CN106158973A - 一种积累型dmos - Google Patents

一种积累型dmos Download PDF

Info

Publication number
CN106158973A
CN106158973A CN201610532247.7A CN201610532247A CN106158973A CN 106158973 A CN106158973 A CN 106158973A CN 201610532247 A CN201610532247 A CN 201610532247A CN 106158973 A CN106158973 A CN 106158973A
Authority
CN
China
Prior art keywords
type
doped region
groove
district
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610532247.7A
Other languages
English (en)
Inventor
李泽宏
曹晓峰
陈哲
李爽
陈文梅
林育赐
谢驰
任敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610532247.7A priority Critical patent/CN106158973A/zh
Publication of CN106158973A publication Critical patent/CN106158973A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及功率半导体器件技术领域,具体涉及到一种积累型DMOS。本发明的积累型DMOS,其特征在于通过引入积累型区域,降低阈值电压和导通电阻;该结构体内嵌入场板,可以实现电荷平衡,在击穿电压相同的情况下,降低器件的导通电阻;槽型栅电极底部采用的厚氧结构,栅漏电容可以得到有效的降低。采用本发明可以在不影响反向击穿电压和泄漏电流的情况下,具有较大的正向电流、较小的阈值电压、较小的导通电阻以及较小的栅漏电容等特性。

Description

一种积累型DMOS
技术领域
本发明涉及功率半导体器件技术领域,具体涉及到一种积累型DMOS(双扩散金属氧化物半导体场效应晶体管)。
背景技术
功率MOS器件的发展是在MOS器件自身优点的基础上,努力提高耐压和降低损耗的过程。
VDMOS兼有双极晶体管和普通MOS器件的优点。与双极晶体管相比,它的开关速度快,开关损耗小;输入阻抗高,驱动功率小;频率特性好;跨导高度线性。特别值得指明出的是,大电流时它具有负的温度系数,没有双极功率器件的二次击穿问题,安全工作区大。但是对于VDMOSFET结构而言,由于其内部JFET区的存在,使VDMOS的导通电阻较大。TRENCHMOSFET结构上采用U型沟槽结构,导电沟道为纵向沟道,消除了JFET区电阻,所以其导通电阻更小。
在低压和超低压方向,漏源通态电阻(specific on-resistance)Rds(on)和单位面积栅极电荷Qg是两个重要参数。减小源漏通态电阻有利于降低通态损耗,减小栅极电荷则有利于降低开关损耗。但是,现在很难对两个参数同时进行大幅度的优化,这是因为以现有的工艺,优化其中的任何一个参数必将对另一个参数带来一定不利的影响。为了提高DMOS的性能,国内外提出了Trench底部厚SiO2结构(BOX)和分栅结构(Split-gate)等新型结构。一般情况下,BOX结构的“Miller”电荷比Split-gate的高,但它的栅极电荷比Split-gate的低。但是,由于Split-gate结构可利用其第一层多晶层(Shield)作为“体内场板”来降低漂移区的电场,所以Split-gate结构通常具有更低的导通电阻和更高的击穿电压,并可用于较高电压(20V-250V)的TRENCH MOS产品。
虽然国内外公司在优化导通电阻和栅电荷方面取得了较大的进展,但是近年来,激烈的市场竞争对器件的性能要求越来越高,所以如何采用先进的MOSFET结构设计同时降低器件Rds(on)及Qg仍然是各个厂家努力的方向。本发明提出的结构可以进一步改善器件的通态损耗和开关损耗。
发明内容
本发明的目的是提供一种槽型电荷平衡的积累型DMOS,在槽型电荷平衡的DMOS中引入积累型区域,使得DMOS的阈值电压较低、导通电阻较小且栅漏电容较小。
本发明所采用的技术方案:一种积累型DMOS,包括从下至上依次层叠设置的金属化漏极1、N+衬底2、N-漂移区3和金属化源极11;所述N-漂移区3上层具有N-型轻掺杂区8和P型掺杂区9,所述N-型轻掺杂区8位于P型掺杂区9之间;所述N-型轻掺杂区8正上方具有N+重掺杂区7,所述P型掺杂区9正上方具有P+重掺杂区10;所述N+重掺杂区7和P+重掺杂区10的上表面与金属化源极11接触;还包括第一沟槽和第二沟槽;所述第一沟槽沿N+重掺杂区7上表面中部垂直向下依次贯穿N+重掺杂区7和N-型轻掺杂区8后延伸入N-漂移区3中;所述第二沟槽沿P+重掺杂区10上表面垂直向下依次贯穿N+重掺杂区7和N-型轻掺杂区8后延伸入N-漂移区3中;所述第一沟槽和第二沟槽中填充有氧化层5,所述第一沟槽中具有栅电极4,所述第二沟槽中具有场板6,所述场板6的上表面与金属化源极11接触。
进一步的,所述氧化层5为二氧化硅或者二氧化硅和氮化硅的复合材料。
进一步的,所述栅电极4的材料为多晶硅。
进一步的,所述场板6的材料为多晶硅或者金属。
本发明的有益效果为,本发明所提供的槽型电荷平衡的积累型DMOS,具有较大的正向电流、阈值电压较小、导通电阻降低、栅漏电流改善以及较小的栅漏电容等优良特性。
附图说明
图1是本发明的积累型DMOS的剖面结构示意图;
图2是本发明的积累型DMOS在外加零电压时,耗尽线示意图;
图3是本发明的积累型DMOS外加电压到达阈值电压时的电流路径示意图;
图4图13是本发明的积累型DMOS的一种制造工艺流程的示意图;
图14至图23是本发明的积累型DMOS的另一种制造工艺流程的示意图。
具体实施方式
下面结合附图,详细描述本发明的技术方案:
如图1所示,本发明的一种积累型DMOS,包括从下至上依次层叠设置的金属化漏极1、N+衬底2、N-漂移区3和金属化源极11;所述N-漂移区3上层具有N-型轻掺杂区8和P型掺杂区9,所述N-型轻掺杂区8位于P型掺杂区9之间;所述N-型轻掺杂区8正上方具有N+重掺杂区7,所述P型掺杂区9正上方具有P+重掺杂区10;所述N+重掺杂区7和P+重掺杂区10的上表面与金属化源极11接触;其特征在于,还包括第一沟槽和第二沟槽;所述第一沟槽沿N+重掺杂区7上表面中部垂直向下依次贯穿N+重掺杂区7和N-型轻掺杂区8后延伸入N-漂移区3中;所述第二沟槽沿P+重掺杂区10上表面垂直向下依次贯穿N+重掺杂区7和N-型轻掺杂区8后延伸入N-漂移区3中;所述第一沟槽和第二沟槽中填充有氧化层5,所述第一沟槽中具有栅电极4,所述第二沟槽中具有场板6,所述场板6的上表面与金属化源极11接触。
本发明的工作原理为:
(1)器件的正向导通
本发明所提供的槽型电荷平衡的积累型DMOS,其正向导通时的电极连接方式为:槽型栅电极4接正电位,金属化漏极1接正电位,金属化源极11接零电位。当槽型栅电极4为零电压或所加正电压非常小时,由于P型掺杂区9的掺杂浓度大于N-型轻掺杂区8的掺杂浓度,P型掺杂区9和N-型轻掺杂区8所构成的PN结的内建电势会使得P型掺杂区9和栅氧化层5之间的N-型轻掺杂区8耗尽,电子通道被阻断,如图2所示,此时积累型DMOS仍处于关闭状态。
随着槽型栅电极4所加正电压的增加,P型掺杂区9和N-型轻掺杂区8所构成的PN结的内建势垒区逐渐缩小。由于N-型轻掺杂区8的存在,器件更容易开启,从而降低了阈值电压。当槽型栅电极4所加正电压等于或大于开启电压之后,由于栅氧化层5侧面处的N-型轻掺杂区8内产生多子电子的积累层,这为多子电流的流动提供了一条低阻通路,导通电阻从而得到降低,如图3所示,此时积累型DMOS导通,多子电子在金属化漏极1正电位的作用下从N+重掺杂区7流向金属化漏极1。另外,由于槽型栅电极4底部的栅氧化层5采取厚氧工艺,所以栅漏电容Cgd得到较大的改善。
(2)器件的反向阻断
本发明所提供的槽型电荷平衡的积累型DMOS,其反向阻断时的电极连接方式为:槽型栅电极4和金属化源极11短接且接零电位,金属化漏极1接正电位。
由于零偏压时P型掺杂区9和栅氧化层5之间的N-型轻掺杂区8已经被完全耗尽,多子电子的导电通路被夹断。增大反向电压时,由于体内场板6的存在,体内场板6和N-漂移区3构成横向电场,体内场板6和栅氧化层5之间的N-漂移区3首先耗尽,承受反向电压。继续增大反向电压时,耗尽层边界将向靠近金属化漏极1一侧的N-漂移区3扩展以承受反向电压。与普通的槽型DMOS相比,在N-漂移区3掺杂浓度相同的情况下,由于体内场板6的存在,N-漂移区3内可以实现电荷平衡,形成横向电场,在击穿电压相同时,槽型电荷平衡的积累型DMOS的导通电阻更小,且栅漏电流更小。
本发明的积累型DMOS的一种制造工艺流程如下:
1、单晶硅准备及外延生长。如图4,采用N型重掺杂单晶硅衬底2,晶向为<100>。采用气相外延VPE等方法生长一定厚度和掺杂浓度的N-漂移区3。
2、离子注入。如图5,利用光刻板进行P型柱区硼注入,形成P型掺杂区9,进行N型柱区磷注入,此处磷的注入剂量应较低,形成N型轻掺杂区8。
3、刻槽。如图6,淀积硬掩膜(如氮化硅),利用光刻板刻蚀硬掩膜,进行深槽刻蚀,刻蚀出槽栅区和体内场板区,具体刻蚀工艺可以使用反应离子刻蚀或等离子刻蚀。
4、二氧化硅的填充。如图7,用二氧化硅填充槽栅区和体内场板区。
5、体内场板中二氧化硅的刻蚀。如图8,利用光刻板先对体内场板区中的二氧化硅进行刻蚀。
6、二氧化硅的刻蚀。如图9,移去光刻板,对槽栅区和体内场板区中的二氧化硅同时进行刻蚀,去掉硬掩膜,此时槽栅区中仍留有较厚的二氧化硅5。
7、氧化层热生长。如图10,对槽栅区和体内场板区侧壁进行氧化层热生长,其中槽栅区形成侧壁栅氧化层5。
8、多晶硅的淀积与刻蚀。如图11,淀积多晶硅,多晶硅的厚度要保证能够填满槽型区域。利用光刻板对槽栅区的多晶硅刻蚀,并槽栅区上方淀积二氧化硅,并刻蚀表面二氧化硅。
9、离子注入。如图12,P型重掺杂区硼注入,形成P+重掺杂区10,N型重掺杂区砷注入,形成N+重掺杂区7。
10、金属化。如图13,正面金属化,金属刻蚀,背面金属化,钝化等等。
本发明的积累型DMOS的另一种制造工艺流程如下:
1、单晶硅准备及外延生长。如图14,采用N型重掺杂单晶硅衬底2,晶向为<100>。采用气相外延VPE等方法生长一定厚度和掺杂浓度的N-漂移区3。
2、刻槽。如图15,淀积硬掩膜(如氮化硅),利用光刻板刻蚀硬掩膜,进行深槽刻蚀,刻蚀出槽栅区和体内场板区,具体刻蚀工艺可以使用反应离子刻蚀或等离子刻蚀。
3、二氧化硅的填充。如图16用二氧化硅填充槽栅区和体内场板区。
4、体内场板中二氧化硅的刻蚀。如图17,利用光刻板先对体内场板区中的二氧化硅进行刻蚀。
5、二氧化硅的刻蚀。如图,18,移去光刻板,对槽栅区和体内场板区中的二氧化硅同时进行刻蚀,去掉硬掩膜,此时槽栅区中仍留有较厚的二氧化硅5。
6、氧化层热生长。如图19,对槽栅区和体内场板区侧壁进行氧化层热生长,其中槽栅区形成侧壁栅氧化层5。
7、多晶硅的淀积与刻蚀。如图20,淀积多晶硅,多晶硅的厚度要保证能够填满槽型区域。利用光刻板对槽栅区的多晶硅刻蚀,并槽栅区上方淀积二氧化硅,并刻蚀表面二氧化硅。
8、扩散掺杂。如图21,利用光刻板进行P型柱区扩散掺杂,形成P型掺杂区9,进行N型柱区扩散掺杂,此处磷的掺杂剂量应较低,形成N型轻掺杂区8。
9、离子注入。如图22,P型重掺杂区硼注入,形成P+重掺杂区10,N型重掺杂区砷注入,形成N+重掺杂区7。
10、金属化。如图23,正面金属化,金属刻蚀,背面金属化,钝化等等。
制作器件时,还可用碳化硅、砷化镓或锗硅等半导体材料替代体硅。
采用本发明的一种槽型电荷平衡的积累型DMOS,具有较大的正向电流、阈值电压较小、导通电阻降低、栅漏电流改善以及较小的栅漏电容等优良特性。

Claims (4)

1.一种积累型DMOS,包括从下至上依次层叠设置的金属化漏极(1)、N+衬底(2)、N-漂移区(3)和金属化源极(11);所述N-漂移区(3)上层具有N-型轻掺杂区(8)和P型掺杂区(9),所述N-型轻掺杂区(8)位于P型掺杂区(9)之间;所述N-型轻掺杂区(8)正上方具有N+重掺杂区(7),所述P型掺杂区(9)正上方具有P+重掺杂区(10);所述N+重掺杂区(7)和P+重掺杂区(10)的上表面与金属化源极(11)接触;还包括第一沟槽和第二沟槽;所述第一沟槽沿N+重掺杂区(7)上表面中部垂直向下依次贯穿N+重掺杂区(7)和N-型轻掺杂区(8)后延伸入N-漂移区(3)中;所述第二沟槽沿P+重掺杂区(10)上表面垂直向下依次贯穿N+重掺杂区(7)和N-型轻掺杂区(8)后延伸入N-漂移区(3)中;所述第一沟槽和第二沟槽中填充有氧化层(5),所述第一沟槽中具有栅电极(4),所述第二沟槽中具有场板(6),所述场板(6)的上表面与金属化源极(11)接触。
2.根据权利要求1所述的一种积累型DMOS,其特征在于,所述氧化层(5)为二氧化硅或者二氧化硅和氮化硅的复合材料。
3.根据权利要求1所述的一种积累型DMOS,其特征在于,所述栅电极(4)的材料为多晶硅。
4.根据权利要求1所述的一种积累型DMOS,其特征在于,所述场板(6)的材料为多晶硅或者金属。
CN201610532247.7A 2016-07-06 2016-07-06 一种积累型dmos Pending CN106158973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610532247.7A CN106158973A (zh) 2016-07-06 2016-07-06 一种积累型dmos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610532247.7A CN106158973A (zh) 2016-07-06 2016-07-06 一种积累型dmos

Publications (1)

Publication Number Publication Date
CN106158973A true CN106158973A (zh) 2016-11-23

Family

ID=58062056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610532247.7A Pending CN106158973A (zh) 2016-07-06 2016-07-06 一种积累型dmos

Country Status (1)

Country Link
CN (1) CN106158973A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538912A (zh) * 2018-05-07 2018-09-14 株洲中车时代电气股份有限公司 沟槽台阶栅igbt芯片
CN109119476A (zh) * 2018-08-23 2019-01-01 电子科技大学 具有体内场板的分离栅vdmos器件及其制造方法
CN110262771A (zh) * 2019-05-09 2019-09-20 中国科学院微电子研究所 一种基于mos晶体管的基本运算电路及其扩展电路
CN112071750A (zh) * 2020-09-11 2020-12-11 中国电子科技集团公司第五十八研究所 一种降低trench DMOS栅电容的制造方法
CN113990932A (zh) * 2021-10-28 2022-01-28 电子科技大学 一种半导体纵向器件及制备方法
CN114242779A (zh) * 2022-02-24 2022-03-25 成都功成半导体有限公司 一种带有沟槽的碳化硅积累态mosfet
WO2023109080A1 (zh) * 2021-12-15 2023-06-22 苏州东微半导体股份有限公司 Igbt器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536164A (zh) * 2006-09-27 2009-09-16 巨能半导体股份有限公司 具有凹陷场板的功率金属氧化物半导体场效应晶体管
CN105047721A (zh) * 2015-08-26 2015-11-11 国网智能电网研究院 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536164A (zh) * 2006-09-27 2009-09-16 巨能半导体股份有限公司 具有凹陷场板的功率金属氧化物半导体场效应晶体管
CN105047721A (zh) * 2015-08-26 2015-11-11 国网智能电网研究院 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538912A (zh) * 2018-05-07 2018-09-14 株洲中车时代电气股份有限公司 沟槽台阶栅igbt芯片
CN108538912B (zh) * 2018-05-07 2021-02-12 株洲中车时代半导体有限公司 沟槽台阶栅igbt芯片
CN109119476A (zh) * 2018-08-23 2019-01-01 电子科技大学 具有体内场板的分离栅vdmos器件及其制造方法
CN110262771A (zh) * 2019-05-09 2019-09-20 中国科学院微电子研究所 一种基于mos晶体管的基本运算电路及其扩展电路
CN110262771B (zh) * 2019-05-09 2021-07-13 中国科学院微电子研究所 一种基于mos晶体管的基本运算电路及其扩展电路
CN112071750A (zh) * 2020-09-11 2020-12-11 中国电子科技集团公司第五十八研究所 一种降低trench DMOS栅电容的制造方法
CN112071750B (zh) * 2020-09-11 2022-08-02 中国电子科技集团公司第五十八研究所 一种降低trench DMOS栅电容的制造方法
CN113990932A (zh) * 2021-10-28 2022-01-28 电子科技大学 一种半导体纵向器件及制备方法
WO2023109080A1 (zh) * 2021-12-15 2023-06-22 苏州东微半导体股份有限公司 Igbt器件
CN114242779A (zh) * 2022-02-24 2022-03-25 成都功成半导体有限公司 一种带有沟槽的碳化硅积累态mosfet
CN114242779B (zh) * 2022-02-24 2022-05-10 成都功成半导体有限公司 一种带有沟槽的碳化硅积累态mosfet

Similar Documents

Publication Publication Date Title
CN106158973A (zh) 一种积累型dmos
CN115863438A (zh) 具有分离平面栅结构的金属氧化物半导体场效应晶体管
CN106098777A (zh) 一种***栅积累型dmos器件
CN105932051A (zh) 一种槽栅mosfet器件
CN109920839B (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN106298939A (zh) 一种具有复合介质层结构的积累型dmos
CN111969043A (zh) 高压三维耗尽超结ldmos器件及其制造方法
CN110504310A (zh) 一种具有自偏置pmos的ret igbt及其制作方法
CN105977302A (zh) 一种具有埋层结构的槽栅型mos
CN109119463A (zh) 一种横向沟槽型mosfet器件及其制备方法
CN109904220A (zh) 槽栅型碳化硅mosfet器件及制备方法
CN103515443B (zh) 一种超结功率器件及其制造方法
CN113224148B (zh) 具有氮化硅阻挡层的sgt器件及制备方法
CN105957894A (zh) 一种具有复合介质层结构的dmos
CN206976353U (zh) 一种优化终端结构的沟槽型半导体器件
CN109148566A (zh) 碳化硅mosfet器件及其制造方法
CN108389895A (zh) 基于超结的集成功率器件及其制造方法
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN103117309A (zh) 一种横向功率器件结构及其制备方法
CN102522338B (zh) 高压超结mosfet结构及p型漂移区形成方法
CN115985938A (zh) 一种重离子注入型集成超结器件及制造方法
CN114171588B (zh) 双向导通槽栅功率mos器件结构及制造方法
CN110212026A (zh) 超结mos器件结构及其制备方法
CN115763562A (zh) 一种高迁移率碳化硅n型ldmos器件
CN109994550A (zh) 一种低压槽栅超结mos器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161123