Gehäuse abstützt. Eine genaue Arbeitsweise des Wegmeßsystems in Verbindung mit einer kurzen Bauweise wird dadurch begünstigt, daß zusätzlich zur Ummantelung der Aufnehmerspulen zwischen diesen und der den Magnetfluß leitenden Gehäusewand eine zusätzliche Abschirmscheibe angeordnet ist. Zweckmäßig für eine kompakte Bauweise ist ferner, wenn die justierbar angeordneten Aufnehmerspulen sich über Tellerfedern am Druckrohr abstützen.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Doppelhubmagneten möglich. Sie unterstützen vor allem eine einfache und kompakte Bauweise und begünstigen zudem eine leichte Montage des Doppelhubmagneten.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die einzige Figur zeigt einen Längsschnitt durch eine erfindungsgemäße Ausführungsform eines elektromechanischen Doppelhubmagneten.
  • Beschreibung des Ausführungsbeispiels
  • Die Figur zeigt einen Längsschnitt durch einen elektromechanischen Doppelhubmagnet 10, der im wesentlichen aus einem doppelt wirkenden Proportionalmagneten 11 und einem Wegmeßsystem 12 besteht, die in einem gemeinsamen Gehäuse 13 aus magnetisch leitendem Material angeordnet sind. Das Gehäuse 13 weist eine ventilseitige, erste Stirnfläche 14 auf, an der in an sich bekannter Weise ein nicht näher gezeichnetes Proportionalventil angebaut werden kann.
  • Im Gehäuse 13 verläuft ausgehend von der ventilseitigen Stirnfläche 14 in Längsrichtung eine durchgehende Hohlbohrung 15 zu einer entgegengesetzt liegenden, ventilabgewandten, zweiten Stirnfläche 16. Diese Hohlbohrung 15 ist mehrfach abgesetzt und bildet einen zur ventilseitigen Stirnfläche 14 hin offenen, ersten Abschnitt 17 mit größerem Durchmesser, welcher unter anderem zwei elektromagnetische Spulen 18 bzw. 19 des Proportionalmagneten 11 aufnimmt. An den ersten Abschnitt 17 schließt sich in der Hohlbohrung 15 ein zweiter Abschnitt 20 mit kleinerem Durchmesser an, in dem ein Druckrohr 21 des Doppelhubmagneten 10 geführt und gelagert ist. Der zweite Abschnitt 20 der Hohlbohrung 15 geht in einen dritten Abschnitt 22 mit größerem Durchmesser über, der zur zweiten Stirnfläche 16 hin offen ist.
  • Das in die abgesetzte Hohlbohrung 15 eingeführte Druckrohr 21 besteht aus mehreren Einzelteilen, die so zusammengesteckt, miteinander verlötet und anschließend bearbeitet sind, daß das Druckrohr 21 nach seiner Bearbeitung ein einstückiges Bauelement ergibt. Das einstückige Druckrohr 21 besteht im wesentlichen aus einem mehrgliedrigen Ankerrohr 23 und einem damit fest verbundenen, eingliedrigen Aufnehmerrohr 24 mit kleinerem Durchmesser. Bei dem Ankerrohr 23 mit gegenüber dem Aufnehmerrohr 24 größeren Durchmesser sind zwischen einem außenliegenden Druckrohrstück 25 und einem innenliegenden Druckrohrteil 26 zwei hülsenförmige Zwischenstücke 27, 28 angeordnet, zwischen denen ein hohlzylindrisches Mittelstück 29 liegt. Während die beiden Zwischenstücke 27, 28 aus magnetisch nicht leitendem Material bestehen, sind das Druckrohrstück 25, das Druckrohrteil 26 sowie das Mittelstück 29 aus magnetisch leitendem Material hergestellt. Das Druckrohrstück 25 kann daher in seinem hohlzylindrischen Bereich als Polschuh 31 arbeiten, während das Druckrohrteil 26 einen entsprechenden Polschuh 32 bildet, die jeweils mit einem im Ankerrohr 23 angeordneten Anker 33 zusammenarbeiten. Das Druckrohrstück 25 weist dabei einen nach außen kragenden Ringflansch 34 auf, mit dem das Druckrohr 21 im ersten Abschnitt 17 der Hohlbohrung 15 geführt ist, während andererseits das Druckrohrteil 26 an seinem Außenumfang im Bereich des zweiten Abschnitts 19 der Hohlbohrung 15 geführt ist. Die Zwischenstücke 27, 28 sowie das Mittelstück 29 weisen dabei einfache, hohlzylindrische Formen mit ebenen, radial verlaufenden Stirnflächen auf, so daß komplizierte Ringgeometrien entfallen.
  • Am Außenumfang des Druckrohres 21 sind in dem ringförmigen Raum, der zwischen dem ersten Abschnitt 17 der Hohlbohrung 15 und dem Ankerrohr 23 liegt, die beiden elektromagnetischen Spulen 18, 19 angeordnet. Die Spulen 18, 19 sind untereinander gleich ausgebildet, liegen konzentrisch zueinander und sind hintereinander auf dem Ankerrohr 23 angeordnet, wobei sie voneinander durch eine Polscheibe 35 aus magnetflußleitendem Material getrennt sind, die sich radial zwischen der Innenwand des Gehäuses 13 und dem Außendurchmesser des Mittelstücks 29 erstreckt. Die untereinander gleichen Spulen 18, 19 weisen in axialer Richtung eine besonders kurze Baulänge auf, so daß ihre gemeinsame axiale Länge ungefähr dem Außendurchmesser der Spulen 18, 19 entspricht.
  • Der Anker 33 ist mit Hilfe eines Stößels 36 zweifach gelagert. Der durch das Druckrohrstück 25 nach außen ragende Teil des Stößels 36 bildet eine erste Lagerstelle 37 in einem Magnetkern 38, der in das Druckrohrstück 25 von der ersten Stirnfläche 14 her eingesetzt ist. Ein entgegengesetzt liegendes Ende 39 des Stößels 36 ist in einer zweiten Lagerstelle 41 geführt, die im Druckrohrteil 26 ausgebildet ist. Unmittelbar angrenzend an die zweite Lagerstelle 41 befindet sich im Druckrohrteil 26 eine Befestigungsstelle 42, in der das becherförmige Aufnehmerrohr 24 mit seinem offenen Ende, an dem ein verdickter Außenbund angeordnet ist, in dem Ankerrohr 23 dicht befestigt ist. Das Aufnehmerrohr 24, das aus magnetisch nicht leitendem Material besteht, wird in der Befestigungsstelle 42 in der Regel hart verlötet. Die Befestigungsstelle 42 liegt auf diese Weise in der gleichen radialen Ebene wie der zweite Abschnitt 20 der Hohlbohrung 15 und somit auch im Bereich des als Polschuh 32 dienenden Druckrohrteils 26. Eine dem zweiten Abschnitt 20 der Hohlbohrung 15 zugeordnete Gehäusewand 43, welche von dem Magnetfluß der innenliegenden Spule 19 durchströmt wird, ist relativ dünn ausgebildet. Auf diese Weise kann das im dritten Abschnitt 22 der Hohlbohrung 15 angeordnete Wegmeßsystem 12 verhältnismäßig nahe an die innenliegende Spule 19 herangebaut werden, so daß sich in axialer Richtung eine besonders kurze Bauweise ergibt.
  • Das Wegmeßsystem 12 weist einen die Meßspulen 44 tragenden Spulenkörper 45 auf, der axial verschiebbar auf dem Aufnehmerrohr 24 angeordnet ist. Der Spulenkörper 45 ist allseitig von einer eisenmetallischen Ummantelung 46 umgeben, aus der lediglich nach oben durch eine Öffnung in nicht näher gezeichneter Weise ein zugeordnetes Anschlußkabel herausgeführt wird. Die Ummantelung 46 stützt sich auf der dem Ankerrohr 23 zugewandten Seite über eine nicht magnetische Abstandsscheibe 47, eine Abschirmscheibe 48 aus geglühtem, weichmagnetischem Material und Tellerfedern 49 am Ankerrohr 23 ab, so daß der Spulenkörper 45 zusammen mit seiner Ummantelung 46 mit Hilfe einer selbstsichernden Mutter 51 axial justierbar ist. Zum Schutz gegen Verdrehen ist außen an der Ummantelung 46 eine Verdrehsicherung 52 angeordnet. Der Außendurchmesser der Abschirmscheibe 48 wird möglichst groß gewählt und nutzt den Durchmesser des dritten Abschnitts 22 voll aus. Der Außendurchmesser der Abschirmscheibe 48 ist auf diese Weise wesentlich größer als der Durchmesser der Ummantelung 46 und auch größer als der Innendurchmesser der Spule 17. Der dritte Abschnitt 22 der Hohlbohrung 15 ist nach außen hin durch eine Abschlußkappe 53 verschlossen.
  • Im Inneren des Aufnehmerrohrs 24 ist als Teil des Wegmeßsystems 12 ein Ferritkern 54 angeordnet, der mit Hilfe einer Druckfeder 55 kraftschlüssig auf einem Kernträger 56 fixiert ist. Der Kernträger 56 seinerseits ist im Ende 39 des Stößels 36 befestigt, wobei dessen axiale Festlegung mit Hilfe einer Verstemmung 57 leicht durchführbar ist. Die Verstemmung 57 liegt dabei zweckmäßig im Bereich zwischen der Befestigungsstelle 42 und der zweiten Lagerstelle 41.
  • Eine in dem Magnetkern 38 angeordnete Durchgangsbohrung 58, eine im Anker 33 angeordnete Längsbohrung 59 sowie eine im Druckrohrteil 26 verlaufende Sacklochbohrung 61 sorgen dafür, daß bei einem an einem Ventil angebauten Doppelhubmagneten 10 Druckmittel innerhalb des Druckrohrs 21 bis in den Innenraum des Aufnehmerrohrs 24 gelangen und ein Druckausgleich zwischen den einzelnen Räumen stattfinden kann. Die Längsbohrung 59 ist radial möglichst weit nach außen gelegt um die im Magnetkreis auftretenden elektrischen Wirbelströme zu reduzieren.
  • Der Anker 33 des Doppelhubmagneten 10 weist eine kurze Bauform auf, bezogen auf seine axiale Länge im Verhältnis zu seinem Durchmesser, wodurch sich bei gleichbleibend hohem Kraftniveau eine Reduzierung der Ankermasse erzielen lässt. Eine Beeinflussung der Magnetkraftkennlinien lässt sich dabei durch die geometrische Überdeckung erreichen, mit welcher die Ankerstirnflächen die zugeordneten Zwischenstücke 27 bzw. 28 überragen und dabei im Bereich der Polschuhe 31 bzw. 32 radial verlaufende Arbeitsluftspalte 62 bzw. 63 bilden.
  • Die Wirkungsweise des Doppelhubmagneten 10 entspricht grundsätzlich der Funktion vorbekannter Doppelhubmagneten, so daß nur kurz darauf eingeganen wird. Beim Doppelhubmagnet 10 wird der Anker 33 mit Hilfe der beiden Spulen 18, 19 mit zwei voneinander getrennten magnetischen Kreisen beaufschlagt, die jeweils eine Kraft in den Arbeitsluftspalten 62 bzw. 63 erzeugen. Diese beiden Kräfte sind gegeneinander gerichtet, so daß der Doppelhubmagnet 10 im Gegensatz zu einfach wirkenden Proportionalmagneten ziehende und drückende Kräfte erzeugen kann. Zweckmäßigerweise werden die beiden Spulen 18, 19 in Ruhestellung des Ankers 33 jeweils mit einem Vorstrom beaufschlagt, der etwa die Hälfte des Maximalstroms beträgt. Die entgegengesetzt dabei auf den Anker 33 wirkenden Kräfte halten ihn in Ruhestellung. Durch Änderung der Bestromung in einer oder in beiden Spulen 18, 19 wird das Kräftegleichgewicht am Anker 33 gestört und er kann eine resultierende Kraft in der einen oder anderen Richtung erzeugen. Durch diese Vormagnetisierung wird die Dynamik des Doppelhubmagneten 10 verbessert, da die zur Verfügung stehende Kraft voll in Dynamik umgesetzt werden kann. Zudem ist der von der elektrischen Ansteuerung zur Verfügung zu stellende Maximalstrom wegen der beiden Spulen 18, 19 bei gleicher Maximalkraftdifferenz nur ca. halb so groß wie bei üblichen Proportionalmagneten, so daß der Doppelhubmagnet 10 mit einem geringen Ansteuerstrom auskommt. Durch die symmetrische Ausgestaltung der Kraftverhältnisse wird die Auslegung einer Lageregelung mit Hilfe des Wegmeßsystems 12 erheblich vereinfacht.
  • Der Magnetfluß der innenliegenden Spule 19 durchströmt im Betrieb die Gehäusewand 43 und fließt in dem Druckrohrteil 26 vorbei an der Befestigungsstelle 42 zu dem Polschuh 32. Trotz der relativ nahen axialen Lage der Meßspulen 44 zur Gehäusewand 43 verhindert hierbei die Ummantelung 46 sowie die zusätzliche Abschirmscheibe 48 einen störenden Streufluß aus dem Gehäuse 13 in die Meßspulen 44, so daß das Meßsystem 12 trotz der kompakten Bauweise des Doppelhubmagneten 10 genau und einwandfrei arbeiten kann.
  • Selbstverständlich sind an der gezeigten Ausführungsform Änderungen möglich, ohne vom Gedanken der Erfindung abzuweichen. So kann anstelle des gezeigten Wegmeßsystems mit drei Meßspulen für eine Transformatorenbauweise auch ein Spulenkörper mit zwei Drosselspulen verwendet werden. Auch ist es möglich, die Befestigungsstelle 42 im Druckrohrteil 26 in Richtung zum Anker 33 hin zu verlegen, ohne die Vorteile der kompakten Bauweise zu verlassen. Fernerhin wäre es möglich, die Verstemmung 57 für eine weitere Baulängenreduzierung auf die andere Seite der zweiten Lagerstelle 41 zu verlegen, wobei sie auch innerhalb des Ankers 33 angeordnet werden könnte. Auch wäre es denkbar, anstelle des gezeigten Aufnehmerrohrs 24 an dessem offenen Ende einen radialen Flansch vorzusehen und es damit an der radialen Stirnseite des Druckrohrteils 26 zu befestigen, so daß hierbei wenig axialer Bauraum verloren geht. Obwohl die gezeigte Bauweise des Doppelhubmagneten 10 besonders vorteilhaft ist, kann bei Bedarf auch auf eines der Abschirmelemente, insbesondere die Abschirmscheibe 48, verzichtet werden.

Claims (14)

  1. Elektromechanischer Doppelhubmagnet, insbesondere zur Betätigung eines Ventilschiebers, mit zwei zueinander konzentrisch liegenden, elektrischen Spulen, die in einem Gehäuse nebeneinander auf einem im wesentlichen rohrförmigen Körper angeordnet und durch eine magnetflußleitende Polscheibe voneinander getrennt sind, wobei der Körper in seinem Inneren einen Anker aufnimmt, der mit seinem zugeordneten Stößel beidseitig des Ankers in gehäusefesten Polschuhen gelagert und längsbeweglich geführt ist und bei dem die Polschuhe mit dem Anker zugeordnete Arbeitsluftspalte bilden, dadurch gekennzeichnet, daß der rohrförmige Körper als ein im wesentlichen hülsenförmiges Druckrohr (21) ausgebildet ist, das aus einem die beiden Spulen (18, 19) tragenden Ankerrohr (23) und einem in letzerem dicht und fest angeordneten Aufnehmerrohr (24) besteht, das mit seinem offenen Ende in einer Befestigungsstelle (42) einstückig mit dem Ankerrohr (23) verbunden ist und auf dessem auskragenden, freien Ende ein Wegmeßsystem (12) für den Hub des Ankers (33) angeordnet ist und daß die Befestigungsstelle (42) in axialer Richtung in einem Bereich des Ankerrohrs (23) liegt, der von dem Magnetfluß der innenliegenden Spule (19) durchdrungen wird.
  2. Doppelhubmagnet nach Anspruch 1, dadurch gekennzeichnet, daß das Ankerrohr (23) zwei außenliegende, als Polschuhe (31, 32) dienende Abschnitte aufweist, die als Druckrohrstück (25) und als ein die Befestigungsstelle (42) aufnehmendes Druckrohrteil (26) ausgebildet sind und zwischen denen zwei nichtmagnetische Zwischenstücke (27, 28) liegen, die durch ein magnetflußleitendes Mittelstück (29) voneinander getrennt sind und daß die Befestigungsstelle (42) in dem vom Magnetfluß durchstömten Druckrohrteil (26) liegt.
  3. Doppelhubmagnet nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Befestigungsstelle (42) im wesentlichen in einer radialen Ebene liegt, in der eine den Magnetfluß der innenliegenden Spule (19) leitende Gehäusewand (43) das Ankerrohr (23) im Gehäuse (13) abstützt.
  4. Doppelhubmagnet nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden Zwischenstücke (27, 28) und das Mittelstück (29) jeweils als hohlzylindrische Körper mit ebenen Stirnflächen ausgebildet sind.
  5. Doppelhubmagnet nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Anker (33) mit den Polschuhen (31, 32) am Druckrohrstück (25) und am Druckrohrteil (26) Arbeitsluftspalte (62, 63) bildet, in denen der Magnetfluß im wesentlichen radial überführt wird.
  6. Doppelhubmagnet nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die axiale Länge des Ankers (33) im wesentlichen der Länge einer Spule (18, 19) entspricht und insbesondere beide Spulen (18, 19) untereinander gleich groß sind.
  7. Doppelhubmagnet nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die außen auf dem Aufnehmerrohr (24) angeordneten Meßspulen (44) des Wegmeßsystems (12) von einer magnetisch abschirmenden Ummantelung (46) umgeben sind.
  8. Doppelhubmagnet nach Anspruch 7, dadurch gekennzeichnet, daß zwischen der Ummantelung (46) und den vom Magnetfluß der innenliegenden Spule (19) durchströmten Bauelementen (43, 26) ein zusätzlicher Abschirmkörper (48) angeordnet ist.
  9. Doppelhubmagnet nach Anspruch 8, dadurch gekennzeichnet, daß der Abschirmkörper als Scheibe (48) aus weichmagnetischem Material besteht, deren Außendurchmesser größer ist als derjenige der Ummantelung (46) und als der Innendurchmesser der Spule (19).
  10. Doppelhubmagnet nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Meßspulen (44) mit Ummantelung (46) und der Abschirmkörper (48) axial justierbar auf dem Aufnehmerrohr (24) angeordnet sind und sich über Tellerfedern (49) am Druckrohr (21) abstützen.
  11. Doppelhubmagnet nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß am Stößel (36) des Ankers (33) ein in das Aufnehmerrohr (24) hineinragender Kernträger (56) aus nichtmagnetischem Material befestigt ist, auf dem ein Ferritkern (54) des Wegmeßsystems (12) gleitend geführt und von einer Feder (55) in einer Endstellung gehalten ist.
  12. Doppelhubmagnet nach Anspruch 11, dadurch gekennzeichnet, daß in dem Druckrohrteil (26) zwischen der Befestigungsstelle (42) und dem Anker (33) eine Lagerstelle (41) für den Stößel (36) angeordnet ist und der Kernträger (56) im Bereich zwischen Befestigungsstelle (42) und Lagerstelle (41) mit dem Stößel (36) formschlüssig verbunden, insbesondere verstemmt, ist.
  13. Doppelhubmagnet nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die axiale Länge der beiden Spulen (18, 19) zusammen im wesentlichen deren Außendurchmesser entspricht.
  14. Doppelhubmagnet nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Gehäuse (13) das hülsenförmige Druckrohr (21) in einer durchgehenden, mehrfach abgesetzten Hohlbohrung (15) aufnimmt, deren Abschnitt (20) mit kleinerem Durchmesser zwei Abschnitte (17, 22) mit größerem Durchmesser voneinander trennt, wobei das Druckrohr (21) mit einem Ringfansch (34) in dem die Spulen (18, 19) aufnehmenden Abschnitt (17) mit größerem Durchmesser und mit seinem Ankerrohr (23) im Abschnitt (20) mit kleinem Durchmesser gelagert ist, während im anderen Abschnitt (22) mit großem Durchmesser die Aufnehmerspulen (44) mit Ummantelung (46) und die Abschirmscheibe (48) angeordnet sind.
EP93102605A 1992-03-16 1993-02-19 Elektromechanischer Doppelhubmagnet Expired - Lifetime EP0564794B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208367A DE4208367A1 (de) 1992-03-16 1992-03-16 Elektromechanischer doppelhubmagnet
DE4208367 1992-03-16

Publications (2)

Publication Number Publication Date
EP0564794A1 true EP0564794A1 (de) 1993-10-13
EP0564794B1 EP0564794B1 (de) 1996-05-08

Family

ID=6454179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93102605A Expired - Lifetime EP0564794B1 (de) 1992-03-16 1993-02-19 Elektromechanischer Doppelhubmagnet

Country Status (3)

Country Link
EP (1) EP0564794B1 (de)
JP (1) JP3423343B2 (de)
DE (2) DE4208367A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102050A1 (de) * 2003-05-08 2004-11-25 Bosch Rexroth Ag Hubmagnetanordnung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524755A1 (de) * 1995-07-07 1997-01-09 Horst Bendrich Einrichtung zur Hubüberwachung von Schaltmagneten
DE19624801A1 (de) * 1996-06-21 1998-01-02 Wabco Gmbh Induktiver Wegsensor
DE19630779B4 (de) * 1996-07-31 2005-02-17 Kendrion Binder Magnete Gmbh Hubmagnet
DE19705598A1 (de) * 1997-02-14 1998-08-20 Bosch Gmbh Robert Elektromechanischer Doppelhubmagnet
DE19724076B4 (de) * 1997-06-07 2005-05-04 Robert Bosch Gmbh Elektromagnetische Stelleinrichtung
DE19801529C2 (de) * 1998-01-16 2001-02-08 Hans Ulrich Bus Elektromagnetischer Antrieb
DE19918993A1 (de) * 1999-03-23 2000-09-28 Daimler Chrysler Ag Vorrichtung mit einem elektromagnetischen Aktuator
DE10003989C2 (de) * 2000-01-29 2003-11-06 Hydac Electronic Gmbh Wegaufnehmersystem zum Ermitteln der Position eines Ventilkolbens
US7093613B2 (en) 2001-05-17 2006-08-22 Bosch Rexroth Ag Magnet arrangement
DE10328220B4 (de) * 2003-06-24 2008-11-13 Sauer-Danfoss Aps Positionssensor für ein hydraulisches Ventil
DE102004017089B4 (de) * 2004-04-07 2006-02-23 Hydac Electronic Gmbh Betätigungsvorrichtung, insbesondere Proportional-Doppelhubmagnet
DE102008008761A1 (de) * 2008-02-12 2009-08-13 Robert Bosch Gmbh Betätigungsmagnet
DE102009041159B4 (de) 2009-09-14 2022-12-08 Magnet-Schultz Gmbh & Co. Kg Wegsensoreinheit und Anordnung mit der Wegsensoreinheit
CN204704456U (zh) * 2014-11-24 2015-10-14 现代摩比斯株式会社 降噪型电磁阀
DE102015003672A1 (de) * 2015-03-20 2016-09-22 Hydac Electronic Gmbh Betätigungsvorrichtung
DE102015213206A1 (de) 2015-07-15 2017-01-19 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zum Ermitteln einer Position eines beweglichen Ankers eines elektromagnetischen Aktors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235777A (en) * 1963-08-23 1966-02-15 Rocker Solenoid Company Solenoid mechanism having two position latching means
US3870931A (en) * 1974-02-04 1975-03-11 Sun Chemical Corp Solenoid servomechanism
US3970981A (en) * 1975-05-08 1976-07-20 Ledex, Inc. Electric solenoid structure
FR2445005A1 (fr) * 1978-12-20 1980-07-18 Binder Magnete Electro-aimant de commande avec detection de course
DE2930995A1 (de) * 1979-07-31 1981-02-05 Binder Magnete Elektromagnetischer hubmagnet mit hublagenerkennung
DE3132212A1 (de) * 1981-08-14 1983-03-03 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Magnetventil
DE3241521A1 (de) * 1982-11-10 1984-05-10 Robert Bosch Gmbh, 7000 Stuttgart Proportionalmagnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235777A (en) * 1963-08-23 1966-02-15 Rocker Solenoid Company Solenoid mechanism having two position latching means
US3870931A (en) * 1974-02-04 1975-03-11 Sun Chemical Corp Solenoid servomechanism
US3970981A (en) * 1975-05-08 1976-07-20 Ledex, Inc. Electric solenoid structure
FR2445005A1 (fr) * 1978-12-20 1980-07-18 Binder Magnete Electro-aimant de commande avec detection de course
DE2930995A1 (de) * 1979-07-31 1981-02-05 Binder Magnete Elektromagnetischer hubmagnet mit hublagenerkennung
DE3132212A1 (de) * 1981-08-14 1983-03-03 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Magnetventil
DE3241521A1 (de) * 1982-11-10 1984-05-10 Robert Bosch Gmbh, 7000 Stuttgart Proportionalmagnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102050A1 (de) * 2003-05-08 2004-11-25 Bosch Rexroth Ag Hubmagnetanordnung
US7145424B2 (en) 2003-05-08 2006-12-05 Bosch Rexroth Ag Solenoid assembly

Also Published As

Publication number Publication date
DE4208367A1 (de) 1993-09-23
EP0564794B1 (de) 1996-05-08
DE59302488D1 (de) 1996-06-13
JPH0613229A (ja) 1994-01-21
JP3423343B2 (ja) 2003-07-07

Similar Documents

Publication Publication Date Title
EP0564794B1 (de) Elektromechanischer Doppelhubmagnet
DE69333172T2 (de) Magnetorheolodische Flüssigkeitsvorrichtungen
DE3334159C2 (de)
EP1334493B1 (de) Aktuator für ein fluid-ventil
EP2005448A2 (de) Hubmagnet sowie verfahren zu seiner herstellung
DE3823430A1 (de) Hydraulischer teleskopstossdaempfer
DE19607773A1 (de) Elektromagnetisch betätigtes Wegeventil
DE19603383A1 (de) Elektromagnetventil
EP1069357A2 (de) Stellvorrichtung für ein Magnetventil
WO1993022582A1 (de) Vorgesteuertes ventil für fahrwerksregelungssysteme
DE4012832A1 (de) Magnetventil
DE4311269A1 (de) Elektromagnetaufbau und Verfahren zum Herstellen desselben
EP0235318A1 (de) Betätigungsmagnet
EP1620667B1 (de) Hubmagnetanordnung
DE19621229A1 (de) Ventilblock mit wenigstens einem elektromagnetisch steuerbaren Ventil insbesondere für eine hydraulische Fahrzeugbremsanlage
EP0569669B1 (de) Doppelt wirkender elektromagnetischer Linearmotor
EP0859380B1 (de) Elektromechanischer Doppelhubmagnet
DE19922334A1 (de) Elektromagnetventil
DE102011012020B4 (de) Nockenwelle mit Nockenwellenversteller
DE4301308A1 (de) Hydraulik-Ventil
DE102004017089B4 (de) Betätigungsvorrichtung, insbesondere Proportional-Doppelhubmagnet
DE102013111079A1 (de) Impulsmagnetventil
DE10121770A1 (de) Elektromagnetische Stelleinrichtung
DE4020164A1 (de) Elektromagnetisch betaetigtes ventil
DE3609901A1 (de) Elektromagnetisch betaetigtes, hydraulisches schnellschaltventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940331

17Q First examination report despatched

Effective date: 19940912

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59302488

Country of ref document: DE

Date of ref document: 19960613

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120224

Year of fee payment: 20

Ref country code: GB

Payment date: 20120222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59302488

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130220

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130218