EP0547165A1 - Wasserlösliche camptothecinanaloge, verfahren und methoden davon - Google Patents

Wasserlösliche camptothecinanaloge, verfahren und methoden davon

Info

Publication number
EP0547165A1
EP0547165A1 EP91918278A EP91918278A EP0547165A1 EP 0547165 A1 EP0547165 A1 EP 0547165A1 EP 91918278 A EP91918278 A EP 91918278A EP 91918278 A EP91918278 A EP 91918278A EP 0547165 A1 EP0547165 A1 EP 0547165A1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
camptothecin
liquid
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91918278A
Other languages
English (en)
French (fr)
Other versions
EP0547165B1 (de
EP0547165A4 (de
Inventor
Joseph Marian Fortunak
Jeffery Lee Wood
Antonietta Rose Mastrocola
Mark Mellinger
Patrick Lee Burk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Publication of EP0547165A1 publication Critical patent/EP0547165A1/de
Publication of EP0547165A4 publication Critical patent/EP0547165A4/xx
Application granted granted Critical
Publication of EP0547165B1 publication Critical patent/EP0547165B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the instant invention relates to a process for the preparation of water soluble camptothecin analogs, including methods for the preparation of intermediates thereof.
  • the instant invention also relates to the compounds prepared by this process.
  • Water soluble camptothecin analogs are provided which may be used for inhibiting the growth of tumor cells sensitive to such analogs.
  • Topoisomerases are enzymes that are capable of altering DNA topology in eukaryotic cells. Because of this function they are critical to the proliferation of eukaryotic cells. Topoisomerase I is a monomeric enzyme of
  • topoisomerase I may therefore function as anticancer agents by interfering with the proliferation of eukaryotic cells.
  • Camptothecin is a water-insoluble, cytotoxic alkaloid produced by Camptotheca accuminata trees indigenous to China and
  • Camptothecin and a few close congeners thereof are compounds known to inhibit topoisomerase I. Camptothecin and its close topoisomerase I inhibiting congeners have not proven to be suitable for clinical drug development as cytolytic agents because of lack of clinical efficacy, unacceptable dose-limiting toxicity,
  • camptothecin derivatives of U.S. Patent No. 4,604,463 are disclosed therein as being prepared by treating a camptothecin derivative carrying a hydroxyl group in any of the
  • camptothecin in a solvent, such as acetic acid, dioxane-acetic acid or dioxane-hydrochloric acid, in the presence of a noble metal catalyst under atmospheric pressure.
  • a solvent such as acetic acid, dioxane-acetic acid or dioxane-hydrochloric acid
  • the resultant tetrahydro product is converted to 10-nitrocamptothecin in a cumbersome, multi-step sequence which includes dehydrogenation of the tetrahydro derivative with an oxidizing agent.
  • This oxidizing agent does not introduce a hydroxyl group into the camptothecin derivative.
  • the nitro group may be converted to a variety of related compounds using the chemistry described therein.
  • Another method disclosed by these documents relates to the preparation of 10- hydroxycamptothecin by the photolysis of camptothecin- 1 -oxide by a two-step procedure.
  • 10-Hydroxy camptothecin has been reported as having pharmacological activity.
  • Japanese Unexamined Patent No. 59-5188 (1984) discloses a method for the preparation of 10- hydroxycamptothecin from 1 ,2,6,7-tetrahydrocamptothecin. The latter compound is disclosed in the Japanese Patent as being obtained by hydrogenating camptothecin in acetic acid or dioxane/acetic acid at ordinary pressure and temperature in the presence of a platinum catalyst.
  • 10-Hydroxycamptothecin is disclosed therein as being obtained by treating 1 ,2,6,7-tetrahydrocamptothecin with an oxidizing agent selected from the group consisting of lead tetra acetate, CAN (cerium (IV) ammonium nitrate), Fremy's salt
  • camptothecin-7-carboxamide and derivatives thereof.
  • the compounds are taught therein as being prepared by treating camptothecin-7-carboxylic acid first with a carboxyl group-activating reagent, and then with ammonia or the corresponding amine.
  • the European document states that such compounds are useful as intermediates in the preparation of
  • camptothecin derivatives for antitumor activity, including 9-nitro-20(S)-camptothecin, 9-amino-20(S)- camptothecin, 9-nitro-10-methoxy-20(S)-camptothecin, 9-amino- 10- methoxy-20(S)-camptothecin, 9-nitro- 10-hydroxy-20(S)- camptothecin and 9-acetamido-10-hydroxy-20(S)-camptothecin.
  • Wani et al. J. Med. Chem., 30, 1774-1779 (1987), discloses the synthesis of various 11 -substituted camptothecin analogs including cyano, nitro, amino, dimethylamino, formyl, aminomethyl, and hydroxymethyl. Wani et al. also teaches preparation of the various compounds.
  • the 11 -aminomethyl analog is disclosed therein as being prepared by a process wherein a solution of 11- formylcamptothecin and 2-aminoisobutyric acid in DMF was refluxed, with subsequent concentration and addition of aqueous HCl.
  • the 11 -aminomethyl analog and its hydrochloride salt were reported to be inactive.
  • the instant invention provides a novel process for the
  • the instant invention also provides compounds prepared by the above process, and methods for using these compounds.
  • the compounds of the instant invention fulfill the need for topoisomerase I inhibiting agents which are attractive for clinical drug development as cytolytic agents.
  • the instant- invention provides an overall process for the preparation of water soluble camptothecin analogs of the following Formula (I):
  • R is hydrogen or C 1 -6 alkoxy
  • R 1 is -O-R 2 ; -S-R 3 ; or -N-(R 4 )(R 5 );
  • R 2 , R 3 , R 4 and R 5 are the same or different and are hydrogen;
  • R 6 is hydrogen; a C 1 -6 unsubstituted or substituted aliphatic
  • the compounds of Formula (I) are particularly useful as antitumor agents.
  • the instant invention also relates to methods of using the compounds of Formula (I).
  • Formula (I) is presented in the following Scheme I.
  • Compounds of the Formula (la) are compounds of the Formula (I) where R 1 is -N-(R 4 )(R 5 ), and neither R 4 nor R 5 are hydroxyethyl.
  • Compounds of the Formula (I) where R 4 or R 5 are hydroxyethyl may be prepared, for example, by the Mannich reaction of the compound prepared in step (2) of Scheme I with paraformaldehyde and ethanolamine in acetic acid.
  • Scheme I illustrates preparation of compounds where R 6 is hydrogen.
  • Compounds of the Formula (I) where R 6 is other than hydrogen may be obtained, for example, by forming the appropriate ether or ester group subsequent to adding the 9-position substituent in step (3). Methods for forming such ether or ester groups may be chosen from those methods known to those skilled in the art.
  • the first step of the overall process involves the conversion of camptothecin or its 11-alkoxy analog to 1,2,6,7-tetrahydrocamptothecin (hereafter, tetrahydro- camptothecin) or its 11-alkoxy analog.
  • the 11-alkoxycamptothecin starting material may be produced by any known method, such as by the method described in Wani et al., J. Med. Chem., 29, 2358-2363 (1986) for the synthesis of camptothecin analogs.
  • Use of 11- methoxycamptothecin as the 11-alkoxycamptothecin is preferred in the instant invention.
  • camptothecin starting material of this step is available as a naturally-produced alkaloid, as discussed above. Additionally, methods for the total synthesis of camptothecin have been reported. See, for example, Hutchinson, Tetrahedron, 37, 1047 (1981), and Suffness and Cordell, "The Alkaloids. Chemistry and Pharmacology", Brossi, A., ed., Vol. 25, Academic Press, Orlando Florida, 73 (1985), for reviews.
  • One route for producing camptothecin which is racemic at the carbon on the 20-position is described by Wani et al., J. Med. Chem., 23 , 554 (1980).
  • the racemic camptothecin obtained by Wani et al. is purified therein by chromatography, with a subsequent crystallization from a specified medium.
  • Wani et al. for crystallization is, however, a poor solvent for the purification of camptothecin from related alkaloidal impurities such that chromatography is a necessary part of the purification process.
  • camptothecin Either naturally or synthetically produced camptothecin may be employed as the starting material in the method of the instant invention.
  • the S isomers of the starting materials are preferred. Purification of Camptothecin or 11 - Alkoxycamptothecin Starting Material
  • the method of purifying camptothecin or an 11 -C 1 -6 alkoxycamptothecin comprises a first step of contacting a mixture containing camptothecin or an 11 -C 1 -6 alkoxycamptothecin and impurities thereof with a solvent, wherein said solvent is capable of separating from said mixture alkaloids other than said camptothecin and 11 -C 1 -6 alkoxycamptothecin, as well as impurities which are capable of retarding hydrogenation of said camptothecin or 11 -C 1 -6 alkoxycamptothecin to their respective 1 ,2,6,7-tetrahydro analogs; and dissolving at least a part of said camptothecin or 11 -C 1
  • camptothecin or 11 -C 1 -6 alkoxycamptothecin to their respective 1 ,2,6,7-tetrahydro analogs.
  • the purification method may be repeated with the same or a different solvent to further enhance the purity of the camptothecin or 11-alkoxy analog, when desired.
  • the purification treatment is particularly useful in removing impurities that are difficult to eliminate at later steps of the overall process of the invention.
  • unpurified camptothecin comprising 85-87% w/w camptothecin with 9-12% impurities (HPLC, PAR (peak area ratios)
  • HPLC, PAR peak area ratios
  • Purified camptothecin or 11 -alkoxycamptothecin may be hydrogenated more reliably to their respective tetrahydro products as compared with the unpurified compounds which contain impurities that retard hydrogenation. This is particularly true when the hydrogenation process is scaled up. Additionally, this method allows a relatively small volume of solvent to be employed while effectively removing impurities.
  • Preferred amounts of the solvent to be employed in the first step are from about 10 to 35 volumes of solvent per volume of camptothecin or 11 -alkoxycamptothecin.
  • Exemplary solvents which may be employed in the purification treatment of the invention include N,N-dimethylformamide, N-methylpyrrolidone, acetic acid, trifluoroacetic acid, dimethylsulfoxide, a mixture of acetic acid and dimethylsulfoxide, a mixture of ethanol and dimethylsulfoxide, and a mixture of acetic acid and hydrochloric acid.
  • the purification method of the invention may be used to purify either naturally-produced, or synthetic camptothecin.
  • Solvents such as the exemplary solvents above are preferably employed.
  • acetic acid or N,N- dimethylformamide preferably purified either from acetic acid or N,N- dimethylformamide, either by a single purification treatment or, especially by a first purification treatment using acetic acid, particularly hot acetic acid, followed by an optional second
  • the second purification treatment preferably using N,N-dimethylformamide, particularly hot N,N-dimethylformamide.
  • the second purification treatment results in a further increase in yield in a subsequent hydrogenation step. It is useful, with the camptothecin from
  • Nothapodvtes foetida to add a. substance to absorb impurities, such as decolorizing carbon, during the purification, preferably the purification with acetic acid.
  • impurities such as decolorizing carbon
  • Camptotheca accuminata trees is preferably purified using N,N- dimethylformamide, particularly hot N,N-dimethylformamide.
  • a second purification treatment preferably from hot N,N- dimethylformamide, may be employed to enhance the purity of the camptothecin obtained.
  • the temperature employed for dissolution is preferably from 60°C to the reflux temperature of the solvent, and is most preferably approximately 100°C. Cooling after dissolution may be employed to enhance purification.
  • the camptothecin or 11 -alkoxycamptothecin may. for example, be separated in the second step of the method of the invention by a technique such as filtration. Hydrogenation to Tetrahydrocamptothecin
  • the instant invention provides a method of converting
  • camptothecin or its 11-alkoxy analog to tetrahydrocamptothecin or its 11-alkoxy analog which method comprises the step of contacting camptothecin or an 11 -C 1 -6 alkoxycamptothecin with hydrogen and a hydrogenation catalyst in the presence of a hydrogenation catalyst moderator, where the moderator is selected from hydrogenation catalyst poisons.
  • the moderator employed herein mediates the reaction, allowing it to go to completion while minimizing or avoiding the formation of over-reduction products.
  • the tetrahydro products are stable with respect to further hydrogenation under reaction conditions which may include the use of supra-atmospheric hydrogen pressures and elevated temperatures.
  • Camptothecin or an 11 -alkoxycamptothecin obtained by any method preferably such compounds as purified by the purification method of the instant invention as discussed above, may be
  • the hydrogenation catalyst moderator of the instant method may be selected from compounds known in the art to poison
  • exemplary moderators include sulfur compounds such as dimethylsulfoxide (DMSO) or thiophene. Use of DMSO as the catalyst moderator is particularly preferred. When a sulfur compound is employed as the moderator, it may be included on the hydrogenation catalyst. Sulfided hydrogenation catalysts are exemplary of the latter.
  • the amount of catalyst moderator employed may be selected so that an improvement in substrate conversion and/or selectivity is obtained relative to the substrate conversion and/or selectivity obtained when the reaction is conducted in the absence of the moderator.
  • Preferred amounts of the moderator are from about 0.2 to 5% by volume moderator, such as DMSO, per volume of reaction medium.
  • Suitable hydrogenation catalysts may be selected from
  • platinum platinum oxide
  • PtO 2 platinum oxide
  • the catalysts may be supported on a material such as carbon or alumina. Use of a supported catalyst may allow use of less total metal while still retaining a sufficient rate of hydrogenation, and is therefore preferred.
  • exemplary such catalysts include platinum on carbon, for example, 5% Pt/C, platinum on sulfided carbon, for example, 5% Pt/sulfided carbon, and platinum on alumina, for example, 5% Pt/alumina. Platinum on carbon, particularly 5% Pt/C, is particularly preferred.
  • the amount of hydrogenation catalyst employed may be selected so as to effect the reaction.
  • an amount of such catalyst, including the support which is from about 20 to 110%, particularly about 50%, by weight relative to the weight of the camptothecin or
  • 11-alkoxycamptothecin substrate is preferred.
  • An amount of 5% Pt/C catalyst which contains approximately 2.5% platinum based on the weight of starting material is particularly preferred.
  • the conversion to the tetrahydro products may be conducted according the instant invention at a suitable hydrogen pressure, such as by the use of atmospheric hydrogen pressure.
  • a suitable hydrogen pressure such as by the use of atmospheric hydrogen pressure.
  • Supra-atmospheric hydrogen pressures are, however, preferably employed. At these higher pressures, the reaction proceeds more rapidly and/or provides a more complete consumption of the starting material, while avoiding the formation of over-reduction products, so that volume efficiency with a higher throughput may be achieved.
  • Hydrogen pressures greater than about 35 psi may preferably be employed. Hydrogen pressures of from about 50 to 70 psi are particularly preferred.
  • the reaction medium of the instant method preferably comprises a liquid phase containing a solvent in which the product is soluble and the catalyst is active, and having a volume allowing efficient mixing of the medium and good diffusion of the hydrogen reactant.
  • An exemplary liquid forming the liquid phase is acetic acid, which is preferably employed in an amount of from about 10 to 30 volumes acetic acid per volume of camptothecin or 11 -alkoxycamptothecin, with lower amounts, such as about 10 volumes, being particularly preferred. Amounts greater than 30 volumes of acetic acid per volume of starting material may be employed, although excess amounts of the liquid medium may slow the reaction.
  • the temperature at which the reaction is conducted is the same as the temperature at which the reaction is conducted.
  • the reaction proceeds more rapidly, and goes more fully toward completion, than when conducted at room temperature.
  • the order of contacting the components of the reaction medium may be selected as desired.
  • Hydrogenation of the starting materials may produce four stereoisomers of their respective products, which differ with respect to the relative positions of the hydrogen atoms bonded to the bridgehead carbon atoms shared by the B and C rings. Production of any and all such stereoisomers is contemplated within the scope of the instant method.
  • the present invention also relates to the novel 11 -C 1 -6 alkoxy-
  • novel intermediates may be prepared by a method comprising the step of contacting an 11 -C 1 -6 alkoxycamptothecin with hydrogen and a hydrogenation catalyst, and, preferably, by the further use of a hydrogenation catalyst moderator as discussed above.
  • Isolation of the tetrahydro products may be conducted by an appropriate method, for example, the purification procedure
  • a preferred method comprises filtration to remove the hydrogenation catalyst, which may be followed immediately by the next step of the overall reaction scheme, that is, the conversion of the tetrahydro products to their 10-hydroxy analogs described as follows.
  • the second step of the overall process of Scheme I involves the conversion of tetrahydrocamptothecin or its 11-alkoxy analog to 10- hydroxycamptothecin or its 10-hydroxy-11-alkoxy analog.
  • the starting materials of this step are preferably obtained by the hydrogenation method of the instant invention described above.
  • the Japanese patent indicates that solvents used for this treatment include acetic acid, methanol, ethanol, chloroform, pyridine, benzene, methylene chloride, dioxane, THF, water and trifluoroacetic acid, and mixtures thereof.
  • solvents used for this treatment include acetic acid, methanol, ethanol, chloroform, pyridine, benzene, methylene chloride, dioxane, THF, water and trifluoroacetic acid, and mixtures thereof.
  • the process of the Japanese Patent has been found, however, to be disadvantageous in that the oxidation is not highly selective, forming, in addition to 10-hydroxycamptothecin,
  • camptothecin which must be separated from the ultimate product.
  • the 10-hydroxycamptothecin product itself is also reactive and tends to be destroyed during the process of the Japanese Patent. Additionally, the use of an oxidative agent such as lead tetra acetate may result in heavy metal
  • the instant invention provides a method for oxidizing
  • tetrahydrocamptothecin or its 11-C 1 - 6 alkoxy analog to 10-hydroxycamptothecin or its 10-hydroxy-11-alkoxy analog comprising the step of contacting tetrahydrocamptothecin or an 11-C 1 - 6
  • the liquid reaction medium comprises a liquid selected so that at least part of the 10-hydroxycamptothecin or 10-hydroxy-11 -alkoxycamptothecin product formed precipitates during said reaction, with the proviso that when
  • tetrahydrocamptothecin is employed as the starting material and an oxidizing agent (b) as follows is not employed, the liquid employed as the liquid reaction medium (a) does not consist of methanol; and/or (b) the oxidizing agent is potassium persulfate, iodosobenzene, an ester of iodosobenzene, sodium periodate or potassium periodate.
  • the liquid reaction medium (a) above preferably does not consist of any of methanol, ethanol, chloroform, benzene, methylene chloride, dioxane or water, taken alone.
  • the liquid medium (a) comprising a mixture of water and an organic solvent may be obtained, for example, by mixing water with an organic liquid exemplified by acetic acid, acetone, N,N- dimethylformamide, or a low molecular weight alcohol such as methanol, ethanol or isopropanol, in relative amounts to form a liquid composition in which at least part of the 10- hydroxycamptothecin or 10-hydroxy-11 -alkoxy analog formed precipitates.
  • ii a temperature at which ii is employed, preferably a C 1 -C 4 alcohol.
  • compositions for the liquid employed as the reaction medium include those compositions containing water and an organic solvent where the amount of water represents from about 25 to 75% by volume, based on the total volume of the liquid.
  • an approximately 1 : 1 volume ratio of water to a solvent such as acetic acid, acetone, N,N-dimethylformamide, or a low molecular weight alcohol.
  • the product compounds are essentially insoluble in the liquid reaction medium (a) of the invention.
  • the oxidizing agents (b) above are advantageous in that they are sufficiently mild so as to result in little or no destruction of the 10-hydroxy- or 10-hydroxy-11-alkoxycamptothecin products through further oxidation.
  • Particularly preferred of the oxidizing agents (b) above are the esters of iodosobenzene, for example, those esters having the formula PhI(OR 7 )2, where Ph is phenyl; R 7 in each
  • -OR 7 group may be the same or different and is hydrogen, -C(O)-R 8 or -SO 2 -R 9 ; R 8 and R 9 are unsubstituted or substituted hydrocarbon radicals; and where R 7 in at least one of the -OR 7 groups is other than hydrogen.
  • esters are examples of esters.
  • iodosobenzene with trifluoroacetic acid iodobenzenediacetate, formed by esterifying iodosobenzene with acetic acid, and
  • hydroxy(tosyloxy)iodobenzene formed by esterifying iodosobenzene with toluene sulfonic acid. Most preferred of these is
  • the amount of oxidizing agent may be selected to effect the reaction. Amounts greater than about two (2) equivalents of oxidant relative to the tetrahydrocamptothecin or 11-alkoxy analog thereof are preferred. An amount of oxidant relative to
  • tetrahydrocamptothecin or its 11 -alkoxy analog of approximately three (3) equivalents is most preferred.
  • a liquid medium such as N,N- dimethylformamide, acetone, a low molecular weight alcohol, or, preferably, acetic acid, may be employed, although the liquid medium described in (a) above is most preferred.
  • the loading of the tetrahydro starting material is preferably from about 2 to 10%, especially from about 5 to 10%, by weight based on the weight of the liquid medium.
  • Suitable pressures and temperatures for conducting the reaction may be selected, with atmospheric pressure and ambient temperature being preferred.
  • the reaction may be conducted under an atmosphere of air.
  • the present invention also relates to the novel 10-hydroxy-11-
  • C 1 -6 alkoxycamptothecin intermediates prepared herein may be prepared by a method comprising the step of contacting an 11-C 1 - 6 alkoxy-1,2,6,7-tetrahydrocamptothecin with an oxidizing agent in a liquid reaction medium, and, preferably, by the method discussed above.
  • 10- hydroxycamptothecin or 10-hydroxy- 11 -alkoxycamptothecin starting materials of this step are preferably obtained by the oxidation method described above. Starting materials otherwise obtained may, however, be employed.
  • 10- hydroxycamptothecin is a naturally-produced compound, which may be found in the same plant as camptothecin.
  • 10- Methoxycamptothecin, which has also been isolated from the same plant as camptothecin, may be converted to 10-hydroxycamptothecin by refluxing with hydrogen bromide.
  • 10-Hydroxycamptothecin may also be obtained by the method of Japanese Patent Application No.
  • racemic 10-hydroxycamptothecin may be prepared by the method of Wani et al., J. Med. Chem., 23 , 554 (1980).
  • the instant invention provides a method for the preparation of compounds of the Formula (I) in which the starting material
  • the instant invention provides a method for preparing a compound of the Formula (lb), or a pharmaceutically acceptable salt thereof, the compound of the Formula (lb) having the following structure:
  • R is hydrogen or C 1 -6 alkoxy
  • R 2 , R 3 , R 4 and R 5 are the same or different and are hydrogen;
  • R 6 is hydrogen; a C 1 -6 unsubstituted or substituted aliphatic
  • R 1 is an amine group -N-(R 4 )(R 5 ) and R 6 is hydrogen, by contacting 10- hydroxycamptothecin or a 10-hydroxy-11-C 1 -6 alkoxycamptothecin with a compound of the Formula (II), the compound of the Formula (II) having the following structure: CH 2 [-N-(R 4 )(R 5 )] 2 (II) where R 4 and R 5 are as defined above for Formula (lb); and
  • step (ii) (a) of the above method of the invention those compounds where R 1 is -O-R 2 or -S-R 3 may be prepared, for example, by heating a compound as prepared in step (i) above with an appropriate alcohol of the formula HO-R 2 or thiol of the formula HS-R 3 , where R 2 and R 3 are as defined in Formula (lb), in an inert solvent such as N,N-dimethylformamide.
  • an inert solvent such as N,N-dimethylformamide.
  • step (ii) When the compound prepared in step (i) is a free base, a small amount of strong acid, such as hydrochloric acid, may be added in step (ii) (a). Step (ii) (a) may be conducted simultaneously with, or subsequent to, step (i). The steps may be conducted
  • Step (ii) (b) may be conducted subsequent to step (i).
  • substituted aliphatic radicals include straight and branched chain aliphatic radicals, and are preferably unsubstituted or substituted C 1 -4 alkyl radicals.
  • exemplary pharmaceutically acceptable esters include those where R 6 is a C 1 -6 unsubstituted or substituted, straight or branched chain, aliphatic carbonyl radical, preferably a C 1 -4 unsubstituted or substituted alkyl carbonyl radical.
  • Carbocyclic ring is meant a fully saturated, partially saturated or fully unsaturated ring system.
  • Preferred compounds of Formula (lb) include those where R 1 is dimethylamino, N-morphoHno, N-methylpiperazinyl, (4'- piperidine)N-piperidinyl, cycIohexylamino, N-methylanilino, ethoxy, cyclopropylamino, N,N-dimethylaminoethoxy, N,N- dimethylaminoethylthio, N,N-dimethylamirioethylamino, or
  • R 1 is dimethylamino or N-morpholino, particularly dimethylamino, and the hydrochloride and acetate salts thereof.
  • the relative amounts of the reactants in step (i) may be selected to effect the reaction. Preferably, an excess of the reactants in step (i) may be selected to effect the reaction. Preferably, an excess of the reactants in step (i) may be selected to effect the reaction. Preferably, an excess of the reactants in step (i) may be selected to effect the reaction. Preferably, an excess of the reactants in step (i) may be selected to effect the reaction. Preferably, an excess of the reactants in step (i)
  • compound of Formula (II) is employed, such as an amount equal to or in excess of 1.2 equivalents of the Formula (II) compound relative to the 10-hydroxy- or 10-hydroxy-11-alkoxycamptothecin starting material.
  • the temperature employed in conducting the reaction with the compound of Formula (II) is preferably between 0°C and the reflux temperature of the solvent, most preferably, ambient temperature. Use of ambient temperature minimizes thermal decomposition of the relatively less stable Formula (lb) compounds, such as those in the free base form or in the acetate salt form resulting, for example, when acetic acid is employed as the solvent. Atmospheric pressure is preferred.
  • the reaction may be conducted under an air
  • the method of the invention for the preparation of compounds of the Formula (lb) may be conducted in a solvent, such as acetic acid.
  • a solvent such as acetic acid.
  • the loading of the 10-hydroxy- or 10-hydroxy-11-alkoxy starting material is preferably from about 4 to 10% by weight based on the weight of the solvent.
  • a preferred embodiment of the method of the invention comprises, particularly in step (i), the use of a solvent selected from those solvents comprising acetonitrile or a low molecular weight alcohol.
  • the acetonitrile or low molecular weight alcohol solvent may be mixed with one or more other organic liquids.
  • acetonitrile When acetonitrile is employed as the solvent, it may, for example, be used alone or in a mixture with a low molecular weight alcohol or an inert, chlorinated hydrocarbon such as methylene chloride.
  • a low molecular weight alcohol is employed as the solvent, it may, for example, be used alone or in a mixture with an inert, chlorinated hydrocarbon.
  • a mixture of a low molecular alcohol and an inert chlorinated hydrocarbon is preferred. Particularly preferred is the use of a mixture of a low molecular weight alcohol such as 1 -propanol and methylene chlorine, most preferably at a ratio of about 5 parts of alcohol to about 10 parts of methylene chloride by volume.
  • Use of the preferred solvent system in preparing compounds of the Formula (lb) provides advantages as compared with the use of a solvent such as acetic acid, for example, in that the reaction may be run without an acid, allowing direct isolation of an acid salt without a salt exchange, and the yield of recovered product may be increased, for example, by more complete consumption of the starting material. Where it is desired to obtain a given salt, direct addition of the appropriate acid, alone or in solution, may be employed.
  • an impurity formed, for example, during the above oxidation step, may be removed in the mother liquors, increasing the purity of the isolated product.
  • Formula (lb) do not include compounds of the Formula (I) where R 2 , R 3 , R 4 or R 5 are a hydroxyethyl group.
  • the latter compounds may be obtained by the method of European Patent No. 0 321 122, incorporated herein by reference.
  • Preferred pharmaceutically acceptable salts of compounds of the Formula (I) include acetate, methane sulfonate and, especially, hydrochloric, such as mono- and dihydrochloride.
  • the dihydrochloride salt may be formed by addition of excess hydrochloric acid, and likely , results from protonation of the quinoline nitrogen in the B ring, as well as a nitrogen of the R 1 group.
  • Exemplary pharmaceutically acceptable salts also include quaternary ammonium salts, which may, for example, be obtained by treating the compound obtained in step (i) of the above method with an alkylating agent.
  • a preferred such salt is the compound of Formula (I) where the 9-position substituent is -
  • exemplary pharmaceutically acceptable anions of quaternary salts of compounds of the Formula (I) include methane sulfonate and chloride.
  • the present invention also relates to novel compounds of the Formula (I) where R is C 1 -6 alkoxy.
  • R is hydrogen or C 1 -6 alkoxy
  • R 1 is -O-R 2 ; -S-R 3 ; or -N-(R 4 )(R 5 ) ;
  • R 2 , R 3 , R 4 and R 5 are the same or different and are hydrogen;
  • R 6 is hydrogen; a C 1 -6 unsubstituted or substituted aliphatic
  • step (a) adding a first liquid, which liquid is a solvent for the compound, in an amount such that at least part of the compound is dissolved to form a solution or a slurry; (b) subsequent to step (a), adding a second liquid to the solution or slurry obtained in step (a), which liquid facilitates recrystallization of the compound dissolved therein, and
  • Steps (a) through (c) of the instant method are preferably conducted at a temperature which essentially avoids instability of the compound of Formula (I) or a salt thereof.
  • the purification method of the instant invention provides savings in both cost and labor as compared, for example, with purification by chromatography.
  • the product obtained by the instant method is also purer than that obtained by chromatography. Isolating the product by filtration saves time and labor as compared, for example, with lyophilization, and the product is more easily handled than a lyophilized product.
  • the salt content, such as the chloride content, of the product material may be adjusted during the instant method.
  • the chloride content of the crude product may, for example, vary from ⁇ 100% to >200% of theory for the monohydrochloride, and may be adjusted to a value approximately that of the monohydrochloride.
  • the solvent employed in step (a) may be any solvent which, in sufficient amount, dissolves at least part of the compound of Formula (I) or a salt thereof to form a solution or a slurry.
  • the nature and quantity of the solvent are selected for essentially complete dissolution.
  • gentle heating may be used during step (a), preferably heating at a temperature which essentially avoids instability of the compound, such as a temperature below
  • Dissolution at room temperature is most preferred. It is preferred to employ from about 3 to 15 volumes of solvent per volume of compound to be purified.
  • Water is the preferred solvent of step (a), although organic solvents or mixtures of water and miscible orgrnic solvents may be employed. Dilute hydrochloric acid may also be employed.
  • Filtration is preferably performed subsequent to step (a) to remove any undesired, insoluble material present.
  • the filtration may be performed by methods known to those in the art.
  • the solution or slurry obtained in step (a), or the filtrate thereof when a filtration step is conducted subsequent to step (a), is preferably concentrated, such as by use of a vacuum. Concentration at room temperature is preferred.
  • step (b) a liquid is added which facilitates recrystallization of the solution or slurry. It is preferable to maintain the
  • step (b) Preferred amounts of the liquid added in step (b) are from about 15 to 60 volumes of liquid per volume of compound to be purified.
  • Exemplary liquids to be added in step (b) include acetone, acetonitrile, lower alcohols such as methanol, ethanol, 1-propanol, or 2-propanol, or tetrahydrofuran, with 1-propanol or acetone being preferred.
  • Addition of the solvent in step (a), followed by the subsequent addition of the liquid in step (b), provides advantages as compared with, for example, simultaneous addition of these liquids. Dissolution in step (a) may be accomplished more rapidly and more completely, allowing use of a filtration step to remove insoluble impurities.
  • the enhanced dissolution in step (a) obtained by successive addition allows the dissolution step to be performed at relatively low temperatures, thus minimizing or avoiding
  • the recrystallized mixture is preferably stirred and/or cooled to fully precipitate the product compound, which is then collected by filtration.
  • the product may be dried, for example, under a vacuum and/or with heating.
  • the water soluble camptothecin analogs of Formula (I), or salts thereof may be used in an amount effective to inhibit the growth of tumor cells sensitive to such an analog in an animal in need thereof, and in pharmaceutical compositions capable of such inhibition.
  • Cytotoxic compounds of Formula (I) are potent inhibitors of purified topoisomerase I.
  • the pharmaceutical compositions may contain an effective, tumor cell growth-inhibiting amount of a compound of the Formula (I), or a salt thereof, and an inert pharmaceutically
  • a compound of the Formula (I), or a salt thereof, is
  • compositions may be prepared in dosage unit form appropriate for parenteral or oral administration.
  • the pharmaceutical carrier employed may be, for example, either a solid or liquid.
  • solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like.
  • liquid carriers are syrup, peanut oil, olive oil, water and the like.
  • the carrier or diluent may include time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate alone or with a wax,
  • ethylcellulose hydroxypropylmethylcellulose, methylmethacrylate and the like.
  • the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form or in the form of a troche or lozenge.
  • the amount of solid carrier may vary widely but preferably will be from about 25 mg to about 1 g.
  • the preparation may be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable solution or
  • a pharmaceutically acceptable salt of a compound of Formula (I) is dissolved in an aqueous solution of an organic or inorganic acid, such as 0.3M
  • suitable cosolvents include, but are not limited to, alcohol, propylene glycol, polyethene glycol 300, polysorbate 80, glycerin and the like in concentrations ranging from 0-60% of the total volume.
  • composition may also be in the form of a solution of a salt form of the active ingredient in an appropriate aqueous vehicle such as water or isotonic saline or dextrose solutions.
  • an alkali metal salt such as the sodium salt
  • the carboxylate formed on alkaline hydrolysis of the E-ring lactone would yield a soluble salt.
  • compositions formulated the mode of administration and the particular site, host and disease being treated.
  • Optimal dosages for a given set of conditions may be ascertained by using
  • the dosage level generally employed is up to an expected amount of about 20 mg/m 2 of body surface area per day for one to five days. However, dosage amounts may be higher in practice. Preferably, the administration is repeated about every fourth week for four courses of treatment.
  • the dosage level generally employed is up to an expected amount of about 20 mg/m 2 of body surface area per day for one to five days, with courses of treatment repeated at appropriate intervals. However, dosage amounts may be higher in practice.
  • a method for inhibiting the growth of animal tumor cells sensitive to a compound of Formula (I), or a salt thereof comprises administering to a host animal afflicted with said tumor cells an effective tumor growth-inhibiting amount of such compound.
  • the active ingredient may be administered parenterally or orally on a daily basis in an amount having a general expected upper limit of about 20 mg/m 2 of body surface area for one to five days, with courses of treatment repeated at appropriate intervals, as discussed above. Dosage amounts may be higher in practice.
  • Camptothecin (Chinese material) 31.1 grams of (20 S) camptothecin were dissolved in 620 ml of N,N-dimethylformamide at approximately 155°C with vigorous stirring. The solution was cooled slowly to ambient temperature. After stirring until crystallization was complete, the suspension was filtered to give a light-yellow solid. Analysis by HPLC showed about 98% camptothecin with two small impurities (about 1% each) with a longer retention time than camptothecin. The sample was washed with methanol and air dried. The recovery of dried material was 24.9 g, m.p. 263-265°C (91 % corrected for assay).
  • Camptothecin (Chinese material) 301 grams of crude camptothecin were suspended with stirring in 3000 ml of N,N-dimethylformamide. The mixture was stirred at approximately 100°C for about 14 hours, and cooled slowly to ambient temperature with stirring. The solid was collected by an appropriate method and washed with methanol. After drying to a constant weight of 250 g the product was slurried for >12 hours with 2500 ml (10 vols. v/w) of N,N-dimethylformamide at 100°C. The suspension was slowly cooled with stirring to ambient temperature. The product was collected, washed with methanol and dried to a constant weight of 236 g (86% overall recovery corrected for assay) m.p. 263-265°C.
  • camptothecin Recrystallization of Camptothecin (Indian material) 291 grams of (20 S) camptothecin were dissolved by stirring with 10.2 liters of acetic acid with heating to reflux. About 10% by weight of activated charcoal (29 grams) was added, and the hot suspension was filtered through Celite. The resulting mixture was concentrated by distillation to a volume of about 5.8 liters. After cooling to ambient temperature with stirring, the solid product was collected, washed with methanol and dried to a constant weight. 230 grams of material were recovered. The sample assayed 98% by weight for camptothecin content as determined by HPLC.
  • the slurry was cooled with stirring to ambient temperature over 24 hours, filtered, and washed with 2 x 7.5 liters of methanol to give a light-yellow solid.
  • the solid was dried under vacuum. 1277 g of material were recovered.
  • camptothecin content as determined by HPLC versus a standard sample of material.
  • a 5-gaIlon, stainless steel, high pressure, stirred autoclave was charged with a slurry containing 1000 grams of camptothecin in glacial acetic acid.
  • 500 grams of 5% platinum-on-carbon slurried with glacial acetic acid were added to the reactor, such that a total of about 10 liters of acetic acid (10 volumes v/w versus camptothecin) was used in the reaction.
  • 75 ml of dimethyl sulfoxide were added, and the reactor was sealed.
  • the stirred reactor was charged with hydrogen, to a pressure of approximately 70 psi. This approximate pressure of hydrogen was maintained throughout the subsequent reduction.
  • the reactor was gradually heated to a temperature of about 65°C, and the uptake of hydrogen was carefully monitored. After about 6 hours the uptake of
  • tetrahydrocamptothecin was charged to a 22-liter, stirred glass vessel.
  • the solution was concentrated by distillation to about 40% of its original volume (4 liters).
  • the solution was diluted with an equal amount of distilled water and allowed to stir at approximately 20°C. A heavy, white, precipitate suspension resulted.
  • the suspension was stirred rapidly while 728 g (2.0 eq) of iodobenzenediacetate were quickly added. A slight exotherm to about 35°C was observed.
  • An additional 400 g (1.1 eq) of iodobenzenediacetate were added in three approximately equal portions at hourly intervals.
  • the slurry was stirred at room temperature for 18 hours. The mixture was then heated to distill the solvent at atmospheric pressure. A total of 5160 ml of a 1 :1 solution of acetic acid:water was periodically added to maintain an approximately constant volume through most of the distillation. The slurry was eventually concentrated to a final volume of approximately 1720 ml. The initial distillate removed was cloudy and separated into two phases upon collection. The heavier phase of the distillate consisted of mostly iodobenzene. Distillation was stopped and the yellow slurry was stirred at room temperature to cool over 24 hours. The solid was collected by filtration and rinsed twice with 860 ml portions of methanol, followed by removal of methanol by filtration. The collected solid was dried under vacuum. After drying, 171 g of product were obtained (91% isolated yield, corrected for the purity of the product as determined by HPLC assay versus a standard sample of material). The isolated product contained approximately 1 % camptothecin as a byproduct.
  • reaction time 514 g of concentrated, aqueous hydrochloric acid in 2140 ml of 1 -propanol was added continuously over about 2 hours. Stirring was continued for about 16 hours. The product was collected by filtration and washed with methylene chloride. The product was dried to a constant weight to give
  • Example 10 The title compound is prepared by the method of Example 8, by substituting bis(N-morpholino)methane for bis(dimethylamino)- methane.
  • Example 10 The title compound is prepared by the method of Example 8, by substituting bis(N-morpholino)methane for bis(dimethylamino)- methane.
  • the acetate salt is converted to the title hydrochloride salt by triturating with 0.1 N HCl.
  • the title compound is prepared according to the method of Example 8, wherein bis(N-methylanilino)methane is substituted for bis(dimethylamino)methane.
  • the title compound is prepared according to the method of Example 7, by substituting bis(cyclohexylamino)methane for bis(dimethylamino)me thane.
  • Racemic 10-hydroxycamptothecin prepared according to the method of Wani et al., J. Med. Chem., 23, 554 (1980). Racemic 10-hydroxycamptothecin can also be prepared from (20 S) 10-hydroxycamptothecin according to the following procedure: (a) Preparation of 10-Hydroxy-20-chloro-20-des- hydroxycamptothecin

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Steroid Compounds (AREA)
EP91918278A 1990-09-28 1991-09-23 Verfahren zur Herstellung wasserlöslicher Camptothecinanaloge, sowie die Verbindungen 10-Hydroxy-11-C(1-6)-alkoxycamptothecin Expired - Lifetime EP0547165B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58964390A 1990-09-28 1990-09-28
US589643 1990-09-28
PCT/US1991/006888 WO1992005785A1 (en) 1990-09-28 1991-09-23 Water soluble camptothecin analogues, processes and methods

Publications (3)

Publication Number Publication Date
EP0547165A1 true EP0547165A1 (de) 1993-06-23
EP0547165A4 EP0547165A4 (de) 1994-03-30
EP0547165B1 EP0547165B1 (de) 1999-11-10

Family

ID=24358879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91918278A Expired - Lifetime EP0547165B1 (de) 1990-09-28 1991-09-23 Verfahren zur Herstellung wasserlöslicher Camptothecinanaloge, sowie die Verbindungen 10-Hydroxy-11-C(1-6)-alkoxycamptothecin

Country Status (25)

Country Link
US (1) US5734056A (de)
EP (1) EP0547165B1 (de)
JP (1) JP2848958B2 (de)
CN (1) CN1033509C (de)
AT (1) ATE186461T1 (de)
AU (1) AU664830B2 (de)
CA (1) CA2090967C (de)
CZ (1) CZ51593A3 (de)
DE (1) DE69131775T2 (de)
DK (1) DK0547165T3 (de)
ES (1) ES2137932T3 (de)
FI (1) FI931384A (de)
GR (1) GR3031823T3 (de)
HK (1) HK1012283A1 (de)
HU (1) HUT70024A (de)
IE (1) IE913402A1 (de)
IL (1) IL99571A (de)
NO (1) NO931153L (de)
NZ (1) NZ239947A (de)
PT (1) PT99109B (de)
SI (1) SI9111599A (de)
SK (1) SK283693B6 (de)
WO (1) WO1992005785A1 (de)
YU (1) YU159991A (de)
ZA (1) ZA917748B (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP9300587A0 (en) * 1992-11-12 1995-05-05 Glaxo Inc Water soluble camptothecin derivatives.
US5527913A (en) * 1993-02-25 1996-06-18 The Stehlin Foundation For Cancer Research Methods for purifying camptothecin compounds
US5880131A (en) * 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5447936A (en) * 1993-12-22 1995-09-05 Bionumerik Pharmaceuticals, Inc. Lactone stable formulation of 10-hydroxy 7-ethyl camptothecin and methods for uses thereof
GB9402934D0 (en) * 1994-02-16 1994-04-06 Erba Carlo Spa Camptothecin derivatives and process for their preparation
KR960029336A (ko) * 1995-01-09 1996-08-17 김충환 캄토테신 유도체, 그의 제조 방법 및 이를 함유하는 항암제
US5726181A (en) * 1995-06-05 1998-03-10 Bionumerik Pharmaceuticals, Inc. Formulations and compositions of poorly water soluble camptothecin derivatives
JPH08333370A (ja) * 1995-06-08 1996-12-17 Kyorin Pharmaceut Co Ltd 水に可溶な新規フルオロエチルカンプトテシン誘導体、及びその製造方法
AU7732996A (en) * 1995-11-22 1997-06-11 Research Triangle Institute Camptothecin compounds with combined topoisomerase i inhibition and dna alkylation properties
GB9601779D0 (en) * 1996-01-30 1996-04-03 Pharmacia Spa 9, 10 Disubstituted camptothecin derivatives
US5731316A (en) 1996-01-30 1998-03-24 The Stehlin Foundation For Cancer Research Derivatives of camptothecin and methods of treating cancer using these derivatives
US6407118B1 (en) 1996-01-30 2002-06-18 The Stehlin Foundation For Cancer Research Derivatives of camptothecin and methods of treating cancer using these derivatives
US6096336A (en) * 1996-01-30 2000-08-01 The Stehlin Foundation For Cancer Research Liposomal prodrugs comprising derivatives of camptothecin and methods of treating cancer using these prodrugs
US6043367A (en) * 1998-09-30 2000-03-28 Roffler; Steve Proactive antitumor compounds
US6228855B1 (en) 1999-08-03 2001-05-08 The Stehlin Foundation For Cancer Research Aromatic esters of camptothecins and methods to treat cancers
US6352996B1 (en) 1999-08-03 2002-03-05 The Stehlin Foundation For Cancer Research Liposomal prodrugs comprising derivatives of camptothecin and methods of treating cancer using these prodrugs
EP1229934B1 (de) 1999-10-01 2014-03-05 Immunogen, Inc. Zusammensetzungen und verfahren zur behandlung von krebs mittels immunkonjugaten und chemotherapeutischen agenzien
WO2004055020A1 (en) * 2002-12-16 2004-07-01 Council Of Scientific And Industrial Research Process for the direct preparation of 5-alkoxy and 5-acyloxy analogues of campthothecins or mappicene ketones
ATE375351T1 (de) * 2003-03-31 2007-10-15 Council Scient Ind Res Verfahren zur herstellung von topotecan aus 10- hydroxy-4-(s) camtothecin
EP1628982B1 (de) 2003-05-12 2012-10-31 ScinoPharm Taiwan, Ltd. Verfahren zur herstellung von 7-alkyl-10-hydroxy-20(s)-camptothecin
CZ298934B6 (cs) * 2003-08-26 2008-03-12 Pliva- Lachema A.S. Zpusob výroby 7-ethyl-10-hydroxykamptothecinu
CZ299329B6 (cs) * 2003-08-26 2008-06-18 Pliva-Lachema A.S. Zpusob výroby 7-ethyl-10-[ 4-(1-piperidino)-1-piperidino]karbonyloxykamptothecinu
AR046579A1 (es) * 2003-11-12 2005-12-14 Smithkline Beecham Corp Compuesto cristalino de topotecan, composicion farmaceutica que lo comprende, procedimiento para prepararlo y su uso para preparar dicha composicion farmaceutica
CZ299593B6 (cs) * 2003-12-16 2008-09-10 Pliva-Lachema A. S. Zpusob výroby 7-ethyl-10-hydroxykamptothecinu
US20050267141A1 (en) 2004-05-28 2005-12-01 Phytogen Life Sciences Inc. Process to prepare camptothecin derivatives
US20050272757A1 (en) * 2004-06-04 2005-12-08 Phytogen Life Sciences Inc. Process to prepare camptothecin derivatives and novel intermediate and compounds thereof
US20080182990A1 (en) * 2004-08-09 2008-07-31 Shilpa Medicare Limited Process for the Preparation of Irinotecan Hydrochloride Trihydrate
NZ554677A (en) * 2004-11-05 2010-08-27 Samyang Corp Pharmaceutical formulation for increasing solubility of 10-hydroxycamptothecin compounds in non-aqueous polar solvents
US20060135546A1 (en) * 2004-12-16 2006-06-22 Jagadevappa Basavaraja Methods for the purification of 20(S)- camptothecin
US7405227B2 (en) * 2005-07-18 2008-07-29 Bipar Sciences, Inc. Treatment of cancer
US8349863B2 (en) * 2005-10-10 2013-01-08 Cipla Limited Crystalline polymorphic form of a camptothecin analogue
US7547785B2 (en) 2005-12-26 2009-06-16 Dr. Reddy's Laboratories Limited Process for preparing topotecan
JP2009535360A (ja) * 2006-04-26 2009-10-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高分子量神経治療薬の対流増加送達のための組成物および方法
AR060635A1 (es) 2006-04-27 2008-07-02 Banyu Pharma Co Ltd Derivados de 1,2-dihidro-3h-pirazolo[3,4-d]pirimidin-3-ona, composiciones farmaceuticas que los comprenden y su uso en el tratamiento del cancer
US20070292883A1 (en) * 2006-06-12 2007-12-20 Ossovskaya Valeria S Method of treating diseases with PARP inhibitors
US20100279327A1 (en) * 2006-06-12 2010-11-04 Bipar Sciences, Inc. Method of treating diseases with parp inhibitors
US20080039485A1 (en) * 2006-08-08 2008-02-14 Targetgen Biotechnology Co., Ltd. Low-dose-long-term pharmaceutical composition comprising camptothecin derivatives for the treatment of cancers
JP2008081492A (ja) 2006-08-31 2008-04-10 Banyu Pharmaceut Co Ltd オーロラa選択的阻害作用を有する新規アミノピリジン誘導体
AU2007292306A1 (en) * 2006-09-05 2008-03-13 Bipar Sciences, Inc. Inhibition of fatty acid synthesis by PARP inhibitors and methods of treatment thereof
WO2008030883A2 (en) * 2006-09-05 2008-03-13 Bipar Sciences, Inc. Treatment of cancer
US7977336B2 (en) 2006-12-28 2011-07-12 Banyu Pharmaceutical Co. Ltd Aminopyrimidine derivatives as PLK1 inhibitors
US7977483B2 (en) 2007-04-11 2011-07-12 Scinopharm Taiwan, Ltd. Process for making topotecan
EP2211854A4 (de) * 2007-10-19 2011-01-12 Bipar Sciences Inc Verfahren und zusammensetzungen zur behandlung von krebs mit parp-inhibitoren vom benzopyrontyp
EP2213673B1 (de) 2007-10-23 2013-06-05 Msd K.K. Pyridonsubstituiertes dihydropyrazolopyrimidinonderivat
NZ586123A (en) * 2007-11-12 2012-12-21 Bipar Sciences Inc Treatment of ovarian cancer with 4-iodo-3-nitrobenzamide in combination with topoisomerase inhibitors
CA2705537A1 (en) * 2007-11-12 2009-05-22 Bipar Sciences, Inc. Treatment of breast cancer with a parp inhibitor alone or in combination with anti-tumor agents
ITMI20072268A1 (it) 2007-12-04 2009-06-05 Antibioticos Spa Polimorfi cristallini di topotecan cloridrato con elevato grado di purezza e metodi per la loro preparazione
WO2009073869A1 (en) * 2007-12-07 2009-06-11 Bipar Sciences, Inc. Treatment of cancer with combinations of topoisomerase inhibitors and parp inhibitors
CN101450949B (zh) * 2007-12-07 2011-10-05 上海龙翔生物医药开发有限公司 一种10-羟基喜树碱的化学半合成工艺
ES2425621T3 (es) 2008-05-29 2013-10-16 Microbiopharm Japan Co., Ltd. Métodos para producir derivados de camptotecina
AU2010218781A1 (en) 2009-02-25 2011-07-28 Msd K.K. Pyrimidopyrimidoindazole derivative
US8481503B2 (en) 2009-03-06 2013-07-09 Merck Sharp & Dohme Corp. Combination cancer therapy with an AKT inhibitor and other anticancer agents
WO2012082337A2 (en) 2010-12-17 2012-06-21 Glaxo Wellcome Manufacturing Pte Ltd Combination
EP2672969A4 (de) 2011-02-01 2014-07-16 Glaxosmithkline Intellectual Property Ltd Kombination
CN103145720B (zh) * 2013-02-20 2015-09-30 上海北卡医药技术有限公司 一种10-羟基喜树碱的一水合物的制备方法
EP2881396A1 (de) * 2013-12-03 2015-06-10 Synbias Pharma AG Verfahren zur Synthese von Irinotecan
WO2023220641A2 (en) 2022-05-11 2023-11-16 Juno Therapeutics, Inc. Methods and uses related to t cell therapy and production of same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471358A1 (de) * 1990-08-14 1992-02-19 Kyorin Pharmaceutical Co., Ltd. Fluoräthylcamptothecinderivate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473692A (en) * 1981-09-04 1984-09-25 Kabushiki Kaisha Yakult Honsha Camptothecin derivatives and process for preparing same
JPS595188A (ja) * 1982-06-30 1984-01-12 Yakult Honsha Co Ltd 10−ヒドロキシカンプトテシンの製造法
JPS5946284A (ja) * 1982-09-10 1984-03-15 Yakult Honsha Co Ltd 11−ニトロカンプトテシン誘導体およびその製造法
US4894456A (en) * 1987-03-31 1990-01-16 Research Triangle Institute Synthesis of camptothecin and analogs thereof
US4981968A (en) * 1987-03-31 1991-01-01 Research Triangle Institute Synthesis of camptothecin and analogs thereof
US4943579A (en) * 1987-10-06 1990-07-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Water soluble prodrugs of camptothecin
US5004758A (en) * 1987-12-01 1991-04-02 Smithkline Beecham Corporation Water soluble camptothecin analogs useful for inhibiting the growth of animal tumor cells
JPH0615547B2 (ja) * 1988-01-20 1994-03-02 株式会社ヤクルト本社 新規なカンプトテシン誘導体
GB9008605D0 (en) * 1990-04-17 1990-06-13 Smith Kline French Lab Process
US5352789A (en) * 1993-02-25 1994-10-04 The Stehlin Foundation For Cancer Research Methods for purifying camptothecin compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471358A1 (de) * 1990-08-14 1992-02-19 Kyorin Pharmaceutical Co., Ltd. Fluoräthylcamptothecinderivate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9205785A1 *

Also Published As

Publication number Publication date
JP2848958B2 (ja) 1999-01-20
IE913402A1 (en) 1992-04-08
EP0547165B1 (de) 1999-11-10
HUT70024A (en) 1995-09-28
CA2090967C (en) 2007-02-06
NO931153D0 (no) 1993-03-26
DE69131775T2 (de) 2000-04-20
PT99109A (pt) 1992-08-31
SK283693B6 (sk) 2003-12-02
AU8739991A (en) 1992-04-28
DK0547165T3 (da) 2000-03-27
DE69131775D1 (de) 1999-12-16
JPH06501476A (ja) 1994-02-17
AU664830B2 (en) 1995-12-07
NO931153L (no) 1993-03-26
HU9300878D0 (en) 1993-06-28
FI931384A0 (fi) 1993-03-26
ZA917748B (en) 1992-09-30
IL99571A (en) 2000-08-31
CN1033509C (zh) 1996-12-11
HK1012283A1 (en) 1999-07-30
FI931384A (fi) 1993-03-26
CZ51593A3 (en) 1994-01-19
ES2137932T3 (es) 2000-01-01
NZ239947A (en) 1994-07-26
EP0547165A4 (de) 1994-03-30
US5734056A (en) 1998-03-31
SK25993A3 (en) 1993-07-07
CN1062731A (zh) 1992-07-15
WO1992005785A1 (en) 1992-04-16
ATE186461T1 (de) 1999-11-15
PT99109B (pt) 1999-02-26
GR3031823T3 (en) 2000-02-29
IL99571A0 (en) 1992-08-18
CA2090967A1 (en) 1992-03-29
SI9111599A (sl) 1998-02-28
YU159991A (sh) 1994-06-10

Similar Documents

Publication Publication Date Title
AU664830B2 (en) Water soluble camptothecin analogues, processes and methods
Wall et al. Plant antitumor agents. 30. Synthesis and structure activity of novel camptothecin analogs
US5180722A (en) 10,11-methylenedioxy-20(RS)-camptothecin and 10,11-methylenedioxy-20(S)-camptothecin analogs
KR100191193B1 (ko) 6환 화합물
EP0737686B1 (de) Camptothecinderivat und dessen Verwendung als Antitumormittel
US5049668A (en) 10,11-methylenedioxy-20(RS)-camptothecin analogs
EP0694035B1 (de) Wasserlösliche camptothecin-derivate, verfahren zu deren herstellung und deren verwendung als antitumor-mittel
US5340817A (en) Method of treating tumors with anti-tumor effective camptothecin compounds
AU8940491A (en) Substituted indolizino(1,2-b)quinolinones
US5840899A (en) Method for the preparation of 9-amino camptothecin
EP0136831B1 (de) Azahomoerythromycin-B-Derivate und Zwischenprodukte
EP1042326B1 (de) Acronycinderivate, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische zubereitungen
JP5982261B2 (ja) 立体選択的方法およびカンプトテシンの結晶形態
CA2493090C (fr) Nouveaux derives de benzo[b]chromeno-naphthyridin-7-one et de pyrano[2'3':7,8]quino[2,3-b]quinoxalin-7-one, leur procede de preparation et les compositions pharmaceutiques qui lescontiennent
NZ208757A (en) Rifampicin derivatives and pharmaceutical compositions
JPH07101956A (ja) ヒドロキシカンプトテシン化合物の製法
FR2827864A1 (fr) Nouveaux derives de benzo[b]pyrano[3,2-h]acridin-7-one, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
EP0674008A1 (de) Herstellung von optisch aktivem Cycohexenol und Cyclohexenylessigsäure mittels eines enzymatischen Verfahrens gefolgt durch ein Umlagerungsreaktion und ihre Verwendung als Intermediate in der Synthese von Indolobenzoquinolinederivaten
KR820000494B1 (ko) 퀴나졸린 유도체의 제조방법
EP0052238A1 (de) Vincamin-Derivat, Verfahren zur Herstellung und das es enthaltende Arzneimittel
PL117710B1 (en) Process for preparing novel benzocycloheptapyranes
FR2879600A1 (fr) Nouveaux derives cinnamates de benzo[b]pyrano[3,2-h]acridin-7-one, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
AU6340490A (en) 10,11-methylenedioxy-20(rs)-camptothecin and 10,11-methylenedioxy-20(s)-camptothecin analogs
JPS6411636B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19940211

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19970217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMITHKLINE BEECHAM CORPORATION

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 186461

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 69131775

Country of ref document: DE

Date of ref document: 19991216

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2137932

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SMITHKLINE BEECHAM CORPORATION

Free format text: SMITHKLINE BEECHAM CORPORATION#ONE FRANKLIN PLAZA, P.O. BOX 7929#PHILADELPHIA PENNSYLVANIA 19101 (US) -TRANSFER TO- SMITHKLINE BEECHAM CORPORATION#ONE FRANKLIN PLAZA, P.O. BOX 7929#PHILADELPHIA PENNSYLVANIA 19101 (US)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100726

Year of fee payment: 20

Ref country code: ES

Payment date: 20100914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20100922

Year of fee payment: 20

Ref country code: IT

Payment date: 20100918

Year of fee payment: 20

Ref country code: FR

Payment date: 20100920

Year of fee payment: 20

Ref country code: AT

Payment date: 20100809

Year of fee payment: 20

Ref country code: SE

Payment date: 20100907

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100809

Year of fee payment: 20

Ref country code: GR

Payment date: 20100827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100909

Year of fee payment: 20

Ref country code: DK

Payment date: 20100809

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20101012

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69131775

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69131775

Country of ref document: DE

BE20 Be: patent expired

Owner name: *SMITHKLINE BEECHAM CORP.

Effective date: 20110923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20110923

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110922

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110924