EP0470577B1 - Procédé et dispositif de dosage pour la distribution de quantités prédétermineés de flocons de fibres par unité de temps - Google Patents

Procédé et dispositif de dosage pour la distribution de quantités prédétermineés de flocons de fibres par unité de temps Download PDF

Info

Publication number
EP0470577B1
EP0470577B1 EP19910113205 EP91113205A EP0470577B1 EP 0470577 B1 EP0470577 B1 EP 0470577B1 EP 19910113205 EP19910113205 EP 19910113205 EP 91113205 A EP91113205 A EP 91113205A EP 0470577 B1 EP0470577 B1 EP 0470577B1
Authority
EP
European Patent Office
Prior art keywords
feed
driven
feed roller
situated opposite
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910113205
Other languages
German (de)
English (en)
Other versions
EP0470577A1 (fr
Inventor
Jürg Faas
Peter Brütsch
Robert Demuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904025476 external-priority patent/DE4025476A1/de
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0470577A1 publication Critical patent/EP0470577A1/fr
Application granted granted Critical
Publication of EP0470577B1 publication Critical patent/EP0470577B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G13/00Mixing, e.g. blending, fibres; Mixing non-fibrous materials with fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G23/00Feeding fibres to machines; Conveying fibres between machines
    • D01G23/02Hoppers; Delivery shoots
    • D01G23/04Hoppers; Delivery shoots with means for controlling the feed

Definitions

  • the present invention relates to a metering method and a metering device for delivering predeterminable quantities of fiber flakes per unit of time by means of two feeding devices arranged at the lower end of a flake shaft and forming a conveying gap between them.
  • a method or a device of this type is known, for example, from British patent specification 735 172 or the corresponding Swiss patent specification 313 355.
  • a similar method or a similar device is also known from DE-OS 37 13 590, wherein an opening roller is additionally arranged below the feed rollers forming the feed devices.
  • German patent 196 821 German patent 31 51 063 and Japanese document 62-263327.
  • mixtures of different fiber-like components that is to say fibers of different origins, types, qualities, colors or other characteristics, are usually mixed in order to produce fiber mixtures which are subsequently carded and fed to the further spinning processes.
  • the mixing can be carried out, for example, in such a way that the different types of fibers are filled into respective filling shafts and are deposited on a conveyor belt running below the shafts by means of the feed rollers arranged at the lower end of the flake shafts.
  • This creates a continuous layered structure on the conveyor element, which is then fed to an opening roller, this opening roller loosening individual flakes from the layered structure and ensuring good mixing of the different fibers of the different layers.
  • By controlling the speed of rotation of the individual feed rollers it is possible to determine the desired proportions of the individual fiber components.
  • European patent application EP-A-0 383 246 of the present applicant provides a metering method in which the feed devices are formed by feed rollers which can be rotated in opposite directions, with the further characteristics that at least one of the feed rollers is directed in the direction of the other Feed roller pretensioned and movable away from it under the flake pressure is that the distance between the two feed rollers or a value proportional to this is measured and that the speed of at least one of the feed rollers is controlled so that the product (n ⁇ x) of the speed (n) and the distance (x) at least on average remains constant.
  • this European application 90 102 745.8 published on August 22, 90 provides that the axis of rotation of one feed roller is mounted displaceably towards and away from the other feed roller in the direction of the axis of rotation of the other feed roller and is biased in the direction of the axis of rotation of the other feed roller so that one Distance measuring device is provided which determines the distance between the two feed rollers or a value proportional to this during operation of the flake conveying and that a control is provided which regulates the speed of the feed rollers based on the determined distance in the sense of reaching a predetermined target value of the current production .
  • the object of the present invention is to propose alternative solutions to the above object.
  • equation 1 In the derivation of equation 1 given in European application 90 102 745.8, the relationship with the density of the product in the conveying gap has been worked out, and the inventors have now recognized that an equation of the same form as equation 1 also results, if you keep the working distance between the two feeding devices constant and instead of changing this distance the changing one Measures force on the dining facilities. This force is in fact proportional to the density of the flock flow flowing through the delivery gap. You then get an equation of the form where the surface running speed of the driven feeder (s) and (P) is the force mentioned above.
  • K is a constant, but it will have a different size than in Equation 1 and in the corresponding equation of the European application 90 102 745.8 published on August 22, 1990.
  • each metering device 12 consists of a filling shaft 14 with a shop window 16 and two to three feed rollers 18, 20 arranged at the lower end of the shaft and an opening roller 22.
  • the flakes present in the shaft, the upper limit of which is 24, are detected by the feed rollers 18 and 20 rotating in the respective directions 26, 28 and fed to the opening roller 22 through the conveying gap formed between these two rollers.
  • the latter rotates faster than the feed rollers and loosens flakes from the supplied flake cotton wool and feeds them through a channel 30 in the form of open, loose flakes 32 onto the upper run 34 of the conveyor belt.
  • the loose flake bundles 32.1 and 32.2 from the two further metering devices are placed in layers on the first layer formed by the flake bundle 32 and guided with the upper run of the conveyor belt 34 in the direction of arrow 36 to the right end of the mixing device in FIG.
  • a further rotating conveyor belt 38 which rotates in the direction of arrow 40 and whose lower run 42 is inclined towards the upper run 34 of the conveyor belt 10 in the conveying direction 36.
  • the three layers 32, 32.1 and 32.2 are thus compressed and then captured in the feed nip of two feed rollers 44, 46.
  • the feed rollers 44, 46 feed the layered structure thus formed to an opening roller 48 which rotates in the direction of the arrow 50 and loosens the flakes from the layered structure and transfers them to the subsequent processing via a shaft 52. Any dirt or waste released by the opening by means of the opening roller 48 is collected in the outlet chamber 54 and optionally removed from here by means of an air stream.
  • FIG. 1 is not limited to three metering devices 12, but any number of layers can be arranged above the conveyor belt 10.
  • the two side walls 56, 58 of the flake shaft extend close to the surfaces of the feed rollers 18 and 20 and diverge slightly from each other so that no flake jams occur.
  • the flakes 60 in the shaft 12 which have a high degree of opening, are fed by the feed rollers 18 rotating in opposite directions in the direction of the arrow 26, 28 or 20 detected and compressed to a flake cotton wool 62.
  • the opening roller 22 then loosens the flakes out of this flake cotton wool and forms a flake flow 32 which continues in the direction of arrow 64 in the direction of the conveyor belt.
  • All flakes detected by the feed rollers rotating at the speed n are transported through a conveyor gap, the width x of which represents the smallest distance between the two feed rollers and the length of which corresponds to the length of the feed rollers or the width of the side walls of the shaft.
  • the axis of rotation of the feed roller 18 is identified by 66, the axis of rotation of the feed roller 20 by 68 and the axis of rotation of the opening roller 22 by 70.
  • the axis of rotation 66 of the feed roller 18, like the axis of rotation 70 of the opening roller 22, is fixedly arranged in the flake shaft.
  • the axis of rotation 68 of the feed roller 20 is carried by two arms 72, of which only one can be seen in FIG. 2.
  • the second arm 72 is located on the other end of the feed roller 20 and is designed in exactly the same way as the arm 72 shown.
  • This arm 72 is mounted on the axis of rotation of the opening roller 22 and can therefore carry out rotary movements about this axis of rotation 70 in the direction of the double arrow 74. As can be seen, such movements lead to a change in the distance x.
  • a prestressing device 76 is provided on the right-hand side of FIG. 2, in the form of a prestressing spring 78, which rests at one end against a stop 80 fixedly arranged on the filling shaft and at its other end against a stop 82 connected to the arm 72.
  • a rod 84 extends between the stop 80 and the stop 82 and is arranged displaceably within the stop 82.
  • a second pretensioning device 76 is provided on the other end of the feed roller 20 and there also on the associated arm 72 presses. The two springs 78 therefore try to reduce the distance x.
  • the minimum distance x is predetermined by a stop device 86 which cooperates with the arm 72 shown.
  • Another stop device 86 is located on the other end of the feed roller 20 and works in a corresponding manner with the arm 72 there.
  • the distance x arises in operation depending on the pressure prevailing in the conveyor shaft, the density and the degree of opening of the flakes and the force of the springs 78, the size of the distance x being able to be determined by the displacement movement of the rod 84 within the stop 82.
  • the rod 84 and the stop 82 are designed as a path measuring device.
  • the mass flow equal to the current production ⁇ is v ⁇ ⁇ ⁇ .
  • is the material density in the conveyor gap and this is at least essentially constant due to the prestressing with an essentially constant force.
  • This value is compared to now m 'with the target production and control of the speed made so that a new speed gives n2 that remains constant for the next time interval.
  • FIG. 4 shows a metering device which corresponds approximately to metering device 12 at the left end of FIG. 1.
  • a further roller 88 is provided, which feeds the flakes in the shaft to the feed rollers 18 and 20.
  • the roller 18 is designed to be displaceable, the roller 20, however, remains standing.
  • the axis of rotation 66.1 of the displaceable feed roller 18.1 is here also supported by two arms 72.1, which in this example are not supported by the axis of rotation of the opening roller 22 but by the axis of rotation 90 of the additional roller 88.
  • the pretensioning device 76.1 is now arranged on the left side of the flake shaft and, as in the embodiment according to FIG. 2, engages the arm 72.1.
  • neither the spring nor the displacement measuring device is shown here, but it goes without saying that these units are present in exactly the same manner as in the embodiment according to FIG is provided.
  • the feed rollers 18.1 and 20.1 and the further roller 88 are driven by a common motor 92.
  • the drive consists of a chain 94 which is driven by a sprocket 96 on the output shaft of the motor 92.
  • the chain 94 rotates with a tensioning device 104 on a sprocket 98 provided on the one end face of the roller 88 and on another sprocket 100 provided on the one end face of the roller 20.1 and on a sprocket 102 provided for tensioning the chain.
  • the direction of rotation of the chain is indicated by arrow 106, from which the desired direction of rotation 28 of the feed roller 20.1 and the direction of rotation 108 of the further roller 88 result.
  • the feed roller 18.1 is driven by a further rotating chain 110 which is driven by the chain wheel 98 designed as a double chain wheel.
  • the sprockets 100 and 98 and the sprocket 112 on one end of the feed roller 18.1 have the same diameter, as a result of which the rotational speeds of these rollers are all the same.
  • the opening roller 22.1 is driven by a separate motor 114 and a rotating chain 116.
  • FIG. 4 also shows how the opening roller rotates within sheet metal guides 118 and 120, the sheet metal guide 120 being adjustable in the direction of the double arrow 122.
  • the sheet 120 forms, together with another sheet 124, a guide channel 126 for the flake nonwoven.
  • the special shape of this guide channel 126 slows the flakes after they emerge from the area of the opening roller and gently guides them to the conveyor belt 34 without producing a pronounced air flow which could possibly interfere with the formation of sandwiches on the conveyor belt.
  • the reference numeral 128 represents the feed channel by means of which the flakes are pneumatically transported into the shaft 14.1.
  • 130 represents the computer, which controls the speed of the feed rollers via line 132 and receives the signal of the path measuring device installed in the pretensioning device 76.1 via line 134.
  • FIG. 5 shows a further embodiment, the arrangement of the feed rollers 18, 20 and the opening roller 22 being designed in accordance with the arrangement according to FIG. 2, for which reason these parts are not described in detail.
  • the motor 92.1 drives the feed roller 18.2 via the rotating chain 136.
  • This chain is tensioned by the tensioning device 104.1 and the tensioning wheel 102.1.
  • the second motor 114.1 drives an intermediate wheel 142 via the chain 140, which, via a further sprocket 144 coupled to it, a rotating chain 146, a further double sprocket 148 and a further rotating chain 150, which the opening roller 22 via the sprocket rotatably coupled to it drives.
  • a further metering device the task of which is to keep the filling height of the flakes within the shaft 14.2 within predetermined limits.
  • flakes from a buffer space 154 are fed to the further metering device 152, namely from four feed rollers 156, 158, 160 and 162.
  • These feed rollers 156, 158, 160, 162 are driven by their own motor 164, specifically via a rotating one Chain 166.
  • the respective directions of rotation of the feed rollers 156, 158, 160, 162 can be seen from the arrows shown in each case. To maintain these directions of rotation, it is necessary to drive the feed roller 160 through the feed roller 162 via a separate chain 168. From this it can be seen that the circulating chain 166 on the feed roller 160 is guided only via a freely rotatable sprocket.
  • the metering device 152 is almost identical in construction to the metering device at the lower end of the filling shaft 14.2.
  • the two feed rollers 170, 172 are driven by the motor 174, specifically via a revolving chain 176, which is essentially guided like the chain 136 at the lower end of the conveyor shaft, which is why the exact arrangement is not described in detail.
  • the second feed roller 172 is driven by a separate rotating chain 78.
  • the opening roller 180 is driven by the sprocket 142 via a further rotating chain 182, from which it can be seen that the sprocket 142 is designed as a double sprocket.
  • the metering device 152 is switched on and off via light barriers 184, 186 which determine the upper and lower limits of the filling height. Since the shaft 14.2 is relatively wide, measured in the direction perpendicular to the plane of the drawing, two light barriers are provided on both sides in order to take into account the inclined positions of the upper limit of the flake filling. The metering device 152 can be switched on when both lower light barriers 184 are free, but can be switched off when both upper light barriers 186 are interrupted.
  • the bottom light barrier can be an idle protection, the top one an overflow protection.
  • FIG. 6 shows a schematic illustration of a pretensioning device 76.2 for the one feed roller 20, this pretensioning device being very similar to the pretensioning device 76 of FIG.
  • the ingenious geometry of the arrangement and the use of the feed roller 20 as a balance weight and by the provision of an additional balance weight 200 ensure that in all positions of the feed roller 20 within the intended swiveling range a an at least essentially constant clamping force is exerted on the flake mass 62 between the two feed rollers 18, 20.
  • the spring 84 is compressed more than in the position shown, that is to say that exerted by the spring Elasticity represents a maximum.
  • the feed roller 20 causes a greater compression force on the spring 84 at the maximum angle ⁇ , since the feed roller 20 then has a larger lever arm for the weight force directed vertically downwards.
  • the additional balance weight 200 which exerts a counterclockwise torque on the arm 72 via the arm 202, in turn generates an additional force in the direction of the spring force 84 on the fiber flakes, which are located between the two feed rollers 18 and 20.
  • This additional force has a relatively small value in the angular position 206.
  • the tensioning force exerted on the flakes located between the two feed rollers 18 and 20 is a value in position 206 which corresponds approximately to the difference between the maximum spring force and the maximum value of the weight force of the feed roller 20 directed against this spring force.
  • the additional weight 200 exerts a maximum torque on the arm 72, which supports the force exerted by the spring 84.
  • the force exerted on the flakes between the two feed rollers 18 and 20 is essentially composed of the difference between the now reduced spring force 84 and the likewise reduced weight of the feed roller 20 plus the increased weight of the additional weight 200, and one can achieve by sophisticated selection of the geometry and the individual weights and the spring force or the spring constant that the forces exerted on the flakes between the two feed rollers 18 and 20 remain at least substantially constant over the entire angular range ⁇ .
  • the equation for the system can be easily established if the torques exerted on the arm 72 about the axis of rotation 70 are calculated as a function of the angle ⁇ and then set to zero for each angle ⁇ . From these equations, optimal values for the individual weights as well as the spring force and for the spring constant can then be determined. It is also conceivable that at least a good approximation to a constant clamping force can be achieved even without the additional weight 200.
  • the arm 72 must of course not be pivoted about the axis of rotation 70 of the opening roller 22. Instead, the articulation axis for the arm 72 can be chosen so that the clamping force remains constant as desired.
  • FIG. 7 shows an alternative embodiment of the pretensioning device 76.3, which here has the form of a gas pressure spring.
  • a gas pressure spring has the property of exerting a constant tensioning force over a relatively long stroke.
  • FIG. 8 shows a hydraulic solution to the task of generating a constant clamping force.
  • the feed rollers 18 and 20 are shown schematically.
  • the pretensioning device 76.4 is formed here by two piston-in-cylinder arrangements 210 and 212, which act on opposite ends of the axis of the feed roller 20, the piston rods 214, 216 of the two piston-in-cylinder arrangements, for example are articulated on the axis of rotation of the feed roller 20 and the cylinders 218, 220 of the two piston-in-cylinder arrangements are articulated on the frame of the associated flake shaft.
  • there is pressure in the two cylinders which is predetermined by the accumulator 222.
  • the accumulator 222 consists of a cylinder which is divided into two spaces 226 and 228 by means of a flexible membrane 224.
  • the space 226 is filled with a gas, for example air, while the space 228 receives a hydraulic liquid which is connected via lines 230, 232 and 234 to the pressure spaces of the two cylinders 218, 220.
  • a gas for example air
  • the space 228 receives a hydraulic liquid which is connected via lines 230, 232 and 234 to the pressure spaces of the two cylinders 218, 220.
  • an initial pressure is built up in the hydraulic system, specifically via a line 236, as will be explained in more detail below.
  • a backflow via line 236 is not possible, however, as will also be explained in more detail later. Due to the set pressure, the piston-in-cylinder arrangements 210, 212 exert a predetermined force on the feed roller 20.
  • liquid is displaced, for example, from the cylinders 218, 220 into the space 228 of the accumulator 222, which leads to an increase in the volume of this space and a compression of the gas volume 226.
  • the pressure set in the system remains at least essentially constant, so that a constant tensioning force on the Feed roller 20 is exerted, wherein the clamping force is also at least substantially independent of the actual position of the feed roller.
  • a hand pump 238 is provided in this embodiment, which draws hydraulic fluid from a container 240 and presses it into the pressure chambers 218, 220 and 228 via a check valve 242 and a distributor valve 246.
  • the pressure established in these pressure rooms can be read off via the manometer 248.
  • a relief valve 250 ensures that the pressure generated by the pump 238 does not exceed a maximum value, for example if the check valve 242 fails.
  • Another relief valve 252 prevents excessive pressure from building up in the hydraulic pressure system. Should the valve 250 or the valve 252 bring about pressure relief due to an overpressure, the relieved liquid flows back via the line 254 into the container 240.
  • the distributor valve 246 is constructed here in such a way that the pressures can be built up at eight different flake shafts A to H with assigned metering devices. Two piston-in-cylinder arrangements 210 and 212 as well as an accumulator 222 and the associated lines are provided for each shaft. The individual biasing devices can be selected successively via the distributor valve 246. After the pressure setting in shaft E in the present example, the distributor valve is turned into a closed position in which the connection between the pump 238 and the individual pressure systems is interrupted. It is obvious that in this example a separate relief valve 252 must also be provided for each printing system.
  • FIG. 9 now shows an embodiment according to the invention, which is very similar to the embodiment of FIG. 2, but with the feed roller 18 no longer being driven separately, but simply being freely rotatable.
  • This embodiment is based on the knowledge that the flake flow resulting from the feed roller 20 exerts considerable frictional forces on the feed roller 18, especially when the surface of the feed roller 18 is not smooth, but has a surface texture which leads to an increased coefficient of friction, whereby these frictional forces are quite sufficient to drive the feed roller at a surface speed which corresponds to the speed of the flake flow or the surface speed of the feed roller 20.
  • the design of the embodiment according to FIG. 9 largely corresponds to that of the embodiment according to FIG. 2, which is why the same reference numerals are used for the same parts, so that a separate description of these parts is not necessary. It is sufficient to point out that the axis of rotation 66 of the feed roller 18 is fixedly arranged, while the feed roller 20 is driven in the direction of travel 28. Conversely, it would also be possible to drive only the feed roller 18 and the other Feed roller 20 designed to rotate freely.
  • the arrangement of the opening roller 22 and the driven rotatable feed roller 20 has remained the same, which is why the same reference numerals have been retained for these parts.
  • the feed roller 18 has, however, been replaced by a fixed chute 300 which, together with the feed roller 20, forms a conveyor gap 302 which has its minimum width at point 304.
  • the slide 300 has been replaced by a circumferential belt 306 which is guided around two deflection rollers 308 and 310.
  • the upper deflection roller 308 is driven about the axis 312, in the direction of arrow 314, at a speed such that the surface running speed of the belt 306 in the direction of arrow 316 is equal to the surface running speed of the rotatable feed roller 20.
  • the minimum width 304 of the conveyor gap 302 is also arranged in this example at the lower end of the circulating belt.
  • FIG. 12 shows a driven feed roller 20.2 and a fixed feed trough 322.
  • the feed roller 20.2 can be rotated about the axis of rotation 68.2 in the direction of arrow 28.2, and the axis of rotation 68.2 is carried at both ends by the respective link 72.2, the two links 72.2 (only one of which can be seen in FIG. 12) are articulated at the upper end of the fixed feed trough 322 on the axis of rotation 324.
  • the conveyor gap 302 has its minimum width at the point 304. This attachment of the feed roller 20.2 enables the minimum width 304 to be changed by pivoting movements of the handlebars in accordance with the arrows 74.2.
  • the pretensioning device 76.2 is designed according to FIG. 2, but reaches from above onto the lower end of the link 72.2 and thus forces the feed roller 28.2 in the direction of the feed trough 322.
  • both feed rollers 18 and 20 have been replaced by circulating belts 306 and 326.
  • the arrangement of the circulating belt 306 around the two deflecting rollers 308 and 310 corresponds completely to the arrangement of the corresponding circulating belt 306 of FIG. 11, which is why this arrangement is provided with the same reference numerals and is not described here in detail.
  • the revolving belt 326 is designed approximately the same, that is, it runs around an upper deflection roller 328, which is driven and rotates about the axis 330.
  • the circulating belt 326 is also guided over a lower deflection roller 332, which is arranged so as to be freely rotatable about the axis of rotation 334.
  • a pretensioning device 76.3 acts, which is essentially designed according to the pretensioning device of the previous figures, but with the additional measure that the parts 82 are connected to each other at both ends of the axis of rotation via a stable rod 336 to ensure that the gap width at the narrowest point 304 of the conveyor gap 302 remains constant over the entire axial length of the deflecting rollers 310 and 332.
  • a rod 336 can also be provided in the other versions.
  • the axis of rotation 330 of the deflection roller 328 is mounted with the axis of rotation 334 of the roller 332 on a common support body (not shown) so as to be pivotable about the axis 330.
  • either both circulating belts can be driven at the same surface running speed, or either only the rotating belt 306 or only the rotating belt 326 can be driven, and the other rotating belt can then freely rotate.
  • the lower deflection point it is preferred to design the lower deflection point as a freely rotatable roller.
  • deflecting bodies such as, for example, 318 or 338 can be provided, for example the deflecting body 318 being fixed and the deflecting body 338 being movably arranged.
  • the mobility of the deflecting body 338 is limited to a pivoting movement about the axis 330.
  • the minimum width 304 changes during operation, and the changes in this distance become apparent when the Surface circulation speed of the driven circulating belt or the driven rotating belts is taken into account.
  • FIG. 14 shows a further development of the embodiment according to FIG. 10, the rotatable feed roller 20 having been replaced with a circumferential belt 326 corresponding to FIG. 13.
  • the rotating belt 326 in this example must be a driven belt.
  • the width 304 changes during operation, and the changes in this width are taken into account when regulating the surface running speed of the circulating belt 326.
  • This rotational speed is of course predetermined here, as in all other embodiments in which revolving belts are used, by the rotational speed of the associated driven deflecting roller, in this example 328.
  • FIG. 15 shows an embodiment in which the feed roller 20.5 is driven in the arrow direction 28.5 about a fixed axis of rotation 68.5.
  • the feed roller 18 is replaced by a spring-loaded plate 370, that is to say the plate is prestressed against the flake mass in the direction of arrow 372 by means of a prestressing device 76.5.
  • Guides 374 and 376 which are arranged below and above and on both sides of the plate 370, ensure that the plate can only move along the arrow direction 372.
  • the measuring device which emits a signal that reflects the change in the distance 304 of the minimum width of the conveyor gap 302, is installed in the pretensioning device 76.5.
  • spring-loaded plate 370 could also be designed as a leaf spring itself, in which case a separate sensor would be required in order to determine the changes in the distance 304 which occur during operation.
  • FIG. 16 shows a further modified arrangement of the embodiment according to FIG. 2, in which, however, both feed rollers 18.4 for a desired production ⁇ should have a fixed distance from one another and rotate about fixed axes of rotation 66.4 and 68.4, specifically in the directions of rotation caused by arrows 26.4 and 28.4 are specified.
  • the opening roller 22 rotates about the likewise fixedly arranged axis of rotation 70.
  • the axis of rotation 68.4 of the feed roller 20.4 is supported at its two ends by approximately triangular plates 340 in front view (only one of which can be seen in FIG. 16), the two plates being connected to one another via connecting rods (not shown).
  • the plates 340 are in turn arranged to be pivotable about a fixed axis of rotation 342, as indicated by the double arrow 344. In operation, however, a fixed position of the triangular plates 340 and therefore also the axis of rotation 68.4 of the feed roller 20.4 is selected. This is done via a threaded spindle 346, which is passed through a solid part 348 with an internal thread.
  • the part 348 is arranged in a machine-fixed manner.
  • a handwheel 350 which can also be replaced by a motor drive, enables the threaded spindle 346 to be rotated, as a result of which the position of the triangular plates 340 can be determined. Since a corresponding spindle arrangement is also provided for the second triangular plate (not shown), the two spindle drives are to be coupled to one another, which can be done, for example, via the rotating belt 352.
  • each threaded spindle 346 there is a yoke 354, the legs 356 and 358 of which are arranged on the respective side of a tab part 360 of the associated triangular plate 340.
  • load cells 362 and 364 which are connected to the computer via lines (not shown).
  • the two feed rollers convey the flake material through the conveyor gap 302 and through the location 304 of the minimum width, and a force P acts on the feed roller 20.4, which tries to pivot the triangular plates 340 about the axis of rotation 342. Actual pivoting does not occur because it is prevented by the spindle-yoke arrangement.
  • the load cells 362 and 364 enable the size of this force to be determined by the computer, which also takes into account the geometric circumstances.
  • the fluctuations in this force correspond to the fluctuations in the density of the flake flow at point 304 and are processed by the computer to regulate the rotational speed of the feed roller 20.4 and, if appropriate, the feed roller 18.4, if this roller is also or alternatively driven, so that the desired mass flow ⁇ should be maintained becomes.
  • the minimum width 304 can be changed or set by means of the spindle 346, so that the speed changes of the feed rollers can be kept within predetermined limits, regardless of the production intended in each case ⁇ should .
  • pre-tensioning devices 76, 76.3 and 76.4 are shown in FIGS. 9 to 14 as in the embodiment of FIG. 2, it is understood that in practice these pre-tensioning devices should preferably be realized by gas pressure springs or hydraulic arrangements in order to independently of the pre-tensioning force Change the minimum width 304 to keep constant. Also, in the new exemplary embodiments, the geometry can in part be selected such that compensating forces occur which, even when using a conventional compression spring, lead to a force which, with adjustment of the one feed device, does not result in a change in the preload force or only to a small extent.
  • plates are provided on the ends of the feed devices or the opening roller, which limit the flake mass or the flake flow on the sides of the conveying gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Structure Of Belt Conveyors (AREA)

Claims (11)

  1. Procédé de dosage pour délivrer des quantités de flocons de fibres (60) pouvant être prédéterminées par unité de temps, à l'aide de deux arrangements d'alimentation formant entre eux une fente de transport, qui sont disposés à l'extrémité inférieure d'un silo de flocons, et où de préférence un rouleau ouvreur (22) est disposé sous l'arrangement d'alimentation, procédé dans lequel les arrangements d'alimentation sont constitués soit
    a. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une glissoir (300) disposée en face du rouleau, ou
    b. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une bande sans fin (306) entraînée et circulant librement, disposée en face du rouleau, ou
    c. de deux bandes sans fin (306, 326) circulant l'une en face de l'autre, et où au moins une des bandes (306) est entraînée et l'autre est soit libre ou également entraînée, ou
    d. d'une bande sans fin (326) entraînée et circulant librement, et d'une glissoir (300) disposée en face de la bande, ou
    e. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'un autre rouleau d'alimentation (18), tournant librement et dispose vis-à-vis, ou
    f. d'un rouleau d'alimentation (20.2) entraîné et rotatif, et d'une auge d'alimentation (322), disposée en face du rouleau,
    et où, dans toutes les réalisations possibles de a. à f., la fente de transport converge vers une largeur minimale, et au moins un des arrangements d'alimentation est prétendu dans la direction de l'autre arrangement d'alimentation et peut être mû en s'éloignant de celui-ci sous la pression des flocons, de telle manière que la distance comprise entre les deux arrangements d'alimentation est changée dans le sens d'une variation de la largeur minimale (x) de la fente de transport, que la largeur minimale de la fente de transport, ou une valeur lui étant proportionnelle, est détectée, et que la vitesse de marche (u) des surface de l'arrangement d'alimentation, ou des arrangements d'alimentation entraînés, est modulee de telle manière qu'au moins la valeur moyenne du produit de cette largeur et de la vitesse de marche des surfaces reste constante.
  2. Procédé selon revendication 1,
    caractérisé par le fait que
    la régulation de la vitesse de marche des surfaces est réalisee de telle manière que le produit (u · x) est intégré dans un intervalle de temps (t₂ - t₁) pouvant être donné à l'avance, que la production momentanee (m) qui résulte de cela, est formée par l'équation
    Figure imgb0012
    dans laquelle K représente une constante, qu'une comparaison est realisée entre la valeur effective (m) de la production momentanée et sa valeur de consigne (msoll), et que, par cela, une nouvelle vitesse de marche des surfaces est calculée pour le prochain intervalle de temps, dans le sens d'un approchement de la prochaine valeur de la production momentanée (m) vers sa valeur de consigne (msoll).
  3. Procédé selon revendication 2,
    caractérisé par le fait que
    la vitesse de marche des surfaces (u) est réglée sur une valeur constante à l'intérieur de chaque intervalle de temps.
  4. Dispositif de dosage pour délivrer des quantités de flocons de fibres (60) pouvant être prédéterminées par unité de temps, particulièrement pour la réalisation du procédé selon l'une des revendications précédentes, à l'aide de deux arrangements d'alimentation formant entre eux une fente de transport, qui sont disposés à l'extrémité inférieure d'un silo de flocons, et ou de préférence un rouleau ouvreur (22) est dispose sous l'arrangement d'alimentation,
    les arrangements d'alimentation étant constitués soit
    a. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une glissoir (300) disposée en face du rouleau, ou
    b. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une bande sans fin (306) entraînée et circulant librement, disposée en face du rouleau, ou
    c. de deux bandes sans fin (306, 326) circulant l'une en face de l'autre, et où au moins une des bandes (306) est entraînée et l'autre est soit libre ou également entraînée, ou
    d. d'une bande sans fin (326) entraînée et circulant librement, et d'une glissoir (300) disposée en face de la bande, ou
    e. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'un autre rouleau d'alimentation (18), tournant librement et disposé vis-à-vis, ou
    f. d'un rouleau d'alimentation (20.2) entraîné et rotatif, et d'une auge d'alimentation (322), disposée en face du rouleau,
    et où, dans toutes les réalisations possibles de a. à f., la fente de transport converge vers une largeur minimale, et où un arrangement de prétension (76, 76.2, 76.3, 76.5) est prévu lequel prétend au moins un des arrangements d'alimentation dans la direction de l'autre arrangement d'alimentation, et au moins un des arrangements d'alimentation est disposé de manière à pouvoir être mû en s'éloignant de l'autre arrangement d'alimentation sous la pression des flocons, un arrangement de mesure de déplacement est prévu afin de déterminer, pendant la marche du transport de flocons, la distance résultante entre les deux arrangements d'alimentation à l'endroit de la largeur minimale, respectivement une valeur proportionnelle de celle-ci, et une régulation est prévue afin de régler la vitesse de marche des surfaces (u) de l'/des arrangement(s) d'alimentation mobiles, à partir de la distance (x) détectée, dans le but d'atteindre une valeur de consigne (msoll) prédéterminée de la production momentanée (m).
  5. Dispositif de dosage selon revendication 4,
    caractérise par le fait que,
    dans une disposition dans laquelle les arrangements d'alimentation sont constitués par un rouleau d'alimentation (20) entraîné et rotatif et par une glissoir (300) disposée en face du rouleau et formant avec lui une fente de transport, la glissoir est réalisée comme une plaque élastique qui, par sa réalisation élastique, peut être éloignée par pression du rouleau d'alimentation (20) rotatif, mais disposé d'une manière fixe.
  6. Dispositif de dosage selon revendication 4,
    caractérise par le fait que
    l'arrangement de prétension (76, 76.2, 76.3, 76.5) est formé au moins par un ressort (84) ou par un élément de tension, dont la force reste au moins essentiellement constante à l'intérieur de chemin de déplacement prédéterminé.
  7. Dispositif de dosage selon revendication 4,
    caractérisé par le fait que
    l'arrangement de prétension (76.3) est formé par au moins un ressort à tension de gaz.
  8. Dispositif de dosage selon revendication 4,
    caractérise par le fait que
    l'arrangement de prétension (76.2) est formé par au moins un ressort (84), qu'au moins un poids de compensation est prévu, afin de compenser au moins partiellement la diminution de la force de tension lorsque la distance comprise entre les deux arrangements d'alimentation devient plus petite, et où le poids de compensation, ou au moins une partie de celui-ci, est donné, le cas échéant, par cet arrangement d'alimentation même, lors d'une suspension adéquate de l'un des arrangements d'alimentation.
  9. Dispositif de dosage selon revendication 4,
    caractérisé par le fait que
    l'arrangement de prétension (76.4) est un arrangement de prétension hydraulique qui, par exemple, est formé soit par un système de refoulement actionné par le mouvement de l'un des arrangements d'alimentation et par un accumulateur (222) raccordé à ce système, ou par une disposition compensée ayant un système de pression produisant une pression au moins essentiellement constante.
  10. Procédé de dosage pour délivrer des quantités de flocons de fibres pouvant être déterminées par unité de temps, à l'aide de deux arrangements d'alimentation tournant dans des directions opposées et formant entre eux une fente de transport, disposés à l'extrémité inférieure d'un silo de flocons, et où, de préférence, un rouleau ouvreur est disposé sous les arrangements d'alimentation,
    les arrangements d'alimentation étant constitués soit
    a. de deux rouleaux d'alimentation (20, 18) entraînés et rotatifs, disposés l'un en face de l'autre, ou
    b. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une glissoir (300) disposée en face du rouleau, ou
    c. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une bande sans fin (306) entraînée et circulant librement, disposée en face du rouleau, ou
    d. de deux bandes sans fin (306, 326) circulant l'une en face de l'autre, et où au moins une des bandes (306) est entraînée et l'autre est soit libre ou également entraînée, ou
    e. d'une bande sans fin (326) entraînée et circulant librement, et d'une glissoir (300) disposée en face de la bande, ou
    f. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'un autre rouleau d'alimentation (18), tournant librement et disposé vis-à-vis, ou
    g. d'un rouleau d'alimentation (20.2) entraîné et rotatif, et d'une auge d'alimentation (322), disposée en face du rouleau,
    et où la position relative des deux arrangements d'alimentation, l'un vis-à-vis de l'autre, lors d'une mesure simultanée de la force (P) qui écarte les deux arrangements d'alimentation, ou d'une valeur proportionnelle à cette force, est au moins essentiellement maintenue constante, et où la vitesse de marche des surfaces (u) de l'/des arrangement(s) d'alimentation entraîné(s), sous considération de la force changeante, est modulée de telle sorte qu'au moins la valeur moyenne du produit (u · P) de la vitesse de marche des surfaces et de la force reste constante.
  11. Dispositif de dosage pour délivrer des quantités de flocons de fibres pouvant être déterminées par unité de temps, particulièrement pour la réalisation du procédé selon revendication 10, à l'aide de deux arrangements d'alimentation formant entre eux une fente de transport, qui sont disposés à l'extrémité inférieure d'un silo de flocons, et où de préférence un rouleau ouvreur est disposé sous l'arrangement d'alimentation,
    les arrangements d'alimentation étant constitués soit
    a. de deux rouleaux d'alimentation (20, 18) entraînés et rotatifs, disposés l'un en face de l'autre, ou
    b. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une glissoir (300) disposée en face du rouleau, ou
    c. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'une bande sans fin (306) entraînée et circulant librement, disposée en face du rouleau, ou
    d. de deux bandes sans fin (306, 326) circulant l'une en face de l'autre, et où au moins une des bandes (306) est entraînée et l'autre est soit libre ou également entraînée, ou
    e. d'une bande sans fin (326) entraînée et circulant librement, et d'une glissoir (300) disposée en face de la bande, ou
    f. d'un rouleau d'alimentation (20) entraîné et rotatif, et d'un autre rouleau d'alimentation (18), tournant librement et disposé vis-à-vis, ou
    g. d'un rouleau d'alimentation (20.2) entraîné et rotatif, et d'une auge d'alimentation (322), disposée en face du rouleau,
    et où, dans toutes les réalisations possibles de a. à g., la fente de transport converge vers une largeur minimale, et où les positions relatives des deux arrangements d'alimentation, l'un vis-à-vis de l'autre, restent au moins essentiellement constantes pour une production (msoll) choisie, un arrangement de mesure de force est prévu, afin de mesurer la force (P) qui essaie de séparer par pression les deux arrangements d'alimentation, et une régulation est prévue afin de régler la vitesse de marche des surfaces (u) de l'/des arrangement(s) entraîné(s), à partir de la force détectée, dans le but d'atteindre la valeur de consigne (msoll) prédéterminée de la production momentanée (m).
EP19910113205 1990-08-10 1991-08-06 Procédé et dispositif de dosage pour la distribution de quantités prédétermineés de flocons de fibres par unité de temps Expired - Lifetime EP0470577B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904025476 DE4025476A1 (de) 1990-02-12 1990-08-10 Dosierverfahren und -vorrichtung zur abgabe vorgebbarer mengen von faserflocken pro zeiteinheit
DE4025476 1990-08-10

Publications (2)

Publication Number Publication Date
EP0470577A1 EP0470577A1 (fr) 1992-02-12
EP0470577B1 true EP0470577B1 (fr) 1994-09-21

Family

ID=6412060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910113205 Expired - Lifetime EP0470577B1 (fr) 1990-08-10 1991-08-06 Procédé et dispositif de dosage pour la distribution de quantités prédétermineés de flocons de fibres par unité de temps

Country Status (2)

Country Link
EP (1) EP0470577B1 (fr)
JP (1) JPH04245926A (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622480A1 (fr) * 1993-04-20 1994-11-02 Maschinenfabrik Rieter Ag Procédé de dosage des quantités préalablement déterminées de flocons de fibres de qualité et/ou de couleur différente
DE19630018A1 (de) * 1996-07-25 1998-01-29 Rieter Ag Maschf Anlage zum Verarbeiten von Fasern
DE10041838A1 (de) * 1999-08-25 2001-04-12 Ake Innotech Automatisierung K Verfahren und Vorrichtung zum Beeinflussen von Struktur und Lage der Fasern im Prozeß der aerodynamischen Vliesbildung
JP2009149384A (ja) * 2007-12-18 2009-07-09 Tadataka Watanabe 搬送装置
CN107745997B (zh) * 2017-11-14 2023-07-07 经纬纺织机械股份有限公司 纤维条输送装置单元
CN116022587A (zh) * 2023-02-09 2023-04-28 山东日发纺织机械有限公司 一种传送速度的控制方法、控制器及生产线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE196821C (fr) *
GB735172A (en) * 1952-05-16 1955-08-17 Tmm Research Ltd Improvements relating to the preparation of blended fibrous materials
US3889319A (en) * 1973-10-23 1975-06-17 Crompton & Knowles Corp Method and system for producing blended textile fibrous materials
DE3151063C2 (de) * 1981-12-23 1984-05-24 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Mischen von Textilfasern
DE3535684C2 (de) * 1985-10-05 1996-06-05 Truetzschler Gmbh & Co Kg Vorrichtung zur Speisung eines Öffners oder Reinigers für Textilfaserflocken
DE3713590A1 (de) * 1987-04-23 1987-10-08 Hergeth Hubert Schachtmischer
DE3740616A1 (de) * 1987-12-01 1989-06-15 Truetzschler & Co Verfahren und vorrichtung zum mischen von textilfasern
DE3913997A1 (de) * 1989-02-14 1990-08-23 Rieter Ag Maschf Dosierverfahren und -vorrichtung zur abgabe vorgebbarer mengen von faserflocken

Also Published As

Publication number Publication date
JPH04245926A (ja) 1992-09-02
EP0470577A1 (fr) 1992-02-12

Similar Documents

Publication Publication Date Title
EP0383246B1 (fr) Procédé et appareil pour alimenter les flocons de fibres en quantité donnée
AT400328B (de) Verfahren zur beherrschung des aufrollens einer papier- oder ähnlichen bahn
DE69020530T2 (de) Verfahren und Vorrichtung zum Ausstrecken von Teig.
DE2506061C3 (de) Wiegeeinrichtung zum kontinuierlichen Wiegen einer durchlaufenden Faserschicht
DE68926199T2 (de) Streckvorrichtung mit selbsttätigem Ausgleich
DE2359917B2 (de) Verfahren zum Erzeugen eines gleichmäßig, kontinuierlichen Faserverbandes und Einrichtung zur Durchführung des Verfahrens
DE3217381A1 (de) Vorrichtung zum beschicken von wanderrosten mit gruenpellets
DE1535616A1 (de) Webmaschine
EP0470577B1 (fr) Procédé et dispositif de dosage pour la distribution de quantités prédétermineés de flocons de fibres par unité de temps
DE2603900A1 (de) Werkzeugmaschine mit einem horizontal auf einem support verschiebbaren werkzeugkopf-halter
AT395726B (de) Vorrichtung zur vergleichmaessigung des faserbandes oder -vlieses bei einer karde, krempel od.dgl.
DE69022160T2 (de) Programmierbare Vorrichtung zum automatischen Einstellen der Zugspannung beim Wickeln von Drähten.
DE3016849C2 (fr)
DE4311054A1 (de) Selbstfahrende landwirtschaftliche Erntemaschine
DE2138855C3 (de) Verdichtungstrichter zum Messen der Stärke eines aus einem Streckwerk auslaufenden Faserbandes
DE4025476A1 (de) Dosierverfahren und -vorrichtung zur abgabe vorgebbarer mengen von faserflocken pro zeiteinheit
DE69102853T2 (de) Dosierbandzuführer.
DE2915710A1 (de) Wiegevorrichtung
EP1917388A1 (fr) Systeme d'alimentation en flocons
CH693676A5 (de) Vorrichtung zum Messen der Dicke und/oder der Ungleichmässigkeit von Faserbändern.
DD292035A5 (de) Dosierverfahren und -vorrichtung zur abgabe vorgebbarer mengen von faserflocken
DE19827712A1 (de) Vorrichtung zum direkten oder indirekten Auftragen eines flüssigen oder pastösen Auftragsmediums auf eine laufende Materialbahn
DE3884260T2 (de) Steuerung von Karden.
DE2657986A1 (de) Richtmaschine zum richten von blechen und flachmaterialien
DE3615357A1 (de) Verfahren und vorrichtung zur bildung einer bahn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19940208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940921

REF Corresponds to:

Ref document number: 59103024

Country of ref document: DE

Date of ref document: 19941027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941102

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010724

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050812

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070806