CN104979404A - 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管 - Google Patents

一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管 Download PDF

Info

Publication number
CN104979404A
CN104979404A CN201510267184.2A CN201510267184A CN104979404A CN 104979404 A CN104979404 A CN 104979404A CN 201510267184 A CN201510267184 A CN 201510267184A CN 104979404 A CN104979404 A CN 104979404A
Authority
CN
China
Prior art keywords
field oxide
region
drift region
raceway groove
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510267184.2A
Other languages
English (en)
Inventor
段宝兴
曹震
袁小宁
袁嵩
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510267184.2A priority Critical patent/CN104979404A/zh
Publication of CN104979404A publication Critical patent/CN104979404A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种新型超结横向双扩散金属氧化物半导体场效应管(SJ-LDMOS),包括在LDMOS漂移区的表面形成SJ层,并利用两步浅槽隔离(STI)技术在Super Junction上方形成阶梯场氧化层的新型半导体器件,一方面利用电场调制效应使器件表面的电场分布更加均匀,从而增加器件的击穿电压;另一方面由于阶梯场氧化层靠近器件沟道处的较薄氧化层厚度较小,在开启状态下场板下方的漂移区表面存在更多的多数载流子积累,并且在薄阶梯氧化层下方器件纵向的电流通道变宽从而大幅度地降低了器件的导通电阻。

Description

一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管
技术领域
本发明涉及半导体器件领域,特别是涉及一种横向双扩散金属氧化物半导体场效应管。
背景技术
将超结SJ(Super Junction)技术应用于LDMOS(Lateral Double-diffusedMOSFET)形成SJ-LDMOS结构是LDMOS器件研究的热点。由于SJ-LDMOS在一定的击穿电压BV(Breakdown Voltage)条件下具有非常低的导通电阻RON,打破了传统功率MOS器件的极限关系,已被广泛应用于超低功耗PIC(Power Integrated Circuit)设计中。然而在SJ-LDMOS实现的过程中遇到了许多问题,包括衬底辅助耗尽效应SAD(Substrate Assisted Depletion),即在P型硅衬底上实现的SJ-LDMOS,由于N柱漂移区同时被相邻P柱和P型衬底辅助耗尽,导致Super Junction的电荷不能完全补偿,造成BV大幅度降低。
具有缓冲层(Buffer)SJ-LDMOS结构能够有效地减少衬底辅助耗尽的影响,并且该结构与传统BCD(Bipolar-CMOS-DMOS)工艺兼容。在传统的BCD工艺中,制造Buffer SJ-LDMOS漂移区场氧和器件之间隔离氧化层时采用硅的局部氧化LOCOS(Local Oxidation of Silicon)技术。由于LOCOS的高温工艺一方面会使超结的N柱与P柱相互扩散严重增加,另一方面由于场氧化层生长的过程中吸硼排磷的效应使超结的N柱与P柱浓度不相同,导致电荷不能完全补偿,从而使得器件的电学特性较差。
浅槽隔离STI(Shallow Trench Isolation)技术与LOCOS技术相比工作温度较低,可以很好地解决以上问题。然而在采用STI BCD工艺制造SJ-LDMOS过程中,为了降低工艺成本,在漂移区上场氧化层的厚度是由器件之间的隔离深度决定的,SJ-LDMOS的性能受到了器件BCD工艺的限制。虽然器件之间的厚场氧化层满足隔离的条件,但是器件的性能并没有得到很好的优化,在提高器件耐压的同时比导通电阻也大幅度增加。
发明内容
本发明提出了一种横向双扩散金属氧化物半导体场效应管,旨在有效优化SJ-LDMOS击穿电压与比导通电阻的矛盾。
本发明的技术方案如下:
横向双扩散金属氧化物半导体场效应晶体管,包括:
半导体材料的衬底;
在所述衬底上生长的外延层,作为缓冲层;
在所述外延层上形成相邻接的基区和漂移区,漂移区注入N柱和P柱相间排列形成超结漂移区;
位于超结漂移区上相邻接的场氧化层和漏区,其中场氧化层与沟道保持间距;
在所述基区上利用双扩散技术形成的沟道,在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;
位于沟道上方的栅绝缘层以及栅极;
分别在源区和漏区上形成的源极和漏极;
在以上与现有技术相同的结构基础上,本发明的结构改变主要是:
所述场氧化层为阶梯型,即其中靠近沟道的区域为深度较浅的薄场氧化层,靠近以及邻接漏区的区域为深度较深的厚场氧化层;所述栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分。
基于上述基本方案,本发明还进一步做如下优化限定和改进:
薄场氧化层的厚度约为厚场氧化层的厚度的1/2时,器件的特性为最优。
阶梯场氧化层的厚场氧化层根据器件的具体耐压要求设计特定的厚度,例如:当器件耐压为100~300V时,厚场氧化层的厚度约为1μm;当器件耐压为300~700V时,厚场氧化层的厚度约为1.5μm。
当阶梯场氧化层的阶梯拐角位置为器件漂移区的中间位置附近时,器件的性能最优。
相应的,制作本发明的场效应管器件的方法的特别之处就在于:在形成有源区时,首先在超结漂移区表面靠近沟道的区域利用STI技术形成深度较浅的薄场氧化层,保证栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分;然后在超结漂移区表面靠近漏端的区域以及多个所述横向双扩散金属氧化物半导体场效应管(注:通常制作此类器件都是多个器件共同制作)之间的相互隔离处利用STI技术形成深度较深的厚场氧化层,即在超结漂移区的表面形成阶梯状的场氧化层。
本发明技术方案的有益效果如下:
本发明在LDMOS的漂移区表面形成Super Junction,一方面降低了漂移区的导通电阻;另一方面消除了衬底辅助耗尽效应,使得器件具有很高的击穿电压。在器件漂移区上方,形成阶梯场氧化层,是对传统漂移区上具有单层厚氧化层SJ-LDMOS的改进和创新。
在SJ-LDMOS漂移区的表面通过两步STI技术形成阶梯场氧化层。一方面,阶梯场氧化层对器件漂移区的表面电场进行调制,使得漂移区的表面电场分布更加均匀,从而有效的提高了器件击穿电压。另一方面,由于靠近沟道处的场氧化层变薄,在开启状态下场板下方的漂移区表面存在更高浓度的多数载流子积累,并且在较薄阶氧化层下方器件纵向方向上的电流通道变宽,从而大幅度地降低了器件的导通电阻,使得器件的整体性能得到优化。
附图说明
图1为本发明实施例的结构示意图(正视图);
图2为本发明实施例的三维剖视示意图(为了便于标注,对超结、漂移区绝缘层以及阶梯场氧化层等作了部分立体断面);
附图标号说明:
1-源极;2-栅极,包括延伸到场氧化层上方部分形成的场板;3-栅绝缘层;4-阶梯场氧化层;5-漏电极;6-漏区;7-N柱与P柱相间形成的超结漂移区;8-缓冲层;9-衬底;10-基区;11-源区;12-沟道;
具体实施方式
如图1所示,本发明具有阶梯场氧的横向双扩散金属氧化物半导体场效应管结构包括:
半导体材料的衬底9;
位于衬底上的外延层作为器件的缓冲层8;
分别位于缓冲层8上两端的基区10和漏区6,漏区上面为漏极5;
位于基区表面的源区11和沟道12;
源区表面形成源极1,沟道12上面为栅绝缘层3位于栅极2下方;
沟道与漏区之间漂移区表面形成N柱和P柱相间排列的超结漂移区7;
超结漂移区7上方为阶梯场氧化层4;
薄场氧化层的厚度为41,厚场氧化层的厚度为42。
在LDMOS漂移区的表面形成Super Junction层,可以有效降低漂移区的导通电阻。又由于Super Junction下方为缓冲层,可以有效解决衬底辅助耗尽效应,使得器件具有很高的击穿电压。为了进一步优化器件的特性,解决场氧化层厚度受到器件之间隔离氧化层厚度限制的问题,利用两步STI技术在超结漂移区上形成阶梯场氧化层。根据电场调制原理,阶梯场氧化层对漂移区表面的电场进行调制,使其电场分布更加均匀,进一步提高了器件的击穿电压。又由于靠近沟道的薄场氧化层厚度较小,在漂移区表面场板下方区域多数载流积累的浓度增加,并且在薄场氧化层下方电流的导通路径变宽,从而大幅度地降低了器件的导通电阻。
以N沟道LDMOS为例,具体可以通过以下步骤进行制备:
1)半绝缘材料(包括Si、SiC和GaAs等)的衬底上外延N型缓冲层;
2)在缓冲层上左端形成P型基区;
3)自基区至漏区注入若干相间排列的高浓度的N柱和P柱,形成超结漂移区;
4)利用两步STI技术,形成有源区同时在超结漂移区上形成阶梯场氧化层;场氧化层的阶梯拐角位置为超结漂移区的中点位置;其中,薄场氧化层的厚度为厚场氧化层的厚度的1/2;耐压要求为100~300V时,厚场氧化层的厚度为1μm;耐压要求为300~700V时,厚场氧化层的厚度为1.5μm;
5)在沟道上面形成栅氧化层并淀积多晶硅、刻蚀多晶硅和栅氧化层,形成栅极;
6)在基区利用双扩散技术注入形成沟道,同时在右端注入形成漏区;
7)在基区左端形成沟道衬底接触;
8)在器件表面淀积钝化层,并刻蚀接触孔;
9)淀积金属并刻蚀形成漏极和源极。
经实验,该器件的性能较之于传统器件大幅度提升,在两种器件漂移区长度相同的情况下该器件的击穿电压提高约25%;在两种器件击穿电压相同的情况下比导通电阻下降约30%。
当然,本发明中的LDMOS也可以为P型沟道,其结构与N沟道LDMOS等同,亦应属于本申请权利要求的保护范围,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (5)

1.一种横向双扩散金属氧化物半导体场效应晶体管,包括:
半导体材料的衬底;
在所述衬底上生长的外延层,作为缓冲层;
在所述外延层上形成相邻接的基区和漂移区,漂移区注入N柱和P柱相间排列形成超结漂移区;
位于超结漂移区上相邻接的场氧化层和漏区,其中场氧化层与沟道保持间距;
在所述基区上利用双扩散技术形成的沟道,在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;
位于沟道上方的栅绝缘层以及栅极;
分别在源区和漏区上形成的源极和漏极;
其特征在于:
所述场氧化层为阶梯型,即其中靠近沟道的区域为深度较浅的薄场氧化层,靠近以及邻接漏区的区域为深度较深的厚场氧化层;所述栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分。
2.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:薄场氧化层的厚度为厚场氧化层的厚度的1/2。
3.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:耐压要求为100~300V时,厚场氧化层的厚度为1μm;耐压要求为300~700V时,厚场氧化层的厚度为1.5μm。
4.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:所述场氧化层的阶梯拐角位置为超结漂移区的中点位置。
5.一种制作权利要求1所述的横向双扩散金属氧化物半导体场效应管的方法,包括以下步骤:
1)在半导体材料的衬底上外延缓冲层;
2)在缓冲层上左端形成基区;
3)从基区到右端生成超结漂移区,即交替注入高浓度的N柱和P柱;
4)形成有源区同时在超结漂移区上形成场氧化层;
5)在沟道上面形成栅氧化层并淀积多晶硅、刻蚀多晶硅和栅氧化层,形成栅极;
6)在基区利用双扩散技术注入形成沟道,同时在超结漂移区的右端注入形成漏区;
7)在基区左端形成沟道衬底接触;
8)在整个表面淀积钝化层,并刻蚀接触孔;
9)淀积金属并刻蚀形成漏极和源极;
其特征在于:
在形成有源区时,首先在超结漂移区表面靠近沟道的区域利用STI技术形成深度较浅的薄场氧化层,保证栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分;然后在超结漂移区表面靠近漏端的区域以及多个所述横向双扩散金属氧化物半导体场效应管之间的相互隔离处利用STI技术形成深度较深的厚场氧化层,即在超结漂移区的表面形成阶梯状的场氧化层。
CN201510267184.2A 2015-05-22 2015-05-22 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管 Pending CN104979404A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510267184.2A CN104979404A (zh) 2015-05-22 2015-05-22 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510267184.2A CN104979404A (zh) 2015-05-22 2015-05-22 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管

Publications (1)

Publication Number Publication Date
CN104979404A true CN104979404A (zh) 2015-10-14

Family

ID=54275730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510267184.2A Pending CN104979404A (zh) 2015-05-22 2015-05-22 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管

Country Status (1)

Country Link
CN (1) CN104979404A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063158A (zh) * 2017-12-06 2018-05-22 重庆邮电大学 一种具有槽型氧化层和横向超结的ldmos器件
CN109166915A (zh) * 2018-08-28 2019-01-08 电子科技大学 一种介质超结mos型功率半导体器件及其制备方法
CN109860276A (zh) * 2019-02-14 2019-06-07 长江存储科技有限责任公司 半导体器件及其形成方法
CN111276532A (zh) * 2020-03-17 2020-06-12 合肥晶合集成电路有限公司 一种半导体器件及其制备方法
CN111933713A (zh) * 2020-09-24 2020-11-13 晶芯成(北京)科技有限公司 半导体器件及其制造方法
CN113228297A (zh) * 2021-02-25 2021-08-06 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
CN113990864A (zh) * 2021-12-28 2022-01-28 广州粤芯半导体技术有限公司 半导体器件的终端结构版图
CN114220849A (zh) * 2022-02-23 2022-03-22 江苏游隼微电子有限公司 一种兼容cmos工艺的ldmos器件
CN115084235A (zh) * 2022-07-25 2022-09-20 北京芯可鉴科技有限公司 Ldmos器件、制备方法及芯片
US20230207692A1 (en) * 2020-10-29 2023-06-29 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
CN118136679A (zh) * 2024-05-07 2024-06-04 北京智芯微电子科技有限公司 基于异质结二维电子气的双栅ldmos器件及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163992A1 (en) * 2008-12-31 2010-07-01 Kim Mi-Young Semiconductor device and method for fabricating the same
US20100270616A1 (en) * 2009-04-24 2010-10-28 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
CN101916779A (zh) * 2010-07-20 2010-12-15 中国科学院上海微***与信息技术研究所 可完全消除衬底辅助耗尽效应的soi超结ldmos结构
CN102244092A (zh) * 2011-06-20 2011-11-16 电子科技大学 一种横向高压功率半导体器件的结终端结构
CN102254946A (zh) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 一种射频横向扩散n型mos管及其制造方法
CN102361031A (zh) * 2011-10-19 2012-02-22 电子科技大学 一种用于soi高压集成电路的半导体器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163992A1 (en) * 2008-12-31 2010-07-01 Kim Mi-Young Semiconductor device and method for fabricating the same
US20100270616A1 (en) * 2009-04-24 2010-10-28 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
CN101916779A (zh) * 2010-07-20 2010-12-15 中国科学院上海微***与信息技术研究所 可完全消除衬底辅助耗尽效应的soi超结ldmos结构
CN102254946A (zh) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 一种射频横向扩散n型mos管及其制造方法
CN102244092A (zh) * 2011-06-20 2011-11-16 电子科技大学 一种横向高压功率半导体器件的结终端结构
CN102361031A (zh) * 2011-10-19 2012-02-22 电子科技大学 一种用于soi高压集成电路的半导体器件

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063158A (zh) * 2017-12-06 2018-05-22 重庆邮电大学 一种具有槽型氧化层和横向超结的ldmos器件
CN109166915A (zh) * 2018-08-28 2019-01-08 电子科技大学 一种介质超结mos型功率半导体器件及其制备方法
CN109860276B (zh) * 2019-02-14 2022-08-09 长江存储科技有限责任公司 半导体器件及其形成方法
CN109860276A (zh) * 2019-02-14 2019-06-07 长江存储科技有限责任公司 半导体器件及其形成方法
CN111276532A (zh) * 2020-03-17 2020-06-12 合肥晶合集成电路有限公司 一种半导体器件及其制备方法
CN111933713A (zh) * 2020-09-24 2020-11-13 晶芯成(北京)科技有限公司 半导体器件及其制造方法
CN111933713B (zh) * 2020-09-24 2021-02-05 晶芯成(北京)科技有限公司 半导体器件及其制造方法
US12040396B2 (en) * 2020-10-29 2024-07-16 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
US20230207692A1 (en) * 2020-10-29 2023-06-29 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
CN113228297A (zh) * 2021-02-25 2021-08-06 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
CN113990864B (zh) * 2021-12-28 2022-03-18 广州粤芯半导体技术有限公司 半导体器件的终端结构版图
CN113990864A (zh) * 2021-12-28 2022-01-28 广州粤芯半导体技术有限公司 半导体器件的终端结构版图
CN114220849A (zh) * 2022-02-23 2022-03-22 江苏游隼微电子有限公司 一种兼容cmos工艺的ldmos器件
CN115084235A (zh) * 2022-07-25 2022-09-20 北京芯可鉴科技有限公司 Ldmos器件、制备方法及芯片
CN115084235B (zh) * 2022-07-25 2023-01-17 北京芯可鉴科技有限公司 Ldmos器件、制备方法及芯片
CN118136679A (zh) * 2024-05-07 2024-06-04 北京智芯微电子科技有限公司 基于异质结二维电子气的双栅ldmos器件及制造方法
CN118136679B (zh) * 2024-05-07 2024-07-09 北京智芯微电子科技有限公司 基于异质结二维电子气的双栅ldmos器件及制造方法

Similar Documents

Publication Publication Date Title
CN104979404A (zh) 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管
JP6640904B2 (ja) トレンチ下部にオフセットを有するSiC半導体デバイス
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
TWI453919B (zh) 用於快速開關的帶有可控注入效率的二極體結構
US8659076B2 (en) Semiconductor device structures and related processes
CN109920854B (zh) Mosfet器件
CN107204372A (zh) 一种优化终端结构的沟槽型半导体器件及制造方法
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
TW202006956A (zh) 具有整合的偽肖特基二極體於源極接觸溝槽之功率金屬氧化物半導體場效電晶體
CN104241348A (zh) 一种低导通电阻的SiC IGBT及其制备方法
CN107093622B (zh) 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管
CN104835836B (zh) 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管
CN108511528A (zh) 具有深漏区的横向双扩散金属氧化物复合半导体场效应管及其制作方法
KR20210100547A (ko) 등급화된 에피 프로파일을 갖는 전하 보상 mosfet 및 이의 제조 방법
CN109087952A (zh) 具有低比导通电阻的分离栅vdmos器件及制造方法
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
KR20140044075A (ko) 반도체 소자 및 그 제조 방법
CN113594255A (zh) 沟槽型mosfet器件及其制备方法
CN108565286B (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法
CN110047930A (zh) Vdmos器件
CN105870189A (zh) 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管
CN108258050A (zh) 高k介质沟槽横向超结双扩散金属氧化物元素半导体场效应管及其制作方法
CN114664934B (zh) 一种含有场板的dmos晶体管及其制作方法
CN103094124B (zh) 高压结型场效应管的结构及制造方法
CN116190438A (zh) 一种AlGaN/GaN垂直型高电子迁移率晶体管及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151014

RJ01 Rejection of invention patent application after publication