CN112779559B - 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用 - Google Patents

一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用 Download PDF

Info

Publication number
CN112779559B
CN112779559B CN202011626972.3A CN202011626972A CN112779559B CN 112779559 B CN112779559 B CN 112779559B CN 202011626972 A CN202011626972 A CN 202011626972A CN 112779559 B CN112779559 B CN 112779559B
Authority
CN
China
Prior art keywords
catalyst
grain boundary
metal
exchange membrane
proton exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011626972.3A
Other languages
English (en)
Other versions
CN112779559A (zh
Inventor
张兴旺
郝少云
雷乐成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011626972.3A priority Critical patent/CN112779559B/zh
Publication of CN112779559A publication Critical patent/CN112779559A/zh
Application granted granted Critical
Publication of CN112779559B publication Critical patent/CN112779559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用。该方法利用快速升温和快速降温的方法,制备了具有富含众多晶界的催化剂。通过控制升温速率、降温速率,以及加入金属离子种类,可以有效制备不同金属组分的晶界催化剂。所制备的催化剂可以作为电催化析氧催化剂或作为质子交换膜电解槽阳极催化剂应用于电分解水。以制备的Ta0.1Tm0.1Ir0.8O2‑δ(2‑δ是为了各个元素在化合物中电荷平衡)为例,其在酸性环境下具有优异的析氧性能(η10=198mV)和稳定性(+10mA·cm–2密度下可以稳定500小时),作为质子交换膜电解槽的阳极催化剂,在负载量仅为0.2mg cm–2,反应温度为50℃条件下,达到1.5A·cm–2的偏压仅为1.868V。并且,在1.5A·cm–2条件下可以稳定运行500小时。

Description

一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用
技术领域
本发明涉及电化学电解水技术领域,尤其涉及富含晶界的多金属催化剂的制备方法及其高效质子交换膜电解槽电解水的应用。
背景技术
利用潜在的技术来存储和运输可再生能源对于使用太阳能或风能的燃料生产非常重要。与传统的碱性电解槽相比,通过质子交换膜(Proton exchange membrane,PEM)电解槽在酸性电解液中电解水制氢,由于具有更低的电阻损耗,以及较高的产品选择透过性,可以实现更高的电流密度。电解水分解效率主要取决于析氧反应(OER),由于析氧反应是一个4电子转移过程,涉及多个氧中间体,因此会导致较高的过电势。减少贵金属催化剂的使用,将使PEM电解水技术在商业产氢市场上更具竞争力,在该市场中IrOx是唯一已知的实用和工业阳极电催化剂。但是,目前商用PEM电解槽中的IrOx阳极催化剂的质量活性较低,无法满足在商业电流密度下的高性能和高稳定性的要求。
几十年来的研究表明,OER活性可以由催化剂活性位点与氧中间体OH*到O*的自由能(ΔGO)来预示,这与铱活性位点的电子结构密切相关。表面修饰工程可以通过调节M–O(M代表金属)键,有效增强纳米催化剂活性,因为催化性能与催化剂表面的应变情况息息相关。但是,在高度氧化和强腐蚀性酸性环境下,无序纳米结构催化剂在析氧反应过程中很容易溶解或氧化,导致催化剂的活性急剧下降。通常,通过层错运动产生具有细晶界(GB)的催化剂可以提高催化剂的催化活性,因为催化剂表面的晶界可以灵活地调控应变以优化催化效果。除此之外,由于晶界使得催化剂具有良好的可逆恢复能力,避免了M–O键的断裂,从而赋予催化剂良好的稳定性。此外,将杂原子掺入IrOx中,例如:多金属氧化物和钙钛矿氧化物,已被认为是调整活性位点电子结构,增强析氧反应活性的有效策略之一。到目前为止,通过快速升温和快速降温方法,制备高活性和稳定性的多晶界的多元Ir基催化剂尚未报道。
发明内容
本发明所要解决的问题就是提供一种制备富含众多晶界催化剂的方法,实现多金属催化剂对其组分和表面结构的调控,并通过合成具有晶界的三元 Ta0.1Tm0.1Ir0.8O2-δ纳米颗粒催化剂,提高电催化析氧性能,实现作为阳极催化剂,在质子交换膜电解槽电解水的应用,并为其他具有表面结构的多金属纳米催化剂制备提供一种好的思路和方法。
为了实现上述目的,本发明主要采用如下技术方案,
本发明首先提供了一种高效晶界催化剂的制备方法,其包括如下步骤:
1)将表面活性剂均匀分散在溶液中,将金属盐分散在具有表面活性剂的溶液中,得到金属前驱体溶液;
2)将金属前驱体溶液蒸干,得到反应金属前驱体;
3)金属前驱体送入已经升温至所需温度的高温区;当达到反应时间以后,直接将反应物与降温物质接触快速冷却,得到具有众多晶界的多金属催化剂。
作为本发明的优选方案,所述的金属盐为金属的卤化盐、硝酸盐、醋酸盐、硫酸盐中的一种或多种;所述的金属盐中的金属选自不同金属种类中的一种或多种金属盐添加量是表面活性剂添加质量的0.05~50倍。
作为本发明的优选方案,所述金属盐中的金属选自铱、钌、铂、钯、金、钴、镍、铁、钽、稀土元素。
作为本发明的优选方案,所述的表面活性剂为羧基类或糖类表面活性剂。
作为本发明的优选方案,所述的表面活性剂为聚丙烯酸、柠檬酸、单宁酸、葡萄糖、麦芽糖、蔗糖、果糖、卟啉、四苯基卟啉中的一种或多种。
作为本发明的优选方案,所述的步骤3)中,金属前驱体在高温区的反应过程在一定气氛下进行,所述的一定气氛为氢气、空气、甲烷、氧气、氮气、氩气、氨气或两种或多种由上述气体组成的在高温区条件下发生反应的混合气。
作为本发明的优选方案,所述的降温物质为不与所述反应物反应的溶剂、冰水、液氮或冰块。降温物质用于实现反应物的快速冷却;典型而不作为限定的,例如:反应物与降温物质接触后使反应物在1min、3min或5min内温度降低至室温或室温以下。
作为本发明的优选方案,所述的高温区为温度大于300℃的区域,所述的快速冷却是指高温催化剂直接与降温物质直接接触。
本发明还提供了一种所述方法制备的高效晶界催化剂。
本发明进一步提供了一种所述方法制备的高效晶界催化剂作为电催化产氧催化剂的应用。
本发明进一步提供了一种所述方法制备的高效晶界催化剂作为阳极催化剂的应用。
作为本发明的优选方案,所述的高效晶界催化剂作为阳极催化剂应用于质子交换膜电解槽。
相对于现有技术,本发明具有以下优点:
1.合成工艺简单,通过对制备的前驱体快速升温和快速降温而制备催化剂,简化了工艺流程。
2.合成法可以有效调控催化剂表面的晶界和位错等缺陷。通过控制反应温度和降温温度,可以生成具有不同含量的晶界催化剂。
3.合成法可以对组分进行调控。通过控制反应溶液中金属离子种类,可以生成不同组分的多金属催化剂,扩展了多金属催化剂的类型。
4.所制备的电极具备优异的酸性析氧性能(η10=198mV)。同时该材料在+10 mA·cm-2条件下可以稳定运行500h。
4.所制备的电极可以作为质子交换膜电解槽中的阳极催化剂。在质子交换膜电解槽进行电分解水反应,在50℃和+1.50A·cm-2的电压仅为1.868V。
附图说明
图1-1是对比例1的实验结果;
图1-2是实施例1的实验结果(具有晶界的催化剂);
图1-3是实施例1模拟的快速升温和降温的成核理论研究图;
图1-4是通过扫描电镜得到的快速升温和降温条件下所制得具有晶界的形貌及元素分布图;
图2是通过X射线光电子能谱分析了晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂各个元素的价态;
图3-1是实施例3中晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂应用于析氧反应的极化曲线;
图3-2是实施例3中晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂应用于析氧反应的稳定性曲线;
图3-3是实施例3中晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂的活性面积测试图;
图4-1晶界Ta0.1Tm0.1Ir0.8O2-δ,Ta0.1Ir0.9O2-δ,Tm0.1Ir0.9O2-δ,IrO2-δ在质子交换膜电解槽的电化学极化曲线。
图4-2晶界Ta0.1Tm0.1Ir0.8O2-δ在质子交换膜电解槽的电化学稳定曲线。
图5质子交换膜电解槽的示意图。
图6是通过扫描电镜得到晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂在质子交换膜反应后的形貌及元素分布图。
具体实施方式
对比例1
将0.05mmol柠檬酸超声溶解在20mL乙醇和10mL H2O中,持续60分钟。在冰浴中搅拌的同时,将1mmol的IrCl3,加入到含有柠檬酸的乙醇中,以防止前体的水解。搅拌2小时后,在1h内将氨水溶液逐滴加入反应溶液中,调节pH 值至6~8。继续搅拌6小时后,将反应溶液转移至冷冻干燥机中干燥或者加热蒸干。待前驱体干燥以后,将前驱体放入已处理的干锅中。然后,将盛有前驱体的干锅直接放入炉子中,气氛为空气,升温速率为10℃/min,目标温度为450℃。待450℃反应2小时以后,以降温速率为10℃/min降至室温,得到不含晶界的催化剂(图1-1),图1-1(A)无晶界IrO2-δ的TEM图;(B)无晶界IrO2-δ的TEM 高分辨图;(C)无晶界IrO2-δ的TEM原子相分辨图;(D)无晶界IrO2-δ的mapping 图。
实施例1
将0.05mmol柠檬酸超声溶解在20mL乙醇和10mL H2O中,持续60分钟。在冰浴中搅拌的同时,将1mmol的IrCl3,加入到含有柠檬酸的乙醇中,以防止前体的水解。搅拌2小时后,在1h内将氨水溶液逐滴加入反应溶液中,调节pH 值至6~8。继续搅拌6小时后,将反应溶液转移至冷冻干燥机中干燥或者加热蒸干。待前驱体干燥以后,将前驱体放入已处理的干锅中。然后,将盛有前驱体的干锅直接放入已加热到450℃的炉子中,前驱体升温速率450℃/s,气氛为空气。待反应2小时以后,将450℃的催化剂与冰水直接接触,即可得到具有晶界的催化剂(图1-2),图1-2(A)晶界IrO2-δ的TEM图;(B)局部放大的晶界 IrO2-δ的TEM图;(C)晶界IrO2-δ的TEM高分辨图;(D)晶界IrO2-δ的元素分布mapping图。
实施例2
参照对比例1的催化剂制备方法,将盛有前驱体的干锅直接放入已加热到 450℃的炉子中,气氛为空气。待反应0.5-2小时以后,将450℃的催化剂与冰水接触,得到具有晶界的催化剂(图1-2)。其余反应条件与实施例1相同。如图 1-1和图1-2可得不同反应条件下所制得IrO2-δ的形貌图。由图1-3可得,在快速升温和快速降温反应条件下,可以得到富含晶界的催化剂,并且升温越快,降温越快,晶界越多,图1-3(A)快速升温形成晶界催化剂机理图;(B)慢速升温形成无晶界催化剂机理图。
实施例3
参照实施例2所述方法,利用快速升温和降温的方法,制备得到了晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂。方法如下所述:将0.05mmol柠檬酸超声溶解在20mL 乙醇和10mLH2O中,持续60分钟。在冰浴中搅拌的同时,将0.8mmol的IrCl3, 0.1mmol的TaCl3,0.1mmol的Tm(NO3)3同时加入到含有柠檬酸的乙醇中,以防止前体的水解。搅拌2小时后,在1h内将氨水溶液逐滴加入反应溶液中,调节pH值至6~8。继续搅拌6小时后,将反应溶液转移至冷冻干燥机中干燥或者加热蒸干。待前驱体干燥以后,将前驱体放入已处理的干锅中。然后,将盛有前驱体的干锅直接放入已加热到450℃的炉子中,前驱体升温速率450℃/s,气氛为空气。待反应2小时以后,将450℃的催化剂与冰水直接接触,得到具有晶界的Ta0.1Tm0.1Ir0.8O2-δ催化剂。
图1-4通过扫描电镜得到的快速升温和降温条件下所制得具有晶界的形貌及元素分布图。图1-4(A)晶界Ta0.1Tm0.1Ir0.8O2-δ的TEM图;(B)局部放大的晶界Ta0.1Tm0.1Ir0.8O2-δ的TEM图;(C)晶界Ta0.1Tm0.1Ir0.8O2-δ的TEM高分辨图和相对应的傅里叶变换图;(D)层错Ta0.1Tm0.1Ir0.8O2-δ的TEM高分辨图和相对应的傅里叶变换图;(E)晶界Ta0.1Tm0.1Ir0.8O2-δ的元素分布图。由图可得,所得材料具有晶界结构,并且各元素均均匀分布在纳米颗粒结构中。图2为通过X射线光电子能谱分析了晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂各个元素的价态。将所制备催化剂滴涂在电极上,进行电化学活性面积、析氧测试及稳定性研究。图2(A) 晶界Ta0.1Tm0.1Ir0.8O2-δ,Ta0.1Ir0.9O2-δ,Tm0.1Ir0.9O2-δ,IrO2-δ的Ir 4f X射线光电子能谱;(B)晶界Ta0.1Tm0.1Ir0.8O2-δ和Ta0.1Ir0.9O2-δ的Ta 4f X射线光电子能谱;(C) 晶界Ta0.1Tm0.1Ir0.8O2-δ和Tm0.1Ir0.9O2-δ的Tm 4d X射线光电子能谱;(D)晶界 Ta0.1Tm0.1Ir0.8O2-δ,Ta0.1Ir0.9O2-δ,Tm0.1Ir0.9O2-δ,IrO2-δ的O1s X射线光电子能谱。图3-1表明,该材料在+10mA·cm-2密度条件下,析氧的过电势分别为198mV。图3-2表明,该材料在+10mA·cm-2密度条件下,析氧的稳定性为500小时。图 3-3表明晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂具有较高的活性面积。
实施例4
将实例3中制备的晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂作为阳极催化剂,在0.5M H2SO4溶液中采用双电极体系进行了稳定性测试。由图4-1可得,该材料在1.5 A·cm-2密度条件下电压仅为1.868V。同时,由图4-2可得,在1.5A·cm-2和50℃条件下持续稳定运行500小时。图5为质子交换膜电解槽电解水的示意图。
实施例5
将实例3中制备的晶界Ta0.1Tm0.1Ir0.8O2-δ催化剂作为阳极催化剂,在0.5M H2SO4溶液中采用双电极体系进行了的电解水性能测试后,进行扫描电镜分析。图6(A)晶界Ta0.1Tm0.1Ir0.8O2-δ在质子交换膜电解槽反应后的TEM图;(B) 晶界Ta0.1Tm0.1Ir0.8O2-δ在质子交换膜电解槽反应后的TEM图TEM高分辨图;(C) 晶界Ta0.1Tm0.1Ir0.8O2-δ在质子交换膜电解槽反应后的TEM高分辨局部放大图;(D) 晶界Ta0.1Tm0.1Ir0.8O2-δ在质子交换膜电解槽反应后的元素分布图。由图6可得,该材料在1.5A·cm-2密度条件下,稳定运行500小时后,仍然具有晶界结构,说明晶界结构促进了催化剂的稳定性运行。并且,各个元素分布跟反应前相比,仍然均匀。

Claims (9)

1.一种高效晶界催化剂的制备方法,其特征在于包括如下步骤:
1) 将表面活性剂均匀分散在溶液中,将金属盐分散在具有表面活性剂的溶液中,得到金属前驱体溶液;所述金属盐中的金属选自铱、或者铱和钌、铂、钯、金、钴、镍、铁、钽、稀土元素中一种或多种;
2) 将金属前驱体溶液蒸干,得到反应金属前驱体;
3) 金属前驱体送入已经升温至所需温度的高温区;当达到反应时间以后,直接将反应物与降温物质接触快速冷却,得到具有众多晶界的多金属氧化物催化剂。
2.如权利要求1所述的高效晶界催化剂的制备方法,其特征在于,所述的金属盐为金属的卤化盐、硝酸盐、醋酸盐、硫酸盐中的一种或多种;所述的金属盐中的金属选自不同金属种类中的一种或多种, 金属盐添加量是表面活性剂添加质量的0.05~50倍。
3.如权利要求1所述的高效晶界催化剂的制备方法,其特征在于,所述的表面活性剂为羧基类或糖类表面活性剂。
4.如权利要求1所述的高效晶界催化剂的制备方法,其特征在于,所述的步骤3)中,金属前驱体在高温区的反应过程在一定气氛下进行,所述的一定气氛为氢气、空气、甲烷、氧气、氮气、氩气、氨气或两种或多种由上述气体组成的在高温区条件下发生反应的混合气。
5.如权利要求1所述的高效晶界催化剂的制备方法,其特征在于,所述的降温物质为不与所述反应物反应的溶剂、液氮或冰块。
6.如权利要求1所述的高效晶界催化剂的制备方法,其特征在于,所述的高温区为温度大于300 ℃的区域,所述的快速冷却是指高温催化剂直接与降温物质直接接触。
7.一种权利要求1-6任一项所述方法制备的高效晶界催化剂。
8.一种权利要求1-6任一项所述方法制备的高效晶界催化剂作为电催化产氧催化剂的应用。
9.根据权利要求8所述的应用,其特征在于,所述的高效晶界催化剂作为阳极催化剂应用于质子交换膜电解槽。
CN202011626972.3A 2020-12-31 2020-12-31 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用 Active CN112779559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011626972.3A CN112779559B (zh) 2020-12-31 2020-12-31 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011626972.3A CN112779559B (zh) 2020-12-31 2020-12-31 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用

Publications (2)

Publication Number Publication Date
CN112779559A CN112779559A (zh) 2021-05-11
CN112779559B true CN112779559B (zh) 2021-12-14

Family

ID=75753361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011626972.3A Active CN112779559B (zh) 2020-12-31 2020-12-31 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用

Country Status (1)

Country Link
CN (1) CN112779559B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976052A (zh) * 2022-06-06 2022-08-30 济南大学 一种富晶界超薄铑纳米片电催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852989A (zh) * 2017-11-30 2019-06-07 中国科学技术大学 一种氮掺杂石墨烯负载单原子锡及其制备方法和应用
CN110975877A (zh) * 2019-11-25 2020-04-10 华南理工大学 一种提高金属氧化物电催化性能的淬火改性方法及制得的金属氧化物电催化剂与应用
CN111570788A (zh) * 2020-05-21 2020-08-25 中国科学院福建物质结构研究所 一种双金属纳米材料、催化剂及其制备方法与应用
CN112779550A (zh) * 2021-01-11 2021-05-11 中山大学 一种三维微米管状析氢反应电催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11369929B2 (en) * 2017-06-22 2022-06-28 University Of Maryland, College Park Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852989A (zh) * 2017-11-30 2019-06-07 中国科学技术大学 一种氮掺杂石墨烯负载单原子锡及其制备方法和应用
CN110975877A (zh) * 2019-11-25 2020-04-10 华南理工大学 一种提高金属氧化物电催化性能的淬火改性方法及制得的金属氧化物电催化剂与应用
CN111570788A (zh) * 2020-05-21 2020-08-25 中国科学院福建物质结构研究所 一种双金属纳米材料、催化剂及其制备方法与应用
CN112779550A (zh) * 2021-01-11 2021-05-11 中山大学 一种三维微米管状析氢反应电催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Calcination Temperature Dependent Catalytic Activity and Stability of IrO2 –Ta2O5 Anodes for Oxygen Evolution Reaction in Aqueous Sulfate Electrolytes;W. Xu et al.;《Journal of The Electrochemical Society》;20170622;第164卷(第9期);F895-F900 *
Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis;Haneul Jin et al.;《Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis》;20171016;第42卷;17-25 *
Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6 δ;D. Niebieskikwiat;《PHYSICAL REVIEW B,》;20011019;第64卷;1-4 *
火焰合成Cu 基催化剂在甲烷催化燃烧中的烧结行为;孟令泉 等;《燃烧科学与技术》;20190531;第25卷(第5期);414-422 *

Also Published As

Publication number Publication date
CN112779559A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN111672514A (zh) 一种双功能电催化材料及其制备方法与应用
CN110611105B (zh) Orr催化剂的制备方法
CN111933961B (zh) 双元CoFe合金负载g-C3N4催化剂及其制备方法
CN111545250A (zh) 一种具有高效电催化全解水性能的钌催化剂及其应用
EP3825443A1 (en) Method of preparing catalyst for pem water electrolysis and catalyst for pem water electrolysis
CN113277573B (zh) 一种pem电解水阳极催化剂及其制备方法
US7955529B2 (en) Synthesis for catalysis of bifunctional perovskite compound
CN112779559B (zh) 一种高效晶界催化剂的制备方法及其质子交换膜电解槽应用
CN112725828B (zh) IrRu基多元合金氧析出催化剂及其制备方法
CN114164458A (zh) 一种铱钌基析氧催化剂的制备方法
CN112058297B (zh) 一种镍基电催化材料及其制备方法和用途
WO2021233606A1 (de) Elektrochemisches system zur wasserspaltung
CN111530474A (zh) 一种贵金属单原子调控尖晶石阵列催化剂及其制备方法和应用
CN116581314A (zh) 一种燃料电池用的高熵氧化物催化剂及制备方法
CN113463131B (zh) 一种铜单原子催化剂及其制备方法与应用
CN109453771A (zh) 一类烧绿石材料的制备及其在电催化产氧中的应用
CN115261917A (zh) 一维Ni12P5/Ni2P多晶异质结构高效水氧化催化剂的制备方法
Lee et al. Effect of synthesis temperature on oxygen evolution reaction of cobalt-iron layered double hydroxide
CN113930800A (zh) 一种异质结构电催化析氢材料及其制备方法与应用
CN110055555B (zh) 析氧反应催化剂及其制备方法和应用
CN112023959A (zh) 一种相结型NiP2电催化剂及其制备方法和应用
CN114540864B (zh) 一种非贵金属基酸性电解水析氧反应电催化剂及其制备方法
CN115652357B (zh) 一种硫掺杂的钌酸钇及其制备方法和析氧反应电极
CN115896810B (zh) 一种基于高熵效应的贵金属单原子催化剂及其制备方法
CN113604839B (zh) 金属氧化物钝化镍/氧化镍原位电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant