CN100500555C - 碳纳米管阵列结构及其制备方法 - Google Patents

碳纳米管阵列结构及其制备方法 Download PDF

Info

Publication number
CN100500555C
CN100500555C CNB2005100342495A CN200510034249A CN100500555C CN 100500555 C CN100500555 C CN 100500555C CN B2005100342495 A CNB2005100342495 A CN B2005100342495A CN 200510034249 A CN200510034249 A CN 200510034249A CN 100500555 C CN100500555 C CN 100500555C
Authority
CN
China
Prior art keywords
carbon
source gas
array structure
carbon nano
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005100342495A
Other languages
English (en)
Other versions
CN1847144A (zh
Inventor
姜开利
刘锴
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2005100342495A priority Critical patent/CN100500555C/zh
Priority to US11/404,523 priority patent/US7615205B2/en
Publication of CN1847144A publication Critical patent/CN1847144A/zh
Priority to US12/317,148 priority patent/US7749477B2/en
Application granted granted Critical
Publication of CN100500555C publication Critical patent/CN100500555C/zh
Priority to US12/769,816 priority patent/US7824648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Abstract

本发明涉及一种碳纳米管阵列结构及其制备方法。该碳纳米管阵列结构由相互平行的碳纳米管组成,其特征在于碳纳米管上形成有标记线。该碳纳米管阵列结构的制备方法包括下列步骤:提供一基底;在基底的一表面上形成一催化剂层;将基底加热至一定温度;间歇性供应碳源气,以生长碳纳米管。该方法生长的碳纳米管时,每一次中断碳源气的供应,都会在碳纳米管表面形成一标记线,此标记线可用作产品防伪标记,也可用于测量碳纳米管的生长速度等。

Description

碳纳米管阵列结构及其制备方法
【技术领域】
本发明涉及碳纳米管阵列结构及该碳纳米管阵列结构的制备方法。
【背景技术】
碳纳米管是一种管状石墨,其由日本研究人员Iijima于1991年发现,请参见"Helical microtubules of graphitic carbon",S Iijima,Nature,vol.354,p56(1991)。由于其具有极优异的导电、单向导热等性能,其作为一种新材料,受到人们的普遍关注,其生长方法也一直是科学研究的重点。
最初制备碳纳米管的方法有电弧放电法,该方法制备的碳纳米管主要是杂乱无章的状态,含有石墨等杂质,因此应用起来较困难,难以发挥碳纳米管优异的单向导电导热等性能。
化学气相沉积法能生长出碳纳米管阵列,请参阅"Self-Oriented RegularArrays of Carbon Nanotubes and Their Field Emission Properties",ShoushanFan,vol.283,p512-514(1999)。碳纳米管阵列中每一根碳纳米管或碳纳米管束基本相互平行,排列整齐,方向性好,便于实践应用,特别是对制备含有碳纳米管的微电子器件、热敏元件等带来开阔的前景。
但是,对于碳纳米管的生长机理,业界一直没有得到比较理想的模型。如果掌握了碳纳米管的生长机理,人们则可以更好地控制其生长过程,制备出各种形状、结构的碳纳米管器件,为碳纳米管的应用提供更广阔的前景。遗憾的是,目前,在碳纳米管阵列形成过程中,人们不能判断碳纳米管什么时候开始生长,也不能判断碳纳米管是否在某一时间点上停止了生长,甚至连碳纳米管的生长点位于碳纳米管尖端还是碳纳米管根部都有争论,碳纳米管生长速度的测定也一直没有找到比较成功的手段。这些基础问题得不到解决,对碳纳米管阵列结构的生长过程控制则很困难,因此含有碳纳米管的电子器件等的制备工艺停滞不前。
【发明内容】
以下将以实施例说明一种有利于研究碳纳米管生长点位置以及生长速度的碳纳米管阵列结构及其制备方法。
该碳纳米管阵列结构包括多个同方向排列的碳纳米管,其中碳纳米管上形成有标记线。
该碳纳米管阵列结构的制备方法包括下列步骤:提供一基底;在基底的一表面上形成一催化剂层;将基底加热至一定温度;间歇性供应碳源气,以生长碳纳米管。
间歇性供应碳源气是指供应碳源气一预定时间后,中断碳源气的供应,再经另一预定时间后,重新供应碳源气,可重复此步骤多次。
每次连续供应碳源气的持续时间为1~5分钟。
每一次中断碳源气的供应的持续时间大约为10~30秒。
与现有技术相比,本实施例生长碳纳米管时,每一次中断碳源气的供应,然后继续供应碳源气使碳纳米管继续生长,都会在碳纳米管表面形成一标记线。设置两次中断之间连续供应碳源气的时间,并测量该两次中断所形成的两条标记线之间的距离,可以测量碳纳米在此段时间内的平均生长速度。设置每次连续供应碳源气的时间为不同值,由于同一条件下,时间越长,碳纳米管生长的高度不同,碳纳米管相邻两条标记线之间的距离就会不同,从而根据碳纳米管标记线之间的距离对应时间设置规律,可判断最后生长出来的碳纳米管是靠近碳纳米管尖端还是根部,从而判断碳纳米管的生长点在根部还是顶部。因此,此标记线的形成为研究碳纳米管生长机理奠定了基础。所提供的碳纳米管阵列结构可应用作场发射显示装置的阴极电子发射体,也可用于热界面材料中,此标记线可用作产品防伪标记。
【附图说明】
图1是本发明实施例碳纳米管阵列结构示意图;
图2是上述碳纳米管阵列结构在扫描电子显微镜(Scanning ElectronMicroscope,SEM)下的照片;
图3是本发明碳纳米管阵列结构制备中使用的装置示意图;
图4是本发明第一实施例测量碳纳米管生长速度的方法示意图;
图5是本发明第二实施例测量碳纳米管生长速度的方法示意图。
【具体实施方式】
以下结合图示说明本发明碳纳米管阵列结构及其制备方法的实施例:
请参阅图1,一碳纳米管阵列结构10的示意图,该碳纳米管阵列10形成于一基底12上,该碳纳米管阵列10由多根彼此基本平行且垂直于基底12的碳纳米管14组成,碳纳米管14上形成有标记线16。请参阅图2,一碳纳米管阵列结构在100微米比例尺下的SEM照片,其标记线16非常清晰。
该碳纳米管阵列10的制备方法如下:
提供一基底;该基底可以为多孔硅基底或二氧化硅基底,耐高温并与后续步骤中催化剂不发生化学反应或原子渗透等现象的材料都可以,要求其表面清洁,不破坏后续反应条件。优选的,硅基底表面形成一保护层,如氧化硅薄层,厚度一般为100~1000纳米,本实施方式采用硅晶片作为基底,其表面形成一厚度为400~800纳米的氧化硅层。
在基底的一表面上形成一催化剂层;通过蒸镀、溅镀或化学沉积的方法,在基底表面形成具有一定厚度的薄层,一般为过渡金属Fe、Co、Ni或Fe、Co、Ni的氧化物、或者含有Fe、Co、Ni的合金,沉积厚度1~10nm,优选为3~5nm。优选地,可以将催化剂层在200℃~400℃温度下退火,以利于催化剂纳米颗粒的形成,从而提高催化活性及均匀性。另外,该催化剂层可以为一整体,也可以将该催化剂层分割成多个催化剂区块,每一区块之间具有一定间距,这样有利于后续步骤中碳源气均匀渗入催化剂与碳纳米管之间,从而生成均匀的碳纳米管阵列。
本实施方式采用化学沉积方法在硅晶片上沉积一层Fe/Mo/Al2O3微粒作为催化剂,然后通过紫外光光刻,将催化剂层分割成催化剂区块阵列,然后在300℃温度下退火约10小时,获得均匀分布的催化剂颗粒。
将基底放入一反应炉中加热至一定温度;将表面形成有催化剂层的基底放入反应炉中,该反应炉可以为普通反应炉,也可以为一种特殊结构的反应炉,请参阅图3,该特殊的反应炉20具有一结构特殊的反应腔21,反应腔21具有一第一气体入口22、一第二气体入口23、及一气体出口24,反应腔21内设有一气体输送管25及一石英舟26,石英舟26用于承载生长碳纳米管29的基底28,气体输送管25用于输送干扰气体,其一端连接该第二气体入口23,另一端通入石英舟26。石英舟26中还可设置一硅衬垫27,其避免基底28与石英舟26直接接触,从而使基底28受热更均匀,有利于生长更均匀的碳纳米管阵列。另外,反应腔21可以为一石英管,化学性能稳定、耐高温的材质形成的可密封的腔体即可。
本实施例中,该石英舟26为一半封闭型容器,其仅有一端开口,该开口朝向反应气体入口22,与开口相对的容器底面与气体输送管25连通。该气体输送管25也可以从容器的侧壁上开口接入,只要使气体输送管25接入石英舟26的端口对准基底28即可。该石英舟26不限于图中半封闭型结构,其可为一槽式结构,也可以为一平板结构,能承载生长碳纳米管29的基底28即可,该气体输送管25通入石英舟,端口对准基底28,并与基底28的距离尽可能小,当然以不阻挡碳纳米管29的生长为限。
间歇性供应碳源气,以生长碳纳米管。间歇性供应碳源气是指供应碳源气一预定时间后,中断基底表面碳源气的供应,再经另一预定时间后,重新供应碳源气,此过程可重复多次。例如,往气体入口通入碳源气,持续一预定时间后,关闭碳源气,再经另一预定时间,重新开启碳源气。优选的,在关闭碳源气的时间里,通入干扰气体,使基底附近迅速充满干扰气体,从而达到迅速中断碳源气的效果。干扰气体一般为氩气、氢气、氮气等还原性气体或惰性气体。还可以采用本实施例中的反应炉20,往第一气体入口22通入碳源气,持续一预定时间后,开启第二气体入口23,通入干扰气体,由于气体输送管一端靠近基底,干扰气体能将基底周围的碳源气吹开,另一预定时间后,关闭干扰气体入口,中断干扰气体的通入,基底周围反应区再一次充满碳源气体,重复上述过程多次,同样也达到给基底附近间歇性供应碳源气的效果。其中碳纳米管生长温度通常为800~1000K,每次中断碳源气的时间通常为10~30秒。
如图4所示,按图4a所示,先从反应气体入口22通入碳源气与氩气的混合反应气体,持续5分钟后,同时开启干扰气体入口23,通入干扰气体,持续10秒钟,然后按:通入反应气体1分钟—>通入干扰气体10秒—>通入反应气体2分钟—>通入干扰气体10秒—>通入反应气体3分钟—>通入干扰气体10秒—>通入反应气体1分钟—>通入干扰气体10秒—>通入反应气体2分钟—>通入干扰气体10秒—>通入反应气体3分钟—>通入干扰气体10秒的规则操作,生长于基底30上的碳纳米管阵列如图4b SEM照片所示,每次通入干扰气体,即中断反应区碳源气供应,碳纳米管上即留下标记线。其中反应气体中氩气为保护性气体,并起到调节碳源气浓度的作用,氢气、氮气等还原性气体或其他惰性气体也可以替代氩气。从干扰气体入口23中通入的干扰气体也包括氩气,由于其通过一端靠近基底反应区的气体输送管25进入反应炉中,其直接迅速到达反应区,因此其能迅速清除基底28附近的碳源气,使得反应区迅速中断碳源气的供应,从而使得标记线更加清晰。该干扰性气体也可用氢气、氮气等还原性气体或其他惰性气体。本实施例中碳源气为乙炔,其他炔类、烷烃、烯烃或芳烃等含碳物质均可用来作为碳源气。
由于通入碳源气的时间越长,相应的碳纳米管生长的高度越大,从图4中可以看出,碳纳米管越远离基底的一端越早生长出来,最后一次通入3分钟碳源气的过程中,碳纳米管已经停止生长,从而最后一次中断应该出现的标记线并没有体现出来。从图4可以判断出碳纳米管的生长点在碳纳米管根部,即碳纳米管靠近基底的一端最新生长出来。
在一定反应条件下,碳纳米管在一定时间t内生长的长度可通过测量两标记线之间的距离L而得到,从而在该反应条件下碳纳米管的平均生长速度R可以计算得出:R=L/t。
如图5所示,生长碳纳米管阵列结构的第二实施例,按图5a所示,在933K温度下,先从反应气体入口22通入碳源气与氩气的混合气体,持续一段时间后,通入干扰气体约10~30秒钟,使反应区中断碳源气的供应,然后每通入碳源气与氩气的混合气体5分钟,即中断一次反应区碳源气的供应,反应进行约一个小时,中断反应区碳源气的供应11次,结果从图5b SEM照片中可看出,形成于基底40上的碳纳米管阵列形成了七条标记线,说明碳纳米管在形成第七条标记线后、第八次中断碳源气之前停止了生长。从图5b中还可以看出,生长时间相同,碳纳米管生长的长度也基本相同。通过测量两标记线之间的长度,即可计算出碳纳米管的生长速度。
确定生长点的位置以及测量碳纳米管的生长速度,是研究碳纳米管生长机理的基础,以便人类更好地控制碳纳米管生长过程,制备出各种形状、结构的碳纳米管器件,为碳纳米管的应用提供更广阔的前景。
上述各种碳纳米管阵列结构皆可应用作场发射显示装置的阴极电子发射体,也可用于热界面材料中,该标记线还可用作产品防伪标记。

Claims (14)

1.一种碳纳米管阵列结构,其包括多个同方向排列的碳纳米管,其特征在于碳纳米管上形成有标记线,该标记线为将一表面形成有一催化剂层的基底加热至一定温度,并间歇性供应碳源气生长碳纳米管而形成于碳纳米管上。
2.如权利要求1所述的碳纳米管阵列结构,其特征在于其还包括一基底,碳纳米管垂直排列在基底的一表面上。
3.如权利要求2所述的碳纳米管阵列结构,其特征在于该基底材质包括硅或二氧化硅。
4.一种碳纳米管阵列结构的制备方法,其包括下列步骤:
提供一基底;
在基底的一表面上形成一催化剂层;
将基底加热至一定温度;
间歇性供应碳源气,以生长碳纳米管。
5.如权利要求4所述的碳纳米管阵列结构的制备方法,其特征在于间歇性供应碳源气是指供应碳源气一预定时间后,中断碳源气的供应,再经另一预定时间后,重新供应碳源气。
6.如权利要求5所述的碳纳米管阵列结构的制备方法,其特征在于每次供应碳源气的持续时间为1~5分钟。
7.如权利要求5所述的碳纳米管阵列结构的制备方法,其特征在于每次中断碳源气的持续时间为10~30秒。
8.如权利要求5所述的碳纳米管阵列结构的制备方法,其特征在于通过在基底附近供给一干扰气体而中断碳源气的供应。
9.如权利要求8所述的碳纳米管阵列结构的制备方法,其特征在于干扰气体为还原性气体或惰性气体。
10.如权利要求8所述的碳纳米管阵列结构的制备方法,其特征在于干扰性气体包括氩气、氮气及氢气。
11.如权利要求5所述的碳纳米管阵列结构的制备方法,其特征在于通过关闭碳源气而中断基底附近碳源气的供应。
12.如权利要求11所述的碳纳米管阵列结构的制备方法,其特征在于关闭碳源气的同时供给干扰气体,以驱散剩余碳源气。
13.如权利要求4所述的碳纳米管阵列结构的制备方法,其特征在于催化剂层被分割成多个小区块,每一区块间具有一定间距。
14.如权利要求4所述的碳纳米管阵列结构的制备方法,其特征在于供应碳源气之前,将催化剂层在200~400℃温度下退火。
CNB2005100342495A 2005-04-15 2005-04-15 碳纳米管阵列结构及其制备方法 Active CN100500555C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB2005100342495A CN100500555C (zh) 2005-04-15 2005-04-15 碳纳米管阵列结构及其制备方法
US11/404,523 US7615205B2 (en) 2005-04-15 2006-04-14 Carbon nanotube arrays and manufacturing methods thereof
US12/317,148 US7749477B2 (en) 2005-04-15 2008-12-19 Carbon nanotube arrays
US12/769,816 US7824648B2 (en) 2005-04-15 2010-04-29 Carbon nanotube arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100342495A CN100500555C (zh) 2005-04-15 2005-04-15 碳纳米管阵列结构及其制备方法

Publications (2)

Publication Number Publication Date
CN1847144A CN1847144A (zh) 2006-10-18
CN100500555C true CN100500555C (zh) 2009-06-17

Family

ID=37076926

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100342495A Active CN100500555C (zh) 2005-04-15 2005-04-15 碳纳米管阵列结构及其制备方法

Country Status (2)

Country Link
US (3) US7615205B2 (zh)
CN (1) CN100500555C (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US8481158B2 (en) * 2004-04-19 2013-07-09 Technology Research Institute Of Osaka Prefecture Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
CN100500555C (zh) * 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
US8013247B2 (en) * 2006-04-25 2011-09-06 The Mitre Corporation Carbon nanotube-based electronic devices
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
CN101409962B (zh) 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
CN101400198B (zh) 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
CN101610613B (zh) * 2008-06-18 2011-09-28 清华大学 线热源
CN101616516B (zh) * 2008-06-27 2013-04-24 清华大学 线热源
JP5577356B2 (ja) 2009-02-17 2014-08-20 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブを繊維上に含んで構成された複合材料
BRPI1008131A2 (pt) 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
CN102459727B (zh) 2009-04-17 2015-04-15 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
CN102461361A (zh) 2009-04-24 2012-05-16 应用纳米结构方案公司 并入cnt的emi屏蔽复合材料和涂层
AU2010245098B2 (en) 2009-04-27 2014-11-13 Applied Nanostructured Solutions, Llc. CNT-based resistive heating for deicing composite structures
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols USE OF NANOPARTICLES IN COMPOSITE FIBERS
US20120160966A1 (en) 2009-11-23 2012-06-28 Applied Nanostructured Solutions, Llc Cnt-tailored composite space-based structures
EP2504164A4 (en) 2009-11-23 2013-07-17 Applied Nanostructured Sols CERAMIC COMPOSITE MATERIALS CONTAINING FIBER MATERIALS IMPREGNATED WITH CARBON NANOTUBES AND METHODS OF MAKING SAME
WO2011142785A2 (en) 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (pt) 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
JP2013521656A (ja) 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置
BR112012021634A2 (pt) 2010-03-02 2019-09-24 Applied Nanostructured Sols dispositivos elétricos contendo fibras de nanotubo de carbono infundidas e métodos para reprodução das mesmas.
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
EP2616189B1 (en) 2010-09-14 2020-04-01 Applied NanoStructured Solutions, LLC Glass substrates having carbon nanotubes grown thereon and methods for production thereof
CN103118975A (zh) 2010-09-22 2013-05-22 应用奈米结构公司 具有碳纳米管成长于其上的碳纤维基板及其制造方法
BR112012017246A2 (pt) 2010-09-23 2016-03-22 Applied Nanostructured Solutins Llc fibra infundida por cnt como um fio autoblindado para linha de transmissão de energia aprimorada
CN103562131A (zh) * 2011-05-31 2014-02-05 日本瑞翁株式会社 取向碳纳米管集合体的制造装置及制造方法
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
MX354377B (es) 2012-04-16 2018-02-28 Seerstone Llc Metodos para tratar un gas de escape que contiene oxidos de carbono.
JP6242858B2 (ja) 2012-04-16 2017-12-06 シーアストーン リミテッド ライアビリティ カンパニー 炭素を捕捉および隔離するため、ならびに廃ガスストリーム中の酸化炭素の質量を低減するための方法およびシステム
JP2015514669A (ja) 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
WO2013158156A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and structures for reducing carbon oxides with non-ferrous catalysts
NO2749379T3 (zh) 2012-04-16 2018-07-28
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN103487143B (zh) * 2012-06-12 2015-07-29 清华大学 光强分布的检测***
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN107651667A (zh) 2012-07-12 2018-02-02 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
JP6025979B2 (ja) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー アンモニアおよび固体炭素生成物を形成するための方法およびシステム
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
WO2014085378A1 (en) 2012-11-29 2014-06-05 Seerstone Llc Reactors and methods for producing solid carbon materials
US9278318B2 (en) 2012-12-04 2016-03-08 Empire Technology Development Llc Graphene nanotube array for gas filtration
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
WO2014151898A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN108996489A (zh) * 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备装置
CN108996490A (zh) * 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备方法
CN109103101B (zh) * 2017-06-21 2020-09-29 清华大学 纳米微结构的制备方法
EP3537189A1 (en) * 2018-03-09 2019-09-11 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Collimator filter
CN110713178B (zh) * 2018-07-12 2021-06-01 清华大学 制备碳纳米管阵列的装置及方法
CN110592556B (zh) * 2019-09-27 2021-05-28 中国科学院金属研究所 一种高效筛选高质量碳纳米管生长条件的高通量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927331B1 (en) * 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
CN1176014C (zh) * 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
CN100500555C (zh) * 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法

Also Published As

Publication number Publication date
US20100213419A1 (en) 2010-08-26
US20090215651A1 (en) 2009-08-27
US7824648B2 (en) 2010-11-02
US7615205B2 (en) 2009-11-10
CN1847144A (zh) 2006-10-18
US20070031320A1 (en) 2007-02-08
US7749477B2 (en) 2010-07-06

Similar Documents

Publication Publication Date Title
CN100500555C (zh) 碳纳米管阵列结构及其制备方法
CN100376478C (zh) 碳纳米管阵列结构的制备装置
CN1854733A (zh) 测量碳纳米管生长速度的方法
CN100462301C (zh) 一种碳纳米管阵列的制备方法
JP3442032B2 (ja) カーボンナノチューブの合成方法
US8455050B2 (en) Manufacturing apparatus and manufacturing method for alined carbon nanotubes
JP2011136414A (ja) 同位体をドープしたナノ材料、その製造方法及び標識方法
Colli et al. Synthesis and optical properties of silicon nanowires grown by different methods
JP2001081564A (ja) 化学気相蒸着装置およびこれを用いたカーボンナノチューブ合成方法
JP4486074B2 (ja) カーボンナノチューブの成長装置及びカーボンナノチューブの成長方法
JP5608952B2 (ja) カーボンナノチューブの製造装置および製造方法
TWI656091B (zh) 一種奈米碳管陣列的製備方法
Aksak et al. Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO 2/Si substrates
TWI688544B (zh) 一種奈米碳管陣列與生長基底分離之方法
CN100482584C (zh) 碳纳米管制备设备
TWI636009B (zh) 一種奈米碳管陣列的製備裝置
JI et al. A review on the controlled growth of single-wall carbon nanotubes from metal catalysts
CN1275851C (zh) 一种碳纳米管的制备方法
JP6187503B2 (ja) 金属蒸気供給装置、金属/金属化合物製造装置、GaN単結晶の製造方法、及びナノ粒子の製造方法
Hu et al. Fabrication of α-Si3N4 nanobelts assembled by Si3N4 microcrystals on the nanowires via crystallization of amorphous Si3N4 powders
JP2009137805A (ja) カーボンナノチューブの作製方法及びカーボンナノチューブを成長させた基板
KR20010076463A (ko) 탄소나노튜브의 합성 방법 및 그를 위한 벨트형열화학기상증착장치
JP2004332044A (ja) カーボン系物質の作製方法及び作製装置
TW201903187A (zh) 一種奈米碳管陣列之製備方法
TWI386516B (zh) 奈米碳管製備設備

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant