EP0021315B1 - Kolbenmaschine, insbesondere Kolbenpumpe - Google Patents

Kolbenmaschine, insbesondere Kolbenpumpe Download PDF

Info

Publication number
EP0021315B1
EP0021315B1 EP80103359A EP80103359A EP0021315B1 EP 0021315 B1 EP0021315 B1 EP 0021315B1 EP 80103359 A EP80103359 A EP 80103359A EP 80103359 A EP80103359 A EP 80103359A EP 0021315 B1 EP0021315 B1 EP 0021315B1
Authority
EP
European Patent Office
Prior art keywords
piston
lubricant
collecting chamber
pump
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103359A
Other languages
English (en)
French (fr)
Other versions
EP0021315A1 (de
Inventor
Bernhard Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrowatt Systems Ltd
Original Assignee
Hydrowatt Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrowatt Systems Ltd filed Critical Hydrowatt Systems Ltd
Priority to AT80103359T priority Critical patent/ATE14915T1/de
Publication of EP0021315A1 publication Critical patent/EP0021315A1/de
Application granted granted Critical
Publication of EP0021315B1 publication Critical patent/EP0021315B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0439Supporting or guiding means for the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/084Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular member being deformed by stretching or distortion

Definitions

  • the invention relates to a piston machine according to the preamble of claim 1, in particular a piston pump.
  • a piston machine is known from DE-A-2 554 733.
  • the object of the invention is therefore to provide a piston machine of the type mentioned at the outset, which is distinguished by a high level of operational reliability of the lubrication system and which secures the sensitive sealing member against damage by dry or mixed friction on the support surface.
  • the solution to this problem according to the invention is characterized by the features of claim 1. This solution advantageously enables a safe filling of the lubricant return device or return pump without foam formation on the one hand and without risk of flooding on the other hand.
  • the drive device 10 of the pump according to FIG. 1 consists of a shaft 1 with an eccentric 2 coupled to a motor (not shown), on which a non-rotating, translationally rotating sliding piece 3 with a number of cylinders - here for example five - corresponding to the number of tangential pressure surfaces 4 is mounted .
  • a pressure surface is indicated in operative connection with a drive member 30 of a piston 20 which is connected to an elastically deformable sealing hose 22.
  • a coil spring 23 presses the piston 20 against the bottom portion 30b of the sleeve-shaped drive member 30 and sets the sealing hose under axial tension.
  • the sealing hose sits in the bore of a cylinder 25, with which it is firmly connected at the upper end, and thus hermetically seals the working space 24 formed in the hose interior.
  • This working space changes its volume in accordance with the oscillating movement of the drive member 30 and generates the pumping action in connection with check valves 26 and 27 which are connected to a delivery and suction channel 28.
  • the lubrication system of the pump is in the form of pressure circulation lubrication with a gear pressure lubrication pump 100, a return collecting space 120 surrounding the eccentric 2 of the drive device and with an annular storage space 110 concentrically surrounding the axis of rotation XX of the drive device and with one from the return collecting space 120 into the Storage pump 110 promoting return pump 105 is formed.
  • This design and arrangement of the storage space enables a particularly space-saving multi-cylinder pump construction with a symmetrical distribution of the connections to the individual cylinders over the circumference of the ring.
  • the inclusion of the storage space in the cylindrical housing of the star-shaped multi-cylinder arrangement also serves the same purpose.
  • the pressure lubrication pump 100 delivers from the storage space 110 via channels 103 and 104 and a filter 102 into an annular distributor channel 101, from where pressure channels 90 and 95 lead to the individual cylinders 25 with adjusting throttles 90a and 95a.
  • the pressurized lubricant from the channel 90 is supplied to support the sliding movement of the outer surface of the sealing hose 22 and flows in the axial direction of the cylinder (downwards according to FIG. 1) into a pulsating space 42 formed in the area of the lower piston and cylinder end .
  • This space stands over a throttle duct 45, which is designed as a gap between the inner surface of the cylindrical section 30a of the drive member 30 and the outside of the cylinder 25, with one at the upper end of the cylindrical section 30a formed, also pulsating secondary space 35 in connection.
  • the relaxed lubricant flowing out in the space 42 is conveyed into the adjoining space 35 via the throttle channel 45 acting as a quasi check valve, so that the space 42 essentially acts as a low-pressure space for an undisturbed outflow of the lubricant from the gap between the sealing hose and the cylinder bore or support surface acts.
  • low pressure is also required in the adjoining room 35.
  • the latter is connected to the storage space 110 via a compensation channel 40 with a large cross section, which thus serves as a pressure compensation space.
  • the lubricant supplied via the channel 95 reaches the outer surface of the cylindrical section 30a of the drive member 30, where the latter is guided so as to be displaceable coaxially with the cylinder 25.
  • the lubricant then flows via lubrication channels 47 to the pressure surfaces 4 and further into the return collecting space 120. This lubricant circuit is also closed.
  • the return pump 105 draws in from the lower part of the collecting space 120 via a channel 115 and delivers via an ascending return channel 106 in the apex region 110a of the storage space 110. This results in an effective ventilation of the lubricant flow entering the storage space.
  • the suction space of the latter i.e. the lower part of the collecting space 120
  • overflow channel 130 connecting the storage space 110, which prevents this space from being sucked empty.
  • An actuator is provided for limiting the overflow, for which an adjustable throttle 135a may be sufficient, for example.
  • an overflow control with a controllable valve 135 as an actuator and with a float 140 as a control device is provided. This allows an optimal filling level to be maintained in the suction space of the return pump 105. Sufficient filling of the return pump is essential, in particular, to avoid foaming, which would impair reliable pressure circulation lubrication.
  • FIG. 2 The pressure circulation lubrication system of the pump is shown schematically in a clear form in FIG. 2, the essential functional elements being shown symbolically, but with the same reference numerals as in FIG. 1.
  • the avoidance of foam formation in the delivery system of the circulating pressure lubrication is essential for a perfect function.
  • the design of the rotor 105a of the return pump 105 shown in FIGS. 4 and 4 serves in particular with a plurality of slots designed as storage spaces 105b, which are arranged in the manner of a radial centrifugal pump and extend over a radius difference with respect to the axis of rotation XX of the pump.
  • the lubricant located in these storage spaces is subject to a separation between lubricants with a greater or lesser liquid content or, conversely, a lower and greater gas or foam content.
  • the stowage spaces then connect to an outflow control opening 109b which receives the gas or foam-rich part of the lubricant and leads back into the collecting space 120 via an outflow channel 109c, which is not shown in detail.
  • the outflow control openings 108 and 109b which, as shown in FIG. 3, likewise extend over an angle of substantially less than 180 °, the storage spaces 105b are closed at their outer ends by a housing inner surface 107, so that this Part of the circulation is available for separating the differently dense lubricant components without disturbance due to flow.
  • FIG. 4 Another mechanism that contributes to gas and foam cut-off within the rotor of the return pump is indicated in FIG. 4. Thereafter, a radial circular flow with a course indicated at A can be generated by means of a comparatively wide gap space 109a arranged axially next to the rotor 105, which is shown here in a strongly distorting manner, which prevents the accumulation of the low-gas lubricant in the radially outer regions of the storage spaces 105b favored and possibly also a partial return of the foam accumulated in the radially inner storage space areas in the direction of the suction chamber of the pump.
  • a cooling device for the lubricant is accommodated within the annular lubricant storage space 110.
  • This cooling device essentially consists of a heat exchanger 210 which has a channel system 212 through which the working medium of the pump flows and which can be seen in detail in FIG. 6.
  • the flow of the working medium in this channel system is achieved by means of the feed pump 150 already mentioned, which is accommodated coaxially to the annular storage space 110 and with an axial overlap in its inner recess space 240.
  • the inflow side 160 of the prefeed pump 150 lies in the area of an axial end cover 155 of the pump housing, which is aligned with an end wall 230 closing off the storage space 110.
  • the pre-feed pump is designed as an axial flow pump, the rotor of which is seated on the pump shaft 1 in the manner shown schematically in FIG. 5 and the outflow side 170 of which is connected to an annular channel 174 by radial channels 172. From the latter, axial branch ducts 176 (only one of these ducts is shown in FIG. 5) lead to the individual, pump-shaped pump cylinders (not shown in detail).
  • the piston-cylinder arrangements of the pump receive the working fluid with a pre-pressure of, for example, a few bar overpressure, which is sufficient for a safe filling in the suction stroke of the pistons.
  • Channel sections 178 which are lengthened at the rear connect the outflow side 170 of the pre-feed pump 150 to an annular channel 180 in a central, section-like section 232 of the end wall 230.
  • a radial channel 182 leads to an inflow distributor 216 of the heat exchanger which is inserted in the outer part of the end wall 230 210.
  • the inflow distributor arranged in the lower apex area of the storage space 110 From this inflow distributor arranged in the lower apex area of the storage space 110, the partial flow of the cool working medium branched off from the outflow side of the pre-feed pump passes via a channel system 212 of the heat exchanger 210, which can be seen in detail in FIG.
  • Outflow collector 218 arranged diametrically to the inflow distributor 216.
  • the latter is also inserted into the outer part of the end wall 230.
  • the outflow collector is connected to the suction side 160 of the prefeed pump via a radial channel 184. This results in a return flow circuit parallel to the main delivery flow for the branched-off part of the delivery flow of the prefeed pump 150, which is fed to the inflow side of the main pump.
  • a throttle screw 220 is inserted into the end wall 230, the tip of which engages in the channel 182 and here forms an adjustable throttle point in the partial feed flow to the inflow distributor 216.
  • the design of the heat exchanger is shown in detail in Fig. 6.
  • the channel system 212 of the heat exchanger is then practically completely submerged within the lubricant storage space 110 and below the lubricant level.
  • the return flow channel 106 from the lubricant return pump 105 in the upper part of the crown 110a of the storage space 110 and the suction by the pressure lubrication pump 100 in the lower part of the crown, there is a lubricant flow in the annular storage space which essentially goes down in both circumferential directions from the top of the crown lower apex runs.
  • the channel system 212 of the heat exchanger 210 comprises a plurality of ring-shaped heat exchanger tubes 214 which extend in the circumferential direction of the storage space 110 and which, as mentioned, essentially below the lubricant level and therefore enable heat exchange over their entire surface.
  • a plurality of heat exchanger tubes 214 connected in parallel, arcuate and adapted to the ring shape of the storage space 110 are connected.
  • the result is an essentially cylindrical arrangement of heat exchanger tubes lying side by side in the cylinder axis direction, i.e. a large-scale arrangement of heat transfer surfaces adapted to the spatial conditions of the storage room and the lubricant flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kolbenmaschine nach dem Oberbegriff des Anspruchs 1, insbesondere eine Kolbenpumpe. Eine solche Kolbenmaschine ist bekannt aus der DE-A-2 554 733.
  • Bei solchen Kolbenmaschinen besteht das Problem der sicheren Füllung des Raumes zwischen dem weichelastischen Dichtungsglied und der Stützfläche mit Schmiermittel, weil ein Ausfall der Schmierung in diesem Bereich sehr rasch eine Beschädigung des Dichtungsgliedes zur Folge hat. Ein solcher Schmierungsausfall kann auch die Folge einerSchaumbildung im Schmiersystem sein, die bei zu geringer Füllung im Ansaugbereich der im allgemeinen vorgesehenen Druckschmierpumpe auftritt. Bei zu grosser Füllung in diesem Bereich können dagegen Betriebsstörungen infolge Überflutung der Antriebsvorrichtung, z. B. einem Kurbeltrieb, auftreten.
  • Aufgabe der Erfindung ist daher die Schaffung einer Kolbenmaschine der eingangs genannten Art, die sich durch hohe Betreibssicherheit des Schmiersystems auszeichnet und das empfindliche Dichtungsglied gegen Beschädigung durch Trocken- oder Mischreibung an der Stützfläche sichert. Die erfindungsgemässe Lösung dieser Aufgabe kennzeichnet sich durch die Merkmale des Anspruchs 1. Diese Lösung ermöglicht in vorteilhaft einfacher Weise eine sichere Füllung der Schmiermittel-Rückfördereinrichtung bzw. Rücklaufpumpe ohne Schaumbildung einerseits sowie ohne Gefahr der Überflutung andererseits.
  • Zum Stand der Technik ist anzumerken, dass aus der GB-A-224 013 zwar eine Füllstandsregulierung für den Ansaugtank einer Druckschmiereinrichtung bekannt ist, jedoch nicht im Zusammenhang mit einer Druckumlaufschmierung für Kolbenmaschinen mit weichelastischem Dichtungsglied und Rückförderung des Schmiermittels aus dem Sammelraum in einen Vorratsraum für die Druckschmierpumpe. Bei der erfindung kommt es dagegen auf die Sicherung der Rückförderung aus dem Sammelraum in den Vorratsraum an, aus welch letzterem die Druckschmierpumpe gespeist wird und welcher mit dem Vorteil der Schmutzsedimertierung und der Gas- bzw. Schaumabscheidung grossvolumig ausgeführt sein kann und durch die Rückfördereinrichtung unter hohem Füllstand gehalten wird.
  • Weitere Merkmale und Vorteile der Erfindung werden anhand der in den Zeichnungen dargestellten Beispiele erläutert, Hierin zeigt:
    • Fig. einen Axialschnitt einer Kolbenpumpe mit sternförmiger Mehrzylinderanordnung mit Exzenterantrieb,
    • Fig. 2 das Prinzipschaltbild des Schmiermittelsystems der Pumpe nach Fig. 1,
    • Fig. 3 in grösserem Masstab eine Axialansicht einer Rücklaufpumpe des Schmiermittelsystems der Pumpe nach Fig. 1 und
    • Fig. 4 einen Teilschnitt des Pumpenrades gemäss Fig. 3 entsprechend Schnittebene IV-IV,
    • Fig. 5 einen Teil-Axialschnitt der Pumpe, ähnlich Fig. 1, jedoch mit abgewandeltem Bereich der Vorförderpumpe und des Schmiermittel-Vorratsraumes mit eingesetztem Wärmetauscher und
    • Fig. 6 einen Querschnitt der Maschine im Bereich des Schmiermittel-Vorratsraumes mit Wärmetauscher, gemäss Schnittebene VI-VI in Fig. 5.
  • Die Antriebsvorrichtung 10 der Pumpe besteht nach Fig. 1 aus einer mit einem nicht dargestellten Motor gekuppelten Welle 1 mit Exzenter 2, auf dem ein nichtrotierendes, translatorisch umlaufendes Gleitstück 3 mit einer der Zylinderzahl - hier beispielsweise fünf - entsprechenden Anzahl von tangentialen Druckflächen 4 gelagert ist. In Fig. 1 ist eine solche Druckfläche in Wirkverbindung mit einem Antriebsglied 30 eines Kolbens 20 angedeutet, der mit einem elastisch verformbaren Dichtungsschlauch 22 verbunden ist. Eine Schraubenfeder 23 drückt den Kolben 20 gegen den Bodenabschnitt 30b des büchsenförmigen Antriebsgliedes 30 und setzt den Dichtungsschlauch unter axiale Zugvorspannung. Der Dichtungsschlauch sitzt in der Bohrung eines Zylinders 25, mit dem er am oberen Ende fest verbunden ist, und dichtet somit den im Schlauchinneren gebildeten Arbeitsraum 24 hermetisch ab. Dieser Arbeitsraum verändert sein Volumen entsprechend der oszillierenden Bewegung des Antriebsgliedes 30 und erzeugt in Verbindung mit Rückschlagventilen 26 und 27, die an einen Förder- und Ansaugkanal 28 angeschlossen sind, die Pumpwirkung.
  • Das Schmiersystem der Pumpe ist als Druckumlaufschmierung mit einer Zahnrad-Druckschmierpumpe 100, einem den Exzenter 2 der Antreibsvorrichtung umgebenden Rücklauf-Sammelraum 120 und mit einem die Rotationsachse XX der Antriebsvorrichtung konzentrisch umgebenden, ringförmigen Vorratsraum 110 sowie mit einer aus dem Rücklauf-Sammelraum 120 in den Vorratsraum 110 fördernden Rücklaufpumpe 105 ausgebildet. Diese Ausbildung und Anordnung des Vorratsraumes ermöglicht eine besonders raumsparende Mehrzylinder-Pumpenkonstruktion mit symmetrischer Verteilung der Anschlüsse zu den einzelnen Zylindern über den Ringumfang. Dem gleichen Zweck dient auch die Einbeziehung des Vorratsraumes in das zylindrische Gehäuse der sternförmigen Mehrzylinderanordnung.
  • Die Druckschmierpumpe 100 fördert aus dem Vorratsraum 110 über Kanäle 103 und 104 sowie ein Filter 102 in einen ringförmigen Verteilerkanal 101, von wo aus Druckkanäle 90 und 95 mit Einstelldrosseln 90a bzw. 95a zu den einzelnen Zylindern 25 führen. Die unter Druck stehende Schmierflüssigkeit aus dem Kanal 90 wird zur Abstützung der Gleitbewegung der Aussenfläche des Dichtungsschlauches 22 zugeführt und strömt in Axialrichtung des Zylinders (gemäss Fig. 1 nach unten) in einen im Bereich des unteren Kolben- und Zylinderendes gebildeten, pulsierenden Raum 42 ab. Dieser Raum steht über einen Drosselkanal 45, der als Spaltraum zwischen der Innenfläche des zylindrischen Abschnitts 30a des Antriebsgliedes 30 und der Aussenseite des Zylinders 25 ausgebildet ist, mit einem am oberen Ende des zylindrischen Abschnitts 30a gebildeten, ebenfalls pulsierenden Nebenraum 35 in Verbindung. Auf diese Weise wird die in dem Raum 42 abströmende, entspannte Schmierflüssigkeit über den als Quasi-Rückschlagventil wirkenden Drosselkanal 45 in den Nebenraum 35 gefördert, so dass der Raum 42 im wesentlichen als Niederdruckraum für eine ungestörte Abströmung des Schmiermittels aus dem Spaltraum zwischen Dichtungsschlauch und Zylinderbohrung bzw. Stützfläche wirkt. Für diese selbsttätige Abström-Pumpwirkung ist weiterhin Niederdruck auch im Nebenraum 35 erforderlich. Dazu ist letzterer über einen im Querschnitt grossflächigen Ausgleichskanal 40 mit dem Vorratsraum 110 verbunden, der somit als Druckausgleichsraum dient.
  • Das über den Kanal 95 zugeführte Schmiermittel gelangt an die Aussenfläche des zylindrischen Abschnitts 30a des Antriebsgliedes 30, wo letzteres koaxial zum Zylinder 25 verschiebbar geführt ist. Über Schmierkanäle 47 fliesst das Schmiermittel sodann zu den Druckflächen 4 und weiterhin in den Rücklauf-Sammelraum 120. Damit ist auch dieser Schmiermittelkreislauf geschlossen.
  • Die Rücklaufpumpe 105 saugt über einen Kanal 115 aus dem unteren Teil des Sammelraumes 120 an und fördert über einen aufsteigenden Rückförderkanal 106 in dem Scheitelbereich 110a des Vorratsraumes 110. Damit ergibt sich eine wirksame Entlüftung des in den Vorratsraum eintretenden Schmiermittelstromes. Zur sicheren Füllung der Rücklaufpumpe ist ein den Ansaugraum der letzteren, d.h. dem unteren Teil des Sammelraums 120, mit dem Vorratsraum 110 verbindender Überströmkanal 130 vorgesehen, der ein Leersaugen dieses Raumes verhindert. Für die Begrenzung der Überströmung ist ein Stellglied vorgesehen, wofür beispielsweise eine justierbare Drossel 135a ausreichend sein kann. Im Beispielsfall ist dagegen eine Überströmregelung mit einem steuerbaren Ventil 135 als Stellglied und mit einem Schwimmer 140 als Regeleinrichtung vorgesehen. Dies erlaubt die Aufrechterhaltung eines optimalen Füllungsstandes im Ansaugraum der Rücklaufpumpe 105. Die ausreichende Füllung der Rücklaufpumpe ist insbesondere auch für die Vermeidung von Schaumbildung wesentlich, die eine zuverlässige Druckumlaufschmierung beeinträchtigen würde.
  • In Fig. 2 ist das Druckumlauf-Schmiersystem der Pumpe in übersichtlicher Form schematisch wiedergegeben, wobei die wesentlichen Funktionselemente symbolisch dargestellt, jedoch mit den gleichen Bezugszeichen wie in Fig. 1 versehen sind.
  • Wie bereits erwähnt, ist die Vermeidung von Schaumbildung im Fördersystem der Druckumlaufschmierung wesentlich für eine einwandfreie Funktion. Diesem Zweck dient besonders die in Fig. und 4 dargestellte Ausbildung des Rotors 105a der Rücklaufpumpe 105 mit einer Mehrzahl von als Stauräume 105b ausgebildeten Schlitzen, die nach Art einer Radial-Schleuderpumpe angeordnet sind und sich über eine Radiusdifferenz bezüglich der Rotationsachse XX der Pumpe erstrecken. Das in diesen Stauräumen befindliche Schmiermittel unterliegt infolge der starken Zentrifugalkräfte einer Separierung zwischen Schmiermittel mit grösserem bzw. geringerem Flüssigkeitsgehalt bzw. umgekehrt geringerem und grösserem Gas- oder Schaumgehalt. Im Bereich einer sich über weniger als 180° erstreckenden Abström-Steueröffnung 108 wird bei geeigneter Verlangsamung oder Drosselung der Abströmung von der Pumpe im wesentlichen nur derjenige Teil des Schmiermittels aus den Stauräumen 105b radial ausgestossen, der nur einen sehr geringen Gas- oder Schaumgehalt aufweist.
  • Anschliessed treten die Stauräume mit einer Abström-Steueröffnung 109b in Verbindung, die den gas- bzw. schaumreichen Teil des Schmiermittels aufnimmt und über einen nicht näher dargestellten Abströmkanal 109c in den Sammelraum 120 zurückführt. Im Bereich zwischen den Abström-Steueröffnungen 108 und 109b, die sich, wie in Fig. 3 dargestellt, gleichermassen über einen Winkel von wesentlich weniger als 180° erstrekken, sind die Stauräume 105b an ihren äusseren Enden durch eine Gehäuseinnenflächen 107 verschlossen, so dass dieser Teil des Umlaufes für eine Separierung der unterschiedlich dichten Schmiermittelanteile ohne Störung infolge Durchströmung zur Verfügung steht.
  • Ein weiterer Mechanismus, der zur Gas- und Schaumabschneidung innerhalb des Rotors der Rücklaufpumpe beiträgt, ist in Fig. 4 angedeutet. Danach kann mittels eines vergleichsweise breiten, axial neben dem Rotor 105 angeordneten Spaltraumes 109a, der hier stark verzerrend grösser dargestellt ist, eine radiale Zirkularströmung mit einem bei A angedeuteten Verlauf erzeugt werden, der die Ansammlung des gasarmen Schmiermittels in den radial äusseren Bereichen der Stauräume 105b begünstigt und gegebenenfalls auch eine teilweise Rückführung des in den radial inneren Stauraumbereichen angesammelten Schaumes in Richtung zum Ansaugraum der Pumpe bewirkt oder begünstigt.
  • Besonders ist zu erwähnen, dass die aus Fig. 1 ersichtliche, kompakte Konstruktionsform der Pumpe noch dadurch begünstigt wird, dass innerhalb des ringförmigen und stirnseitig zu den Zylindern 25 angeordneten Schmiermittel-Vorratsraumes 110 auch eine Vorförderpumpe 150 für das Arbeitsmittel der Pumpe untergebracht ist.
  • Bei der in Fig. und 6 dargestellten Pumpenausführung ist eine insgesamt mit 200 bezeichnete Kühleinrichtung für das Schmiermittel innerhalb des ringförmigen Schmiermittel-Vorratsraumes 110 untergebracht. Diese Kühleinrichtung besteht im wesentlichen aus einem Wärmetauscher 210, der ein vom Arbeitsmittel der Pumpe durchströmtes, im einzelnen aus Fig. 6 ersichtliches Kanalsystem 212 aufweist. Die Strömung des Arbeitsmittels in diesem Kanalsystem wird mittels der bereits erwähnten Vorförderpumpe 150 erreicht, die koaxial zum ringförmigen Vorratsraum 110 sowie mit axialer Überdeckung in dessen innerem Aussparungsraum 240 untergebracht ist. Die Zuströmseite 160 der Vorförderpumpe 150 liegt im Bereich eines axialen Stirndeckels 155 des Pumpengehäuses, der mit einer den Vorratsraum 110 abschliessenden Stirnwandung 230 fluchtet. Die Vorförderpumpe ist im Beispielsfall als Axial-Strömungspumpe ausgebildet, deren Rotor in der aus Fig. 5 schematisch ersichtlichen Weise auf der Pumpenwelle 1 sitzt und deren Abströmseite 170 durch Radialkanäie 172 mit einem Ringkanal 174 verbunden ist. Von letzterem führen axiale Abzweigkanäle 176 (in Fig. 5 ist nur einer dieser Kanäle dargestellt) zu den einzelnen, sternförmig angeordneten Pumpenzylindern (nicht näher dargestellt). Auf diese Weise erhalten die Kolben-Zylinderanordnungen der Pumpe das Arbeitsmittel mit einem Vordruck von beispielsweise einigen bar Überdruck der für eine sichere Füllung im Saughub der Kolben ausreicht.
  • Rückwärtig verlängerte Kanalabschnitte 178 verbinden die Abströmseite 170 der Vorförderpumpe 150 mit einem Ringkanal 180 in einem zentralen, deckelartig eingesetzten Abschnitt 232 der Stirnwandung 230. Von dem Ringkanal 180 aus führt ein Radialkanal 182 zu einem in den äusseren Teil der Stirnwandung 230 eingesetzten Zuströmverteiler 216 des Wärmetauschers 210. Von diesem im unteren Scheitelbereich des Vorratsraumes 110 angeordneten Zuströmverteiler gelangt der von der Abströmseite der Vorförderpumpe abgezweigte Teilstrom des kühlen Arbeitsmittels über ein im einzelnen aus Fig. 6 ersichtliches Kanalsystem 212 des Wärmetauschers 210 zu einem im oberen Scheitelbereich des Vorratsraumes 110, d.h. diametral zum Zuströmverteiler 216 angeordneten Abströmsammler 218. Letzterer ist ebenfalls in den äusseren Teil der Stirnwandung 230 eingesetzt. Über einen Radialkanal 184 ist der Abströmsammler mit der Ansaugseite 160 der Vorförderpumpe verbunden. Es ergibt sich somit für den abgezweigten Teil des Förderstromes der Vorförderpumpe 150 ein Rückstromkreislauf parallel zum Hauptförderstrom, welcher der Zuströmseite der Hauptpumpe zugeleitet wird. Um die Überbrückung und die Druckverhältnisse an der Vorförderpumpe 150 unter Berücksichtigung des Rückströmkreislaufes passend einstellen zu können, ist in die Stirnwandung 230 eine Drosselschraube 220 eingesetzt, deren Spitze in den Kanal 182 eingreift und hier eine justierbare Drosselstelle in dem Teilförderstrom zum Zuströmverteiler 216 bildet.
  • Die Ausbildung des Wärmetauschers ist im einzelnen aus Fig. 6 ersichtlich. Danach befindet sich das Kanalsystem 212 des Wärmetauschers innerhalb des Schmiermittel-Vorratsraumes 110 praktisch vollständig eingetaucht und unterhalb des Schmiermittelspiegels. Infolge der Einmündung des Rückströmkanals 106 von der Schmiermittel-Rücklaufpumpe 105 im oberen Scheiteilbereich 110a des Vorratsraumes 110 und der Absaugung durch die Druckschmierpumpe 100 im unteren Scheitelbereich ergibt sich in dem ringförmigen Vorratsraum eine Schmiermittelströmung, die im wesentlichen in beiden Umfangsrichtungen vom oberen Scheitelbereich aus abwärts zum unteren Scheitelbereich verläuft. Diese Strömung ist ersichtlich gegensinnig zur Arbeitsmittelströmung im Kanalsystem des Wärmetauschers 210 zwischen dem unteren Zuströmverteiler 216 und dem oberen Abströmsammler 218 gerichtet. Es ergibt sich also zwischen dem Schmiermitteldurchsatz im Vorratsraum 110 einerseits und der Arbeitsmittelströmung im Kanalsystem des Wärmetauschers 210 andererseits eine Gegenstrom-Wärmeübertragung und damit eine intensive Kühlung des Schmiermittels durch das frisch eintretende Arbeitsmittel.
  • Für den Aufbau des Wärmetauschers gilt mit Bezug auf Fig. 6 im einzelnen folgendes: Das Kanalsystem 212 des Wärmetauschers 210 umfasst eine Mehrzahl von ringförmigen, sich in Umfangsrichtung des Vorratsraumes 110 erstreckenden Wärmetauscherrohren 214, die - wie erwähnt- im wesentlichen unter dem Schmiermittelspiegel und daher über ihre gesamte Oberfläche den Wärmeaustausch ermöglichen. Auf beiden Seiten des Zuströmverteilers 216 und des Abströmsammlers 218 ist jeweils eine Mehrzahl von zueinander parallel geschalteten, bogenförmig ausgebildeten und der Ringform des Vorratsraumes 110 angepassten Wärmetauscherrohren 214 angeschlossen. Es ergibt sich so eine im wesentlichen zylindrische Anordnung von in Zylinderachsrichtung nebeneinanderliegenden Wärmetauscherrohren, d.h. eine den räumlichen Verhältnissen des Vorratsraumes und der Schmiermittelströmung angepasste, grossflächige Anordnung von Wärme- übergangsflächen.
  • Ersichtlich ist für diese intensiv wirkende Wärmetauschanordnung kein zusätzlicher Raumbedarf gegeben, weil die gesamte Anordnung innerhalb des ohnehin vorhandenen Schmiermittel-Vorratsraumes untergebracht ist.-Die ringförmige Ausbildung des letztgenannten Raumes ermöglicht nicht nur eine raumsparende Einbeziehung in die Gesamtkonstruktion des Maschinengehäuses, sondern erzwingt auch eine Schmiermittelströmung in Umfangsrichtung des Vorratsraumes längs der Wärmetauscherrohre im Sinne der Gegenstromkühlung.

Claims (19)

1. Kolbenmaschine mit mindestens einer Kolben-Zylinderanordnung zur Bildung eines pulsierenden Arbeitsraumes, mit einer Antriebsvorrichtung (10) zur Erzeugung einer oszillierenden Relativbewegung zwischen Kolben (20) und Zylinder (25), mit einer Schmiereinrichtung für die Kolben-Zylinderanordnung und mit einem weichelastisch verformbaren, zur Abdichtung des Arbeitsraumes dienenden Dichtungsglied, das sich über ein Schmiermittel an einer Stützfläche gleitend abstützt, dadurch gekennzeichnet, dass die Schmiereinrichtung als Druckumlaufschmierung mit einer Druckschmierpumpe (100) für die Schmiermittelzuführung zur Kolben-Zylinderanordnung, mit einem die Druckschmierpumpe (100) speisenden Vorratsraum (110), mit einem der Kolben-Zylinderanordnung in Richtung des Schmiermitteldurchsatzes nachgeordneten Rücklauf-Sammelraum (120) und mit einer Schmiermittel-Rückfördereinrichtung (105) ausgebildet ist, dass eine mit dem Rücklauf-Sammelraum (120) in Wirkverbindung stehende Einrichtung (140) zur Aufrechterhaltung einer Mindest-Schmiermittelmenge im Rücklauf-Sammelraum (120) vorgesehen ist und dass die Schmiermittel-Rückfördereinrichtung (105) zwischen dem Rücklauf-Sammelraum (120) und dem Vorratsraum (110) angeschlossen ist.
2. Kolbenmaschine nach Anspruch 1, gekennzeichnet durch einen den Vorratsraum (110) mit dem Rücklauf-Sammelraum (120) verbindenden Überströmkanal (130).
3. Kolbenmaschine nach Anspruch 2, gekennzeichnet durch einen Überströmkanal (130) mit einem einstellbaren oder steuerbaren Stellglied (135) für eine Begrenzung der Strömung vom Vorratsraum (110) zum Rücklauf-Sammelraum (120).
4. Kolbenmaschine nach Anspruch 3, dadurch gekennzeichnet, dass für den Rücklauf-Sammelraum (120) eine Regel- oder Steuereinrichtung (140) mit dem Strömungs-Stellglied (135) im Überströmkanal (130) in Wirkverbindung steht.
5. Kolbenmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Vorratsraum (110) ringförmig und die Drehachse (XX) einer rotierenden Antriebsvorrichtung (10), vorzugsweise konzentrisch, umgebend ausgebildet ist.
6. Kolbenmaschine nach Anspruch 5, dadurch gekennzeichnet, dass die Ringebene des Vorrats-oder Sammelraumes (110) im wesentlichen vertikal angeordnet ist und dass ein an eine Rücklaufpumpe (105) angeschlossener Rückförderkanal (106) vorgesehen ist, der im Scheitelbereich (110a) des ringförmigen Vorrats- oder Sammelraumes (110) mündet.
7. Kolbenmaschine nach Anspruch 6, gekennzeichnet durch eine sternförmige Mehrzylinderanordnung mit einem ringförmigen Vorrats- oder Sammelraum (110), der stirnseitig und koaxial zu der sternförmigen Mehrzylinderanordnung in einem gemeinsamen Gehäuse mit dieser angeordnet ist.
8. Kolbenmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Schmiermittel-Kühleinrichtung (200) mit mindestens einem durch das als Kühlmittel dienende Arbeitsmittel der Kolbenmaschine beaufschlagten Wärmetauscher (210) vorgesehen ist.
9. Kolbenmaschine nach Anspruch 8, dadurch gekennzeichnet, dass der Wärmetauscher (210) im Bereich des Schmiermittel-Vorrats- oder -Sammelraumes (110) angeordnet ist.
10. Kolbenmaschine nach Anspruch 9, dadurch gekennzeichnet, dass der Wärmetauscher (210) als von dem Arbeitsmittel durchströmtes Kanalsystem (212) ausgebildet und innerhalb des Schmiermittel-Vorrats- oder -Sammelraumes (110) angeordnet ist.
11. Kolbenmaschine nach den Ansprüchen 5 und 10, dadurch gekennzeichnet, dass das Kanalsystem (212) des Wärmetauschers (210) eine Mehrzahl von ringförmigen, sich in Umfangsrichtung des Schmiermittel-Vorrats- oder -Sammelraumes (110) erstreckender Wärmetauscherrohren (214) aufweist, deren Aussenflächen wenigstens teilweise mit dem Schmiermittel in Berührung stehen.
12. Kolbenmaschine nach Anspruch 11, dadurch gekennzeichnet, dass das Kanalsystem (212) des Wärmetauschers (210) mindestens zwei vorzugsweise zueinander diametral in dem ringförmigen Schmiermittel-Vorrats- oder -Sammelraumes (110) angeordnete Anschlüsse aufweist, deren einer als Zuströmverteiler (216) und deren anderer als Abströmsammler (218) ausgebildet ist, und dass jeweils eine Mehrzahl von zueinander parallel geschalteten Wärmetauscherrohren (214) in beiden Umfangsrichtungen vom Zuströmverteiler (216) bogenförmig zum Abströmsammler (218) verläuft.
13. Kolbenmaschine nach Anspruch 12, dadurch gekennzeichnet, dass die bogenförmig in Umfangsrichtung des Vorrats- oder Sammelraumes (110) verlaufenden Wärmetauscherrohre (214) eine im wesentlichen zylindrische Anordnung von in Zylinderachsrichtung nebeneinanderliegenden Rohren bilden.
14. Kolbenmaschine nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Arbeitsmitteldurchsatz im Vorrats- oder Sammelraum (110) einerseits und die Schmiermittelströmung im Wärmetauscher (210) andererseits wenigstens abschnittsweise zueinander im Gegenstrom verlaufen.
15. Kolbenpumpe nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass eine das Arbeitsmittel der Zuströmseite der Pumpe zuführende Vorförderpumpe (150) vorgesehen ist und dass die Arbeitsmittel-Zuströmseite des Wärmetauschers (210) an die Abströmseite (170) der Vorförderpumpe (150) angeschlossen ist.
16. Kolbenpumpe nach Anspruch 15, dadurch gekennzeichnet, dass das Arbeitsmittelsystem des Wärmetauschers (210) als Nebenstromzweig zwischen der Abströmseite (170) und der Zuströmseite (160) der Vorförderpumpe (150) ausgebildet ist.
17. Kolbenpumpe nach Anspruch 16, dadurch gekennzeichnet, dass im Wärmetauscher-Nebenstromweg mindestens eine insbesondere einstellbare Drossel (220) angeordnet ist.
18. Kolbenpumpe nach den Ansprüchen 11 und 15, dadurch gekennzeichnet, dass der ringförmige Schmiermittel-Vorrats- oder -Sammelraum (110) wenigstens annähernd koaxial zu der vorzugsweise als Axial-Strömungsmaschine ausgebildeten Vorförderpumpe (150) und diese axiale wenigstens teilweise überdeckend angeordnet ist.
19. Kolbenpumpe nach den Ansprüchen 12, 16 und 18, dadurch gekennzeichnet, dass der Zuströmverteiler (216) und der Abströmsammler (218) in eine axiale Stirnwandung (230) der Schmiermittel-Vorrats- oder -Sammelraumes (110) eingesetzt und über in dieser Stirnwandung verlaufende Kanäle mit der Zu- bzw. Abströmseite der Vorförderpumpe (150) verbunden sind.
EP80103359A 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe Expired EP0021315B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80103359T ATE14915T1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere kolbenpumpe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5779/79 1979-06-20
CH577979A CH645435A5 (de) 1979-06-20 1979-06-20 Kolbenpumpe.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP84108027.8 Division-Into 1980-06-17

Publications (2)

Publication Number Publication Date
EP0021315A1 EP0021315A1 (de) 1981-01-07
EP0021315B1 true EP0021315B1 (de) 1985-08-14

Family

ID=4299196

Family Applications (2)

Application Number Title Priority Date Filing Date
EP80103359A Expired EP0021315B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe
EP84108027A Expired - Lifetime EP0153982B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP84108027A Expired - Lifetime EP0153982B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe

Country Status (16)

Country Link
US (1) US4671743A (de)
EP (2) EP0021315B1 (de)
JP (2) JPS5627086A (de)
AR (1) AR219466A1 (de)
AT (2) ATE14915T1 (de)
AU (1) AU5935080A (de)
BR (1) BR8003711A (de)
CA (1) CA1142030A (de)
CH (1) CH645435A5 (de)
CS (1) CS229656B2 (de)
DD (1) DD151487A5 (de)
DE (2) DE3072177D1 (de)
HU (1) HU183151B (de)
PL (1) PL130376B1 (de)
SU (1) SU1380617A3 (de)
ZA (1) ZA803580B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332355C1 (de) * 1983-09-08 1984-11-15 Hemscheidt Maschf Hermann Zylinderkolben-Anordnung für eine Kolbenmaschine
US4997344A (en) * 1988-06-15 1991-03-05 Deere & Company Rotor bearing pre-load for a radial piston pump
US5709536A (en) * 1995-01-30 1998-01-20 Titan Tool, Inc. Hydro mechanical packingless pump and liquid spray system
DE19804275A1 (de) * 1998-02-04 1999-08-12 Bosch Gmbh Robert Radialkolbenpumpe zur Kraftstoffhochdruckversorgung
JP3349945B2 (ja) 1998-03-13 2002-11-25 日本電気株式会社 信号変換装置及び信号変換装置を用いた光伝送方式
EP1058001B1 (de) * 1999-05-31 2005-02-16 CRT Common Rail Technologies AG Hochdruckförderpumpe
DE10228552B9 (de) * 2002-06-26 2007-08-23 Siemens Ag Radialkolbenpumpeneinheit
DE102009060733A1 (de) 2009-12-29 2011-06-30 European Charcoal Ag Vorrichtung zur kontinuierlichen Umwandlung von Biomasse und System zur Energiegewinnung daraus
US9752590B2 (en) * 2013-03-13 2017-09-05 Ghsp, Inc. Two pump design with coplanar interface surface
US10087927B2 (en) 2014-05-01 2018-10-02 Ghsp, Inc. Electric motor with flux collector
US11015585B2 (en) 2014-05-01 2021-05-25 Ghsp, Inc. Submersible pump assembly

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US781678A (en) * 1904-05-17 1905-02-07 Clarence H Richwood Air-compressing machine.
GB224013A (en) * 1924-04-23 1924-11-06 William Thomas Shannon Improvements in engine lubricating systems
US1750170A (en) * 1926-04-15 1930-03-11 Frisch August Pumping apparatus
DE530598C (de) * 1927-11-28 1931-07-30 Drysdale & Co Ltd Umlaufschmiervorrichtung
FR666890A (fr) * 1929-01-03 1929-10-07 Cem Comp Electro Mec Dispositif de refroidissement de l'huile de graissage des machines actionnant des pompes
US2064750A (en) * 1932-04-23 1936-12-15 Bosch Robert Piston pump for the conveyance of liquids
US2179354A (en) * 1935-08-07 1939-11-07 Super Diesel Tractor Corp Pump
GB524199A (en) * 1938-10-26 1940-08-01 Hamilton Neil Wylie Improvements in variable stroke radial pumps
GB549670A (en) * 1941-01-23 1942-12-07 Clement Brown Improvements in or relating to rotary pumps
US2364111A (en) * 1942-03-20 1944-12-05 John W Tucker Pump and the like
US2472355A (en) * 1946-02-01 1949-06-07 New York Air Brake Co Pump
GB650312A (en) * 1946-02-09 1951-02-21 Poul Haahr Improvements in or relating to high-pressure pumps
US2523543A (en) * 1946-04-29 1950-09-26 James E Smith Variable stroke radial pump
FR1095226A (fr) * 1954-03-12 1955-05-31 Régulateur de niveau d'huile
US2917003A (en) * 1957-04-22 1959-12-15 James E Smith Variable stroke variable pressure pump or compressor
US2963886A (en) * 1958-01-02 1960-12-13 Carrier Corp Lubricant cooling system
CH422524A (de) * 1963-04-23 1966-10-15 Philips Nv Zum Fördern siedender Flüssigkeiten geeignete Kreiselpumpe
US3289651A (en) * 1963-12-10 1966-12-06 Yanmar Diesel Engine Co Cooling device for rotary piston engines
GB1114679A (en) * 1964-05-18 1968-05-22 Sibany Mfg Corp Improvements in heat exchange apparatus
US3554090A (en) * 1969-04-04 1971-01-12 Arthur G Wallace Fluid pressure actuated motor
US3703342A (en) * 1971-07-30 1972-11-21 Walbro Corp Fuel pump bellows construction
US3854383A (en) * 1972-12-26 1974-12-17 Dynacycle Corp Tension actuated pressurized gas driven rotary motors
IT1042341B (it) * 1975-09-08 1980-01-30 Pirelli Miglioramenti negli impianti di pompaggio per cavi elettrici in o.f.
DE2914694C2 (de) * 1979-04-11 1980-09-11 Hermann Hemscheidt Maschinenfabrik Gmbh & Co, 5600 Wuppertal Zylinderkolben-Aggregat

Also Published As

Publication number Publication date
ATE51683T1 (de) 1990-04-15
HU183151B (en) 1984-04-28
PL130376B1 (en) 1984-08-31
JPS6365830B2 (de) 1988-12-16
DD151487A5 (de) 1981-10-21
DE3070978D1 (en) 1985-09-19
EP0021315A1 (de) 1981-01-07
AR219466A1 (es) 1980-08-15
JPS6426096A (en) 1989-01-27
BR8003711A (pt) 1981-01-13
US4671743A (en) 1987-06-09
DE3072177D1 (de) 1990-05-10
AU5935080A (en) 1981-01-08
EP0153982A3 (en) 1985-11-21
CA1142030A (en) 1983-03-01
CS229656B2 (en) 1984-06-18
JPS5627086A (en) 1981-03-16
EP0153982A2 (de) 1985-09-11
ZA803580B (en) 1981-07-29
ATE14915T1 (de) 1985-08-15
SU1380617A3 (ru) 1988-03-07
CH645435A5 (de) 1984-09-28
PL225024A1 (de) 1981-04-24
JPH0250358B2 (de) 1990-11-02
EP0153982B1 (de) 1990-04-04

Similar Documents

Publication Publication Date Title
DE102004003335B4 (de) Motorölsystem mit Verstellpumpe
DE1776253C3 (de) Vorrichtung zur drehzahl- und lastabhängigen Einspritzzeitpunktverstellung von Kraftstoffeinspritzpumpen
EP0021315B1 (de) Kolbenmaschine, insbesondere Kolbenpumpe
CH346435A (de) Vorrichtung zur Erzeugung von Druckflüssigkeit
DE2423707C3 (de) Pumpeneinheit für die Brennstoff-Versorgungsanlage eines Gasturbinentriebwerks
DE19530507A1 (de) Pumpe variabler Förderung mit Überström-Steuerung
DE2059836A1 (de) Axialkolbeneinheit
DE3214688A1 (de) Fluegelradpumpe
DE2833167A1 (de) Baueinheit, bestehend aus einer oelpumpe zur oelumlaufschmierung einer brennkraftmaschine und einer vakuumpumpe zur erzeugung eines vakuums fuer die bremskraftverstaerkung in kraftfahrzeugen
DE1293046B (de) Fluegelpumpe zur Druckmittelversorgung von druckmittelbetaetigten Servomotoren einesFahrzeugs
DE1528657B2 (de) Gasabscheider fuer motor-tauchpumpen
EP0134211B1 (de) Pumpenanordnung für hydraulische anlagen
EP0461213B1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
DE1812251A1 (de) Zellen- bzw. Drehschieberpumpe
DE3513923C2 (de)
DE3242983A1 (de) Regelbare fluegelzellenpumpe
EP2137412B1 (de) Verdrängermaschine nach dem spiralprinzip
DE69820934T2 (de) Hydraulische Servoeinrichtung
EP0259619A1 (de) Schmierölpumpe
DE3215046C2 (de) Brennstoffeinspritzpumpe für Brennkraftmaschinen
AT227480B (de) Mit einer hin- und hergehenden Bewegung arbeitende Pumpe mit Selbstregelung der Förderleistung, insbesondere zur Brennstoffeinspritzung in Motoren
WO1999061797A1 (de) Regelvorrichtung für hydraulische arbeitsgeräte
DE1750860C (de) Hydrodynamische Kupplung
DE29619824U1 (de) Freilaufrückschlagventil
DE2603397A1 (de) Schmiervorrichtung fuer dichtungen einer drehkolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19810414

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 14915

Country of ref document: AT

Date of ref document: 19850815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3070978

Country of ref document: DE

Date of ref document: 19850919

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920514

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930616

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930930

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940613

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

EPTA Lu: last paid annual fee
BERE Be: lapsed

Owner name: HYDROWATT SYSTEMS LTD

Effective date: 19940630

EUG Se: european patent has lapsed

Ref document number: 80103359.8

Effective date: 19950110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 80103359.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950601

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950614

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950617

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960617

Ref country code: AT

Effective date: 19960617