EP0384552B1 - Verfahren zum Betrieb eines Leistungsschalters - Google Patents

Verfahren zum Betrieb eines Leistungsschalters Download PDF

Info

Publication number
EP0384552B1
EP0384552B1 EP90250033A EP90250033A EP0384552B1 EP 0384552 B1 EP0384552 B1 EP 0384552B1 EP 90250033 A EP90250033 A EP 90250033A EP 90250033 A EP90250033 A EP 90250033A EP 0384552 B1 EP0384552 B1 EP 0384552B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
tripping
contact pieces
control device
power circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90250033A
Other languages
English (en)
French (fr)
Other versions
EP0384552A2 (de
EP0384552A3 (de
Inventor
Peter Dr. Huhse
Horst Dr. Kopplin
Joachim Dr. Niewisch
Josef Trott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0384552A2 publication Critical patent/EP0384552A2/de
Publication of EP0384552A3 publication Critical patent/EP0384552A3/de
Application granted granted Critical
Publication of EP0384552B1 publication Critical patent/EP0384552B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H2009/566Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle with self learning, e.g. measured delay is used in later actuations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6665Details concerning the mounting or supporting of the individual vacuum bottles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6667Details concerning lever type driving rod arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/168Indicators for switching condition, e.g. "on" or "off" making use of an electromagnetic wave communication

Definitions

  • the invention relates to a method for operating a circuit breaker, in particular a vacuum switch, using a tripping control device which, regardless of the time of a command to switch off, causes the opening of the contact pieces at a time which is in a fixed relationship to the zero crossing of the current.
  • a method of this kind is known, for example, from US-A-3,555,354.
  • the purpose of this method is to limit the duration of the arc discharge between the circuit breakers of the circuit breaker as much as possible, and on the other hand to ensure a sufficient contact opening at the time the current passes through zero.
  • the trigger control device detects the flowing current via transducers and obtains periodic pulses therefrom at the zero crossing of the current and in the maximum or minimum of the current curve. Both pulses are fed via a timing element to an AND gate, which can additionally be acted upon by a signal which is derived from the absolute magnitude of the current.
  • the trigger signal emanating from the AND gate arrives in the usual way at a trigger magnet which actuates a valve or a latching arrangement to release the switching mechanism or the switch drive.
  • Vacuum switches in a manner similar to certain types of compressed gas switches, have the property that their switching paths achieve high dielectric strength in an extremely short time after a power interruption. They are therefore particularly prone to so-called multiple re-ignitions in strongly inductive circuits, which represent a rapid sequence of extinguishing and ignition processes between the open contacts. High overvoltages can be associated with this process. In three-phase networks, multiple re-ignitions in the first quenching pole of the circuit breaker can lead to a virtual current cut in the last quenching poles of the circuit breaker, which also creates overvoltages.
  • a circuit breaker is operated using a tripping control unit, it is in principle possible to carry out switching operations without overvoltages even in three-phase networks if the control is carried out in such a way that there is such a distance between the contact pieces in the zero crossing of all poles of the circuit breaker that the arc is influenced the recurring voltage cannot reignite.
  • Such a switching method proves to be extremely difficult to carry out because the so-called opening window, i.e. H. the period in which the switching pieces must be opened in a network with a frequency of 50 Hz has a width of only about 2 ms.
  • Conventional circuit breakers are unable to open with such precision.
  • the mechanical properties of circuit breakers can change over the course of their use to such an extent that they can no longer maintain the opening window after a long period of operation and changed environmental conditions, even if they are suitable for this purpose when new.
  • the invention is based on the object of designing the method for operating a circuit breaker in such a way that changes in properties which occur in the course of the service life of a circuit breaker are automatically taken into account and the opening window can thus be maintained even after a long operating time.
  • this object is achieved in that the tripping control unit receives a measured value of the tripping delay of the circuit breaker from the time the tripping signal is issued to Time of separation of the contact pieces is supplied as a correction variable in a previous switch-off.
  • the delay in triggering is the result of a whole series of mechanical influencing variables, which are difficult to detect individually.
  • the delay in triggering can be determined in different ways with sufficient accuracy with relatively little effort. This creates the possibility of carrying out the switching free of overvoltages, in particular of motor circuits and choke coils with vacuum switches with economically justifiable effort.
  • a circuit breaker is suitable for carrying out the new method, to which a measuring device is assigned to determine the tripping delay, which is set in motion by the receipt of a tripping signal and stopped when the contact pieces are separated, and in that a storage device is provided which Saves the measured value of the tripping delay at least until the next switch-off process.
  • a delay in tripping that is based on a switch-off that has already taken place some time ago may be used as a correction variable for the control of the circuit breaker, it has nevertheless been shown that this procedure is suitable for relatively narrow opening windows to apply when the switch is opened.
  • Both electrical and electromechanical or electronic-mechanical evaluation devices are suitable for measuring the delay in tripping.
  • the occurrence of an arc voltage between the contact pieces can be used as a criterion for the contact separation.
  • the evaluation device for detecting the contact opening can contain a circuit arrangement for measuring the capacitance between the contact pieces. This measuring method too works without contact and therefore does not require any changes to the contact system itself.
  • a drive element which is directly connected to a movable contact piece can be provided with a reflector and an optical waveguide can be fixedly attached opposite it at a short distance, which cooperates at its end facing away from the reflector with a light source and a receiving circuit for reflected light.
  • the trip control unit may supply the temperature of the drive device of the circuit breaker as a further correction variable. This can be done in a relatively simple manner by means of a temperature sensor fitted in the drive housing. If a series of tests is used to determine what influence the temperature has on the delay in tripping, the expected positive or negative deviation from the standard value can be determined by assigning the respective temperature to a standard value of the tripping delay.
  • Another criterion for the mechanical sequence of the switching process is the time that has elapsed since the last switching operation.
  • a regularly used circuit breaker is more likely to hold the value of the delayed tripping once determined in the case of a circuit breaker operated only rarely and possibly only at intervals of months or years. This influence can be taken into account by using a suitable correction variable.
  • the time that has elapsed since the last switching operation can be measured, and here, too, tests are to be carried out to determine how the tripping delay changes based on a standard value depending on the downtime.
  • the switching mechanism of circuit breakers is generally released by an electromagnet, which is fed from an auxiliary network. Since the voltage of this auxiliary network can fluctuate and the response speed of the tripping magnet depends on it, the value of the supply voltage of the tripping magnet also has a direct influence on the tripping delay. According to a development of the invention, this influence can also be taken into account in that the supply voltage of the release magnet is fed to the release control device in order to obtain a further correction variable. Likewise, the temperature of the winding of the release magnet can be detected, since the resistance and thus the current through the winding depend on the given voltage.
  • a real-time microprocessor which provides a trigger signal for the circuit breaker by comparison with measured values or standard values taken from a memory.
  • threshold value elements can be provided which, if the current falls below a lower limit or if an upper current exceeds an upper limit, trigger immediately.
  • Figure 1 shows a block diagram of the basic arrangement of the components of a circuit breaker.
  • FIG. 2 shows a simplified arrangement for measuring the tripping delay, in which the change in the capacitance of switching elements is evaluated when they are separated.
  • FIG. 3 shows the principle of detecting the point in time at which switching pieces are separated by means of the arc voltage.
  • Figure 4 shows the arrangement of an opto-electronic measuring device for detecting the separation of the contact pieces.
  • FIG. 5 schematically shows a drive box of a vacuum circuit breaker with a tripping control device, to which one or more correction variables can optionally be supplied.
  • FIG. 6 shows a block diagram of the program sequence when a circuit breaker is tripped using a real-time microprocessor.
  • FIG. 1 shows a three-phase motor 1 which can be switched on and off by means of a three-pole vacuum circuit breaker 2.
  • the symbol for a switching lock denotes a latching device 3, which is responsible for releasing the switching contacts of the circuit breaker 2 for opening.
  • the latching device 3 can only be actuated by a trigger control device 4, which in turn is to be acted upon by a trigger 5 or manually operated command transmitter 6.
  • the trigger control device 4 are supplied with current-dependent signals which are obtained at current transformers 7.
  • the tripping control device 4 contains a storage unit 10 which is used to store at least one measured value for the tripping delay of the circuit breaker 2 during the previous opening is provided.
  • the memory unit 10 can be designed in such a way that it can accommodate both further measured values of the delay in triggering from previous switching operations and additional variables which are essential for the mechanical sequence of the switching operation.
  • FIG. 2 An example of the measurement of the time of opening of the switching elements of the circuit breaker 2 is shown in FIG. 2.
  • a high-frequency measuring voltage from a voltage source 13 is applied to the switching path of the circuit breaker 2 via protective resistors 14 and post insulators 11 and 12, the capacitance of which is shown in dashed lines with the symbol for a capacitor.
  • a voltage with a frequency of 5 MHz is suitable.
  • a high-frequency voltage is taken off at terminals 15 for evaluation. In the course of this high-frequency voltage, a characteristic jump occurs as a result of the change in the capacitance of the measuring circuit as a result of the opening of the switching elements of the circuit breaker 2.
  • the switching elements of a vacuum switch have flat contact surfaces which can be either circular or circular . While there is no capacitance in the closed state of the switching elements, one arises through the formation of a plate capacitor as soon as the switching elements separate from one another. The activation of this capacitance in the measuring circuit is evaluated in an evaluation device 16 provided with a protective device 17 by comparison with the time at which the latching device 3 is released and results in the tripping delay of the circuit breaker 2.
  • FIG. 2 Another example of the measurement of the tripping delay of the circuit breaker 2 is shown schematically in FIG.
  • the voltage across the switching path of the circuit breaker 2 is fed to a measuring device 22.
  • This therefore receives the voltage signal "0" when the switching elements of the circuit breaker 2 are closed and a voltage signal corresponding to the arc voltage when the switching elements of the circuit breaker 2 are opened when current is flowing.
  • the delay in tripping of the circuit breaker 2 results from a comparison of the times at which this arcing voltage occurs and the time at which the switch lock 3 is released.
  • the dashed line connection between the switch lock 3 and the measuring device 22 indicates the comparison of the times mentioned.
  • FIG. 1 shows, partly in section, a vacuum circuit breaker of a known type (cf. DE-B-27 17 958), the switching tubes 25 of which can be actuated by an insulating drive rod 26 each. These drive rods engage via an angle lever 27 on a linearly displaceable support bolt 30 of the movable contact piece 31.
  • this support pin is provided with a reflective marking and a sensor is placed opposite it, a movement of the support pin and thus of the switching element 31 can be determined.
  • FIG. 4 indicates that the light is supplied and the reflection is returned through an optical waveguide 32 which is connected to an evaluation unit 33 consisting of transmitter and receiver.
  • the evaluation unit 33 determines the delay in tripping by comparing the time of a movement of the support bolt 30 with the time of the release of the latching in the drive box of the circuit breaker 2.
  • the evaluation unit 33 can be integrated in the tripping control unit 4 (FIG. 1).
  • FIG. 5 shows a vacuum circuit breaker 2, similar to FIG. 4, partially in section, which has a tripping control unit 4 and sensors for influencing variables which can influence the tripping delay.
  • the trip control unit 4 is housed in the drive box 35 of the circuit breaker 2.
  • the switching tube 25 is held by a ratchet lever 36 which engages at one end of a two-armed lever 40 seated on a switching shaft 37.
  • the movable contact piece 31 is actuated by a drive rod 26 and an angle lever.
  • the control shaft 37 is locked against rotation in the sense of switching off by means of the two-armed lever 40 and the ratchet lever 36.
  • the pawl lever 36 can be moved by a switch-off magnet 41 into the switch-off position shown in broken lines, in which the switching shaft 37 is released for switching off. Switch-off springs 37 are then rotated counterclockwise by switch-off springs (not shown) and the drive rod 26 is carried along. As indicated by an arrow 42, the switch-off magnet 41 can be actuated by the trigger control device 4. This happens when triggering 5 has been requested by trigger 5 or by a manually entered command (arrow 42) and trigger control unit 4 has determined the appropriate time for this. For this purpose, the trigger control device 4 first determines the times of the following current zero crossings on the basis of the measured values transmitted by the current transformers 7.
  • the relaying of the trigger command to the trigger magnet 41 now takes place taking into account the value of the trigger delay stored in the trigger control device 4 during the previous switch-off as well as further variables provided by sensors.
  • the voltage available to feed the tripping magnet 41 is also detected by a further sensor.
  • a timer 47 as a component of the trigger control unit 4 provides the time that has elapsed since the last switch-off action for correcting the delay in triggering.
  • the trigger delay is determined again by means of a sensor 50 and the trigger control unit is entered for comparison with the value of the trigger delay located in the memory 10 of the trigger control unit 4.
  • Either the previous stored value can be replaced by the new measured value or the new measured value can also be saved in order to determine the change in the tripping delay in the course of several circuits and to extrapolate the stored measured values to calculate the tripping delay to be expected with the greatest possible probability.
  • the release magnet 41 can be both a shunt release and an undervoltage release. Since undervoltage releases operate on the principle of the holding magnet, a higher response speed can generally be achieved than with a shunt release. However, it depends on the given interaction between the release magnet and the switching mechanism whether one or the other type of magnet is more suitable.
  • FIG. 6 shows a block diagram of the program sequence as it is carried out using a real-time microprocessor.
  • the functional sequence is immediately apparent from the inscription on the blocks.
  • a threshold value element Iu is first used to determine whether a very small current is present or whether it is below a certain low limit.
  • the functional sequence for this case is labeled "A" in the block diagram.
  • the triggering takes place without delay in accordance with the functional sequence designated by B.
  • the time at which the tripping command is passed on to the tripping magnet is calculated in the manner already described.
  • the so-called opening window for surge-free shutdowns in three-phase networks is very narrow.
  • the opening window can be widened to approximately 8.5 msec. Accordingly, the requirements for the accuracy of the mechanical control and the electronic detection of changes in the release delay are alleviated.
  • the method of offset switching is known per se (DE-C-28 54 092).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Leistungsschalters, insbesondere eines Vakuumschalters, unter Verwendung eines Auslösesteuergerätes, das unabhängig vom Zeitpunkt einer Befehlsgabe zum Ausschalten die Öffnung der Schaltstücke zu einem in fester Beziehung zum Nulldurchgang des Stromes stehenden Zeitpunkt veranlaßt.
  • Ein Verfahren dieser Art ist beispielsweise durch die US-A-3 555 354 bekannt geworden. Zweck dieses Verfahrens ist es, die Dauer der Lichtbogenentladung zwischen den Schaltstücken des Leistungsschalters möglichst zu beschränken, andererseits zum Zeitpunkt des Stromnulldurchganges eine ausreichende Kontaktöffnung sicherzustellen. Das Auslösesteuergerät erfaßt hierzu über Wandler den fließenden Strom und gewinnt hieraus periodische Impulse jeweils beim Nulldurchgang des Stromes und im Maximum bzw. Minimum der Stromkurve. Beide Impulse werden über ein Zeitglied einem UND-Glied zugeführt, das zusätzlich durch ein Signal beaufschlagbar ist, das von der absoluten Höhe des Stromes abgeleitet ist. Das von dem UND-Glied ausgehende Auslösesignal gelangt in üblicher Weise zu einem Auslösemagneten, der ein Ventil oder eine Verklinkungsanordnung zur Freigabe des Schaltmechanismus bzw. des Schalterantriebes betätigt.
  • Vakuumschalter haben in ähnlicher Weise wie bestimmte Arten von Druckgasschaltern die Eigenschaft, daß ihre Schaltstrecken nach einer Stromunterbrechung in außerordentlich kurzer Zeit eine hohe dielektrische Festigkeit erlangen. Sie neigen daher insbesondere in stark induktiven Stromkreisen zu sogenannten multiplen Wiederzündungen, die eine rasche Folge von Lösch- und Zündvorgängen zwischen den geöffneten Schaltstücken darstellen. Mit diesem Vorgang können hohe Überspannungen verbunden sein. In Drehstromnetzen kann es darüberhinaus aufgrund multipler Wiederzündungen im erstlöschenden Pol des Leistungsschalters zu einem virtuellen Stromabriß in den letztlöschenden Polen des Leistungsschalters kommen, wodurch gleichfalls Überspannungen erzeugt werden.
  • Zur Vermeidung solcher Überspannungen ist bereits versucht worden, in Vakuumschaltern Kontaktwerkstoffe einzusetzen, die aufgrund des relativ hohen Dampfdruckes einzelner Komponenten einen Schaltlichtbogen bis möglichst nahe dem Nulldurchgang des Stromes aufrechtzuerhalten. Dieser vorteilhaften Eigenschaft steht jedoch ein vermindertes Vermögen zur Unterbrechung hoher Schaltleistungen gegenüber, woraus sich die Schwierigkeit ergibt, einen zur Unterbrechung hoher Schaltleistungen geeigneten Leistungsschalter zu schaffen, der gleichzeitig die Entstehung von Überspannungen vermeidet.
  • Ferner ist es bekannt, die insbesondere beim Schalten von Motorstromkreisen aufretenden Überspannungen durch Überspannungsbegrenzer oder durch Kombinationen von Widerständen, Kondensatoren und Drosselspulen mit ähnlichen Eigenschaften zu vermeiden. Abgesehen von der Schwierigkeit, solche Elemente an einer zur Sicherstellung ihrer Wirksamkeit geeigneten Stelle einer Schaltungsanordnung unterzubringen, müssen diese Bauteile auch individuell an die Eigenschaften des jeweils vorliegenden Stromkreises angepaßt werden.
  • Mit dem Ziel einer Vermeidung der vorstehend beschriebenen Schwierigkeiten ist bereits ein Schaltverfahren bekannt, bei dem zwei der Schaltstrecken eines dreipoligen Leistungsschalters mindestens um ein Drittel eines Zyklus der Netzfrequenz später geöffnet werden, als die erste Schaltstrecke, zuzüglich der minimalen Lichtbogendauer in der ersten Schaltstrecke (DE-C-28 54 092). Dieses Verfahren verhindert grundsätzlich das Auftreten des sogenannten virtuellen Stromabrisses in den beiden letztlöschenden Polen des Leistungsschalters. Aufgrund der Tatsache, daß der Schaltvorgang zu einem beliebigen Zeitpunkt beginnen kann, lassen sich jedoch nicht die multiplen Wiederzündungen im erstlöschenden Pol verhindern, die ebenfalls Ursache von Überspannungen sind.
  • Wird ein Leistungsschalter unter Verwendung eines Auslösesteuergerätes betrieben, so ist es prinzipiell möglich, auch in Drehstromnetzen Schalthandlungen ohne Überspannungen vorzunehmen, wenn die Steuerung derart erfolgt, daß im Stromnulldurchgang aller Pole des Leistungsschalters ein solcher Abstand zwischen den Kontaktstücken besteht, daß der Lichtbogen unter dem Einfluß der wiederkehrenden Spannung nicht neu zünden kann. Ein solches Schaltverfahren erweist sich als außerordentlich schwierig durchführbar, weil das sogenannte Öffnungsfenster, d. h. der Zeitraum, in welchem die Öffnung der Schaltstücke erfolgen muß, in einem Netz mit einer Frequenz von 50 Hz eine Breite von lediglich etwa 2 ms hat. Übliche Leistungsschalter sind nicht in der Lage, einen Öffnungsvorgang mit einer solchen Präzision durchzuführen. Hinzu kommt, daß sich die mechanischen Eigenschaften von Leistungsschaltern im Laufe ihrer Benutzungsdauer soweit ändern können, daß sie das Öffnungsfenster nach längerer Betriebsdauer und veränderten Umgebungsbedingungen nicht mehr einzuhalten vermögen, selbst wenn sie dazu im Neuzustand geeignet sind.
  • Der Erfindung liegt hiervon ausgehend die Aufgabe zugrunde, das Verfahren zum Betrieb eines Leistungsschalters so auszugestalten, daß im Laufe der Benutzungsdauer eines Leistungsschalters auftretende Änderungen von Eigenschaften selbsttätig berücksichtigt werden und hierdurch das Öffnungsfenster auch nach langer Betriebszeit eingehalten werden kann.
  • Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß dem Auslösesteuergerät ein Meßwert des Auslöseverzuges des Leistungsschalters vom Zeitpunkt der Abgabe des Auslösesignals bis zum Zeitpunkt der Trennung der Kontaktstücke bei einer vorangegangen Ausschaltung als Korrekturgröße zugeführt wird. Der Auslöseverzug stellt nämlich das Ergebnis einer ganzen Reihe mechanischer Einflußgrößen dar, die einzeln nur schwierig zu erfassen sind. Der Auslöseverzug dagegen ist auf unterschiedliche Weise mit ausreichender Genauigkeit bei verhältnismäßig geringem Aufwand zu ermitteln. Damit ist die Möglichkeit geschaffen, das von Überspannungen freie Schalten insbesondere von Motorstromkreisen und Drosselspulen mit Vakuumschaltern mit wirtschaftlich vertretbarem Aufwand durchzuführen.
  • Im Rahmen der Erfindung eignet sich zur Durchführung des neuen Verfahrens ein Leistungsschalter, dem zur Ermittlung des Auslöseverzuges eine Meßeinrichtung zugeordnet ist, die durch den Empfang eines Auslösesignals in Lauf gesetzt und bei der Trennung der Kontaktstücke angehalten wird und daß eine Speichereinrichtung vorgesehen ist, die den Meßwert des Auslöseverzuges wenigstens bis zum nächsten Ausschaltvorgang speichert. Obwohl somit als Korrekturgröße für die Steuerung des Leistungsschalters unter Umständen ein Auslöseverzug herangezogen wird, der auf einer bereits eine gewisse Zeit zurückliegenden Ausschaltung beruht, so erweist es sich dennoch, daß diese Vorgehensweise geeignet ist, daß relativ schmale Öffnungsfenster bei der Ausschaltung zutreffen.
  • Zur Messung des Auslöseverzuges sind sowohl elektrische als auch elektromechanisch bzw. elektronisch-mechanisch wirkende Auswerteeinrichtungen geeignet. Insbesondere kann beim Schalten mit Strom das Aufreten einer Lichtbogenspannung zwischen den Kontaktstücken als Kriterium für die Kontakttrennung herangezogen werden.
  • Anstelle der vorstehend erläuterten Meßeinrichtung oder zusätzich zu dieser kann die Auswerteeinrichtung zur Erfassung der Kontaktöffnung eine Schaltungsanordnung zur Messung der Kapazität zwischen den Kontaktstücken enthalten. Auch dieses Meßverfahren arbeitet berührungslos und erfordert somit keine Änderungen am Kontaktsystem selbst.
  • Es ist jedoch auch möglich, den zur Ermittlung des Auslöseverzuges zu ermittelnden Zeitpunkt der Kontaktöffnung unmittelbar aus der Relativbewegung der Kontaktstücke zu ermitteln. Hierzu kann ein unmittelbar mit einem bewegbaren Kontaktstück verbundenes Antriebsorgan mit einem Reflektor versehen und diesem mit geringem Abstand gegenüberstehend ein Lichtwellenleiter ortsfest angebracht sein, der an seinem dem Reflektor abgewandten Ende mit einer Lichtquelle und einer Empfangsschaltung für reflektiertes Licht zusammenwirkt.
  • Wie bereits eingangs dargelegt, wird durch die Messung des Auslöseverzuges bereits eine Vielzahl miteinander verknüpfter Einflußgrößen für den mechanischen Ablauf des Schaltvorganges berücksichtigt. Ist aber beispielsweise damit zu rechnen, daß ein Leistungsschalter an seinem Aufstellungsort stark wechselnden Temperaturen ausgesetzt ist, so kann sich die einmal ermittelte Größe des Auslöseverzuges als nicht ausreichend genau zur Steuerung des Leistungsschalters erweisen. In diesem Fall kann es vorteilhaft sein, dem Auslösesteuergerät als weitere Korrekturgröße die Temperatur der Antriebsvorrichtung des Leistungsschalters zuzuführen. Dies kann auf verhältnismäßig einfache Weise durch einen in dem Antriebsgehäuse angebrachten Temperaturfühler geschehen. Wird nun durch eine Versuchsreihe ermittelt, welchen Einfluß die Temperatur auf den Auslöseverzug hat, so kann durch eine Zuordnung der jeweils vorliegenden Temperatur zu einem Standardwert des Auslöseverzuges die voraussichtliche positive oder negative Abweichung von dem Standardwert ermittelt werden.
  • Ein weiteres Kriterium für den mechanischen Ablauf des Schaltvorganges bildet die seit der letzten Schalthandlung verstrichene Zeit. Grundsätzlich hält ein regelmäßig benutzter Leistungsschalter den einmal bestimmten Wert des Auslöseverzuges eher bei als ein nur selten und möglicherweise nur im Abstand von Monaten oder Jahren betätigter Leistungsschalter. Dieser Einfluß kann durch eine geeignete Korrekturgröße berücksichtigt werden. Hierzu kann die seit der letzten Schalthanldung vergangenen Zeit gemessen werden, wobei auch hier durch Versuche festzustellen ist, wie sich der Auslöseverzug ausgehend von einem Standardwert in Abhängigkeit von der Stillstandszeit verändert.
  • Die Freigabe des Schaltmechanismus von Leistungsschaltern erfolgt im allgemeinen durch einen Elektromagnet, der aus einem Hilfsnetz gespeist wird. Da die Spannung dieses Hilfsnetzes schwanken kann und die Ansprechgeschwindigkeit des Auslösemagneten hiervon abhängig ist, hat auch der Wert der Versorgungsspannung des Auslösemagneten eine unmittelbaren Einfluß auf den Auslöseverzug. Nach einer Weiterbildung der Erfindung kann auch dieser Einfluß berücksichtigt werden, indem die Versorgungsspannung des Auslösemagneten dem Auslösesteuergerät zur Gewinnung einer weiteren Korrekturgröße zugeführt wird. Ebenso kann die Temperatur der Wicklung des Auslösemagneten erfaßt werden, da hiervon der Widerstand und somit bei gegebener Spannung der Strom durch die Wicklung abhängt.
  • Alle genannten Meßwerte bzw. Korrekturgrößen können zweckmäßig einem Echtzeitmikroprozessor zugeführt werden, der durch Vergleich mit aus einem Speicher entnommenen Meßwerten bzw. Standardwerten ein Auslösesignal für den Leistungsschalter bereitstellt. Im Zusammenhang hiermit können Schwellwertglieder vorgesehen sein, die bei einer Unterschreitung eines unteren Grenzwertes des Stromes oder bei einer Überschreitung eines oberen Grenzwertes des Stromes eine unverzögerte Auslösung bewirken.
  • Die Erfindung wird im folgenden anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert.
  • Die Figur 1 zeigt als Blockschaltbild die grundsätzliche Anordder Komponenten eines Leistungsschalters.
  • Die Figur 2 zeigt vereinfacht eine Anordnung zur Messung des Auslöseverzugs, bei der die Änderung der Kapazität von Schaltstücken bei deren Trennung ausgewertet wird.
  • In der Figur 3 ist das Prinzip der Erfassung des Zeitpunktes der Trennung von Schaltstücken mittels der Lichtbogenspannung dargestellt.
  • Die Figur 4 zeigt die Anordnung einer opto-elektronischen Meßeinrichtung zur Erfassung der Trennung der Kontaktstücke.
  • Die Figur 5 zeigt schematisch einen Antriebskasten eines Vakuum-Leistungsschalters mit einem Auslösesteuergerät, dem wahlweise eine oder mehrere Korrekturgrößen zuführbar sind.
  • In der Figur 6 ist ein Blockschaltbild des Programmablaufes bei der Auslösung eines Leistungsschalters unter Verwendung eines Echtzeit-Mikroprozessors dargestellt.
  • In der Figur 1 ist ein Drehstrommotor 1 gezeigt, der mittels eines dreipoligen Vakuum-Leistungsschalters 2 ein- und ausschaltbar ist. Mit dem Symbol für ein Schaltschloß ist eine Verklinkungseinrichtung 3 bezeichnet, der die Freigabe der Schaltkontakte des Leistungsschalters 2 zum Ausschalten obliegt. Die Verklinkungseinrichtung 3 ist nur durch ein Auslösesteuergerät 4 betätigbar, das seinerseits durch einen Auslöser 5 oder handbetätigte Befehlsgeber 6 zu beaufschlagen ist. Dem Auslösesteuergerät 4 werden stromabhängige Signale zugeführt, die an Stromwandlern 7 gewonnen werden.
  • Das Auslösesteuergerät 4 enthält eine Speichereinheit 10, die zur Speicherung wenigstens eines Meßwertes für den Auslöseverzug des Leistungsschalters 2 bei der vorangehenden Ausschaltung vorgesehen ist. Darüber hinaus kann die Speichereinheit 10 so ausgebildet sein, daß sie sowohl weitere Meßwerte des Auslöseverzuges von früheren Schaltvorgängen als auch zusätzliche, für den mechanischen Ablauf des Schaltvorganges wesentliche Größen aufnehmen kann.
  • Ein Beispiel für die Messung des Zeitpunktes der Öffnung der Schaltstücke des Leistungsschalters 2 ist in der Figur 2 dargestellt. Über Schutzwiderstände 14 und Stützisolatoren 11 und 12, deren Eigenkapazität mit dem Symbol für einen Kondensator gestrichelt dargestellt ist, wird an die Schaltstrecke des Leistungsschalters 2 eine hochfrequente Meßspannung aus einer Spannungsquelle 13 angelegt. Geeignet ist beispielsweise eine Spannung mit einer Frequenz von 5 MHz. An den Klemmen 15 wird eine Hochfrequenzspannung zur Auswertung abgenommen. Im zeitlichen Verlauf dieser Hochfrequenzspannung entsteht ein charakteristischer Sprung durch die Änderung der Kapazität des Meßkreises infolge der Öffnung der Schaltstücke des Leistungsschalters 2. Zum Verständnis dieses Vorganges sei erwähnt, daß die Schaltstücke eines Vakuumschalters ebene Kontaktflächen aufweisen, die entweder kreis- oder kreisringförmig beschaffen sein können. Während im geschlossenen Zustand der Schaltstücke keine Kapazität vorhanden ist, entsteht eine solche durch die Bildung eines Plattenkondensators, sobald sich die Schaltstücke voneinander trennen. Die Einschaltung dieser Kapazität in den Meßkreis wird in einem mit einer Schutzeinrichtung 17 versehenen Auswertegerät 16 durch Vergleich mit dem Zeitpunkt der Freigabe der Verklinkungseinrichtung 3 ausgewertet und ergibt den Auslöseverzug des Leistungsschalters 2.
  • In der Figur 3 ist ein weiteres Beispiel für die Messung des Auslöseverzuges des Leistungsschalters 2 schematisch dargestellt. Hierbei wird mittels geeigneter Trennglieder 20 und 21, bei denen es sich beispielsweise um optoelektronische Einrichtungen handeln kann, die an der Schaltstrecke des Leistungsschalters 2 liegende Spannung einer Meßeinrichtung 22 zugeführt. Diese erhält somit das Spannungssignal "0", wenn die Schaltstücke des Leistungsschalters 2 geschlossen sind und ein der Lichtbogenspannung entsprechendes Spannungssignal, wenn die Schaltstücke des Leistungsschalters 2 bei fließendem Strom geöffnet werden. Der Auslöseverzug des Leistungsschalters 2 ergibt sich durch Vergleich der Zeitpunkte des Auftretens dieser Lichtbogenspannung und dem Zeitpunkt der Entklinkung des Schaltschlosses 3. Durch die gestrichelte Verbindung zwischen dem Schaltschloß 3 und der Meßeinrichtung 22 ist der Vergleich der genannten Zeitpunkte angedeutet.
  • Während die anhand der Figuren 2 und 3 erläuterten Einrichtungen den Auslöseverzug auf elektrischem Wege messen, kommt auch eine opto-elektronische Erfassung in Betracht. Diese hat den Vorteil, daß kein Aufwand für die galvanische Trennung zwischen der an dem Leistungsschalter liegende Hochspannung und der Meßeinrichtung erforderlich ist. Anhand der Figur 4 wird dieses Meßverfahren erläutert. Diese Figur zeigt teilweise im Schnitt einen Vakuum-Leistungsschalter bekannter Bauart (vgl. DE-B-27 17 958), dessen Schaltröhren 25 durch je eine isolierende Antriebsstange 26 betätigbar sind. Diese Antriebsstangen greifen über einen Winkelhebel 27 an einem geradlinig verschiebbaren Tragbolzen 30 des bewegbaren Schaltstückes 31 an. Wird beispielsweise dieser Tragbolzen mit einer reflektierenden Markierung versehen und dieser gegenüberstehend ein Sensor angebracht, so kann eine Bewegung des Tragbolzens und damit des Schaltstückes 31 festgestellt werden. In der Figur 4 ist hierzu angedeutet, daß die Zuführung des Lichtes und die Rückleitung der Reflektion durch einen Lichtwellenleiter 32 erfolgt, der mit einer aus Sender und Empfänger bestehenden Auswerteeinheit 33 verbunden ist. Die Auswerteeinheit 33 ermittelt den Auslöseverzug wiederum durch Vergleich des Zeitpunktes einer Bewegung des Tragbolzens 30 mit dem Zeitpunkt der Freigabe der Verklinkung im Antriebskasten des Leistungsschalters 2. Die Auswerteeinheit 33 kann im Auslösesteuergerät 4 (Figur 1) integriert sein.
  • In der Figur 5 ist teilweise im Schnitt ein Vakuum-Leistungsschalter 2 ähnlich der Figur 4 gezeigt, der ein Auslösesteuergerät 4 sowie Sensoren für Einflußgrößen aufweist, die den Auslöseverzug beeinflussen können. Das Auslösesteuergerät 4 ist in dem Antriebskasten 35 des Leistungsschalters 2 untergebracht. In der eingeschalteten Stellung ist die Schaltröhre 25 durch einen Klinkenhebel 36 gehalten, der am einen Ende eines auf einer Schaltwelle 37 sitzenden zweiarmigen Hebels 40 angreift. Wie bereits anhand der Figur 4 erläutert wurde, wird das bewegliche Schaltstück 31 durch eine Antriebsstange 26 sowie einen Winkelhebel betätigt. In der dargestellten Einschaltstellung ist die Schaltwelle 37 mittels des zweiarmigen Hebels 40 und des Klinkenhebels 36 gegen eine Drehung im Sinne des Ausschaltens gesperrt.
  • Der Klinkenhebel 36 ist durch einen Ausschaltmagnet 41 in die strichpunktiert gezeigte Ausschaltstellung bewegbar, in der die Schaltwelle 37 zum Ausschalten freigegeben ist. Durch nicht dargestellte Ausschaltfedern wird dann die Schaltwelle 37 entgegen dem Uhrzeigersinn gedreht und dabei die Antriebsstange 26 mitgenommen. Der Ausschaltmagnet 41 ist, wie durch einen Pfeil 42 angedeutet, durch das Auslösesteuergerät 4 zu betätigen. Dies geschieht dann, wenn durch den Auslöser 5 oder durch einen von Hand eingegebenen Befehl (Pfeil 42) die Durchführung eines Ausschaltvorganges angefordert worden ist und das Auslösesteuergerät 4 den hierfür geeigneten Zeitpunkt ermittelt hat. Hierzu bestimmt das Auslösesteuergerät 4 zunächst die Zeitpunkte der folgenden Stromnulldurchgänge aufgrund der von den Stromwandlern 7 übermittelten Meßwerte. Die Weitergabe des Auslösebefehles an den Auslösemagneten 41 geschieht nun unter Berücksichtigung des in dem Auslösesteuergerät 4 gespeicherten Wertes des Auslöseverzuges bei der vorangegangen Ausschaltung sowie weiterer, durch Sensoren bereitgestellter Größen. Hierzu gehört ein Temperaturgeber 44 für die gerade vorhandene Temperatur im Antriebskasten des Leistungsschalters 2 sowie ein weiterer Temperaturgeber 24 für die Temperatur der Wicklung des Auslösemagneten 41. Ferner wird durch einen weiteren Sensor die zur Speisung des Auslösemagneten 41 zu Verfügung stehende Spannung erfaßt. Ein Zeitgeber 47 als Bestandteil des Auslösesteuergerätes 4 stellt die seit der letzten Ausschalthandlung verstrichene Zeit zur Korrektur des Auslöseverzuges bereit.
  • Je nach für einen bestimmten Leistungsschalter gewonnenen Ergebnissen können alle erwähnten Sensoren oder nur ein Teil derselben eingesetzt werden. Ist beispielsweise ein Leistungsschalter nur geringen Temperaturänderungen ausgesetzt, so kann der Einfluß der Temperatur auf den Zustand der Schaltmechanik vernachlässigt werden und der Sensor 44 ist demgemäß entbehrlich.
  • Beim nun folgenden Ausschalten wird der Auslöseverzug mittels eines Sensors 50 erneut festgestellt und dem Auslösesteuergerät zum Vergleich mit dem in dem Speicher 10 des Auslösesteuergerätes 4 befindlichen Wert des Auslöseverzuges eingegeben. Dabei kann entweder der vorherige Speicherwert durch den neuen Meßwert ersetzt werden oder aber der neue Meßwert kann zusätzlich gespeichert werden, um im Verlauf mehrerer Schaltungen die Veränderung des Auslöseverzuges festzustellen und durch Extrapolation der gespeicherten Meßwerte den jeweils zu erwartenden Auslöseverzug mit möglichst großer Wahrscheinlichkeit zu berechnen.
  • Der Auslösemagnet 41 kann sowohl ein Arbeitsstromauslöser als auch ein Unterspannungsauslöser sein. Da Unterspannungsauslöser nach dem Prinzip des Haltemagneten arbeiten, läßt sich im allgemeinen eine höhere Ansprechgeschwindigkeit als bei einem Arbeitsstromauslöser erreichen. Jedoch hängt es von dem jeweils gegebenen Zusammenwirken zwischen dem Auslösemagneten und dem Schaltmechanismus ab, ob die eine oder andere Art eines Magneten geeigneter ist.
  • In der Figur 6 ist ein Blockschaltbild des Programmablaufes dargestellt, wie er mit Hilfe eines Echtzeit-Mikroprozessors durchgeführt wird. Der Funktionsablauf ist aus der eingetragenen Beschriftung der Blöcke unmittelbar ersichtlich. Es sei jedoch erwähnt, daß anhand der von den Stromwandlern übermittelten Signale zunächst mittels eines Schwellwertgliedes Iu ermittelt wird, ob ein sehr kleiner Strom vorliegt bzw. dieser unter einer bestimmten niedrigen Grenze liegt. Der Funktionsablauf für diesen Fall ist in dem Blockschaltbild mit "A" bezeichnet. In dem Fall, daß der gemessene Strom oberhalb eines bestimmten Grenzwertes liegt (Schwellwertglied Io), der einem Kurzschluß zugeordnet werden kann, erfolgt die Auslösung entsprechend dem mit B bezeichneten Funktionsablauf unverzögert. Für die zwischen diesen Grenzwerten liegende Ströme wird in der schon beschriebenen Weise der Zeitpunkt der Weitergabe des Auslösebefehles an den Auslösemagneten berechnet.
  • Wie schon einleitend bemerkt, ist das sogenannten Öffnungsfenster für überspannungsfreie Abschaltungen in Drehstromnetzen sehr schmal. Wird jedoch von der Möglichkeit Gebrauch gemacht, die Pole eines Leistungsschalters nicht, wie gewöhnlich aus mechanischen Gründen gegeben, gleichzeitig, sondern gestaffelt oder versetzt öfnnen zu lassen, so kann das Öffnungsfenster bis auf etwa 8,5 msec verbreitert werden. Dementsprechend werden die Anforderungen an die Genauigkeit der mechanischen Steuerung und die elektronische Erfassung von Veränderungen des Auslöseverzuges gemildert. Das Verfahren des versetzten Schaltens ist an sich bekannt (DE-C-28 54 092).

Claims (11)

  1. Verfahren zum Betrieb eines Leistungsschalters, insbesondere eines Vakuumschalters (2), unter Verwendung eines Auslösesteuergerätes (4), das unabhängig vom Zeitpunkt einer Befehlsgabe zum Ausschalten die Öffnung der Schaltstücke (31) zu einem in fester Beziehung zum Nulldurchgang des Stromes stehenden Zeitpunkt veranlaßt, dadurch gekennzeichnet, daß dem Auslösesteuergerät (4) ein Meßwert des Auslöseverzuges des Leistungsschalters vom Zeitpunkt der Abgabe des Auslösesignals bis zum Zeitpunkt der Trennung der Kontaktstücke bei einer vorangegangenen Ausschaltung als Korrekturgröße zugeführt wird.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß dem Leistungsschalter (2) zur Ermittlung des Auslöseverzuges eine Auswerteeinrichtung (16; 22; 33) zugeordnet ist, die durch den Empfang eines Auslösesignals in Lauf setzbar und bei der Trennung der Kontaktstücke (31) stillsetzbar ist und daß eine Speichereinrichtung (10) zur Speicherung des Meßwertes des Auslöseverzuges wenigstens bis zum nächsten Ausschaltvorgang vorgesehen ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Auswerteeinrichtung (22) eine Schaltungsanordnung zur Erfassung des Auftretens einer Lichtbogenspannung zwischen den Kontaktstücken (31) enthält.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Auswerteeinrichtung (16) zur Erfassung der Kontaktöffnung eine Schaltungsanordnung zur Messung der Kapazität zwischen den Kontaktstücken (31) enthält.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß zur Ermittlung des Zeitpunktes der Trennung der Kontaktstücke (31) eine Einrichtung (33) zur Erfassung einer Relativbewegung der Kontaktstücke vorgesehen ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein unmittelbar mit einem bewegbaren Kontaktstück (31) verbundenes Antriebsorgan (30) mit einem Reflektor versehen und diesem mit geringem Abstand gegenüberstehend ein Lichtwellenleiter (32) ortsfest angebracht ist, der an seinem dem Reflektor abgewandten Ende mit einer Lichtquelle und einer Empfangsschaltung für reflektiertes Licht (33) zusammenwirkt.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Auslösesteuergerät (4) als weitere Korrekturgröße die Temperatur (Sensor 44) der Anriebsvorrichtung des Leistungsschalters (2) zugeführt wird.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Auslösesteuergerät (4) als weitere Korrekturgröße die seit der letzten Schalthandlung vergangene Zeit (Zeitgeber 47) zugeführt wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Auslösesteuergerät (4) die Versorgungsspannung (Spannungs-Sensor 45) eines Auslösemagneten (41) des Leistungsschalters (2) zur Gewinnung einer weiteren Korrekturgröße zugeführt wird.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Auslösesteuergerät (4) die Temperatur der Wicklung eines Auslösemagneten (41) zur Gewinnung einer weiteren Korrekturgröße zugeführt wird (Temperatur-Sensor 46).
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Echtzeitmikroprozessor (P) mit Eingangssignalen entsprechend einer oder mehrerer Korrekturgrößen beaufschlagt ist und durch Vergleich mit aus einem Speicher entnommenen Meßwerten bzw. Standardwerten ein verzögertes Auslösesignal für den Leistungsschalter bereitstellt und daß Schwellwertglieder (Iu; Io) eine Unterschreitung eines unteren Grenzwertes des Stromes und eine Überschreitung eines oberen Grenzwertes des Stromes erfassen und eine unverzögerte Auslösung bewirken.
EP90250033A 1989-02-22 1990-02-08 Verfahren zum Betrieb eines Leistungsschalters Expired - Lifetime EP0384552B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3905822 1989-02-22
DE3905822A DE3905822A1 (de) 1989-02-22 1989-02-22 Verfahren zum betrieb eines leistungsschalters

Publications (3)

Publication Number Publication Date
EP0384552A2 EP0384552A2 (de) 1990-08-29
EP0384552A3 EP0384552A3 (de) 1992-02-26
EP0384552B1 true EP0384552B1 (de) 1995-05-10

Family

ID=6374885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90250033A Expired - Lifetime EP0384552B1 (de) 1989-02-22 1990-02-08 Verfahren zum Betrieb eines Leistungsschalters

Country Status (4)

Country Link
US (1) US5119260A (de)
EP (1) EP0384552B1 (de)
JP (1) JPH02260344A (de)
DE (2) DE3905822A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945771B (zh) * 2006-10-29 2011-04-20 宝光集团有限公司 户外高压双电源真空断路器

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022262A1 (de) * 1990-07-12 1992-01-16 Siemens Ag Verfahren zum betrieb eines leistungsschalters
DE4105697C2 (de) * 1991-02-21 1995-11-02 Eaw Schaltgeraete Gmbh Synchronisiert schaltendes Vakuumschütz mit Einzelantrieb
US5663169A (en) * 1992-08-07 1997-09-02 Merck & Co., Inc. Benzoxazinones as inhibitors of HIV reverse transcriptase
US5644463A (en) * 1992-10-20 1997-07-01 University Of Washington Adaptive sequential controller with minimum switching energy
US5361184A (en) * 1992-10-20 1994-11-01 Board Of Regents Of The University Of Washington Adaptive sequential controller
US5430599A (en) * 1993-03-18 1995-07-04 Hydro-Quebec System for opening/closing circuit breakers
DE19507933C1 (de) * 1995-02-24 1996-05-23 Siemens Ag Verfahren zum Betrieb eines elektrischen Leistungsschalters
MX9708859A (es) 1995-05-15 1998-03-31 Cooper Ind Inc Metodo de control y dispositivo para un actuador de aparato conmutador.
DE19522603A1 (de) * 1995-06-19 1997-01-09 Siemens Ag Schutzeinrichtung gegen Überlastung der Schaltkontakte eines Schaltgerätes
DE19606503C2 (de) * 1996-02-22 2000-04-06 Rowenta Werke Gmbh Verfahren und Schaltungsanordnungen zum Erzielen phasensynchronen Schaltens in der Nähe der Spannungsnulldurchgänge von in Wechselspannungsanlagen liegenden Kontakten
DE19807778C2 (de) * 1998-02-18 2003-08-21 Siemens Ag Verfahren und Vorrichtung zum netzsynchronen Schalten eines Leistungsschalters
DE19937074C1 (de) * 1999-08-04 2001-06-13 Siemens Ag Antriebsanordnung für einen Schalter der Mittel- bzw. Hochspannung und Verfahren zum Bewegen eines ersten Kontaktstückes
DE10127576C1 (de) * 2001-05-30 2003-02-06 Siemens Ag Isolierkörper zur Abstützung einer elektrischen Baugruppe
US6873514B2 (en) * 2001-06-05 2005-03-29 Trombetta, Llc Integrated solenoid system
US6965238B2 (en) * 2003-03-31 2005-11-15 General Electric Company Methods and apparatus for analyzing high voltage circuit breakers
US6850072B1 (en) * 2003-03-31 2005-02-01 General Electric Company Methods and apparatus for analyzing high voltage circuit breakers
US9037429B2 (en) * 2011-06-06 2015-05-19 Siemens Industry, Inc. Methods and apparatus for measuring the fundamental frequency of a line signal
WO2014158110A1 (en) 2013-03-25 2014-10-02 Koster Norbert H L Temperature-controlled circuit breaker
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
CN107210153B (zh) * 2014-11-30 2020-03-31 Abb瑞士股份有限公司 用于估计电路断路器的电操作时间的方法
EP3739605A1 (de) 2019-05-16 2020-11-18 ABB Schweiz AG Gesteuertes schalten eines leistungsschalters
EP3848951A1 (de) * 2020-01-07 2021-07-14 ABB Power Grids Switzerland AG Steuerungsschema für den betrieb eines elektromotoraktuators für ein mittel- bis hochspannungsschutzschalter
CN113937771A (zh) * 2020-06-29 2022-01-14 北京金风科创风电设备有限公司 风力发电机组变流器滤波电容投切控制方法、装置和***
DE102021122028A1 (de) 2021-08-25 2023-03-02 Elpro Gmbh Schaltschloss
DE102022207630A1 (de) 2022-07-26 2024-02-01 Siemens Energy Global GmbH & Co. KG Vorzündeinrichtung für eine Hochspannungs-Vakuumschaltröhre

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555354A (en) * 1969-03-11 1971-01-12 Gen Electric Alternating current circuit breaker having a control for timing opening relative to the current wave
US3530303A (en) * 1969-04-01 1970-09-22 Ite Imperial Corp Current zero anticipating circuit
US3707634A (en) * 1971-03-31 1972-12-26 Sperry Rand Corp Apparatus for extending contact life of relays utilized for a.c. load switching
US3946277A (en) * 1974-08-28 1976-03-23 Lange George M Zero current switching circuitry
DE2717958B2 (de) * 1977-04-20 1979-06-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Antriebsvorrichtung für elektrische Schaltgeräte mit Druckkontakten
NL172899C (nl) * 1977-12-14 1983-11-01 Hazemeijer Bv Schakelwijze voor het met een vacuumschakelaar of dergelijke schakelaar schakelen in een driefasig hoogspanningscircuit alsmede hierbij toepasbare schakelaar.
CA1147839A (en) * 1979-01-08 1983-06-07 Bertus Griesen Method for switching in a three-phase high voltage circuit
DD144328A1 (de) * 1979-06-11 1980-10-08 Ekkehard Anke Verfahren zur synchronsteuerung des ausschaltzeitpunktes von wechselstromleistungsschaltern
GB2069762A (en) * 1980-02-14 1981-08-26 Lyons Claude Ltd Arrangement for controlling the operation of switch contacts
DD248903A1 (de) * 1985-07-10 1987-08-19 Elektroprojekt Anlagenbau Veb Verfahren zur synchronsteuerung des ausschaltzeitpunktes von wechselstromleistungsschaltern
AT384502B (de) * 1985-09-10 1987-11-25 Sprecher & Schuh Ag Einrichtung zum gesteuerten ein- und/oder ausschalten von induktiven und kapazitiven elementen im hochspannungsnetz
US4922363A (en) * 1985-10-17 1990-05-01 General Electric Company Contactor control system
JPH01122530A (ja) * 1987-11-06 1989-05-15 Mitsubishi Electric Corp 真空遮断器の遮断性能劣化予知装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945771B (zh) * 2006-10-29 2011-04-20 宝光集团有限公司 户外高压双电源真空断路器

Also Published As

Publication number Publication date
EP0384552A2 (de) 1990-08-29
JPH02260344A (ja) 1990-10-23
EP0384552A3 (de) 1992-02-26
US5119260A (en) 1992-06-02
DE59009039D1 (de) 1995-06-14
DE3905822A1 (de) 1990-08-23

Similar Documents

Publication Publication Date Title
EP0384552B1 (de) Verfahren zum Betrieb eines Leistungsschalters
DE2625477C3 (de) Sicherheitsvorrichtung für Mikrowellenherde
DE2649056A1 (de) Motorschutzschalter
EP0575792B1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Schalters
DE3111255C2 (de)
DE2945382A1 (de) Leistungsunterbrecher
DE2531707A1 (de) Verfahren zum wegschalten eines kurzschlussbehafteten netzteiles aus einem geschlossenen elektrischen ringnetz und schalter zur durchfuehrung des verfahrens
DE19733268C2 (de) Verfahren und Einrichtung zum Detektieren von Überströmen in einer Schaltanlage
EP0792512B1 (de) Schützsicherheitskombination
DE8915542U1 (de) Leistungsschalter mit einem Auslösesteuergerät
DE2854623A1 (de) Anordnung zur selektiven abschaltung mehrerer verbraucher
WO1997000531A1 (de) Schutzeinrichtung gegen überlastung der schaltkontakte eines schaltgerätes
EP0043020A1 (de) Elektrisches Installationsgerät, insbesondere Selbstschalter
DE19606503C2 (de) Verfahren und Schaltungsanordnungen zum Erzielen phasensynchronen Schaltens in der Nähe der Spannungsnulldurchgänge von in Wechselspannungsanlagen liegenden Kontakten
DE902400C (de) Elektromagnetisches Schaltrelais mit Haupt- und Vorkontakt, insbesondere zur Verwendung als Schaltschuetz in Roentgenapparaten
EP0334801A1 (de) Verfahren und Vorrichtung zum Justieren eines Bimetallauslösers
EP0019904A1 (de) Überstromschutzrelais
DE640701C (de) Selbsttaetig ausloesender Druckknopfschalter, insbesondere Tarifwaechter
DE19635055A1 (de) Elektrisches Niederspannungsschaltgerät
DE2103990C3 (de) Schaltungsanordnung zum elektrischen Ein- und Ausschalten eines elektrischen Schaltgerätes, insbesondere eines Leistungsschalters
DE763632C (de) Steuerung mehrerer elektrischer Stromkreise
DE3308437A1 (de) Unterspannungsausloeser fuer elektrische niederspannungs-schutzschalter
EP0899846A2 (de) Schaltungsanordnung zur Betätigung eines Auslösemagneten eines Leistungsschalters
DE967623C (de) Schalteinrichtung zum Beseitigen von Lichtboegen in Hochspannungsnetzen und -anlagen
AT110181B (de) Vorrichtung zur Überwachung elektrischer Leitungen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19901220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19940509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59009039

Country of ref document: DE

Date of ref document: 19950614

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980223

Year of fee payment: 9

Ref country code: FR

Payment date: 19980223

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050208