CN1277145A - 利用热cvd法在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法 - Google Patents

利用热cvd法在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法 Download PDF

Info

Publication number
CN1277145A
CN1277145A CN00107805A CN00107805A CN1277145A CN 1277145 A CN1277145 A CN 1277145A CN 00107805 A CN00107805 A CN 00107805A CN 00107805 A CN00107805 A CN 00107805A CN 1277145 A CN1277145 A CN 1277145A
Authority
CN
China
Prior art keywords
gas
carbon
carbon nanotube
substrate
metal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00107805A
Other languages
English (en)
Other versions
CN1189390C (zh
Inventor
李铁真
柳在银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ILJIN NANO TECHNOLOGY Co Ltd
Original Assignee
ILJIN NANO TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2000-0030352A external-priority patent/KR100372332B1/ko
Application filed by ILJIN NANO TECHNOLOGY Co Ltd filed Critical ILJIN NANO TECHNOLOGY Co Ltd
Publication of CN1277145A publication Critical patent/CN1277145A/zh
Application granted granted Critical
Publication of CN1189390C publication Critical patent/CN1189390C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/891Vapor phase deposition

Abstract

一种利用热化学汽相淀积(CVD)在大尺寸基片上合成垂直排列的高纯碳纳米管的方法。该合成方法中,通过腐蚀在基片上形成隔离的纳米级催化金属颗粒,并通过利用碳源气的热CVD,由催化金属颗粒生长垂直排列的净化碳纳米管。

Description

利用热CVD法在大尺寸基片上大规模合成垂直排列 的高纯碳纳米管的方法
本发明涉及碳纳米管的合成方法,特别涉及在大面积基片上大规模合成垂直排列的高纯碳纳米管的方法。
为扶手椅形时具有导电性、为锯齿形时具有半导电性的碳纳米管可用作场发射器件、白光源、锂二次电池、储氢电池、阴极射线管的晶体管的电子发射源。对于碳纳米管的这种工业应用来说,有益的是在大面积基片上合成垂直排列形式的高纯碳纳米管。另外,另一个令人关注的是对于碳纳米管的合成来说,容易控制碳纳米管的直径和长度及所用衬底的密度和均匀性。
现有碳纳米管合成技术包括放电法、激光淀积法、气相合成法、热化学汽相淀积(CVD)法、等离子CVD法等。
放电法(C.Journet等人,Nature,388,756(1997)和D.S.Bethune等人,Nature,363,605(1993))和激光淀积法(R.E.Smally等人,Science,273,483(1996))不能控制碳纳米管的直径或长度,并且使用这些方法的产量低。另外,还会与碳纳米管一起产生额外的非晶碳块,所以需要复杂的净化工艺。所以,利用这些方法,很难在大尺寸基片上大规模生长碳纳米管。
同时,适于大规模合成碳纳米管的气相合成法(R.Andrews等人,Chem.Phys.Lett.,303,468,1999)是在不用基片的情况下,利用处于炉中的碳源气的热解在气相中形成碳纳米管。然而,该方法也难以控制碳纳米管的直径或长度,并会使金属催化剂块粘附于碳纳米管的内壁或外壁上。所以,这种方法不能满足高纯碳纳米管的需要,并且不能在基片上得到垂直排列的碳纳米管。
热CVD法涉及在多孔硅石(W.Z.Li等人,Science,274,1701(1996))或沸石(Shinohara等人,Japanese J. of Appl.Phys.,37,1357(1998))基片上生长碳纳米管。然而,用金属催化剂填充基片的小孔是一种复杂且耗时的过程。另外,不容易控制碳纳米管的直径,而且产量也低。所以,热CVD法局限于在较大基片上生长大块碳纳米管。
等离子CVD法(Z.F.Ren等人,Science,282,1105(1998))是垂直排列碳纳米管的合适技术,具有优异的性能。然而,问题是等离子能量会损坏碳纳米管,而且由于低温合成工艺,碳纳米管结构不稳定。此外,许多碳颗粒会粘附于碳纳米管的表面上。
为解决上述问题,本发明的目的是提供一种在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法。
借助包括在基片上形成金属催化层的合成碳纳米管的方法,可以实现本发明的目的。腐蚀金属催化层,形成隔离的纳米级催化金属颗粒,并利用热化学汽相淀积(CVD),由每个隔离的纳米级催化金属颗粒生长碳纳米管,其中碳源气供应到热CVD设备中,碳纳米管垂直排列于基片上。
优选是利用气体腐蚀法形成隔离的纳米级催化金属颗粒,该方法中,选自氨气、氢气和氢化物气的一种腐蚀气热分解,用于腐蚀。可以利用等离子腐蚀或使用氢氟酸系列腐蚀剂的湿法腐蚀形成隔离的纳米级催化金属颗粒。
优选地,腐蚀气是氨气,在温度为700-1000℃,同时以80-400sccm的流量供应氨气10-30分钟的条件下进行气体腐蚀的方法。
优选地,在温度为700-1000℃,同时以20-200sccm的流量供应碳源气10-60分钟的条件下形成碳纳米管。
优选地,在相同的热CVD设备中,原位形成催化金属颗粒和碳纳米管。
优选地,在形成碳纳米管时,与碳源气一起,向热CVD设备供应选自氨气、氢气、和氢化物气中的一种气体。
优选地,在形成碳纳米管后,该合成方法还包括利用惰性气体,排出热CVD设备中的碳源气。
优选地,在形成碳纳米管后,该合成方法还包括在相同热CVD设备中,原位净化碳纳米管。优选是用选自氨气、氢气、氧气和这些气体的混合气中的一种净化气,原位净化该碳纳米管。
优选地,在原位净化碳纳米管后,该合成方法还利用惰性气体,排出热CVD设备中的净化气。
通过结合附图详细介绍本发明的优选实施方案,本发明的上述目的和优点将变得更清楚,各附图中:
图1是展示本发明合成碳纳米管的方法的流程图;
图2A和2B是具有金属催化层的基片的剖面图;
图3是用于本发明优选实施方案的热化学汽相淀积(CVD)设备的示意图;
图4是展示形成独立隔离的催化金属颗粒情况的示意图;且
图5是展示形成从隔离催化金属颗粒突起的碳纳米管情况的剖面图;
图6A-6C是展示从隔离的催化金属颗粒生长碳纳米管的机理的示意图;
图7是展示应用于使用净化气的原位净化工艺中的气体脉冲技术的时序图;以及
图8A-8C是展示利用光刻技术形成纳米级催化金属颗粒的情况的剖面图。
下面结合展示了本发明优选实施方案的各附图更完整地介绍本发明。然而,本发明可按许多不同方式实施,不应当认为本发明限于这里所记载的各实施方案。而且,提供这些实施方案的目的是使本公开彻底完全,向所属领域的技术人员充分传达本发明的思想。为了解释,大致示出了热化学汽相淀积(CVD)设备的示意图。各附图中,为清楚起见放大了基片、催化金属层和催化金属颗粒的厚度和比例。还应注意,各附图中,类似的参考标记可用于指明相同或相应的部分。
实施方案1
下面结合图1、图2A和2B和图3描述根据本发明合成碳纳米管的方法,其中图1是展示该合成方法的流程图,图2A和2B是将于其上形成碳纳米管的基片的剖面图,图3是用于该合成的热化学汽相淀积(CVD)设备的示意图。该流程图中,该合成法必须的步骤示于实线框内,而该合成法的任选步骤示于虚线框内。
参见图1,在其上将要形成碳纳米管的基片(图2A中的110)上,形成金属催化层(图2A中的130)(步骤20)。关于基片110,可以用玻璃、石英、硅或氧化铝(Al2O3)基片。金属催化层130由钴(Co)、镍(Ni)、铁(Fe)或它们的合金(Co-Ni,Co-Fe或Ni-Fe)构成。金属催化层130利用热淀积、电子束淀积或溅射法等形成于基片110上,厚度为几纳米到几百纳米,优选为2-200nm。
在由硅构成的基片110、金属催化层130由Co、Ni或它们的合金构成时,在形成金属催化层130前,在基片110上形成绝缘层(图2B中的120),用于防止由于金属催化层130与基片11O间反应产生硅化物膜(步骤10)。可以形成氧化硅或氧化铝层作绝缘层120。
然后,腐蚀金属催化层130,形成独立隔离的纳米级催化金属颗粒(步骤30)。
具体说,参见图3,将具有金属催化层130或绝缘层120和金属催化层130的基片彼此间隔预定距离装入热CVD设备的舟310中,将舟310装入热CVD设备的反应炉中。这里,装载舟310使形成于基片上的金属催化层130的表面在箭头315所示的与气流相反的方向面向下,如图3所示。基片110设置成使金属催化层130的表面不面向气流的原因是,通过均匀控制腐蚀气的大规模流动,在由金属催化层130涂敷的基片110上进行均匀反应。另外,将基片110***舟310,使金属催化层130的表面面向下,为的是防止不稳定反应产物造成的缺陷,或碳颗粒从反应炉300的壁上落下。
将舟310装入反应炉后,反应炉300的压力保持大气压(在使用常压CVD设备时),或保持在几百毫乇到几乇的量级(使用低压CVD设备的情况下)。然后,利用安装在反应炉300外壁周围的电阻线圈330,将反应炉300的温度升高到700-1000℃。在反应炉300的温度达到预定处理温度时,第一阀门400打开,允许腐蚀气通过气体输入管320,从腐蚀气供应源410流到反应炉300内。腐蚀气可以是氨气、氢气或氢化物气,但优选氨气。如果氨气用作腐蚀气,则以80-400sccm的流量,供应氨气10-30分钟。处理温度的下限,700℃,对应于腐蚀气可以分解以便进行腐蚀的最低温度。
如图4所示,引入反应炉300的腐蚀气200沿晶界腐蚀金属催化层130,在基片110上,高密度并且均匀地形成独立隔离的纳米级催化金属颗粒130P。本说明书使用的术语“纳米级”是指几纳米到几百纳米的尺寸。隔离的纳米级催化金属颗粒的尺寸和形状随腐蚀条件而改变。另外,催化金属颗粒的形状影响随后工艺中形成的碳纳米管的形状。
然后,向热CVD设备供应碳源气,以便在基片110上生长碳纳米管(步骤40)。
碳纳米管的生长(步骤40)与纳米级催化金属颗粒的形成(步骤30)在原位进行。具体地说,图3的第一阀门400关闭,切断氨气供应,第二阀门420打开,通过气体输入管320,从气体供应源430向反应炉300供应碳源气。反应炉300的温度保持与形成纳米级隔离的催化金属颗粒130P时相同,即,为700-1000℃。碳源气以20-200sccm的流量供应10-60分钟。另外,用具有1-3个碳原子的碳氢化合物作碳源气。优选乙炔、乙烯、乙烷、丙烯、丙烷或甲烷气作碳源气。处理温度的下限,即700℃,对应于碳源气能充分热解的最低温度。
为控制碳纳米管的生长速度和时间,通过打开第三阀门440,可以与碳源气一起,从携带和/或稀释气供应源450,向反应炉300供应携带气(惰性气体,例如,氢或氩)和/或稀释气体(氢化物气体)。
通过以预定比例,与碳源气一起供应腐蚀气(氨气、氢气或氢化物气),还可以控制基片上合成的碳纳米管的密度和生长图形。较好以2∶1-3∶1的体积比供应碳源气和腐蚀气。
如图5所示,供应到反应炉300中的碳源气热解,从而生长从纳米级催化金属颗粒130P突出的碳纳米管。
图6A-6C是基本生长模式的示意图。下面结合图6A-6C介绍该生长机理。首先,如图6A所示,供应到热CVD设备的反应炉300中的碳源气(例如,乙炔气(C2H2))汽相热解成碳单元(C=C或C)或自由氢(H2)。碳单元吸附到催化金属颗粒130P的表面上,并扩散到催化金属颗粒130P中。在催化金属颗粒130P被溶解的碳单元过饱和时,碳纳米管150开始生长。随着碳单元向催化金属颗粒130P侵入的继续,在催化金属颗粒130P的催化作用下,碳纳米管150象竹子一样生长,如图6C所示。如果催化金属颗粒130P具有圆头或钝头,碳纳米管150生长为具有圆头或钝头。尽管图中未示出,但如果纳米级金属催化颗粒130P具有尖头,则碳纳米管生长为具有尖头。
尽管结合卧式热(CVD)设备介绍了第一实施方案,但应理解,也可以使用立式、直线型或传送带型CVD设备。
第一实施方案的合成方法可以形成直径为几纳米到几百纳米例如1-400nm、长度为几微米到几百微米例如0.5-300微米的碳纳米管。
碳纳米管的合成完成后,任选可以对碳纳米管150进行原位净化(步骤60)。在原位去掉存在于所生长的碳纳米管150表面上作为碳纳米管生长(步骤40)一部分的碳块或碳颗粒。
具体说,图3的第二阀门420关闭,切断碳源气的供应,第四阀门460打开,通过气体输入管320,从净化气供应源470向反应炉300供应净化气。氨气、氢气、氧气或这些气体的混合气可用作净化气。在选择氨气或氢气作净化气时,可以从腐蚀气供应源410或携带气和/或稀释气供应源450供应净化气,而不需要净化气供应源470。
净化工艺期间,反应炉300的温度保持在500-1000℃,以40-200sccm的流量,向反应炉300供应净化气10-30分钟。
氨气或氢气热分解产生的氢离子(H+)去除不必要的碳块或碳颗粒。在用氧气作净化气体时,氧气热分解衍生的氧离子(O2-)燃烧,并去除碳块或碳颗粒。净化的结果是,从碳纳米管150的表面上完全去除了碳块、碳颗粒等,形成净化的碳纳米管。
优选地,在净化(步骤60)前,以200-500sccm的流量,向反应炉300供应惰性气体,如图7所示,通过排气孔340,排出反应炉300中的残余的碳源气(图1中的步骤50)。优选用氩气作惰性气体。这样做,可以精确控制所生长的碳纳米管的长度,并可以防止碳纳米管合成后残余碳源气造成的不希望的反应。
还优选在净化(步骤60)后,以200-500sccm的流量,向反应炉300供应惰性气体,以便通过排气孔340,排出反应炉300中的残余净化气(图1中的步骤70)。排出净化气期间,优选是降低反应炉300的温度。净化气的排出(步骤70)可以防止反应炉300的温度降低时,净化气对碳纳米管150的局部损坏。
根据合成方法的第一实施方案,适用于生长碳纳米管的纳米级催化金属颗粒以高密度彼此隔离,而不聚集,所以在合成碳纳米管时,不会产生非晶碳块。所以,可以在基片上垂直列高纯碳纳米管。
通过腐蚀形成于基片上的金属催化层,在基片上均匀且高密度地形成隔离的纳米级催化金属颗粒。于是,在采用大尺寸基片时,无论基片上的位置如何,碳纳米管都可在垂直方向均匀致密地在大基片上生长。
另外,由于通过改变例如氨气等腐蚀气的流量、腐蚀温度和时间等腐蚀条件,可以控制催化金属颗粒的密度和尺寸,所以,容易控制碳纳米管的密度和直径。
本发明第一实施方案的优点是,通过改变例如流量等碳源气的流动条件、反应温度和时间,可以容易控制碳纳米管的长度。
此外,采用热CVD设备,可以进行批量合成,即,可以同时在设备中装入大量基片,进行碳纳米管的合成,所以提高了产量。
形成催化金属颗粒和利用碳源气形成碳纳米管的可在相同的温度范围内原位进行。另外,碳纳米管的净化可作为合成过程的一部分原位进行。于是,与每步工艺需要不同处理室的其它合成方法相比,可以减少室到室间的传递需要的时间和每个室升高到合适温度需要的时间。另外,净化工艺简单。所以,具有可以将净化碳纳米管的产率提高到最高水平的优点。
实施方案2
与第一实施方案的不同在于,第二实施方案中,通过等离子腐蚀而不是通过利用热分解气体的腐蚀进行纳米级催化金属颗粒的形成(步骤30)。等离子腐蚀的优点在于,腐蚀可以在低温下进行,容易控制反应。
等离子腐蚀可以在等离子腐蚀设备中单独进行,或可以在与用于随后形成碳纳米管的热CVD设备组合的等离子腐蚀设备中进行。组合型***可以是多室***,其中等离子腐蚀设备和热CVD设备组装在一个组中,或远距离等离子***和热CVD设备组合在一起。优选组合型***,可以减少基片传递所耗用的时间,防止基片暴露于空气中被沾污。
对于独立的等离子腐蚀设备来说,通过以30-300sccm的流量,向反应室供应氨气、氢气或氢化物气体,在频率为13.6MHz、气压为0.1-10乇、功率为50-200瓦的处理条件下,产生等离子体。然后,在350-600℃,以与第一实施方案相同的方式,用等离子体腐蚀形成于基片上的金属催化层5-30分钟,形成隔离的纳米级催化金属颗粒。
对于包括远距离等离子设备和化学CVD***的组合型***来说,施加13.6MHz的频率,并以30-300sccm的流量,向远距离等离子设备供应氨气、氢气或氢化物气体,产生等离子体,然后,将产生的等离子体供应到化学CVD设备中,从而形成隔离的纳米级催化金属颗粒。这里,在350-600℃,进行5-30分钟等离子腐蚀。
最优选的是,等离子体由氨气产生。
然后,与第一实施方案一样,形成碳纳米管。
实施方案3
第三实施方案与前述的第一和第二实施方案的不同在于,通过湿法腐蚀而非干法腐蚀形成隔离的纳米级催化金属颗粒。具体说,将具有催化层的基片浸入例如氢氟酸系列腐蚀剂(用去离子水稀释的HF溶液,或HF与NH4F的混合溶液)的腐蚀剂1-5分钟,形成隔离的纳米级催化金属颗粒。该湿法腐蚀技术的优点在于,可以在低温下进行腐蚀。
然后,与第一实施方案一样,形成碳纳米管。
实施方案4
第四实施方案是第一和第三实施方案的结合。首先,象第三实施方案一样,进行湿法腐蚀,然后,象第一实施方案一样,用气体进行干法腐蚀。具体说,在腐蚀剂(用去离子水稀释的HF溶液)中腐蚀具有金属催化层的基片1-5分钟,并干燥。然后,象第一实施方案一样,将基片装入热CVD设备,以60-300sccm的流量,向设备引入氨气作腐蚀气,时间为5-20分钟,在基片上形成隔离的纳米级催化金属颗粒。
然后,象第一实施方案一样,形成碳纳米管。
实施方案5
与第一实施方案的不同在于,利用光刻技术而非通过用热分解气体的腐蚀,形成纳米级催化金属颗粒(步骤30)。
具体地说,如图8A所示,用光刻胶涂敷金属催化层130,并进行曝光和显影处理,形成例如具有几纳米到几百纳米尺寸的纳米级光刻胶图形PR。
然后,用光刻胶图形PR作腐蚀掩模,腐蚀金属催化层130,形成纳米级催化金属颗粒130P,如图8B所示。然后,象第一实施方案一样,由催化金属颗粒130P形成碳纳米管150,如图8C所示。
本实施方案中,利用光刻法形成催化金属颗粒,通过控制光刻胶图形的尺寸和密度,容易控制催化金属颗粒的尺寸和密度。于是,可以任意控制碳纳米管的直径和密度。
以下将利用以下各实例详细介绍本发明。以下的各实例仅是为了说明的目的,并不想限制本发明的范围。
(实例1)
在尺寸为2cm×3cm、厚为1500埃的硅基片上,形成氧化硅膜,并利用热淀积,在氧化硅膜上形成厚100nm的铁(Fe)膜。将具有Fe膜的基片装入热CVD设备。然后,使CVD设备的炉压力保持在760乇,炉温升高到950℃。然后,以100sccm的流量,向炉内引入氨气,时间为20分钟,形成隔离的铁颗粒。在保持温度为950℃的同时,以40sccm的流量,供应乙炔气,时间为10分钟,由每个铁颗粒生长碳纳米管。扫描电子显微镜(SEM)观察发现,碳纳米管垂直且均匀地生长于基片上。透射电子显微镜(TEM)的测量结果是,所得碳纳米管的直径为约80nm,长度为约120微米。
(实例2)
为了合成碳纳米管,除用镍(Ni)膜代替Fe膜作金属催化层外,采用与实例1相同的工艺。SEM观察发现,碳纳米管垂直且均匀生长于基片上。TEM的测量结果是,所得碳纳米管的直径为约50nm,长度为约80微米。
(实例3)
为了合成碳纳米管,除用钴(Co)膜代替Fe膜作金属催化层外,采用与实例1相同的工艺。SEM观察发现,碳纳米管垂直且均匀生长于基片上。TEM的测量结果是,所得碳纳米管的直径为约70nm,长度为约30微米。
(实例4)
为了合成碳纳米管,除用Co-Ni合金膜代替单层Fe膜作金属催化层外,采用与实例1相同的工艺。SEM观察发现,碳纳米管垂直且均匀生长于基片上。TEM的测量结果是,所得碳纳米管的直径为约90nm,长度为约100微米。
(实例5)
为了合成碳纳米管,除用Co-Fe合金膜代替Co-Ni合金膜作金属催化层外,采用与实例4相同的工艺。SEM观察发现,碳纳米管垂直且均匀生长于基片上。TEM的测量结果是,所得碳纳米管的直径为约90nm,长度为约80微米。
(实例6)
为了合成碳纳米管,除用Ni-Fe合金膜代替Co-Ni合金膜作金属催化层外,采用与实例4相同的工艺。SEM观察发现,碳纳米管垂直且均匀生长于基片上。TEM的测量结果是,所得碳纳米管的直径为约80nm,长度为约80微米。
(实例7)
在大小为2cm×3cm、厚为1500埃的硅基片上,形成氧化硅膜,并利用溅射,在氧化硅膜上形成厚100nm的镍(Ni)膜。具有Ni膜的基片装入等离子腐蚀设备。使等离子腐蚀设备的压力设置在1.5乇,设备频率设定为13.6MHz。将等离子腐蚀设备的温度升高到550℃后,以200sccm的流量,向设备供应氨气,产生等离子体。用等离子体腐蚀形成于基片上的Ni膜,时间为15分钟。用等离子体腐蚀后,从等离子腐蚀设备中取出基片,并装入热CVD设备。反应炉的压力保持在766乇,炉温升高到950℃。然后,以40sccm的流量,向反应炉供应乙炔气,时间为10分钟,由形成于基片上的隔离的Ni颗粒生长碳纳米管。SEM观察发现,碳纳米管垂直且均匀地生长于基片上。TEM测量结果是,所得碳纳米管的直径为约60nm,长度为约50微米。
(实例8)
在大小为2cm×3cm、厚为1500埃的硅基片上,形成氧化硅膜,并利用热淀积,在氧化硅膜上形成厚100nm的Co-Ni合金膜。将具有Co-Ni合金膜的基片浸入HF溶液,时间为140秒,进行腐蚀,并干燥。然后,将所得基片装入化学CVD设备的反应炉内,反应炉的压力升高到760乇,温度升高到950℃。然后,以80sccm的流量,向反应炉供应氨气,时间为10分钟,形成隔离的Co-Ni合金颗粒。在保持温度为950℃的同时,以40sccm的流量,向反应炉供应乙炔气,时间为10分钟,由每个Co-Ni合金颗粒生长碳纳米管。SEM观察发现,碳纳米管垂直且均匀地生长于基片上。TEM测量结果是,所得碳纳米管的直径为约100nm,长度为约100微米。
在根据本发明的碳纳米管合成方法中,可以形成彼此隔离而非聚集的高密度催化金属颗粒,所以可以在基片上垂直排列高纯碳纳米管。另外,通过均匀腐蚀金属催化层,可以得到隔离的纳米级催化金属颗粒,使得无论在基片上的位置如何,碳纳米管都可以均匀分布于大尺寸基片上。此外,通过调节腐蚀气和碳源气的流量及处理温度和时间,容易改变碳纳米管的密度、直径和长度。使用热CVD设备的本发明碳纳米管合成方法可用于批量合成,即同时在数个基片上生长碳纳米管。所以,可以在大尺寸基片上高纯、高产率地合成垂直排列的碳纳米管。另外,容易作为合成工艺的一部分在原位净化碳纳米管,所以具有最高合成效率。
尽管以上结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应理解,在形式上和细节上,可以对本发明做出各种改变,而不会脱离如所附权利要求所限定的本发明的精神和范围。

Claims (14)

1.一种合成碳纳米管的方法,包括:
在基片上形成金属催化层;
腐蚀金属催化层,形成隔离的纳米级催化金属颗粒;以及
利用热化学汽相淀积(CVD),由每个隔离的纳米级催化金属颗粒生长碳纳米管,其中碳源气供应到热CVD设备中,碳纳米管垂直排列于基片上。
2.根据权利要求1的方法,其中金属催化层由钴、镍、铁或它们的合金构成。
3.根据权利要求1的方法,其中利用气体腐蚀法形成隔离的纳米级催化金属颗粒,该方法中,选自氨气、氢气和氢化物气的一种腐蚀气热分解,用于腐蚀。
4.根据权利要求1的方法,其中腐蚀气是氨气,在温度为700-1000℃、同时以80-400sccm的流量供应氨气10-30分钟的条件下进行气体腐蚀。
5.根据权利要求1的方法,其中在温度为700-1000℃、同时以20-200sccm的流量供应碳源气10-60分钟的条件下形成碳纳米管。
6.根据权利要求3的方法,其中在同一热CVD设备中,原位形成催化金属颗粒和形成碳纳米管。
7.根据权利要求1的方法,其中利用等离子腐蚀法形成隔离的纳米级催化金属颗粒,其中采用选自氨气、氢气和氢化物气的一种气体,产生等离子体,用于腐蚀。
8.根据权利要求1的方法,其中通过使用氢氟酸系列腐蚀剂的湿法腐蚀法,形成隔离的纳米级催化金属颗粒。
9.根据权利要求1的方法,其中通过使用光刻胶图形作腐蚀掩模的光刻法形成隔离的纳米级催化金属颗粒。
10.根据权利要求1的方法,其中在形成碳纳米管时,与碳源气一起,向热CVD设备供应选自氨气、氢气和氢化物气体中的一种气体。
11.根据权利要求1的方法,在形成金属催化层前,还包括形成绝缘层,以防止基片与金属催化层间的反应。
12.根据权利要求1的方法,在形成碳纳米管后,还包括利用惰性气体,排出热CVD设备中的碳源气。
13.根据权利要求1的方法,在形成碳纳米管后,还包括在相同热CVD设备中,原位净化碳纳米管。
14.根据权利要求13的方法,其中用选自氨气、氢气、氧气和这些气体的混合气中的一种净化气,原位净化碳纳米管。
15.根据权利要求14的方法,在原位净化碳纳米管后,还包括利用惰性气体,排出热CVD设备中的净化气。
CNB001078054A 1999-06-11 2000-06-12 利用热化学汽相淀积法在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法 Expired - Fee Related CN1189390C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR21855/1999 1999-06-11
KR19990021855 1999-06-11
KR22419/1999 1999-06-15
KR19990022419 1999-06-15
KR30352/2000 2000-06-02
KR10-2000-0030352A KR100372332B1 (ko) 1999-06-11 2000-06-02 열 화학기상증착법에 의한 대면적 기판위에 수직 정렬된고순도 탄소나노튜브의 대량 합성 방법

Publications (2)

Publication Number Publication Date
CN1277145A true CN1277145A (zh) 2000-12-20
CN1189390C CN1189390C (zh) 2005-02-16

Family

ID=27349988

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001078054A Expired - Fee Related CN1189390C (zh) 1999-06-11 2000-06-12 利用热化学汽相淀积法在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法

Country Status (4)

Country Link
US (1) US6350488B1 (zh)
EP (1) EP1059266A3 (zh)
JP (1) JP3442032B2 (zh)
CN (1) CN1189390C (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094713A1 (fr) * 2001-05-25 2002-11-28 Tsinghua University Production de nanotubes de carbone a grande echelle dans un reacteur a lit fluidise a base de nano-agglomerats
US7160532B2 (en) 2003-03-19 2007-01-09 Tsinghua University Carbon nanotube array and method for forming same
CN1325372C (zh) * 2001-07-27 2007-07-11 萨里大学 碳纳米管的制备
CN1332750C (zh) * 2005-07-18 2007-08-22 华东理工大学 一种纳米碳纤维/石墨毡复合催化材料及其制备方法
US7288321B2 (en) 2002-11-21 2007-10-30 Tsinghua University Carbon nanotube array and method for forming same
CN100369205C (zh) * 2003-05-01 2008-02-13 三星电子株式会社 用碳纳米管形成半导体装置用导电线的方法及半导体装置
CN102135729A (zh) * 2011-03-18 2011-07-27 华中科技大学 一种碳微纳集成结构的制备方法
US8083905B2 (en) 2002-07-29 2011-12-27 Samsung Sdi Co., Ltd. Carbon nanotubes for fuel cells, method for manufacturing the same, and fuel cell using the same
CN102610827A (zh) * 2012-03-28 2012-07-25 长沙星城微晶石墨有限公司 用于制备动力锂离子电池负极材料的导电添加剂及制备方法
WO2013083016A1 (zh) * 2011-12-07 2013-06-13 无锡华润华晶微电子有限公司 低压化学气相淀积装置及其薄膜淀积方法
CN103420355A (zh) * 2012-05-22 2013-12-04 海洋王照明科技股份有限公司 一种固体碳源制备碳纳米壁的方法
CN103420356A (zh) * 2012-05-22 2013-12-04 海洋王照明科技股份有限公司 一种常压制备碳纳米壁的方法
CN103832999A (zh) * 2012-11-27 2014-06-04 海洋王照明科技股份有限公司 碳纳米壁及由其制备石墨烯纳米带的方法
CN103879992A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103879994A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103879995A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 碳纳米壁粉末的制备方法及石墨烯纳米带的制备方法
CN103935980A (zh) * 2013-01-18 2014-07-23 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103935975A (zh) * 2013-01-18 2014-07-23 海洋王照明科技股份有限公司 碳纳米壁及石墨烯纳米带的制备方法
CN105734525A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种化学气相沉积法制备石墨烯薄膜的方法
CN105984862A (zh) * 2015-02-16 2016-10-05 北京大学深圳研究生院 用于生长碳纳米管的方法

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2324405C (en) * 1998-03-24 2009-09-15 Kia Silverbrook Method for construction of nanotube matrix material
US7055739B1 (en) 1999-05-25 2006-06-06 Silverbrook Research Pty Ltd Identity-coded surface with reference points
EP1061554A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
US20020036452A1 (en) * 1999-12-21 2002-03-28 Masakazu Muroyama Electron emission device, cold cathode field emission device and method for the production thereof, and cold cathode field emission display and method for the production thereof
RU2194329C2 (ru) * 2000-02-25 2002-12-10 ООО "Высокие технологии" Способ получения адресуемого автоэмиссионного катода и дисплейной структуры на его основе
US7847207B1 (en) 2000-03-17 2010-12-07 University Of Central Florida Research Foundation, Inc. Method and system to attach carbon nanotube probe to scanning probe microscopy tips
US6582673B1 (en) 2000-03-17 2003-06-24 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
US7879308B1 (en) 2000-03-17 2011-02-01 University Of Central Florida Research Foundation, Inc. Multiwall carbon nanotube field emitter fabricated by focused ion beam technique
WO2001085612A2 (en) * 2000-05-11 2001-11-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes
US20020084502A1 (en) * 2000-12-29 2002-07-04 Jin Jang Carbon nanotip and fabricating method thereof
ATE275530T1 (de) * 2001-02-26 2004-09-15 Nanolight Internat Ltd Verfahren zur bildung einer kohlenstoffnanoröhren enthaltenden beschichtung auf einem substrat
JP3912583B2 (ja) * 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
AT409637B (de) * 2001-03-16 2002-09-25 Electrovac Ein ccvd-verfahren zur herstellung von röhrenförmigen kohlenstoff-nanofasern
DE10113549C2 (de) * 2001-03-20 2003-02-06 Infineon Technologies Ag Verfahren zum Wachsen von Nanoröhren
JP2003016954A (ja) * 2001-04-25 2003-01-17 Sony Corp 電子放出装置及びその製造方法、冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
DE10123876A1 (de) * 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
CA2450778A1 (en) 2001-06-14 2003-10-16 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
US6911767B2 (en) 2001-06-14 2005-06-28 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US7341498B2 (en) 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
JP3713561B2 (ja) * 2001-06-26 2005-11-09 独立行政法人科学技術振興機構 有機液体による高配向整列カーボンナノチューブの合成方法及びその合成装置
DE10132787A1 (de) * 2001-07-06 2003-01-30 Infineon Technologies Ag Katalysatormaterial, Kohlenstoffnanoröhren-Anordnung und Verfahren zum Herstellen einer Kohlenstoffnanoröhren-Anordnung
US6896864B2 (en) 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
US20030012951A1 (en) * 2001-07-10 2003-01-16 Clarke Mark S.F. Analysis of isolated and purified single walled carbon nanotube structures
US6878361B2 (en) * 2001-07-10 2005-04-12 Battelle Memorial Institute Production of stable aqueous dispersions of carbon nanotubes
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6596187B2 (en) * 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
JP3710436B2 (ja) * 2001-09-10 2005-10-26 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
FR2832995B1 (fr) 2001-12-04 2004-02-27 Thales Sa Procede de croissance catalytique de nanotubes ou nanofibres comprenant une barriere de diffusion de type alliage nisi
US20030108477A1 (en) * 2001-12-10 2003-06-12 Keller Teddy M. Bulk synthesis of carbon nanotubes from metallic and ethynyl compounds
GB2384008B (en) 2001-12-12 2005-07-20 Electrovac Method of synthesising carbon nano tubes
DE10161312A1 (de) 2001-12-13 2003-07-10 Infineon Technologies Ag Verfahren zum Herstellen einer Schicht-Anordnung und Schicht-Anordnung
US7273636B2 (en) * 2001-12-17 2007-09-25 Northwestern University Patterning of solid state features by direct write nanolithographic printing
SE0104452D0 (sv) * 2001-12-28 2001-12-28 Forskarpatent I Vaest Ab Metod för framställning av nanostrukturer in-situ, och in-situ framställda nanostrukturer
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US7176505B2 (en) * 2001-12-28 2007-02-13 Nantero, Inc. Electromechanical three-trace junction devices
US7115305B2 (en) * 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
WO2003072679A1 (en) * 2002-02-22 2003-09-04 Carbon Nanotechnologies, Inc. Molecular-level thermal-management materials comprising single-wall carbon nanotubes
US7378075B2 (en) * 2002-03-25 2008-05-27 Mitsubishi Gas Chemical Company, Inc. Aligned carbon nanotube films and a process for producing them
US6774333B2 (en) * 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes
CA2584508A1 (en) * 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
US7311889B2 (en) * 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
AU2003301728A1 (en) * 2002-06-21 2004-05-25 Nanomix. Inc. Dispersed growth of nanotubes on a substrate
US20040053440A1 (en) * 2002-08-21 2004-03-18 First Nano, Inc. Method and apparatus of carbon nanotube fabrication
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
US7466069B2 (en) * 2002-10-29 2008-12-16 President And Fellows Of Harvard College Carbon nanotube device fabrication
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
WO2004046030A1 (en) * 2002-11-15 2004-06-03 Mgill University Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch
JP4514130B2 (ja) * 2002-12-20 2010-07-28 株式会社アルネアラボラトリ 光パルスレーザ
AU2003205098A1 (en) * 2003-01-13 2004-08-13 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6764874B1 (en) * 2003-01-30 2004-07-20 Motorola, Inc. Method for chemical vapor deposition of single walled carbon nanotubes
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
FR2851737B1 (fr) * 2003-02-28 2006-05-26 Commissariat Energie Atomique Catalyseur structure notamment pour la realisation d'ecrans plats a emission de champ
TW590985B (en) * 2003-03-06 2004-06-11 Univ Nat Chiao Tung Selective area growth of carbon nanotubes by metal imprint method
JP4520983B2 (ja) * 2003-03-07 2010-08-11 セルドン テクノロジーズ,インコーポレイテッド ナノ物質による流体の浄化
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
US7531158B2 (en) 2003-03-20 2009-05-12 Cheol Jin Lee Vapor phase synthesis of double-walled carbon nanotubes
KR100893437B1 (ko) * 2003-03-24 2009-04-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 카본 나노 구조물의 고효율 합성 방법, 장치 및 카본 나노 구조물
CA2526946A1 (en) * 2003-05-14 2005-04-07 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7833580B2 (en) * 2003-07-04 2010-11-16 Samsung Electronics Co., Ltd. Method of forming a carbon nano-material layer using a cyclic deposition technique
AU2004261558B2 (en) * 2003-07-09 2010-04-22 Hyperion Catalysis International, Inc. Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks
JP3866692B2 (ja) * 2003-07-10 2007-01-10 株式会社ノリタケカンパニーリミテド カーボンナノチューブの製造方法
US7201627B2 (en) * 2003-07-31 2007-04-10 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing ultrafine carbon fiber and field emission element
US7416583B2 (en) * 2003-10-17 2008-08-26 General Electric Company Appliance having a container including a nanostructured material for hydrogen storage
US7628974B2 (en) * 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
TW200517042A (en) 2003-11-04 2005-05-16 Hon Hai Prec Ind Co Ltd Heat sink
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US20050221016A1 (en) * 2003-12-31 2005-10-06 Glatkowski Paul J Methods for modifying carbon nanotube structures to enhance coating optical and electronic properties of transparent conductive coatings
CN100395857C (zh) * 2004-01-16 2008-06-18 清华大学 一种在玻璃衬底上制备碳纳米管的方法
JP4834957B2 (ja) * 2004-02-27 2011-12-14 住友電気工業株式会社 触媒構造体およびこれを用いたカーボンナノチューブの製造方法
TWI299358B (en) * 2004-03-12 2008-08-01 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US20050207964A1 (en) * 2004-03-22 2005-09-22 Dojin Kim Method for synthesizing carbon nanotubes
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
CN100345472C (zh) * 2004-04-10 2007-10-24 清华大学 一种热界面材料及其制造方法
TWI244159B (en) * 2004-04-16 2005-11-21 Ind Tech Res Inst Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowire
US20050233263A1 (en) * 2004-04-20 2005-10-20 Applied Materials, Inc. Growth of carbon nanotubes at low temperature
US7144563B2 (en) * 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
JP4379247B2 (ja) 2004-04-23 2009-12-09 住友電気工業株式会社 カーボンナノ構造体の製造方法
JP2005314160A (ja) * 2004-04-28 2005-11-10 National Institute For Materials Science 高密度高配向カーボンナノチューブの合成方法
US7169374B2 (en) * 2004-05-12 2007-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Templated growth of carbon nanotubes
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
US7834530B2 (en) * 2004-05-27 2010-11-16 California Institute Of Technology Carbon nanotube high-current-density field emitters
JP4604563B2 (ja) 2004-06-08 2011-01-05 住友電気工業株式会社 カーボンナノ構造体の製造方法
US20060025515A1 (en) * 2004-07-27 2006-02-02 Mainstream Engineering Corp. Nanotube composites and methods for producing
JP4697732B2 (ja) * 2004-07-29 2011-06-08 富士電機リテイルシステムズ株式会社 酸化チタン薄膜の製造方法
WO2006121461A2 (en) * 2004-09-16 2006-11-16 Nantero, Inc. Light emitters using nanotubes and methods of making same
TWI240312B (en) * 2004-09-30 2005-09-21 Univ Nat Cheng Kung Method for rapidly fabricating aligned carbon nanotube under low temperature
US8080289B2 (en) * 2004-09-30 2011-12-20 National Cheng Kung University Method for making an aligned carbon nanotube
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
US20080090183A1 (en) * 2004-10-22 2008-04-17 Lingbo Zhu Aligned Carbon Nanotubes And Method For Construction Thereof
US7719265B2 (en) * 2004-11-17 2010-05-18 Honda Motor Co., Ltd. Methods for determining particle size of metal nanocatalyst for growing carbon nanotubes
KR100647303B1 (ko) * 2004-12-18 2006-11-23 삼성에스디아이 주식회사 전기영동법을 이용한 탄소나노튜브의 수직 정렬방법
TWI245332B (en) * 2004-12-31 2005-12-11 Ind Tech Res Inst Method of carbon nanomaterials purification by ozone
US7713577B2 (en) * 2005-03-01 2010-05-11 Los Alamos National Security, Llc Preparation of graphitic articles
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
CN100337909C (zh) * 2005-03-16 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
CN100376477C (zh) * 2005-03-18 2008-03-26 清华大学 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
CN100344532C (zh) * 2005-03-25 2007-10-24 清华大学 一种碳纳米管阵列的生长装置
CN100337910C (zh) * 2005-03-31 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
EP2348300A3 (en) * 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
CN100404242C (zh) * 2005-04-14 2008-07-23 清华大学 热界面材料及其制造方法
CN100500555C (zh) * 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
US20070084346A1 (en) * 2005-09-30 2007-04-19 Paul Boyle Nanostructures containing carbon nanotubes and methods of their synthesis and use
US20070237681A1 (en) * 2005-09-30 2007-10-11 Paul Boyle Nanostructures containing inorganic nanotubes and methods of their synthesis and use
JP2007099601A (ja) * 2005-10-07 2007-04-19 National Institute For Materials Science ナノカーボン材料の積層基板及びその製造方法
KR100732516B1 (ko) * 2005-12-16 2007-06-27 세메스 주식회사 탄소나노튜브 합성을 위한 장치 및 방법
US7808169B2 (en) * 2006-01-12 2010-10-05 Panasonic Corporation Electron emitting device and electromagnetic wave generating device using the same
WO2008054451A2 (en) * 2006-02-06 2008-05-08 The University Of North Carolina At Chapel Hill Synthesis and processing of rare-earth boride nanowires as electron emitters
WO2007108132A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited カーボンナノチューブの生成方法
US20070258192A1 (en) * 2006-05-05 2007-11-08 Joel Schindall Engineered structure for charge storage and method of making
KR100806129B1 (ko) * 2006-08-02 2008-02-22 삼성전자주식회사 탄소 나노 튜브의 형성 방법
JP5021744B2 (ja) 2006-09-05 2012-09-12 エアバス オペレーションズ リミティド 強化材層の成長による複合材の製造方法及び関連機器
GB0617460D0 (en) * 2006-09-05 2006-10-18 Airbus Uk Ltd Method of manufacturing composite material
US8617650B2 (en) * 2006-09-28 2013-12-31 The Hong Kong University Of Science And Technology Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
CN101164872B (zh) * 2006-10-20 2012-05-09 索尼株式会社 单层碳纳米管的制造方法
TWI434904B (zh) 2006-10-25 2014-04-21 Kuraray Co 透明導電膜、透明電極基板及使用它之液晶配向膜之製法、以及碳奈米管及其製法
US20080135482A1 (en) * 2006-11-27 2008-06-12 Kripal Singh Polyamide nanofiltration membrane useful for the removal of phospholipids
US7794797B2 (en) * 2007-01-30 2010-09-14 Cfd Research Corporation Synthesis of carbon nanotubes by selectively heating catalyst
US20080187685A1 (en) * 2007-02-07 2008-08-07 Atomic Energy Council - Institute Of Nuclear Energy Research Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
DE102007006175A1 (de) * 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
JP5355423B2 (ja) * 2007-02-22 2013-11-27 ダウ コーニング コーポレーション 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品
US7750297B1 (en) 2007-03-09 2010-07-06 University Of Central Florida Research Foundation, Inc. Carbon nanotube collimator fabrication and application
IE20080314A1 (en) * 2007-04-23 2008-12-24 Univ College Cork Nat Univ Ie A thermal interface material
AU2008307486B2 (en) * 2007-10-02 2014-08-14 President And Fellows Of Harvard College Carbon nanotube synthesis for nanopore devices
FR2925039B1 (fr) * 2007-12-14 2013-08-02 Commissariat Energie Atomique Procede de fabrication collective de nanofibres de carbone a la surface de micromotifs elabores a la surface d'un substrat et structure comprenant des nanofibres a la surface de micromotifs
KR100922399B1 (ko) 2008-02-29 2009-10-19 고려대학교 산학협력단 전자방출원, 이를 적용한 전자장치 및 전자방출원의제조방법
US20090244745A1 (en) * 2008-03-28 2009-10-01 Seiko Precision Inc. Optical filter and method for manufacturing optical filter
US20100132771A1 (en) * 2008-10-06 2010-06-03 The Regents Of The University Of California 3D Carbon Nanotubes Membrane as a Solar Energy Absorbing Layer
CN101768427B (zh) * 2009-01-07 2012-06-20 清华大学 热界面材料及其制备方法
GB0914816D0 (en) * 2009-08-25 2009-09-30 Isis Innovation Method of fabrication of aligned nanotube-containing composites
US9469790B2 (en) * 2009-09-29 2016-10-18 The Boeing Company Adhesive compositions comprising electrically insulating-coated carbon-based particles and methods for their use and preparation
US8709538B1 (en) 2009-09-29 2014-04-29 The Boeing Company Substantially aligned boron nitride nano-element arrays and methods for their use and preparation
CN102781828B (zh) * 2010-03-01 2015-09-09 日本瑞翁株式会社 碳纳米管取向集合体的制造方法
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US9309582B2 (en) 2011-09-16 2016-04-12 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9205531B2 (en) 2011-09-16 2015-12-08 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
GB201012098D0 (en) 2010-07-19 2010-09-01 Cambridge Entpr Ltd Method and apparatus for forming nanoparticles
KR101912798B1 (ko) * 2011-01-31 2018-10-30 한화에어로스페이스 주식회사 그래핀 합성장치 및 합성방법
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
CA2838558C (en) 2011-05-24 2022-08-30 Fastcap Systems Corporation Power system for high temperature applications with rechargeable energy storage
WO2012170749A2 (en) 2011-06-07 2012-12-13 Fastcap Systems Corporation Energy storage media for ultracapacitors
JP5307195B2 (ja) * 2011-06-16 2013-10-02 独立行政法人産業技術総合研究所 同位体比率を制御した炭素材料及び識別マーク
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2013009720A2 (en) 2011-07-08 2013-01-17 Fastcap Systems Corporation High temperature energy storage device
US20130028829A1 (en) * 2011-07-28 2013-01-31 Hagopian John G System and method for growth of enhanced adhesion carbon nanotubes on substrates
US9017634B2 (en) * 2011-08-19 2015-04-28 Fastcap Systems Corporation In-line manufacture of carbon nanotubes
US8609189B2 (en) 2011-09-28 2013-12-17 King Abdulaziz University Method of forming carbon nanotubes from carbon-rich fly ash
US9776859B2 (en) 2011-10-20 2017-10-03 Brigham Young University Microscale metallic CNT templated devices and related methods
EP3783192A1 (en) 2011-11-03 2021-02-24 FastCAP SYSTEMS Corporation Production logging instrument
US20130323157A1 (en) * 2012-05-31 2013-12-05 Xuesong Li Apparatus and Methods for the Synthesis of Graphene by Chemical Vapor Deposition
KR101438797B1 (ko) 2013-02-14 2014-09-16 한국과학기술원 금속 촉매 식각 방법을 이용한 수직 나노구조를 포함하는 광학기기 및 그 제조 방법.
CN103117356A (zh) * 2013-02-28 2013-05-22 华北电力大学 一种基于碳纳米管阵列的芯片散热方法
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
EP3084481B8 (en) 2013-12-20 2024-01-03 Fastcap Systems Corporation Electromagnetic telemetry device
CN103990462B (zh) * 2014-05-19 2017-02-01 中国矿业大学 一种镍基催化剂纳米薄膜的制备方法
JP5808468B1 (ja) * 2014-09-01 2015-11-10 ニッタ株式会社 カーボンナノチューブ製造用触媒粒子の保持構造及びその製造方法
KR20240055878A (ko) 2014-10-09 2024-04-29 패스트캡 시스템즈 코포레이션 에너지 저장 디바이스를 위한 나노구조 전극
CN116092839A (zh) 2015-01-27 2023-05-09 快帽***公司 宽温度范围超级电容器
JP2020501367A (ja) 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極
CA3073661A1 (en) 2017-08-22 2019-02-28 Ntherma Corporation Graphene nanoribbons, graphene nanoplatelets and mixtures thereof and methods of synthesis
KR102592871B1 (ko) 2017-08-22 2023-10-20 테르마 코퍼레이션 탄소 나노튜브의 합성을 위한 방법 및 장치
KR102055573B1 (ko) 2018-01-25 2019-12-13 한서대학교 산학협력단 탄소 담체를 이용하는 탄소나노튜브의 제조방법
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US11430711B2 (en) 2019-11-26 2022-08-30 Aegis Technology Inc. Carbon nanotube enhanced silver paste thermal interface material
US11921046B2 (en) 2020-08-31 2024-03-05 Honeywell International Inc. Filter media and system using the same
CN115772038A (zh) * 2022-11-29 2023-03-10 湖北冠毓新材料科技有限公司 一种定向碳纳米管改性的陶瓷材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069712B2 (ja) 1991-08-03 2000-07-24 株式会社サカタ製作所 金属製折版屋根用接続具
US5641466A (en) * 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JPH1140767A (ja) * 1997-07-16 1999-02-12 Sanyo Electric Co Ltd 誘電体素子及びその製造方法
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094713A1 (fr) * 2001-05-25 2002-11-28 Tsinghua University Production de nanotubes de carbone a grande echelle dans un reacteur a lit fluidise a base de nano-agglomerats
US7563427B2 (en) 2001-05-25 2009-07-21 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
CN1325372C (zh) * 2001-07-27 2007-07-11 萨里大学 碳纳米管的制备
US8083905B2 (en) 2002-07-29 2011-12-27 Samsung Sdi Co., Ltd. Carbon nanotubes for fuel cells, method for manufacturing the same, and fuel cell using the same
US7288321B2 (en) 2002-11-21 2007-10-30 Tsinghua University Carbon nanotube array and method for forming same
US7160532B2 (en) 2003-03-19 2007-01-09 Tsinghua University Carbon nanotube array and method for forming same
CN100369205C (zh) * 2003-05-01 2008-02-13 三星电子株式会社 用碳纳米管形成半导体装置用导电线的方法及半导体装置
CN1332750C (zh) * 2005-07-18 2007-08-22 华东理工大学 一种纳米碳纤维/石墨毡复合催化材料及其制备方法
CN102135729A (zh) * 2011-03-18 2011-07-27 华中科技大学 一种碳微纳集成结构的制备方法
CN102135729B (zh) * 2011-03-18 2012-07-04 华中科技大学 一种碳微纳集成结构的制备方法
WO2013083016A1 (zh) * 2011-12-07 2013-06-13 无锡华润华晶微电子有限公司 低压化学气相淀积装置及其薄膜淀积方法
US9478440B2 (en) 2011-12-07 2016-10-25 University Of Utah Research Foundation Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof
CN102610827A (zh) * 2012-03-28 2012-07-25 长沙星城微晶石墨有限公司 用于制备动力锂离子电池负极材料的导电添加剂及制备方法
CN103420355A (zh) * 2012-05-22 2013-12-04 海洋王照明科技股份有限公司 一种固体碳源制备碳纳米壁的方法
CN103420356A (zh) * 2012-05-22 2013-12-04 海洋王照明科技股份有限公司 一种常压制备碳纳米壁的方法
CN103832999A (zh) * 2012-11-27 2014-06-04 海洋王照明科技股份有限公司 碳纳米壁及由其制备石墨烯纳米带的方法
CN103832999B (zh) * 2012-11-27 2015-12-02 海洋王照明科技股份有限公司 碳纳米壁及由其制备石墨烯纳米带的方法
CN103879994B (zh) * 2012-12-20 2016-01-13 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103879995A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 碳纳米壁粉末的制备方法及石墨烯纳米带的制备方法
CN103879992A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103879994A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103879995B (zh) * 2012-12-20 2016-01-13 海洋王照明科技股份有限公司 碳纳米壁粉末的制备方法及石墨烯纳米带的制备方法
CN103879992B (zh) * 2012-12-20 2016-01-13 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103935975A (zh) * 2013-01-18 2014-07-23 海洋王照明科技股份有限公司 碳纳米壁及石墨烯纳米带的制备方法
CN103935980B (zh) * 2013-01-18 2016-02-10 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN103935980A (zh) * 2013-01-18 2014-07-23 海洋王照明科技股份有限公司 石墨烯纳米带的制备方法
CN105734525A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种化学气相沉积法制备石墨烯薄膜的方法
CN105984862A (zh) * 2015-02-16 2016-10-05 北京大学深圳研究生院 用于生长碳纳米管的方法
CN105984862B (zh) * 2015-02-16 2018-08-28 北京大学深圳研究生院 用于生长碳纳米管的方法

Also Published As

Publication number Publication date
JP3442032B2 (ja) 2003-09-02
US6350488B1 (en) 2002-02-26
JP2001020071A (ja) 2001-01-23
EP1059266A3 (en) 2000-12-20
EP1059266A2 (en) 2000-12-13
CN1189390C (zh) 2005-02-16

Similar Documents

Publication Publication Date Title
CN1189390C (zh) 利用热化学汽相淀积法在大尺寸基片上大规模合成垂直排列的高纯碳纳米管的方法
KR100376197B1 (ko) 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
US9073045B2 (en) Carbon nano-tube manfuacturing method and carbon nano-tube manufacturing apparatus
US7625544B2 (en) Method for manufacturing carbon nanotubes
US9334167B2 (en) Nanostructure production methods and apparatus
KR100668352B1 (ko) 질소 도핑된 단일벽 탄소나노튜브의 제조방법
US20060263524A1 (en) Method for making carbon nanotube array
JP2004250306A (ja) 炭素ナノチューブのマトリックスの成長方法
JP2001081564A (ja) 化学気相蒸着装置およびこれを用いたカーボンナノチューブ合成方法
US20060263274A1 (en) Apparatus for making carbon nanotube array
Zhang et al. Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition
WO2003082738A1 (fr) Procédé permettant de préparer un nanotube de carbone monocouche
US7531158B2 (en) Vapor phase synthesis of double-walled carbon nanotubes
KR20070071177A (ko) 유리 위에의 단일벽 탄소나노튜브 제조방법
US20070281481A1 (en) Controlled growth of gallium nitride nanostructures
CN1129168C (zh) 利用生成催化剂颗粒的碳纳米管薄膜阴极的制备方法
KR100596676B1 (ko) 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법
KR100382878B1 (ko) 고순도 탄소나노튜브의 합성 방법
KR100372332B1 (ko) 열 화학기상증착법에 의한 대면적 기판위에 수직 정렬된고순도 탄소나노튜브의 대량 합성 방법
JP2007223820A (ja) カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器
Bistamam et al. An overview of selected catalytic chemical vapor deposition parameter for aligned carbon nanotube growth
KR101158056B1 (ko) 촉매 화학기상증착법에 의한 탄소나노튜브 합성방법 및 그 장치
Zhang et al. Synthesis and Cathodoluminescence of β-Ga2O3 Nanowires with Holes
Azira et al. Modified fluidised floating catalyst thermal CVD method for preparing carbon nanotubes using Fe/Co/Al
Apresyan et al. Reactor with activated hydrogen for carbon nanotube synthesis

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050216

Termination date: 20130612