EP0324718B1 - Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine - Google Patents

Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine Download PDF

Info

Publication number
EP0324718B1
EP0324718B1 EP89810006A EP89810006A EP0324718B1 EP 0324718 B1 EP0324718 B1 EP 0324718B1 EP 89810006 A EP89810006 A EP 89810006A EP 89810006 A EP89810006 A EP 89810006A EP 0324718 B1 EP0324718 B1 EP 0324718B1
Authority
EP
European Patent Office
Prior art keywords
colour
color
location
fields
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810006A
Other languages
English (en)
French (fr)
Other versions
EP0324718A1 (de
Inventor
Guido Keller
Helmut Prof. Dr. Kipphan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gretag AG
Heidelberger Druckmaschinen AG
Original Assignee
Gretag AG
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gretag AG, Heidelberger Druckmaschinen AG filed Critical Gretag AG
Publication of EP0324718A1 publication Critical patent/EP0324718A1/de
Application granted granted Critical
Publication of EP0324718B1 publication Critical patent/EP0324718B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control

Definitions

  • the invention relates to a method for color control of a printing press with a colorimetric ink guide control according to the preamble of claim 1 and a device for carrying out the method according to the preamble of claim 9.
  • a method of the type mentioned at the outset is known from EP A 228 347, in which a large number of color measurement fields are used to optimally match the color impression can be evaluated as reference fields in order to obtain an optimal adjustment of the color impression of sensitive, image-critical points of the print when printed, whereby the color distance-controlled color guide can be superimposed on a color density-controlled color guide during production.
  • the spectral color analysis of a large number of color measuring fields and the calculation of a large number of color coordinates for each printed sheet require a relatively high level of effort.
  • the invention is based on the object of further improving a method of the type mentioned at the outset.
  • a method of the type mentioned at the outset especially in the case of particularly critical tones, it should be possible to dispense with specially adapted color measurement fields and still obtain color control with a high rate of convergence.
  • the change in layer thickness calculated in this way can also be converted into a change in density, for example using a Tollenaar function.
  • the sensitivity of the color locus shift due to a change in density can also be calculated directly. To do this, it makes sense to correct the density values. This can be done, for example, with the Saunderson correction.
  • a sensitivity matrix determined in this way a density change control vector is then calculated, which should result in density changes that bring the measured color location as close as possible to the target color location move.
  • the following exemplary embodiments are based on a sensitivity matrix based on layer thicknesses. However, they can easily be transferred to a sensitivity matrix based on densities.
  • the reference field is a gray field which is produced by printing three rasters with the three colored standard printing inks involved. Black and spot colors on 5 and 6-color machines are treated separately, as will be described in detail later.
  • the control method according to the invention compares the color location of the actual gray field printed on a printing sheet with the stored color location of the gray field on the OK sheet or the numerically entered color location. A color difference vector is determined from the deviation between the actual color location and the target color location and a layer thickness change control vector is calculated, which (theoretically) should result in layer thickness changes that shift the measured color location as close as possible to the target color location.
  • the method according to the invention is therefore on the one hand a relative model, since the measured reflectance or the color location of the corresponding three-color grid is used as the basis and the change in reflectance due to the change in the color guide is calculated relatively to this. Since the requirements for accuracy in such a relative model are lower than in the case of an absolute model that carries out a color location determination without reference to an already existing intermediate value, a linear substitute function in the measured working point is already sufficient as the simplest type of model formation to achieve a high speed of convergence with a relative model if the natural requirement of a correct sign is met.
  • a model is formed to determine the sensitivity of the color locus change due to a change in layer thickness on the basis of partially differentiated Neugebauer equations.
  • a sensitivity matrix is calculated individually for each color location of the gray field serving as a reference field and, after inverting, is formed as a transformation matrix for generating a layer thickness change control vector from the color distance vector.
  • the printing system shown in Fig. 1 has an electronic device for measured value processing 10, which generates control data 11 which correspond to the undesirable color deviations of the printing inks involved in the printing in the individual printing zones and printing units and which are fed as input variables to a control console 20.
  • the control console 20 uses the control data 11 to generate actuating signals 21 for the ink guide members of a printing machine 30 equipped with a remotely controllable ink guide, which printing machine can be, in particular, a three-color offset printing machine, so that the color deviations on printed sheets 40 printed by the printing machine 30 are minimal.
  • color measurement fields 41 are also printed as color measurement strips by the printing press, wherein a block of a color measurement strip can extend, for example, over two zones of the print sheet 40 having a plurality of zones.
  • the color measuring fields 41 are optically scanned by hand or preferably automatically and continuously with the aid of at least one measuring head 42 which is motor-driven in the direction of the arrows 43, 44 along the color measuring fields 41 of the color measuring strips which are also printed is.
  • a second measuring head can be provided for manual scanning.
  • the measuring head 42 contains a white light source, not shown in the drawing, for illuminating the color measuring fields 41, for example at an angle of 45 degrees, and measuring light optics in order to collect the light remitted by the color measuring fields 41, for example at an angle of 0 degrees, and to lead it via a light guide to the input of a spectrometer 45.
  • the spectrometer 45 is used to spectrally split the portion of the white illuminating light remitted by the color measurement fields 41 printed for pressure monitoring in order to permit spectral color analysis and thus colorimetric analysis.
  • the spectrometer 45 contains, for example, a holographic grating illuminated via an entrance slit for the spatial splitting of the measuring light according to wavelengths, and a line-shaped arrangement of, for example, 35 photodiodes, which are acted upon by the spectrally divided measuring light.
  • the spectrometer 45 thus allows spectral color measurement at, for example, 35 support points to determine the spectral remissions of the manually or automatically scanned color measurement fields 41, in order to allow the measured value processing 10 to derive colorimetric parameters.
  • the measurement data 46 present at the output of the spectrometer 45 arrive via an interface (not shown in the drawing), which among other things also performs a digitization of the measurement data 46, to a computer arrangement contained in the device for the measurement value processing 10.
  • the computer arrangement of the electronic device for measured value processing 10 has driver electronics for feeding the electrical drive of the measuring head 42 and the measuring head illumination. Furthermore, as with a conventional computer, a data display device including a keyboard and a log printer are provided in order to deal with the spectral data acquisition To be able to display data as required and to be able to enter constants and setpoints manually using the keyboard.
  • the measured data 46 are converted into spectral remissions based on the paper white of the printed sheet 40 and color location coordinates.
  • the control data 11 are generated on the basis of a color distance determination between the target color location and the actual color location of the reference field actually recorded on the printed sheet, which is preferably a gray field from a three-color grid .
  • the target color location coordinates define a target color location, which can be done either manually via the keyboard or by scanning the reference field of a print sheet that is found to be good, i.e. a so-called "O.K. sheet" has been entered into a memory.
  • the spectrophotometric measurement data i.e. the spectral remissions, preferably of each printed sheet, converted into color location coordinates and compared with the stored target color location coordinates in order to continuously determine color distances and control data 11 for the control console 20 and the color guide elements for controlling the color application in the manner described in more detail below.
  • the printing system shown in FIG. 1 Since the result obtained is scanned by the measuring head 42 when the color guide members are adjusted to correct the coloring, the printing system shown in FIG. 1 has a control circuit for correcting color deviations.
  • the respective rule Softening is determined by the measured value processing 10, which contains the coordinates of the respective target color location as a reference variable in its memory and generates the control data 11 as a manipulated variable.
  • the control data 11 feed the printing machine 30 indirectly via the control console 20 that is usually present.
  • the mode of operation and the structure of the electronic measured value processing 10 are shown in more detail in FIG. 2.
  • the spectral reflectance values supplied by the spectrometer 45 arrive via an input bus 50 to the reflectance value memories 51 to 63, each assigned to the individual color measuring fields 41.
  • the reflectance value memory 51 serves to store the reflectance values ⁇ R123 of a three-color grid field measured at 35 different wavelengths on the OK sheet.
  • the three-color grid on the OK sheet corresponds to a three-color grid on the newly printed printed sheet 40 in each case.
  • the color appearance of the printed sheet 40 corresponds to the OK sheet if the three-color grid field serving as a reference area on the printed sheet 40 has the same, in particular gray, Color impression.
  • the spectral reflectance values of the three-color grid are stored as the actual value in the reflectance value memory 52 and indirectly with the spectral reflectance values present as the target value in the reflectance value memory 51 after conversion of the spectral reflectance values into color coordinate coordinates of a color coordinate system, in particular the CIELAB or CIELUV system. Systems compared.
  • the standard color values X, Y and Z are calculated from the spectral reflectance values in the reflectance value memory 51, for example assigned to 35 different wavelengths, using the first standard color value calculator 64 in accordance with the formulas defined by the CIE (Commission Internationele de l'Eclairage).
  • the actual standard color values X, Y and Z are calculated in a second standard color value calculator 65 from the spectral remission values obtained from the reflectance spectrum of the reference field on the printed sheet 40.
  • the standard color value calculators 64, 65 can be combined in terms of hardware and in particular can also be part of the main processor of the printing system and thus, like the reflectance value memories 51 to 63, only exist in software.
  • the coordinates of the target color location can also be entered manually using the keyboard. This possibility is indicated in the drawing by the input line 69 of the first color locator 66. Theoretically, the corresponding target standard color values or the target reflectance values could of course also be entered manually, but this should not make much sense in practice. Corresponding possibilities are indicated in the drawing by input lines 69 'and 69 ⁇ .
  • the target standard color values calculated or manually entered by the first standard color value calculator 64 and the actual standard color values calculated by the second standard color value calculator 65 according to CIE each serve a first color location calculator 66 and a second color location calculator 67 as input variables.
  • the first color location calculator 66 and the second color location calculator 67 each calculate the color locations with the coordinates L, a and b or L, u and v of a CIE color space from the target standard color values and the actual standard color values according to the CIE formulas.
  • the first color location computer 66 and the second color location computer 67 like all computers of the measured value processing 10, can also be implemented in hardware and / or software with the other computers in the printing system.
  • the CIE color space with the color location coordinates L, a and b is discussed below as an exemplary embodiment, it should be pointed out that the invention can also be implemented with other color spaces.
  • the target color locus vector for the color of the three-color grid of the OK sheet determined by the first color locator 66 is compared in a color distance calculator 68 with the actual value determined by the second color locator 67 for the color locus of the three-color grid on the freshly printed printed sheet 40, which serves as a reference field. in order to determine a color distance vector from the difference between the two color locus vectors, the length and orientation of which in the color space indicate the undesired color deviation between the OK sheet and the newly printed printed sheet 40.
  • the output of the color distance calculator 68 is connected to the first input of a layer thickness change computer, which calculates a layer thickness change control vector ⁇ S from the color distance vector ⁇ F, a transformation function being fed in via a second input 72, which is used for the respective by the actual standard color values X, Y, Z or the actual color point L, a, b defined working point is a linear replacement function of what is extremely complex in practice Relationship between layer thicknesses and color locations for an infinitesimal surrounding area of the working point.
  • the quantities fed into the second input 72 for calculating the layer thickness change control vector are determined with the aid of a matrix computer 73 which components of a matrix A (i, j ), which is a three-dimensional normal matrix with nine elements in three columns and three rows.
  • FIG. 2 shows a matrix memory 74 for the components of the matrix A (i, j).
  • the matrix A (i, j) is inverted with the aid of a matrix inverter 75, so that the elements of the inverted matrix A der1 are present at the second input 72 as elements of a transformation function, which are preferably determined anew each time a reference field is measured. If there is a discrepancy between the actual color location of the reference field scanned with the aid of the measuring head 42 and the target color location, the layer thickness change computer 71 is thus used to calculate which layer thickness changes are required for the three printing inks in order to approximate them when printing the next printing sheet 40 the actual color location to reach the target color location.
  • the matrix A (i, j) stored in the matrix memory 74 contains, as information, the sensitivity of the color location change due to the layer thickness changes.
  • the matrix A (i, j) is referred to below as the sensitivity matrix.
  • the elements of the sensitivity matrices in the exemplary embodiment of the invention shown in FIG. 2 are calculated separately for each working point defined by the standard color values X, Y, Z.
  • the elements of the sensitivity matrix A (i, j) are the partial derivatives of the color locus vector, in particular the color locus vector of one of the color spaces mentioned, according to the components of the layer thickness control vector.
  • the color measuring fields 41 on the printing sheet 40 therefore comprise a single-color grid for each of the three printing inks, the film surface coverings corresponding to the three-color grid or reference field for the grid fields. If the film surface coverings do not match those of the three-color grid, the calculated surface coverings must be interpolated.
  • solid color fields are provided for the three printing inks.
  • the color measurement fields 41 also include three solid tone fields, in which two printing colors have been printed on top of each other.
  • the color measurement strips of the printed sheet 40 which are also printed, each contain a solid field with all three colors printed one above the other and a white field for determining the paper remission.
  • each reflectance value memory 53 to 63 stores the spectral remissions assigned to a multiplicity of wavelengths, for example 35 different wavelength ranges.
  • the matrix computer 73 has an operating point input 77, via which the respectively applicable standard color values are fed. Further inputs of the matrix computer 73 are connected to the three remission value memories 53 to 55, which contain, for example, the spectral remission values of grid fields of the colors yellow, magenta and cyan.
  • the reflectance value memories 56 to 58 each store 35 reflectance values of solid color fields of the colors yellow, magenta and cyan, the layer thicknesses of which change when the color guide elements are adjusted in the same way as the layer thicknesses of the respective printing color in the grid fields.
  • three reflectance value memories 59 to 61 for solid tone fields are assigned to the matrix computer 73, each of which is produced by overprinting two printing inks and, in the exemplary embodiment described, stores the spectral remission values of the colors red, green and blue produced by overprinting.
  • a reflectance value memory 62 is provided for storing the spectral reflectance values of a solid-color field, which was created by printing all three printing colors on top of one another and thus essentially has a black color.
  • the reflectance value memory 63 is provided, so that the matrix computer 73 can process reflectance values relating to paper white which are between 0 and 1.
  • a constant and parameter input 76 is provided.
  • the computers and inputs mentioned above can be present physically or in software in the measured value processing 10.
  • the sensitivity matrix A (i, j) is determined, with which Layer thickness change control vectors are generated in order to adjust the ink guiding elements with the greatest possible convergence speed in such a way that during the printing of the printed sheets 40 a color-spaced control takes place.
  • the elements of the sensitivity matrix are the partial derivatives of the components of the color locus vector according to the components of the layer thickness control vector. If the L * a * b * system of the CIE is used in accordance with the exemplary embodiment described, the partial derivatives of the coordinates L, a and b must therefore be calculated according to the component of the layer thickness vectors.
  • the partial derivatives of the color space coordinates contain the actual standard color values X, Y and Z of the measured reference field and the partial derivatives of these standard color values according to the component of the layer thickness vector.
  • the partial derivations of the standard color value according to the three components of the layer thickness vector could be determined empirically, the values obtained being stored in a memory. However, this case is hardly useful in practice. Another possibility is to calculate these quantities from time to time, for example at the beginning of a printing process, from many printing sheets 40 from the spectral remission values stored in the remission value memories 53 to 63. Instead of a calculation from time to time, a calculation can also be carried out for each individual printed sheet. However, it is preferable to determine the partial derivatives of the measured actual standard color values according to the three components of the layer thickness vector for each measurement of a reference field in a zone or a block of the printed sheet.
  • the information stored in the reflectance value memories 53 to 63 represent secondary variables that make it possible to determine which color guide changes for the main variable stored in the reflectance value memory 52 are necessary in order to ensure that the color locus assigned to the main variable measured is closer to the target color locus in the color space the next time printing and the next measurement.
  • the nine partial derivatives of the standard color values according to the components of the layer thickness vector or layer thickness control vector are obtained by integrating a printout over the entire spectral range, which essentially contains the partial derivatives of the reflectance values of a three-color grid, calculated on the basis of the model, according to the three layer thicknesses of the three printing inks.
  • the simplest model is the calculation using the Neugebauer equations, which, in their differential form, indicate the changes in reflectance of a three-color grid depending on the optically effective area coverage and the remissions of the solid fields printed together with the grid.
  • the matrix calculator 73 calculates the sizes contained in the Neugebauer equations in a differentiated form and in particular the partial derivations of the remissions of the solid tone fields according to the layer thicknesses of the respectively assigned colors, furthermore the optically effective area coverage from the relationships specified by Murray-Davies and partial derivations of the optically effective surface coverings after the remissions of the single-color solid color fields assigned by the color.
  • the linear substitute function at the operating point allows an approximate theoretical determination of the color location of the new three-color grid that will be printed later when the color is changed.
  • the "slope" or sensitivity at the operating point is used to determine the required changes in layer thickness or changes in color from the color difference between the actually measured color location and the desired color location for the three-color grid.
  • the matrix computer 73 shown in FIG. 2 calculates the sensitivity matrices for all zones or blocks A (i, j) so that linear regulation can take place.
  • the spectral single-color grid emissions are first interpolated to the corresponding grid values of the three-color grid (square) and stored in the corresponding reflectance value memories 53-55. As a result, only these interpolated values are used.
  • the ten secondary measurement values contained in the reflectance value memories 53 to 62 are weighted with densitometric filter profiles and, based on paper white, the geometric area coverage for the three colors is calculated according to the following formula.
  • F RjGeom F RjFilm + (F Dj - F RjFilm ) / 3.
  • the film area coverage F RjFilm is predetermined by the measurement strip definition and does not need to be measured.
  • the formula for calculating the geometrical area coverage is based on the assumption that the increase for the optically effective bottle coverage is composed of 1/3 mechanical point magnification and 2/3 light trapping.
  • S j means the current layer thickness of the printing ink j. It results from the machine characteristic curve (ie the relationship between a manipulated variable of the machine control and the resulting layer thickness).
  • r Oj is a constant that indicates the surface reflection of the paper for ink j. In the first approximation it is the same for all printing inks j. In addition, the surface reflection r Oj can be assumed to be negligible due to the measuring optics (45 °, 0 °) and due to the polarizer used. It is therefore advisable to set this constant to zero in most cases.
  • the constant r 2j expresses the total reflection in the color layer and is also approximately the same for all printing inks j. If the internal reflection r 2j is set to zero, the layer thickness is assumed to be proportional to the density. Reasonable values for r 2j range from 0.4 to 0.6. The larger r 2j , the greater the sensitivity and thus the controlled variable.
  • the optically effective area coverage F Dj is then calculated in all 35 support points for all three colors according to the Murray-Davies formula. If the related paper white spectral reflectance value ⁇ PY 'of the associated Volltenfeldes is greater than 0.95, the light capture is assumed to be zero and replaces the optically effective area coverage by the geometric area coverage in the further calculation to a in the calculation of the optically effective surface coverage Avoid division by zero. Such a division by zero could otherwise occur because the measured values are subject to noise.
  • the paper constant P is a constant that contains the paper and printing ink properties and can be entered into the matrix calculator 73, for example, via the input 76.
  • the above relationship is based on a light trapping model, where the paper constant P can be set equal to 1.
  • the values of the paper constant P are between 0.1 and 1. The smaller the paper constant P is chosen, the greater the sensitivity and thus the controlled variable.
  • ⁇ R123 the reflectance of a three-color grid and ⁇ V12 , ⁇ V13 and ⁇ V23 are the remissions of the full-tone fields assigned to the remission value memories 59 to 61 from two different overprinted colors
  • ⁇ V123 is the remission of a full-tone field with three colors printed one above the other.
  • the differential Neugebauer equations above each contain a first addend, which contains the changes in reflectance due to the changes in light trapping, and a second addend, which contains the changes in reflectance due to the changes in layer thickness.
  • the influences of the color acceptance were neglected.
  • the change in the reflectance of a color layer due to the change in the layer thickness is assumed to be independent of whether the color was printed entirely on paper or partly on another color.
  • the matrix computer 73 calculates the sensitivity matrix, which is inverted in the matrix inverter 75, which can also be software-integrated in the matrix computer 73.
  • B ( ⁇ ) means the spectral characteristic of the lighting and x ( ⁇ ), y ( ⁇ ) and e.g. ( ⁇ ) the standardized weight functions according to CIE.
  • the quantities d ⁇ R123 ( ⁇ ) / dS j are the quantities calculated using the differential Neugebauer equations, the dependence on the wavelength ⁇ being given for clarification and dS j standing for dS1, dS2 and dS3.
  • the sensitivity matrix A is formed and recorded in the matrix memory 74, which can be implemented in software or hardware.
  • the derivatives according to S 1 mean the derivatives according to the layer thickness of the first printing ink, for example cyan.
  • the derivatives according to S2 and S3 refer accordingly to the second and third printing inks, especially magenta and yellow.
  • a pure cyan field or a field which contains only two instead of three colors printed one above the other is to be used as a reference field.
  • the 3 x 3 matrix degenerates to a 1 x 3 matrix (one color, vector) or to a 2 x 3 matrix (two colors). This is evident because the colors that are not taken into account, ie the colors that do not appear in the reference field, cannot make a contribution and the corresponding elements of the matrix must therefore disappear.
  • Matrices with empty rows or empty columns cannot be inverted, since an inversion would result in a division by zero.
  • the desired target color location will generally not be in the printable color space, since a color deviation can also run in the direction of the "foreign" colors.
  • the characteristic of the printable color space only indicates the relationship between the layer thicknesses of the colors taken into account and the color locations achieved. On the other hand, this means that the desired target color location can generally not be achieved at all.
  • the matrix computer 73 allows a replacement target color location to be determined which lies on the replacement characteristic curve or replacement characteristic surface defined by the degenerated "matrix" A in the color space. This replacement target color location can then of course be reached. The replacement target color difference is calculated so that the distance between the original target color location and the replacement characteristic or replacement characteristic surface is minimal.
  • the sensitivity matrix is a vector
  • an area is defined.
  • the replacement target color location is determined as the point of penetration of the solder onto the surface or the vector by the original target color location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Printing Methods (AREA)
  • Electronic Switches (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Farbregelung einer Druckmaschine mit einer farbmetrischen Farbführungssteuerung gemäss dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens gemäss dem Oberbegriff des Anspruchs 9.
  • Aus der EP A 228 347 ist ein Verfahren der eingangs genannten Art bekannt, bei dem zur optimalen Angleichung des Farbeindrucks eine Vielzahl von Farbmessfeldern als Bezugsfelder ausgewertet werden, um beim Andruck eine optimale Angleichung des Farbeindrucks von heiklen bildwichtigen Stellen des Drucks zu erhalten, wobei beim Fortdruck die farbabstandsgesteuerte Farbführung einer farbdichtegesteuerten Farbführung überlagert sein kann. Die spektralen Farbanalysen einer Vielzahl von Farbmeßfeldern sowie die Berechnung einer Vielzahl von Farbkoordinaten für jeden Druckbogen erfordert einen verhältnismäßig hohen Aufwand. Dieser Aufwand wird noch dadurch erhöht, daß bei dem bekannten Verfahren für jedes der zahlreichen Bezugsfelder Abstandsvektoren gewichtet werden, um als Qualitätsmaß für den Druck den Gesamtfarbabstand, der aus der Summe der Beträge der einzelnen Farbabstände ermittelt wird, zu minimieren. Zur Bestimmung der den einzelnen Farbmeßfeldern zugeordneten Schichtdickenänderungen ist es erforderlich, die den zahlreichen Bezugsfeldern zugeordneten Farbabstandsvektoren mit empirisch ermittelten Transformationsmatrizen zu multiplizieren. Bereits die empirische Ermittlung und Abspeicherung der zahlreichen Transformationsmatrizen stellt einen sehr hohen Aufwand dar. Da die beteiligten Druckfarbenanteile mehr oder weniger unabhängig voneinander korrigiert werden, ergibt sich ein ungünstiges Konvergenzverhalten. Aus diesem Grunde sieht das bekannte Verfahren vor, für besonders kritische Töne gesonderte Farbmeßfelder einzusetzen, wodurch der Gesamtaufwand wiederum erhöht wird.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art weiter zu verbessern. Insbesondere soll auch bei besonders kritischen Tönen auf dem Bildinhalt besonders angepaßte Farbmeßfelder verzichtet werden können und dennoch eine Farbregelung mit hoher Konvergenzgeschwindigkeit erhalten werden.
  • Das diese Angelegenheit lösende Verfahren und die entsprechende Vorrichtung sind in den unabhängigen Ansprüchen beschrieben. Bevorzugte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.
  • In Einzelfällen (d.h. bei bestimmten Sujets oder bei farbigem Papier) kann es sinnvoll sein, bei der Bestimmung des Ist-Farbortes nicht auf Absolutweiss sondern auf Papierweiss zu normieren.
  • Die so berechnete Schichtdickenänderung kann auch, z.B. über eine Tollenaar Funktion, in eine Dichteänderung umgerechnet werden.
    An Stelle der Schichtdicke kann allerdings auch direkt die Empfindlichkeit der Farbortverschiebung aufgrund einer Dichteänderung berechnet werden. Hierzu ist es sinnvoll, die Dichtewerte zu korrigieren. Dies kann z.B. mit der Saunderson-Korrektur geschehen. Mit einer so ermittelten Sensitivitätsmatrix wird dann ein Dichteänderungssteuervektor berechnet, der Dichteänderungen zur Folge haben sollte, die den gemessenen Farbort möglichst nahe an den Soll-Farbort verschieben.
    Die folgenden Ausführungsbeispiele gehen von einer Sensitivitätsmatrix auf der Basis von Schichtdicken aus. Sie lassen sich jedoch einfach auf eine Sensitivitätsmatrix auf der Basis von Dichten übertragen. Bei einem zweckmässigen Ausführungsbeispiel der Erfindung für eine Mehrfarben-, z.B. Vierfarben-Offset-Druckmaschine ist das Bezugsfeld ein Graufeld, das durch Uebereinanderdrucken von drei Rastern mit den beteiligten drei bunten Normdruckfarben erzeugt wird. Schwarz sowie Schmuckfarben bei 5- und 6-Farbenmaschinen werden, wie später noch im einzelnen beschrieben, gesondert behandelt. Das erfindungsgemässe Regelverfahren vergleicht den Farbort des auf einem Druckbogen aufgedruckten Ist-Graufeldes mit dem gespeicherten Farbort des Graufeldes auf dem O.K.-Bogen oder dem numerisch eingegebenen Farbort. Aus der Abweichung zwischen dem Ist-Farbort und dem Soll-Farbort wird ein Farbabstandsvektor ermittelt und ein Schichtdickenänderungssteuervektor berechnet, der (theoretisch) Schichtdickenänderungen zur Folge haben sollte, die den gemessenen Farbort möglichst nahe an den Soll-Farbort verschieben. Bei dem erfindungsgemäßen Verfahren handelt es sich somit einerseits um ein relatives Modell, da die gemessene Remission bzw. der Farbort des entsprechenden Dreifarbenrasterfeldes als Grundlage verwendet wird und die Remissionsänderung aufgrund der Änderung der Farbführung relativ dazu gerechnet wird. Da bei einem solchen relativen Modell die Anforderungen an die Genauigkeit kleiner sind als bei einem absoluten Modell, das eine Farbortbestimmung ohne Rückbezug auf einen bereits vorhandenen Zwischenwert durchführt, reicht eine lineare Ersatzfunktion im gemessenen Arbeitspunkt als einfachste Art der Modellbildung bereits aus, um bei einem relativen Modell eine hohe Konvergenzgeschwindigkeit zu erzielen, wenn die selbstverständliche Voraussetzung eines richtigen Vorzeichens erfüllt ist. Bei einem bevorzugten Ausführungsbeispiel erfolgt eine Modellbildung zur Bestimmung der Empfindlichkeit der Farbortänderung aufgrund einer Schichtdickenänderung auf der Grundlage partiell differenzierter Neugebauer-Gleichungen.
  • Für jeden Farbort des als Bezugsfeld dienenden Graufeldes wird eine Sensitivitätsmatrix individuell berechnet und nach dem Invertieren als Transformationsmatrix zur Erzeugung eines Schichtdickenänderungssteuervektors aus dem Farbabstandsvektor gebildet. Um eine hohe Genauigkeit zu erzielen, ist es zweckmäßig, alle Größen, die zur Bildung der Elemente der Sensitivitätsmatrix benötigt werden, bei jedem Druck neu zu bestimmen. Die dazu benötigten Größen werden durch Auswerten der spektralen Remissionswerte von drei Rasterfeldern in den beteiligten Druckfarben, drei Volltonfeldern in den beteiligten Druckfarben, drei Volltonfeldern mit jeweils zwei übereinander gedruckten Druckfarben, einem Volltonfeld mit allen übereinander gedruckten Druckfarben und schließlich einem Feld zur Erfassung der Papierremission erzeugt.
  • Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen:
    • Fig. 1 ein stark vereinfachtes Blockschema einer Druckanlage mit dem erfindungsgemäßen Regelverfahren und
    • Fig. 2 ein Blockschema zur Veranschaulichung einer möglichen Realisierung der erfindungsgemäßen Einrichtung zur Meßwertverarbeitung.
  • Die in Fig. 1 dargestellte Druckanlage verfügt über eine elektronische Einrichtung zur Meßwertverarbeitung 10, die Steuerdaten 11 erzeugt, welche den unerwünschten Farbabweichungen der am Druck beteiligten Druckfarben in den einzelnen Druckzonen und Druckwerken entsprechen und als Eingangsgrößen einer Steuerkonsole 20 zugeführt werden. Die Steuerkonsole 20 erzeugt aus den Steuerdaten 11 Stellsignale 21 für die Farbführungsorgane einer mit einer fernsteuerbaren Farbführung ausgestatteten Druckmaschine 30, die insbesondere eine Dreifarben-Offset-Druckmaschine sein kann, so daß die Farbabweichungen auf von der Druckmaschine 30 bedruckten Druckbogen 40 minimal werden.
  • Beim Drucken werden von der Druckmaschine 30 Farbmeßfelder 41 als Farbmeßstreifen mitgedruckt, wobei ein Block eines Farbmeßstreifens sich beispielsweise über zwei Zonen des mehrere Zonen aufweisenden Druckbogens 40 erstrecken kann.
  • Um die Farbabweichungen der am Druck beteiligten Druckfarben klein zu halten, werden die Farbmeßfelder 41 von Hand oder vorzugsweise automatisch und laufend mit Hilfe wenigstens eines Meßkopfes 42 optisch abgetastet, der entlang den Farbmeßfeldern 41 der jeweils mitgedruckten Farbmeßstreifen motorgetrieben in Richtung der Pfeile 43, 44 verschiebbar ist. Für die manuelle Abtastung kann ein zweiter Meßkopf vorgesehen sein.
    Der Meßkopf 42 enthält eine in der Zeichnung nicht dargestellte Weißlichtquelle zur Beleuchtung der Farbmeßfelder 41, z.B. unter einem Winkel von 45 Grad, und eine Meßlichtoptik, um das von den Farbmeßfeldern 41, z.B. unter einem Winkel von 0 Grad, remittierte Licht aufzufangen und über einen Lichtleiter zum Eingang eines Spektrometers 45 zu führen. Das Spektrometer 45 dient dazu, den von den zur Drucküberwachung mitgedruckten Farbmeßfeldern 41 remittierten Anteil des weißen Beleuchtungslichtes spektral zu zerlegen, um eine spektrale Farbanalyse und somit eine farbmetrische Analyse zu gestatten. Das Spektrometer 45 enthält beispielsweise ein über einen Eintrittsspalt beleuchtetes holografisches Gitter zur räumlichen Aufspaltung des Meßlichtes nach Wellenlängen sowie eine zeilenförmige Anordnung von beispielsweise 35 Fotodioden, die mit dem spektral zerlegten Meßlicht beaufschlagt werden. Das Spektrometer 45 gestattet somit eine spektrale Farbmessung an beispielsweise 35 Stützstellen zur Bestimmung der spektralen Remissionen der manuell oder automatisch abgetasteten Farbmeßfelder 41, um der Meßwertverarbeitung 10 die Ableitung farbmetrischer Kenngrößen zu gestatten. Die am Ausgang des Spektrometers 45 vorleigenden Meßdaten 46 gelangen über eine in der Zeichnung nicht dargestellte Schnittstelle, die unter anderem auch eine Digitalisierung der Meßdaten 46 durchführt, zu einer in der Einrichtung zur Meßwertverarbeitung 10 enthaltenen Rechneranordnung.
  • Die Rechneranordnung der elektronischen Einrichtung zur Meßwertverarbeitung 10 verfügt über eine Treiberelektronik zur Speisung des elektrischen Antriebs des Meßkopfes 42 und des Meßkopfbeleuchtung. Weiterhin sind wie bei einem üblichen Rechner ein Datensichtgerät inklusive Tastatur und ein Protokolldrucker vorgesehen, um die bei der spektralen Meßwerterfassung anfallenden Daten bei Bedarf anzeigen zu können und um insbesondere Konstanten und Sollwerte auch manuell über die Tastatur eingeben zu können.
  • In der elektronischen Einrichtung zur Meßwertverarbeitung 10 werden die Meßdaten 46 in spektrale Remissionen bezogen auf das Papierweiß des Druckbogens 40 und Farbortkoordinaten umgerechnet. Durch Vergleich der Farbortkoordinaten eines als bezugsfeld dienenden Farbmeßfeldes 41 mit gespeicherten Soll-Farbortkoordinaten werden aufgrund einer Farbabstandsbestimmung zwischen dem Soll-Farbort und dem tatsächlich auf dem Druckbogen erfaßten Ist-Farbort des Bezugsfeldes, das vorzugsweise ein Graufeld aus einem Dreifarbenraster ist, die Steuerdaten 11 erzeugt. Die Soll-Farbortkoordinaten definieren einen Soll-Farbort, der entweder manuell über die Tastatur oder durch Abtasten des Bezugsfeldes eines für gut befundenen Druckbogens, d.h. eines sogenannten "O.K.-Bogens" in einen Speicher eingegeben worden ist. In der elektronischen Einrichtung zur Meßwertverarbeitung 10 werden die spektralfotometrischen Meßdaten, d.h. die spektralen Remissionen, vorzugsweise eines jeden Druckbogens in Farbortkoordinaten umgerechnet und mit den gespeicherten Soll-Farbortskoordinaten verglichen, um in der weiter unten detaillierter beschriebenen Weise laufend Farbabstände und hieraus Steuerdaten 11 für die Steuerkonsole 20 und die Farbführungsorgane zur Steuerung des Farbauftrags zu bestimmen.
  • Da bei einer Verstellung der Farbführungsorgane zur Korrektur der Farbgebung das erhaltene Resultat vom Meßkopf 42 abgetastet wird, verfügt die in Fig. 1 dargestellte Druckanlage über einen Regelkreis zum Ausregeln von Farbabweichungen. Die jeweilige Regelab weichung wird dabei von der Meßwertverarbeitung 10 ermittelt, die in ihrem Speicher als Führungsgröße die Koordinaten des jeweiligen Soll-Farbortes enthält und als Stellgröße die Steuerdaten 11 erzeugt. Bei der in Fig. 1 dargestellten Druckanlage speisen die Steuerdaten 11 die Druckmaschine 30 indirekt über die üblicherweise vorhandene Steuerkonsole 20. Selbstverständlich ist es auch möglich, die Druckanlage so abzuwandeln, daß die Steuerdaten direkt auf die Farbführungsorgane, beispielsweise die Farbzonenschrauben, der Druckmaschine 30 einwirken.
  • Die Funktionsweise und der Aufbau der elektronischen Meßwertverarbeitung 10 sind in Fig. 2 detaillierter dargestellt. Die vom Spektrometer 45 gelieferten spektralen Remissionswerte gelangen über einen Eingangsbus 50 zu den einzelnen Farbmeßfeldern 41 jeweils zugeordneten Remissionswertspeichern 51 bis 63. Der Remissionswertspeicher 51 dient zur Speicherung der bei 35 verschiedenen Wellenlängen gemessenen Remissionswerte βR123 eines Dreifarbenrasterfeldes auf dem O.K.-Bogen.
  • Dem Dreifarbenrasterfeld auf dem O.K.-Bogen entspricht ein Dreifarbenrasterfeld auf dem jeweils gerade neu gedruckten Druckbogen 40. Die farbliche Erscheinung des Druckbogens 40 stimmt dann mit dem O.K.-Bogen überein, wenn das als Bezugsfeld auf dem Druckbogen 40 dienende Dreifarbenrasterfeld den gleichen, insbesondere grauen, Farbeindruck hervorruft. Aus diesem Grunde werden die spektralen Remissionswerte des Dreifarbenrasterfeldes als Ist-Wert in dem Remissionswertspeicher 52 gespeichert und mit den als Soll-Wert im Remissionswertspeicher 51 vorhandenen spektralen Remissionswerten indirekt nach einer Umrechnung der spektralen Remissionswerte in Farbortkoordinaten eines Farbkoordinatensystems, insbesondere des CIELAB- oder CIELUV-Systems verglichen.
  • Aus den beispielsweise 35 verschiedenen Wellenlängen zugeordneten spektralen Remissionswerten im Remissionswertspeicher 51 werden mit Hilfe eines ersten Normfarbwertrechners 64 gemäß den durch die CIE (Commission Internationele de l'Eclairage) definierten Formeln die Normfarbwerte X, Y und Z errechnet. Entsprechend werden aus den aus dem Remissionsspektrum des Bezugsfelds auf dem Druckbogen 40 erhaltenen spektralen Remissionswerten in einem zweiten Normfarbwertrechner 65 die Ist-Normfarbwerte X, Y und Z berechnet. Die Normfarbwertrechner 64, 65 können hardewaremäßig zusammengefaßt und auch insbesondere Bestandteil des Hauptprozessors der Druckanlage sein und somit ebenso wie die Remissionswertspeicher 51 bis 63 lediglich softwaremäßig existieren.
  • Anstatt die Soll-Normfarbwerte (und daraus, wie unten ausgeführt, die Soll-Farborte) aus den mittels des Meßkopfs eingelesenen spektralen Remissionswerten des Bezugsfelds des O.K.-Bogens zu berechnen, können die Koordinaten des Soll-Farborts auch manuell via Tastatur eingegeben werden. Diese Möglichkeit ist in der Zeichnung durch die Eingangsleitung 69 des ersten Farbortrechners 66 angedeutet. Rein theoretisch könnten natürlich auch die entsprechenden Soll-Normfarbwerte oder die Soll-Remissionswerte manuell eingegeben werden, jedoch dürfte dies in der Praxis wenig sinnvoll sein. Entsprechende Möglichkeiten sind in der Zeichnung durch Eingabeleitungen 69′ und 69˝ angedeutet.
  • Die von dem ersten Normfarbwertrechner 64 berechneten oder manuell eingegebenen Soll-Normfarbwerte und die von dem zweiten Normfarbwertrechner 65 berechneten Ist-Normfarbwerte nach CIE dienen jeweils einem ersten Farbortrechner 66 und einem zweiten Farbortrechner 67 als Eingangsgrößen. Der erste Farbortrechner 66 und der zweite Farbortrechner 67 berechnen jeweils aus den Soll-Normfarbwerten und den Ist-Normfarbwerten gemäß den CIE-Formeln die Farborte mit den Koordinaten L, a und b oder L, u und v eines CIE-Farbraumes. Der erste Farbortrechner 66 und der zweite Farbortrechner 67 können ebenfalls wie alle Rechner der Meßwertverarbeitung 10 hardwaremäßig und/oder softwaremäßig mit den übrigen Rechnern der Druckanlage gemeinsam realisiert sein. Obwohl nachfolgend der CIE-Farbraum mit den Farbortkoordinaten L, a und b als Ausführungsbeispiel erörtert ist, sei darauf hingewiesen, daß die Erfindung auch mit anderen Farbräumen realsisiert werden kann.
  • Der durch den ersten Farbortrechner 66 bestimmte Soll-Farbortvektor für die Farbe des Dreifarbenrasterfeldes des O.K.-Bogens wird in einem Farbabstandsrechner 68 mit dem von dem zweiten Farbortrechner 67 ermittelten Ist-Wert für den Farbortvektor des als Bezugsfeld dienenden Dreifarbenrasterfeldes auf dem frischgedruckten Druckbogen 40 verglichen, um aus der Differenz der beiden Farbortvektoren einen Farbabstandsvektor zu bestimmen, dessen Länge und Orientierung im Farbraum die unerwünschte Farbabweichung zwischen dem O.K.-Bogen und dem neu gedruckten Druckbogen 40 angibt.
  • Der Ausgang des Farbabstandsrechners 68 ist mit dem ersten Eingang eines Schichtdickenänderungsrechners verbunden, der aus dem Farbabstandsvektor Δ F einen Schichtdickenänderungssteuervektor Δ S berechnet, wobei über einen zweiten Eingang 72 eine Transformationsfunktion eingespeist wird, die für den jeweiligen durch die Ist-Normfarbwerte X, Y, Z bzw. den Ist-Farbort L, a, b definierten Arbeitspunkt eine lineare Ersatzfunktion des in der Praxis äußerst komplexen Zusammenhangs zwischen Schichtdicken und Farborten für einen infinitesimalen Umgebungsbereich des Arbeitspunkts darstellt. Die im den zweiten Eingang 72 eingespeisten Größen zur Berechnung des Schichtdickenänderungssteuervektors, dessen Komponenten für die drei Druckfarben, beispielsweise Cyan, Gelb und Magenta, die Steuerdaten 11 bilden, werden mit Hilfe eines Matrixrechners 73 bestimmt, der die Komponenten einer Matrix A(i,j) berechnet, die im dreidimensionalen Normalfall eine Matrix mit neun Elementen in drei Spalten und drei Zeilen ist.
  • In Fig. 2 ist ein Matrixspeicher 74 für die Komponenten der Matrix A(i,j) dargestellt.
  • Die Matrix A(i,j) wird mit Hilfe eines Matrixinverters 75 invertiert, so daß am zweiten Eingangs 72 die Elemente der invertierten Matrix A⁻¹ als Elemente einer Transformationsfunktion vorliegen, die vorzugsweise bei jeder Messung eines Bezugsfeldes neu bestimmt werden. Wenn zwischen dem Ist-Farbort des mit Hilfe des Meßkopfes 42 abgetasteten Bezugsfeldes und dem Soll-Farbort eine Abweichung besteht, wird somit mit Hilfe des Schichtdickenänderungsrechners 71 berechnet, welche Schichtdickenänderungen bei den drei Druckfarben erforderlich sind, um beim Druck des nächsten Druckbogens 40 eine Annäherung des Ist-Farbortes an den Soll-Farbort zu erreichen. Die im Matrixspeicher 74 gespeicherte Matrix A(i,j) enthält als Information die Empfindlichkeit der Farbortänderung aufgrund der Schichtdickenänderungen. Daher wird die Matrix A(i,j) nachfolgend als Sensitivitätsmatrix bezeichnet. Ihre Elemente können zwar experimentell ermittelt werden, wobei jedoch bereits für jeden Farbort andere Matrixelemente gelten. Wegen der Vielzahl der möglichen Farborte und sonstigen Einflüsse ist ein erhebliches Speichervolumen erforderlich, wenn experimentell ermittelte Sensitivitätsmatrizen abgespeichert werden sollen, um die für einen bestimmten Arbeitspunkt benötigten Werte jeweils auszulesen. Aus diesem Grunde werden die Elemente der Sensitivitätsmatrizen bei dem in Fig. 2 dargestellten Ausführungsbeispiel der Erfindung für jeden durch die Normfarbwerte X, Y, Z definierten Arbeitspunkt gesondert berechnet. Die Elemente der Sensitivitätsmatrix A(i,j) sind die partiellen Ableitungen des Farbortvektors, insbesondere des Farbortvektors eines der erwähnten Farbräume, nach den Komponenten des Schichtdickensteuervektors. Diese Komponenten werden mit Hilfe des Matrixrechners 73 unter Verwendung von Rechenvorschriften berechnet, die auf einem relativen und linearen Modell aufbauen, bei dem aus den partiellen Ableitungen der Remissionsänderungen pro Schichtdickeänderung die Farbortverschiebung dL, da, db aufgrund der Schichtdickeänderungen der Druckfarben berechnet wird.
  • Um es dem Matrixrechner 73 zu gestatten, die einem frischgedruckten Bezugsfeld zugeordnete Sensitivitätsmatrix zu berechnen, ist es erforderlich, beim Drucken des Farbmeßstreifens mit den Farbmeßfeldern 41 zusätzlich zu dem Feld mit einem Dreifarbenraster weitere Rasterfelder sowie Volltonfelder vorzusehen. Die Farbmeßfelder 41 auf dem Druckbogen 40 umfassen daher für jede der drei Druckfarben ein einfarbiges Rasterfeld, wobei für die Rasterfelder die Filmflächendeckungen dem Dreifarbenrasterfeld oder Bezugsfeld entsprechen. Stimmen die Filmflächendeckungen nicht mit denjenigen des Dreifarbenrasterfeldes überein, so müssen die berechneten Flächendeckungen interpoliert werden. Außerdem sind für die drei Druckfarben jeweils Volltonfelder vorgesehen. Die Farbmeßfelder 41 umfassen auch drei Volltonfelder, bei denen jeweils zwei Druckfarben übereinander gedruckt worden sind. Schließlich enthalten die mitgedruckten Farbmeßstreifen des Druckbogens 40 noch jeweils ein Volltonfeld mit allen drei übereinander gedruckten Farben und ein weißes Feld zur Bestimmung der Papierremission.
  • Zur Bestimmung der Sensitivitätsmatrix eines bestimmten frischgedruckten Druckbogens ist es somit erforderlich, daß der Meßkopf 42 die spektralen Remissionswerte für eine Vielzahl unterschiedlicher Farbmeßfelder 41 erfaßt. Aus diesem Grunde sind in Fig. 2 Remissionswertspeicher 53 bis 63 dargestellt, die softwaremäßig oder hardwaremäßig realisiert sein können. Bei einer hardwaremäßigen Realisierung ist der Eingangsbus 50 jeweils mit demjenigen Remissionswertspeicher 51 bis 63 verbunden, dessen zugeordnetes Farbmeßfeld 41 gerade vom Meßkopf 42 abgetastet wird. Jeder Remissionswertspeicher 53 bis 63 speichert wie die Remissionswertspeicher 51 und 52 die einer Vielzhal von Wellenlängen, beispielsweise 35 verschiedenen Längenwellenbereichen, zugeordneten spektralen Remissionen.
  • Der Matrixrechner 73 verfügt über einen Arbeitspunkteingang 77, über den die jeweils geltendem Normfarbwerte eingespeist werden. Weitere Eingänge des Matrixrechners 73 sind mit den drei Remissionswertspeichern 53 bis 55 verbunden, die beispielsweise die spektralen Remissionswerte von Rasterfeldern der Farben Gelb, Magenta und Cyan enthalten. Die Remissionswertspeicher 56 bis 58 speichern jeweils 35 Remissionswerte von Volltonfeldern der Farben Gelb, Magenta und Cyan, deren Schichtdicken sich bei einer Verstellung der Farbführungsorgane analog verändern wie die Schichtdicken der jeweiligen Druckfarbe in den Rasterfeldern.
  • Wie aus Fig. 2 zu erkennen ist, sind dem Matrixrechner 73 drei Remissionswertspeicher 59 bis 61 für Volltonfelder zugeordnet, die jeweils durch Übereinanderdrucken zweier Druckfarben entstehen und bei dem beschriebenen Ausführungsbeispiel die spektralen Remissionswerte der durch Übereinanderdruck entstandenen Farben Rot, Grün und Blau speichern. Schließlich ist ein Remissionswertspeicher 62 zum Speichern der spektralen Remissionswerte eines Volltonfeldes vorgesehen, das durch Übereinanderdruck aller drei Druckfarben entstanden ist und somit im wesentlichen eine schwarze Farbe hat. Um die spektrale Remission des Papiers des Druckbogens 40 zu speichern, ist schließlich der Remissionswertspeicher 63 vorgesehen, so daß der Matrixrechner 73 auf Papierweiß bezogene Remissionswerte verarbeiten kann, die zwischen 0 und 1 liegen.
  • Um den Matrixrechner 73 mit Konstanten und Parametern zu speisen, ist ein Konstanten- und Parametereingang 76 vorgesehen. Die oben erwähnten Rechner und Eingänge können bei der Meßwertverarbeitung 10 physisch oder softwaremäßig vorhanden sein.
  • Nachdem der (ggf. über die Bedienungsperson) geschlossene Regelkreis der Druckanlage und die Organisation der Meßwertverarbeitung 10 erörtert worden sind, wird nachfolgend erörtert, wie nach dem Abtasten der Farbmeßfelder 41 eines frischen Druckbogens die Sensitivitätsmatrix A(i,j) bestimmt wird, mit deren Hilfe Schichtdickenänderungssteuervektoren erzeugt werden, um die Farbführungsorgane mit möglichst großer Konvergenzgeschwindigkeit so zu verstellen, daß beim Fortdruck der Druckbogen 40 eine farbabstandsgesteuerte Regelung erfolgt.
  • Zur Bestimmung der Sensitivitätsmatrix A(i,j) ist es erforderlich, deren Komponenten zu berechnen. Die Elemente der Sensitivitätsmatrix sind die partiellen Ableitungen der Komponenten des Farbortvektors nach den Komponenten des Schichtdickensteuervektors. Verwendet man entsprechend dem beschriebenen Ausführungsbeispiel das L*a*b*-System der CIE, sind somit die partiellen Ableitungen der Koordinaten L, a und b nach dem Komponenten der Schichtdickenvektoren zu berechnen. Die partiellen Ableitungen der Farbraumkoordinaten enthalten die Ist-Normfarbwerte X, Y und Z des gemessenen Bezugsfeldes sowie die partiellen Ableitungen dieser Normfarbwerte nach dem Komponenten des Schichtdickenvektors.
  • Die Bestimmung der partiellen Ableitungen der Normfarbwert nach den drei Komponenten des Schichtdickenvektors könnte empirisch erfolgen, wobei die erhaltenen Werte in einem Speicher festgehalten werden. Dieser Fall ist jedoch für die Praxis kaum brauchbar. Eine andere Möglichkeit besteht darin, diese Größen von Zeit zur Zeit, z.B. am Anfang eines Druckvorganges, von vielen Druckbögen 40 aus den in den Remissionswertspeichern 53 bis 63 gespeicherten spektralen Remissionswerten zu berechnen. Statt einer Berechnung von Zeit zur Zeit kann auch für jeden einzelnen Druckbogen eine Berechnung erfolgen. Vorzuziehen ist jedoch eine Bestimmung der partiellen Ableitungen der gemessenen Ist-Normfarbwerte nach den drei Komponenten des Schichtdickenvektors bei jeder Messung eines Bezugsfeldes in einer Zone oder einem Block des Druckbogens. Die in die Remissionswertspeichern 53 bis 63 gespeicherten Informationen stellen Nebengrößen dar, die es gestatten, für die im Remissionswertspeicher 52 gespeicherte Hauptgröße zu bestimmen, welche Farbführungsänderungen erforderlich sind, um zu erreichen, daß der der gemessenen Hauptgröße zugeordnete Farbort im Farbraum beim nächsten Druck und bei der nächsten Messung näher am Soll-Farbort liegt.
  • Die neun partiellen Ableitungen der Normfarbwerte nach den Komponenten des Schichtdickenvektors oder Schichtdickensteuervektors werden durch Integrieren eines Ausdruckes über den gesamten Spektralbereich erhalten, der im wesentlichen die aufgrund eines Modells berechneten partiellen Ableitungen der Remissionswerte eines Dreifarbenrasterfeldes nach den drei Schichtdicken der drei Druckfarben enthält. Als einfachstes Modell bietet sich die Berechnung mit Hilfe der Neugebauer-Gleichungen an, die in ihrer differentiellen Form die Remissionsänderungen eines Dreifarbenrasterfeldes in Abhängigkeit von den optisch wirksamen Flächendeckungen sowie den Remissionen der zusammen mit den Rasterfeldern gedruckten Volltonfeldern angibt.
  • Aus diesem Grund berechnet der Matrixrechner 73 die in den Neugebauer-Gleichungen in differenzierter Form enthaltenen Größen und insbesondere die partiellen Ableitungen der Remissionen der Volltonfelder nach den Schichtdicken der jeweils zugeordneten Farben, weiterhin die optisch wirksamen Flächendeckungen aus den von Murray-Davies angegebenen Beziehungen sowie die partiellen Ableitungen der optisch wirksamen Flächendeckungen nach den Remissionen der durch die Farbe jeweils zugeordneten einfarbigen Volltonfelder.
  • Die obigen Erläuterungen zeigen, wie es möglich ist, ein relatives und lineares Modell zu verwirklichen, das es gestattet, den aufgrund von Farbführungsänderungen erwarteten neuen Farbort eines Dreifarbenrasterfeldes nicht absolut zu berechnen, sondern mit wesentlich höherer Genauigkeit und Zuverlässigkeit, ausgehend von der gemessenen Remission bzw. dem Farbort des tatsächlich gedruckten Dreifarbenrasterfeldes unter relativer Hinzurechnung der Remissionsänderung aufgrund der Änderung der Farbführung. Bei einem relativen Modell wirken sich Fehler (bei richtigem Vorzeichen) hauptsächlich auf die Konvergenzeschwindigkeit, nicht aber auf die Konvergenz als solche aus. Aus diesem Grunde kann zur Berechnung der bei einer Änderung der Farbführung auftretenden Remissionsänderung im Dreifarbenrasterfeld, das als Bezugsfeld dient, ein lineares Modell als einfachste Art der Modellbildung mit einer linearen Ersatzfunktion im Arbeitspunkt eingesetzt werden. Der Arbeitspunkt ergibt sich dabei in Abhängigkeit von der jeweils tatsächlich gemessenen Remission und dem somit tatsächlich bestimmten Farbort. Die lineare Ersatzfunktion im Arbeitspunkt gestattet aufbauend auf der gemessenen Remission eine näherungsweise theoretische Bestimmung des Farbortes des bei geänderter Farbführung später gedruckten neuen Dreifarbenrasterfeldes. Dabei wird die "Steigung" oder Sensitivität im Arbeitspunkt ausgenutzt, um aus dem Farbabstand zwischen dem tatsächlich gemessenen Farbort und dem erwünschten Farbort für das Dreifarbenrasterfeld die erforderlichen Schichtdickenveränderungen bzw. Farbführungsänderungen zu bestimmen.
  • Die Formeln und die Berechnungen für den Regelalgorithmus mit einem linearen Modell auf der Grundlage der Neugebauer-Gleichungen sowie der dem Fachmann bekannten Beziehungen der Farbmetrik ergeben sich aus dem nachfolgend erörterten Ausführungsbeispiel.
  • Der in Fig. 2 dargestellte Matrixrechner 73 berechnet für alle Zonen bzw. Blöcke die Sensitivitätsmatrizen A(i,j), so daß eine lineare Regelung erfolgen kann.
  • Zur Berechnung der Sensitivitätsmatrix A(i,j) werden zuerst die spektralen Einfarbenrasteremissionen auf die entsprechenden Rasterwerte des Dreifarbenrasterfelds (quadratisch) interpoliert und in den entsprechenden Remissionswertspeichern 53 - 55 abgelegt. In der Folge werden nur diese interpolierten Werte verwendet.
  • In einem weiteren Schritt wird aus den in den Remissionswertspeichern 53 bis 62 enthaltenen zehn Nebenmesswerten mit jeweils 35 spektralen Einzelwerten gewichtet mit densitometrischen Filterverläufen und bezogen auf Papierweiss die geometrische Flächendeckung für die drei Farben gemäss folgender Formel berechnet.
    F RjGeom = F RjFilm + (F Dj - F RjFilm ) / 3.
    Figure imgb0001
  • In dieser Gleichung bedeutet FDj die optisch wirksame Flächendeckung (nach Murray-Davies) für die Farbe j, wobei j = 1 Cyan, j = 2 Magenta und j = 3 beispielsweise Gelb bedeutet. Die Filmflächendeckung FRjFilm ist von der Meßstreifendefinition her vorgegeben und braucht nicht gemessen zu werden. Die Formel zur Berechnung der geometrischen Flächendeckung geht von der Annahme aus, daß sich die Zunahme für die optisch wirksame Fläschendeckung aus 1/3 mechanischer Punktvergrößerung und 2/3 Lichtfang zusammensetzt.
  • Die nachfolgend erwähnten Berechnungen erfolgen spektral für die drei Farben über die Wellenlängen zwischen 380 und 730 Nanometer, beispielsweise in 35 Schritten. Um einen Papierweißbezug herzustellen, werden die Koeffzienten βVj′ = βVj / βPapier bestimmt, wobei βVj der für die jeweilige Wellenlänge gemessene Remissionswert für ein Volltonfeld Vj der Druckfarbe j ist.
  • Der Matrixrechner 73 berechnet für jede der 35 Wellenlängen und für alle Volltonfarben j die partiellen Ableitungen der spektralen Volltronremissionen nach den Schichtdicken gemäß folgender Formel: Vj dS j = (1 - r Oj - r 2j (1 - β Vj )) (β Vj -r Oj ) (1 - r Oj ) (1 - r 2j ) · ln10 log (β* / β* Papier ) S j
    Figure imgb0002
    wobei gilt: β* = β Vj - r Oj 1 - R Oj - r 2j · (1 - β Vj )
    Figure imgb0003
    β* Papier = β Papier - R Oj 1 - r Oj - r 2j · (1 - β Papier )
    Figure imgb0004
  • In dieser Gleichung bedeutet Sj die momentane Schichtdicke der Druckfarbe j. Sie ergibt sich jeweils aus der Maschinenkennlinie (d.i. der Zusammenhang zwischen einer Stellgröße der Maschinensteuerung und der daraus resultierenden Schichtdicke). rOj ist eine Konstante, die die Oberflächenreflexion des Papiers für die Druckfarbe j angibt. Sie ist in erster Näherung für alle Druckfarben j gleich. Arßerdem kann die Oberflächenreflexion rOj aufgrund der Meßoptik (45°, 0°) und aufgrund eines verwendeten Polarisators als vernachlässigbar klein angenommen werden. Es ist daher zweckmäßig, diese Konstante in den meisten Fällen Null zu setzen. Die Konstante r2j drückt die Totalreflexion in der Farbschicht aus und ist ebenfalls in etwa gleich für alle Druckfarben j. Wird die innere Reflexion r2j Null gesetzt, so wird die Schichtdicke als proportional zur Dichte angenommen. Vernünftige Werte für r2j liegen im Bereich 0,4 bis 0,6. Je größer r2j ist, desto größer wird die Sensitivität und somit auch die Regelgröße.
  • Anschließend erfolgt die Berechnung der optisch wirksamen Flächendeckung FDj in allen 35 Stützstellen für alle drei Farben gemäß der Formel von Murray-Davies. Falls der auf Papierweiß bezogene spektrale Remissionswert βVj′ des zugeordneten Volltenfeldes größer als 0,95 ist, wird der Lichtfang als Null angenommen und bei der weiteren Berechnung die optisch wirksame Flächendeckung durch die geometrische Flächendeckung ersetzt, um bei der Berechnung der optisch wirksamen Flächendeckung eine Division durch Null zu vermeiden. Eine solche Division durch Null könnte andernfalls auftreten, da die Meßwerte mit einem Rauschen behaftet sind. F Dj = 1 - β′ Rj 1 - β′ Vj mit j = 1, 2, 3,
    Figure imgb0005
    Darin ist β′Rj ein auf Papierweiß bezogener Wert eines in den Remissionswertspeichern 53 bis 55 gespeicherten Wertes für ein Rasterfeld mit einer einzigen Farbe j (β′ Rj = β Rj / β Papier ).
    Figure imgb0006
  • Als nächstes berechnet das Program des Matrixrechners 73 für alle Wellenlängen und für alle Farben die Ableitungen der optisch wirksamen Flächendeckungen FDj nach den Remissionswerten β′Vj der einfarbigen Volltonfelder gemäß folgender Gleichung: dF Dj dβ′ Vj =-P · F Rj · (1-F Rj ) · (1 - β′ Vj 1/ 2 ) 2 (1 - β′ Vj ) 2 ·β′ Vj
    Figure imgb0007
  • In dieser Gleichung ist die Papierkonstante P eine Konstante, die die Papier- und Druckfarbeneigenschaften beinhaltet und beispielsweise über den Eingang 76 in den Matrixrechner 73 eingegeben werden kann. Die obige Beziehung beruht auf einem Lichtfangmodell, wobei die Papierkonstante P gleich 1 gesetzt werden kann. Die Werte der Papierkonstante P liegen zwischen 0,1 und 1. Je kleiner die Papierkonstante P gewählt wird, umso größer wird die Sensitivität und somit auch die Regelgröße.
  • Wenn alle Größen vorliegen, die benötigt werden, um aus den differentiellen Neugebauer-Gleichungen die partiellen Ableitungen der spektralen Remissionen eines Dreifarbenrasterfeldes nach den Schichtdicken der Druckfarben zu berechnen, erfolgt der Einsatz der nachfolgenden Gleichungen, in denen βR123 die Remission eines Dreifarbenrasterfeldes und βV12, βV13 und βV23 die Remissionen der den Remissionswertspeichern 59 bis 61 zugeordneten Volltonfelder aus zwei unterschiedlichen übereinandergedruckten Farben und βV123 die Remission eines Volltonfeldes mit drei übereinander gedruckten Farben bedeutet.
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
  • Die obigen differentiellen Neugebauer-Gleichungen enthalten jeweils einen ersten Summanden, der die Remissionsänderungen aufgrund der Lichtfangänderungen und einen zweiten Summanden, der die Remissionsänderungen aufgrund der Schichtdickenänderungen enthält. Die Einflüsse der Farbannahme wurden vernachlässigt. Die Änderung der Remission einer Farbschicht aufgrund der Änderung der Schichtdicke wird als unabhängig davon angenommen, ob die Farbe ganz auf Papier oder zum Teil auf eine andere Farbe gedruckt wurde.
  • Wenn die differentiellen Neugebauer-Gleichungen für alle drei Farben und alle Wellenlängen ausgewertet worden sind, berechnet der Matrixrechner 73 die Sensitivitätsmatrix, die in dem Matrixinverter 75, der auch softwaremäßig in den Matrixrechner 73 integriert sein kann, invertiert wird.
  • Aus den Definitionsgleichungen der CIE für die Normfarbwerte ergeben sich für die partiellen Ableitungen der Normfarbwerte nach den Schichtdicken die folgenden neun Beziehungen: dX dS j = ∫ B(λ) · x ¯ (λ) · R123 (λ) dS j · dλ
    Figure imgb0011
    dY dS j = ∫ B(λ) · y ¯ (λ) · R123 (λ) dS j · dλ
    Figure imgb0012
    dZ dS j = ∫ B(λ) · z ¯ (λ) · R123 (λ) dS j · dλ
    Figure imgb0013
    mit j = 1, 2, 3
  • Die obigen Gleichungen für die drei Druckfarben, die durch j = 1, j = 2 oder j = 3 bezeichnet sind, liefern nach Einsetzen der verschiedenen Größen und Aufintegrieren über die Wellenlänge bzw. Aufsummieren über die 35 Stützstellen im Spektrum 9 Zahlenwerte zur Weiterverarbeitung. In den obigen Gleichungen bedeutet B(λ) die spektrale Charakteristik der Beleuchtung und x (λ), y(λ) und z (λ) die genormten Gewichtsfunktionen gemäß CIE. Die Größen dβR123(λ) / dSj sind die mit Hilfe der differentiellen Neugebauer-Gleichungen berechneten Größen, wobei zur Verdeutlichung die Abhängigkeit von der Wellenlänge λ angegeben worden ist und dSj für dS₁, dS₂ und dS₃ steht.
  • Wenn die neun Werte der differentiellen Ableitungen der Normfarbwerte nach den Schichtdicken der drei Druckfarben vorliegen, werden diese Größen verwendet, um aus den folgenden Beziehungen, die durch Differenzieren der Definitionsgleichungen für L, a und b nach CIE erhalten worden sind, die neun Elemente der Sensibilitätsmatrix zu bestimmen: dL dS j = 116 3 · ( Y Y N ) -2/3 · 1 Y N · dY dS j
    Figure imgb0014
    da dS j = 500 3 (( X X N ) -2/3 · 1 X N · dX dS j - ( Y Y N ) -2/3 · 1 Y N · dY dS j )
    Figure imgb0015
    db dS j = 200 3 (( Y Y N ) -2/3 · 1 Y N · dY dS j - ( Z Z N ) -2/3 · 1 Z N · dZ dS j
    Figure imgb0016
    mit j = 1, 2, 3. XN, YN und ZN sind Normfarbwerte der vollkommen weißen Fläche der entsprechenden Lichtart und des entsprechenden Beobachters gemäß CIE.
  • Nach dem Berechnen der neun Ableitungen der drei Farbraumkoordinaten nach den Schichtdicken der drei Farben wird die Sensitivitätsmatrix A gebildet und im Matrixspeicher 74, der softwaremäßig oder hardwaremäßig realisiert sein kann, festgehalten. Die nachfolgend aufgeführten neun Elemente der Sensitivitätsmatrix, die sich aus den obigen Gleichungen berechnen lassen, ergeben die Sensitivitätsmatrix A(i,j):
    Figure imgb0017
  • In dieser Matrix bedeuten die Ableitungen nach S₁ die Ableitungen nach der Schichtdicke der ersten Druckfarbe, beispielsweise Cyan. Die Ableitungen nach S₂ und S₃ beziehen sich entsprechend auf die zweite und dritte Druckfarbe, insbesondere Magenta und Gelb.
  • Aus den obigen Ausführungen ergibt sich, daß in die gesamte Berechnung nur zehn bzw. unter Berücksichtigung des Papierweiß elf spektrale Remissionsmeßwerte mit jeweils 35 Einzelwerten sowie einige Konstanten eingehen, die entweder ohnehin in Tabellenwerken zu finden sind oder durch andere separate Messungen in an sich bekannter Weise ein für alle mal ermittelt werden.
  • Bei dem oben erörterten Normalfall eines grauen Bezugsfeldes, d.h. eines Bezugsfeldes mit einem Dreifarbenraster, ergibt sich für A(i,j) in der beschriebenen Weise eine Matrix mit drei Spalten und drei Zeilen, die ohne weiteres invertiert werden kann, um als Steuerdaten die Komponenten des Schichtdickenänderungssteuervektors zu berechnen.
  • Es kann aber auch sein, daß man z.B. ein reines Cyan-Feld oder ein Feld, das nur zwei statt drei übereinander gedruckte Farben enthält, als Bezugsfeld verwenden will. Dies bedeutet, daß man den Farbeindruck eines Cyan-Rasterfeldes oder Zweifarbenrasterfeldes regeln will. In solchen Fällen degeneriert die 3 x 3-Matrix zu einer 1 x 3-Matrix (eine Farbe, Vektor) oder zu einer 2 x 3-Matrix (zwei Farben). Dies ist evident, da die nicht berücksichtigten, d.h. die nicht im Bezugsfeld vorkommenden Farben keinen Beitrag liefern können und somit die entsprechenden Elemente der Matrix verschwinden müssen. Matrizen mit leeren Zeilen oder leeren Spalten können nicht invertiert werden, da bei einer Invertierung eine Division durch Null auftreten würde. Aus diesem Grunde müssen solche "degenerierte Fälle" gesondert behandelt werden. Hier wird der angestrebte Soll-Farbort im Regelfall nicht im druckbaren Farbraum liegen, da eine Farbabweichung hier auch in Richtung der "fremden" Farben laufen kann. Die Kennlinie des druckbaren Farbraums gibt ja nur den Zusammenhang zwischen den Schichtdicken der berücksichtigten Farben und den erreichten Farborten an. Das heißt andererseits, daß der angestrebte Soll-Farbort im allgemeinen überhaupt nicht erreicht werden kann. In solchen Fällen gestattet es der Matrixrechner 73, einen Ersatz-Soll-Farbort zu bestimmen, welcher auf der durch die degenerierte "Matrix" A definierten Ersatz-Kennlinie oder Ersatz-Kennfläche im Farbraum liegt. Dieser Ersatz-Soll-Farbort ist dann natürlich erreichbar. Der Ersatz-Soll-Farbabstand wird so berechnet, daß der Abstand zwischen dem Original-Soll-Farbort und der Ersatz-Kennlinie oder Ersatz-Kennfläche minimal wird. Im eindimensionalen Fall ist die Sensitivitätsmatrix ein Vektor, im zweidimensionalen Fall wird eine Fläche definiert. Der Ersatz-Soll-Farbort wird als Durchstoßpunkt des Lots auf die Fläche bzw. den Vektor durch den Original-Soll-Farbort bestimmt. Ist dies geschehen, können die Werte für die Komponenten des Schichtdickenänderungssteuervektors einfach nach den Regeln der Vektorgeometrie aus dem Farbvektor des gemessenen Feldes (Ist-Wert, Arbeitspunkt) und dem Farbvektor des Ersatz-Soll-Wertes bestimmt werden.
  • Ferner kann es aber auch sein, dass man für einzelne Farben das Volltonfeld (z.B. bei Schwarz) als Bezugsfeld verwenden will. Dies bedeutet, dass die Sensitivität ohne Nebenfelder errechnet wird. Die oben genannte Sensitivitätsmatrix reduziert sich auf einen Vektor; die Berechnung des Lichtfanges und der Flächendeckung entfallen. Alle weiteren Schritte verlaufen wie bei einem Rasterfeld einer Farbe als Bezugsfeld.

Claims (14)

1. Verfahren zur Farbregelung einer Druckmaschine mit einer farbmetrischen Farbführungssteuerung, wobei auf den von der Druckmaschine bedruckten Druckbögen Farbmessstreifen mit mehreren Farbmessfeldern mitgedruckt werden, die mit Hilfe eines Messkopfes zur Erfassung der spektralen Intensitätsverteilungen der Farbmessfelder optisch abgetastet werden, um aus einer spektralen Farbanalyse des Messlichtes die spektralen Remissionen und den Farbort eines Bezugsfeldes eines abgetasteten Farbmessfeldes in einem Farbkoordinatensystem zu bestimmen und durch Koordinatenvergleich aus dem Farbabstand des abgetasteten Farbmessfeldes von einem vorgegebenen Soll-Farbort Stellgrössen zur Verstellung der Farbführungsorgane der Druckmaschine erzeugen, damit unerwünschte Farbabweichungen bei den mit der neuen Farbführungseinstellung anschliessend gedruckten Druckbogen minimal werden, dadurch gekennzeichnet, dass zur Farbabstandsbestimmung die spektralen Remissionswerte eines Bezugsfelds in Form eines Rasterfeldes als Hauptgrösse zur Bestimmung eines Ist-Farbortes erfasst werden, dass die spektralen Remissionen von als Nebenfelder dienenden Farbmessfeldern als Nebengrössen erfasst werden und aus ihnen die Empfindlichkeit der Farbortverschiebung errechnet wird, wobei besagte Empfindlichkeit den Zusammenhang der Farbortverschiebung mit diese verursachenden Schichtdicken-/Dichteänderungen darstellt, und dass aus dem Farbabstandsvektor zwischen dem gemessenen Ist-Farbort des Bezugsfeldes und dem Soll-Farbort des Bezugsfeldes sowie der auf der Grundlage der Nebengrössen errechneten Empfindlichkeit die als relative Korrekturgrösse für die Farbführung erforderlichen Schichtdicken-/Dichteänderungen der Druckfarben zur Kompensation der Farbortabweichung des Ist-Farbortes des Bezugsfeldes vom Soll-Farbort des Bezugsfeldes bestimmt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das als Bezugsfeld gewählte Rasterfeld ein Dreifarbenrasterfeld ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Bezugsrasterfeld ein Graufeld ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nebenfelder Volltonfelder und Rastertonfelder der beteiligten Druckfarben umfassen.
5. Verfahren nach den Ansprüchen 2 oder 3 und 4, dadurch gekennzeichnet, dass die Nebenfelder Volltonfelder in den beteiligten Druckfarben, Volltonfelder mit jeweils zwei übereinander gedruckten Druckfarben, Volltonfelder mit allen übereinander gedruckten Druckfarben und Rasterfelder in den beteiligten Druckfarben umfassen.
6. Verfahren nach einem der Ansprüche α bis 5, da durch gekennzeichnet, dass die Empfindlichkeit der Farbortverschiebung durch eine lineare Ersatzfunktion approximiert wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die lineare Ersatzfunktion aus den Neugebauer-Gleichungen in ihrer differentiellen Form unter Berücksichtigung des Lichtfanges abgeleitet wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Zusammenhang der Farbortverschiebung mit sie verursachenden Schichtdicke-/Dichteänderungen für jeden durch die Normfarbwerte des abgetasteten Bezugsfeldes definierten Arbeitspunkt als Sensitivitätsmatrix neu berechnet wird.
9. Vorrichtung zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche mit wenigstens einem an ein Spektrometer (45) angekoppelten Messkopf (42) zur Abtastung der mitgedruckten Farbmessfelder (41), mit einer die Messdaten (46) des Spektrometers (45) zu Stellgrössen (11, 21) für die Druckmaschine (30) verarbeitenden Messwertverarbeitungseinheit (10), welche Rechenmittel (64 bis 68) zur Bestimmung der Farbabstände zwischen einem Ist-Bezugsfeld (52) und einem Soll-Bezugsfeld (51) umfasst, dadurch gekennzeichnet, dass die Messwertverarbeitungseinheit (10) Rechenmittel (71) zur Bestimmung des für eine Farbkorrektur erforderlichen Schichtdickenänderungssteuervektors (11) und Matrix-Rechenmittel (73) zur Bestimmung des Zusammenhanges (74, 75) der Farbortverschiebung mit diese verursachenden Schichtdicke-/Dichteänderungen aufweist.
10. Vorrichtung nach Anspruch 9, dadurch ge kennzeichnet, dass die Rechenmittel zur Bestimmung des Farbabstandes Mittel (64, 65) zur Berechnung von Normfarbwerten und Mittel (66, 67) zur Berechnung von Farborten umfassen.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Normfarbwertrechenmittel (64, 65) mit Remissionswertspeichern (51, 52) zur Speicherung der spektralen Remissionswerte des Soll-Bezugsfeldes und des Ist-Bezugsfeldes und daß die Matrix-Rechenmittel (73) mit Remissionswertspeichern (53 bis 63) zur Speicherung der spektralen Remissionen der Nebenfelder verbunden sind.
12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die Matrix-Rechenmittel (73) einen mit den Normfarbwertrechenmitteln (65) für das Ist-Bezugsfeld (52) verbundenen Arbeitspunkteingang (77) aufweisen.
13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß den Mitteln zur Berechnung des Farbabstands (64-68) Solldaten z.B. via Tastatur eingebbar sind.
14. Verfahren zur Farbregelung einer Druckmaschine mit einer farbmetrischen Farbführungssteuerung, wobei auf den von der Druckmaschine bedruckten Druckbögen Farbmessstreifen mit mehreren Farbmessfeldern mitgedruckt werden, die mit Hilfe eines Messkopfes zur Erfassung der spektralen Intensitätsverteilungen der Farbmessfelder optisch abgetastet werden, um aus einer spektralen Farbanalyse des Messlichtes die spektralen Remissionen und den Farbort eines Bezugsfeldes eines abgetasteten Farbmessfeldes in einem Farbkoordinatensystem zu bestimmen und durch Koordinatenvergleich aus dem Farbabstand des abgetasteten Farbmessfeldes von einem vorgegebenen Soll-Farbort eine Stellgrösse zur Verstellung der Farbführungsorgane der Druckmaschine zu erzeugen, damit unerwünschte Farbabweichungen bei den mit der neuen Farbführungseinstellung anschliessend gedruckten Druckbogen minimal werden, da durch gekennzeichnet, dass zur Farbabstandsbestimmung die spektralen Remissionswerte eines Bezugsfelds in Form eines einfarbigen Volltonfeldes zur Bestimmung eines Ist-Farbortes erfasst werden, dass hieraus die Empfindlichkeit der Farbortverschiebung errechnet wird, wobei besagte Empfindlichkeit den Zusammenhang der Farbortverschiebung mit sie verursachenden Schichtdicken-/Dichteänderungen darstellt, und dass aus dem Farbabstandsvektor zwischen dem gemessenen Ist-Farbort des Bezugsfeldes und dem Soll-Farbort des Bezugsfeldes sowie der errechneten Empfindlichkeit die als relative Korrekturgrösse für die Farbführung erforderlichen Schichtdicken-/Dichteänderungen der Druckfarbe des Volltonfelds zur Kompensation der Farbortabweichung des Ist-Farbortes des Bezugsfeldes vom Soll-Farbort des Bezugsfeldes bestimmt werden.
EP89810006A 1988-01-14 1989-01-05 Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine Expired - Lifetime EP0324718B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH12088 1988-01-14
CH120/88 1988-01-14
CH126888 1988-04-06
CH1268/88 1988-04-06

Publications (2)

Publication Number Publication Date
EP0324718A1 EP0324718A1 (de) 1989-07-19
EP0324718B1 true EP0324718B1 (de) 1992-07-08

Family

ID=25683574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810006A Expired - Lifetime EP0324718B1 (de) 1988-01-14 1989-01-05 Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine

Country Status (7)

Country Link
US (1) US4975862A (de)
EP (1) EP0324718B1 (de)
JP (1) JP2782217B2 (de)
CN (1) CN1008989B (de)
CA (1) CA1326707C (de)
DE (1) DE58901780D1 (de)
ES (1) ES2033128T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722073A1 (de) * 1997-05-27 1998-12-03 Techkon Elektronik Gmbh Zeilendrucker für die digitale Ausgabe und farbmetrische Messung von farbigen Bildern

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812099C2 (de) * 1988-04-12 1995-01-26 Heidelberger Druckmasch Ag Verfahren zur Farbsteuerung einer Offsetdruckmaschine
DE3903981C2 (de) * 1989-02-10 1998-04-09 Heidelberger Druckmasch Ag Verfahren zur Regelung der Farbfüllung bei einer Druckmaschine
DE3913382C2 (de) * 1989-04-24 1995-12-14 Heidelberger Druckmasch Ag Verfahren zur Steuerung der Farbführung einer Druckmaschine
EP0408507B1 (de) * 1989-07-14 1993-11-10 GRETAG Aktiengesellschaft Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine
GB9002962D0 (en) * 1990-02-09 1990-04-04 Phillips Gordon Ltd Improvements relating to colour measurement
DE4104537C2 (de) * 1991-02-14 1999-05-12 Roland Man Druckmasch Verfahren zur Steuerung einer Farbführung einer Offset-Druckmaschine
US5841955A (en) * 1991-12-02 1998-11-24 Goss Graphic Systems, Inc. Control system for a printing press
US5317425A (en) * 1992-02-10 1994-05-31 Eastman Kodak Company Technique for use in conjunction with an imaging system for providing an appearance match between two images and for calibrating the system thereto
ES2089470T3 (es) * 1992-03-30 1996-10-01 Ciba Geigy Ag Procedimiento de impresion de varios colores, especialmente un procedimiento de serigrafia policroma de trama, para substratos textiles.
US5224421A (en) * 1992-04-28 1993-07-06 Heidelberg Harris, Inc. Method for color adjustment and control in a printing press
US5412577A (en) * 1992-10-28 1995-05-02 Quad/Tech International Color registration system for a printing press
DE4240077C2 (de) * 1992-11-28 1997-01-16 Heidelberger Druckmasch Ag Verfahren zur zonalen Steuerung/Regelung der Farbführung in einer Druckmaschine
DE4321177A1 (de) * 1993-06-25 1995-01-05 Heidelberger Druckmasch Ag Vorrichtung zur parallelen Bildinspektion und Farbregelung an einem Druckprodukt
US5381349A (en) * 1993-06-29 1995-01-10 Hewlett-Packard Company System for calibrating a color display to enable color-matching
DE4335350A1 (de) * 1993-10-16 1995-04-20 Heidelberger Druckmasch Ag Verfahren und Vorrichtung zur Ermittlung von Passerabweichungen bei mehrfarbigen, in einer Druckmaschine erstellten Druckprodukten
DE4431270C2 (de) * 1993-10-21 1997-01-16 Roland Man Druckmasch Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
ATE151349T1 (de) * 1993-10-21 1997-04-15 Roland Man Druckmasch Verfahren zur steuerung der farbführung einer autotypisch arbeitenden druckmaschine
DE4402828C2 (de) * 1994-01-31 2001-07-12 Wifag Maschf Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
US6002498A (en) * 1994-06-15 1999-12-14 Konica Corporation Image processing method and image forming method
US5612903A (en) * 1995-02-01 1997-03-18 Miller; Bertram W. Process for obtaining balanced color prints
US5812705A (en) * 1995-02-28 1998-09-22 Goss Graphic Systems, Inc. Device for automatically aligning a production copy image with a reference copy image in a printing press control system
DE19516334A1 (de) * 1995-05-04 1996-11-07 Heidelberger Druckmasch Ag Verfahren zur Bestimmung der dynamischen Eigenschaften von Farbzonen von Farbwerken einer Druckmaschine
US5767980A (en) * 1995-06-20 1998-06-16 Goss Graphic Systems, Inc. Video based color sensing device for a printing press control system
US5805280A (en) * 1995-09-28 1998-09-08 Goss Graphic Systems, Inc. Control system for a printing press
EP0765748A3 (de) * 1995-09-29 1997-08-13 Goss Graphics Systems Inc Einrichtung zum Ausrichten von Bildern in einem Kontrollsystem für eine Druckmaschine
US5903712A (en) * 1995-10-05 1999-05-11 Goss Graphic Systems, Inc. Ink separation device for printing press ink feed control
US7728845B2 (en) 1996-02-26 2010-06-01 Rah Color Technologies Llc Color calibration of color image rendering devices
US6043909A (en) 1996-02-26 2000-03-28 Imagicolor Corporation System for distributing and controlling color reproduction at multiple sites
ES2129907T3 (es) * 1996-04-19 1999-06-16 Schablonentechnik Kufstein Ag Procedimiento de impresion a media tinta y maquina de imprimir para su realizacion.
DE59705757D1 (de) * 1996-09-23 2002-01-24 Wifag Maschf Messfeldblock und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck
EP0860276B1 (de) * 1997-02-19 2002-10-16 Baldwin Germany GmbH Vorrichtung und Verfahren zur Durchführung von qualitätsmanagement
US5819655A (en) * 1997-08-20 1998-10-13 Bristol-Myers Squibb Company Cyclinder color printing method and product using improved misregistration detection
WO1999010866A1 (en) 1997-08-25 1999-03-04 Imagicolor Corp A system for distributing and controlling color reproduction at multiple sites
DE19749063A1 (de) * 1997-11-06 1999-05-12 Heidelberger Druckmasch Ag Verfahren zur Gewinnung von Farbmeßwerten
DE19749064A1 (de) * 1997-11-06 1999-05-12 Heidelberger Druckmasch Ag Verfahren zur Ermittlung von Farbwertgradienten
JP3737257B2 (ja) * 1997-11-17 2006-01-18 倉敷紡績株式会社 2次元表現によるスペクトルデータの処理方法及び補正方法
US5967050A (en) * 1998-10-02 1999-10-19 Quad/Tech, Inc. Markless color control in a printing press
DE10013876B4 (de) 1999-04-08 2013-10-02 Heidelberger Druckmaschinen Ag Verfahren zum Regeln der Farbgebung beim Drucken mit einer Druckmaschine
DE29916379U1 (de) * 1999-09-17 1999-12-09 Roland Man Druckmasch Vorrichtung zum densitometrischen Ausmessen von Druckprodukten
US7102648B1 (en) 2000-04-11 2006-09-05 Rah Color Technologies Llc Methods and apparatus for calibrating a color display
US7072052B1 (en) * 2000-07-21 2006-07-04 Canon Kabushiki Kaisha Efficient rasterization system and method
PL200158B1 (pl) * 2000-12-06 2008-12-31 Avt Advanced Vision Technology Sposób sterowania kolorem na arkuszu drukarskim
US6564714B2 (en) * 2000-12-06 2003-05-20 Delaware Capital Formation, Inc. Spectral color control method
MXPA03007902A (es) * 2001-03-02 2004-10-15 Ackley Martinez Company Dba Mg Sistema y metodo para ajuste de impresion.
DE10131934B4 (de) 2001-07-02 2010-03-11 Wifag Maschinenfabrik Ag Messung und Regelung der Farbgebung im Rollendruck
BR0211123A (pt) * 2001-07-30 2004-10-26 Ackley Martinez Company Dba Mg Sistema e método de processamento de gerenciamento de cor
JP2004536731A (ja) 2001-07-30 2004-12-09 ジ アックレイ マルティネス カンパニー デイビーエイ エムジーアイ ステューディオ システム混合を補償するシステムと方法
DE10257981A1 (de) * 2002-01-15 2003-07-24 Heidelberger Druckmasch Ag Farbsteuerung einer Druckmaschine mit spektralbasierter Farbmessung
US7032508B2 (en) * 2003-03-21 2006-04-25 Quad/Tech, Inc. Printing press
DE10335145A1 (de) * 2003-07-31 2005-02-17 Giesecke & Devrient Gmbh Verfahren für die Überprüfung und Auswahl von Druckfarben
EP1525981B1 (de) * 2003-10-23 2006-11-29 Gretag-Macbeth AG Farbqualitätsbeurteilung und Farbregelung bei der Farbreproduktion
DE102004009271A1 (de) * 2004-02-26 2005-09-15 Man Roland Druckmaschinen Ag Verfahren zur Farbregelung an Druckmaschinen
US7059701B2 (en) * 2004-03-15 2006-06-13 Lexmark International, Inc. Method for calibrating production printing cartridges for use in an imaging system
DE102004063988B4 (de) * 2004-09-16 2010-11-04 Schorsch, Claus Peter Verfahren zur Erfassung von bei einem Druckvorgang wirkenden Variablen
US7605959B2 (en) 2005-01-05 2009-10-20 The Ackley Martinez Company System and method of color image transformation
US20060170996A1 (en) * 2005-02-02 2006-08-03 Steven Headley Color control of a web printing press utilizing intra-image color measurements
US7252360B2 (en) * 2005-10-25 2007-08-07 Ecole polytechnique fédérale de Lausanne (EPFL) Ink thickness variations for the control of color printers
JP2007261091A (ja) * 2006-03-28 2007-10-11 Mitsubishi Heavy Ind Ltd インキ制御装置並びに印刷機及び印刷方法
JP2007261092A (ja) * 2006-03-28 2007-10-11 Mitsubishi Heavy Ind Ltd インキ制御装置並びに印刷機及び印刷方法
JP2007276311A (ja) * 2006-04-07 2007-10-25 Mitsubishi Heavy Ind Ltd インキ制御装置並びに印刷機及び印刷方法
EP1916100B1 (de) * 2006-10-26 2014-03-05 Heidelberger Druckmaschinen Aktiengesellschaft Druckplattenerzeugung für Aniloxdruckmaschinen
US20080127846A1 (en) * 2006-11-02 2008-06-05 Mitsubishi Heavy Industries, Ltd. Color management system, ink-control device, printer, and printing method
DE102008022770B4 (de) * 2007-05-30 2018-01-11 Heidelberger Druckmaschinen Ag Verfahren zur Umrechnung von Farbmesswerten in polarisierter oder unpolarisierter Form
DE102009002822A1 (de) 2008-05-28 2009-12-03 Manroland Ag Betrieb eines Kaltfolienaggregates mit Kleberauftrag
DE102008038608A1 (de) * 2008-08-21 2010-02-25 Heidelberger Druckmaschinen Ag Verfahren und Einrichtung zum Drucken von unterschiedlichen Nutzen auf einem Druckbogen
DE102010009226B4 (de) * 2009-03-13 2024-02-15 Heidelberger Druckmaschinen Ag Verfahren zur Steuerung des Farbauftrags in einer Druckmaschine
DE102009027142B4 (de) * 2009-06-24 2013-02-07 Koenig & Bauer Aktiengesellschaft Rollenrotationsdruckmaschine und Verfahren zur Steuerung der Rollenrotationsdruckmaschine
CN101947874A (zh) * 2010-07-27 2011-01-19 东莞运城制版有限公司 对待印文件进行色彩自动校正的方法
US8532371B2 (en) * 2010-10-04 2013-09-10 Datacolor Holding Ag Method and apparatus for evaluating color in an image
US9076068B2 (en) 2010-10-04 2015-07-07 Datacolor Holding Ag Method and apparatus for evaluating color in an image
AT512440B1 (de) * 2012-01-20 2014-08-15 Ait Austrian Inst Technology Farbtreueprüfung
CN104462643A (zh) * 2014-10-28 2015-03-25 张红军 基于计算机处理的三维空间的加工***
CN105631058A (zh) * 2014-10-28 2016-06-01 张红军 基于计算机处理的三维空间的加工方法
DE102014222799B4 (de) * 2014-11-07 2016-09-01 Koenig & Bauer Ag Verfahren zum Ermitteln einer in einem Druckprozess einer Druckmaschine auftretenden Tonwertzunahme
CN108527933B (zh) * 2018-04-11 2019-08-27 浙江创新彩印有限公司 一种包装盒生产线及生产方法
CN108872156B (zh) * 2018-07-09 2021-06-04 深圳劲嘉集团股份有限公司 一种基于光谱反射率倒数的油墨组份比例预测方法及设备
CN112918106A (zh) * 2021-01-26 2021-06-08 九江学院 一种广告设计印刷机用pc机色差校正设备

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322025A (en) * 1962-05-17 1967-05-30 William C Dauser Color control method
US4151796A (en) * 1973-04-02 1979-05-01 Heidelberger Druckmaschinen Aktiengesellschaft Device for automatically controlling deviations in liquid feed in offset presses
US3958509A (en) * 1974-06-13 1976-05-25 Harris Corporation Image scan and ink control system
US4210078A (en) * 1974-06-24 1980-07-01 M.A.N.-Roland Druckmaschinen Aktiengesellschaft Apparatus for use on printing presses to insure optimum color density and to assist in making corrective adjustment
US3995958A (en) * 1975-07-21 1976-12-07 Hallmark Cards, Incorporated Automatic densitometer and method of color control in multi-color printing
US4003660A (en) * 1975-12-03 1977-01-18 Hunter Associates Laboratory, Inc. Sensing head assembly for multi-color printing press on-line densitometer
US4022534A (en) * 1976-03-23 1977-05-10 Kollmorgen Corporation Reflectometer optical system
US4256131A (en) * 1976-07-14 1981-03-17 Sentrol Systems Ltd. Feedback color control system
DE2728738B2 (de) * 1977-06-25 1979-05-10 Roland Offsetmaschinenfabrik Faber & Schleicher Ag, 6050 Offenbach Eulrichtung zur Kontrolle und Regelung der Farbgebung an Druckmaschinen
JPS6018929B2 (ja) * 1977-10-13 1985-05-13 スガ試験機株式会社 色表示装置
DE2747527A1 (de) * 1977-10-22 1979-04-26 Agfa Gevaert Ag Verfahren und vorrichtung zum bestimmen der kopierlichtmengen beim kopieren von farbvorlagen
JPS5952069B2 (ja) * 1977-12-15 1984-12-18 凸版印刷株式会社 使用インキ量予測装置
US4183657A (en) * 1978-04-10 1980-01-15 International Business Machines Corporation Dynamic reference for an image quality control system
US4210818A (en) * 1978-06-07 1980-07-01 Harris Corporation Apparatus for determining image areas for printing
US4289405A (en) * 1978-10-13 1981-09-15 Tobias Philip E Color monitoring system for use in creating colored displays
DE2950606A1 (de) * 1979-12-15 1981-06-19 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Vorrichtung zur zonenweisen optoelektronischen messung der flaechendeckung einer druckvorlage
JPS5698634A (en) * 1980-01-09 1981-08-08 Dainippon Printing Co Ltd Printed matter testing device
DE3007421A1 (de) * 1980-02-27 1981-09-03 Windmöller & Hölscher, 4540 Lengerich Verfahren zur herstellung eines vorlagengetreuen farbengemisches, insbesondere einer farbe eines mehrfarbendruckes
DE3024773A1 (de) * 1980-06-30 1982-01-28 Grapho-Metronic Meß- und Regeltechnik GmbH & Co, KG, 8000 München Verfahren und einrichtung zur kontrolle und zum steuern der farbgebung einer mehrfarben-druckmaschine
US4309496A (en) * 1980-09-10 1982-01-05 Miller Dennis B Method for optimization of image reproduction processes
US4439038A (en) * 1981-03-03 1984-03-27 Sentrol Systems Ltd. Method and apparatus for measuring and controlling the color of a moving web
US4505589A (en) * 1981-04-03 1985-03-19 Gretag Aktiengesellschaft Process and apparatus for the colorimetric analysis of printed material
JPS57208422A (en) * 1981-06-18 1982-12-21 Fuji Photo Film Co Ltd Hue judging device
US4512662A (en) * 1981-07-06 1985-04-23 Tobias Philip E Plate scanner for printing plates
DE3127381A1 (de) * 1981-07-10 1983-01-27 Salvat Editores, S.A., Barcelona Messorgane fuer im geschlossenen kreis arbeitende systeme zur ueberwachung und korrektur des drucks bei offset-druckmaschinen
DE3248928T1 (de) * 1981-07-29 1983-07-07 Dai Nippon Insatsu K.K., Tokyo Druck-inspektionsverfahren und vorrichtung zur durchfuehrung des verfahrens
JPS5848054A (ja) * 1981-09-17 1983-03-19 Kotobuki Seihan Insatsu Kk オフセツト印刷用ps版の種類識別方式
JPS5848177A (ja) * 1981-09-18 1983-03-22 Toshiba Corp 特定色彩パタ−ンの検出装置
JPS58105007A (ja) * 1981-12-17 1983-06-22 Toshiba Corp 画像面積測定装置
DE3209483A1 (de) * 1982-03-16 1983-09-29 Windmöller & Hölscher, 4540 Lengerich Verfahren zum automatischen einstellen der von flexodruckmaschinen fuer den vierfarbendruck ausgedrucktenfarben
US4403866A (en) * 1982-05-07 1983-09-13 E. I. Du Pont De Nemours And Company Process for making paints
DE3220360A1 (de) * 1982-05-29 1983-12-01 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Einrichtung zur beeinflussung der farbgebung an druckmaschinen
DE3220800C2 (de) * 1982-06-03 1986-10-30 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Vorrichtung zur Abtastung von Druckplatten
DE3314333A1 (de) * 1983-04-20 1984-10-25 Albert-Frankenthal Ag, 6710 Frankenthal Verfahren und vorrichtung zur regelung der farbzufuhr zu den farbwerken einer mehrfarbendruckmaschine
JPS59206839A (ja) * 1983-05-10 1984-11-22 Toppan Printing Co Ltd 網点面積率入力装置
US4553033A (en) * 1983-08-24 1985-11-12 Xerox Corporation Infrared reflectance densitometer
US4706206A (en) * 1983-09-20 1987-11-10 Kollmorgen Technologies Corporation Color printing control using halftone control areas
DE3468367D1 (en) * 1983-11-04 1988-02-11 Gretag Ag Method and device for judging the printing quality of a printed object, preferably printed by an offset printing machine, and offset printing machine provided with such a device
DE3468650D1 (en) * 1983-11-04 1988-02-18 Gretag Ag Method and device for rating the printing quality and/or controlling the ink supply in an offset printing machine, and offset printing machine with such a device
DE3483606D1 (de) * 1983-12-19 1990-12-20 Gretag Ag Verfahren, vorrichtung und farbmessstreifen fuer die druckqualitaetsbeurteilung.
EP0228347B2 (de) * 1985-12-10 1996-11-13 Heidelberger Druckmaschinen Aktiengesellschaft Verfahren zur Farbauftragssteuerung bei einer Druckmaschine, entsprechend ausgerüstete Druckanlage und Messvorrichtung für eine solche Druckanlage
US4813000A (en) * 1986-07-09 1989-03-14 Jones-Blair Company Computerized color matching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722073A1 (de) * 1997-05-27 1998-12-03 Techkon Elektronik Gmbh Zeilendrucker für die digitale Ausgabe und farbmetrische Messung von farbigen Bildern
DE19722073C2 (de) * 1997-05-27 1999-12-16 Techkon Elektronik Gmbh Verfahren und Zeilendrucker für die digitale Ausgabe und farbmetrische Messung von farbigen Bildern

Also Published As

Publication number Publication date
ES2033128T3 (es) 1993-03-01
DE58901780D1 (de) 1992-08-13
US4975862A (en) 1990-12-04
CN1034166A (zh) 1989-07-26
EP0324718A1 (de) 1989-07-19
JPH01225554A (ja) 1989-09-08
CA1326707C (en) 1994-02-01
CN1008989B (zh) 1990-08-01
JP2782217B2 (ja) 1998-07-30

Similar Documents

Publication Publication Date Title
EP0324718B1 (de) Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine
EP0228347B1 (de) Verfahren zur Farbauftragssteuerung bei einer Druckmaschine, entsprechend ausgerüstete Druckanlage und Messvorrichtung für eine solche Druckanlage
EP0143744B1 (de) Verfahren und Vorrichtung zur Beurteilung der Druckqualität und/oder Regelung der Farbführung bei einer Offset-Druckmaschine und mit einer entsprechenden Vorrichtung ausgestattete Offset-Druckmaschine
EP0408507B1 (de) Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine
EP0321402B1 (de) Verfahren zur Farbsteuerung oder Farbregelung einer Druckmaschine
DE4431270C2 (de) Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
EP0914945B1 (de) Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine
DE3903981C2 (de) Verfahren zur Regelung der Farbfüllung bei einer Druckmaschine
EP2506559A2 (de) Verfahren zur Graubalancekorrektur eines Druckprozesses
DE10017554A1 (de) Vorrichtung und Verfahren zum Steuern der Farbzufuhr bei Druckmaschinen
DE19632969C2 (de) Verfahren zur Ermittlung von Vorgabewerten für die Herstellung von mehrfarbigen Druckexemplaren auf einer Druckmaschine
EP1525981B1 (de) Farbqualitätsbeurteilung und Farbregelung bei der Farbreproduktion
DE10359322A1 (de) Verfahren zur Korrektur von nicht angepassten Druckdaten anhand eines farbmetrisch vermessenen Referenz-Bogens
EP0836941B1 (de) Messfeldgruppe und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben Auflagendruck
EP0585740B1 (de) Verfahren zur Steuerung des Druckprozesses auf einer autotypisch arbeitenden Druckmaschine, insbesondere Bogenoffsetdruckmaschine
EP0659559A2 (de) Verfahren zur Steuerung der Farbführung bei einer Druckmaschine
EP0676285B1 (de) Color-Management im Rollenoffset-Auflagendruck
DE19830487B4 (de) Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild
EP0920994B1 (de) Verfahren zur Gewinnung von Farbmesswerten
EP0916491B1 (de) Verfahren zur Ermittlung von Farbwertgradienten
EP0668164A1 (de) Qualitätsdatenerfassung im Rollenoffset-Auflagendruck
CH693533A5 (de) Messfeldblock und Verfahren zur Erfassung von Qualitotsdaten im Mehrfarben-Auflagendruck.
EP3972233B1 (de) Verfahren zur automatisierten charakterisierung eines kontinuierlichen drucksystems
EP0649743A1 (de) Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
DE19747973A1 (de) Verfahren zur Regelung der Farbgebung beim Drucken mit mehreren Farben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19910321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 58901780

Country of ref document: DE

Date of ref document: 19920813

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2033128

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89810006.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010122

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020108

EUG Se: european patent has lapsed

Ref document number: 89810006.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABATRON-PATENTBUERO AG

Ref country code: CH

Ref legal event code: PUE

Owner name: HEIDELBERGER DRUCKMASCHINEN AKTIENGESELLSCHAFT

Free format text: HEIDELBERGER DRUCKMASCHINEN AKTIENGESELLSCHAFT#KURFUERSTEN-ANLAGE 52-60 POSTFACH 10 29 40#D-69019 HEIDELBERG (DE) $ GRETAG AKTIENGESELLSCHAFT#ALTHARDSTRASSE 70 POSTFACH#8105 REGENSDORF (CH) -TRANSFER TO- HEIDELBERGER DRUCKMASCHINEN AKTIENGESELLSCHAFT#KURFUERSTEN-ANLAGE 52-60 POSTFACH 10 29 40#D-69019 HEIDELBERG (DE) $ GRETAG-MACBETH AG#ALTHARDSTRASSE 70#8105 REGENSDORF (CH)

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050106

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 06.10.2006 REAKTIVIERT WORDEN.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080115

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL