CN103695619B - 一种高磁感普通取向硅钢的制造方法 - Google Patents

一种高磁感普通取向硅钢的制造方法 Download PDF

Info

Publication number
CN103695619B
CN103695619B CN201210365931.2A CN201210365931A CN103695619B CN 103695619 B CN103695619 B CN 103695619B CN 201210365931 A CN201210365931 A CN 201210365931A CN 103695619 B CN103695619 B CN 103695619B
Authority
CN
China
Prior art keywords
silicon steel
manufacture method
content
magnetic strength
common orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210365931.2A
Other languages
English (en)
Other versions
CN103695619A (zh
Inventor
沈侃毅
李国保
储双杰
孙业中
章华兵
杨勇杰
胡卓超
赵斌
徐琪
黄杰
章培莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201210365931.2A priority Critical patent/CN103695619B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to PCT/CN2012/001682 priority patent/WO2014047757A1/zh
Priority to EP12885574.9A priority patent/EP2902507B1/en
Priority to MX2015003320A priority patent/MX366340B/es
Priority to JP2015533391A priority patent/JP6461798B2/ja
Priority to RU2015108466A priority patent/RU2609605C2/ru
Priority to KR1020157007230A priority patent/KR20150043504A/ko
Priority to US14/430,463 priority patent/US9905361B2/en
Publication of CN103695619A publication Critical patent/CN103695619A/zh
Application granted granted Critical
Publication of CN103695619B publication Critical patent/CN103695619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Abstract

本发明公开了一种高磁感取向硅钢的制造方法,其包括下列步骤:1)冶炼、连铸后得到板坯,控制冶炼阶段的N含量为0.002~0.014wt%;2)热轧;3)冷轧;4)脱碳退火;5)氮化处理:控制渗入氮含量[N]D满足:328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c,式中,a为冶炼步骤中Als的含量,ppm;b为N元素的含量,ppm;c为初次晶粒尺寸,μm;6)表面氧化镁涂层,进行退火;7)涂敷绝缘涂层。采用该方法能够获得磁感B8≥1.88T的普通取向硅钢,不仅节省了生产工序,提高了生产效率,而且还保证普通取向硅钢具备理想的磁性能和优良的取向度。

Description

一种高磁感普通取向硅钢的制造方法
技术领域
本发明涉及一种金属合金制造方法,尤其涉及一种铁基合金的制造方法。
背景技术
通常现有普通取向硅钢(CGO)是以MnS或MnSe为抑制剂,利用二次冷轧法制造生产的,其主要生产工艺流程为:
冶炼→热轧→常化→一次冷轧→中间退火→二次冷轧→脱碳退火→高温退火→绝缘涂层。其中技术要点为:
冶炼:用转炉(或电炉)炼钢,进行二次精炼及合金化,连铸成板坯,其基本化学成分质量百分含量为Si:2.5~4.5%,C:0.02~0.10%,Mn:0.025~0.25%,S或Se:0.01~0.035%,Al≤0.01%,N≤0.005%,有的成分体系还含有Cu、Mo、Sb、B、Bi等元素中的一种或多种,其余为铁及不可避免的杂质元素。
热轧:一般将板坯在专用高温加热炉内加热到1350℃以上的温度,并进行45分钟以上的保温,使有利的夹杂物MnS或MnSe充分固溶,然后进行4~6道次的粗轧和精轧。通过精轧和卷取之间的快速冷却,可使碳化物弥散分布在晶粒内,有利于以后获得细小均匀的初次晶粒。
常化:在850~950℃温度下保持3分钟,使热轧板组织更均匀。
一次冷轧:冷轧压下率为60~70%,经3~4道轧制。
中间退火:中间退火温度为850~950℃,退火时间为2.5~4.0分钟。
二次冷轧:中间退火后的二次冷轧压下率为50~55%,冷轧道次为2~3道。
脱碳退火:通过脱碳退火完成初次再结晶并形成二次晶粒形核点。将C含量脱至30ppm以下,保证之后的高温退火时处于单一的α相,发展完善的二次再结晶组织,消除成品的磁时效。
高温退火:必须先经高温退火进行二次再结晶并使二次晶粒长大,然后在带钢表面形成一层硅酸镁底层玻璃膜;最后净化退火除掉抑制剂分解出来的硫和氮等对磁性有害的元素,得到取向度高和理想磁性能的普通取向硅钢。
绝缘涂层:经过涂布绝缘涂层和拉伸退火,获得商业应用形态的取向硅钢产品。
公开号为CN1321787A,公开日为2001年11月14日,名称为“单取向电工钢板及其制备方法”的中国专利文献,其公开了一种单取向电工钢板及其制造方法。该方法的制造工序包括:将原材料进行冶炼,其化学成分质量百分含量为C:0.02~0.15%,Si:1.5~2.5%,Mn:0.02~0.20%,酸可溶性的Al;0.015~0.065%,N:0.0030~0.0150%,选自S和Se中的一种或两种的总量:0.005~0.040%,余量为Fe和不可避免的其他杂质;在900~1100℃温度下进行热轧板卷退火,进行一次冷轧,脱碳退火,最终退火,最后涂敷后获得板厚为0.20~0.55mm、平均结晶粒径为1.5~5.5mm的电工钢板,其铁损值W17/50满足:0.5884e1.9154×板厚(mm)≤W17/50(W/kg)≤0.7558e1.7378×板厚(mm),B8(T)值满足1.88≤B8(T)≤1.95。
公开号为US5039359,公开日为1991年8月13日,名称为“一种具有优异磁性晶粒取向电工钢板的制造方法”的美国专利文献,其涉及一种具有优良磁性电工钢板的制造方法,其制造方法的步骤为:冶炼钢水,其化学成分的质量百分含量配比为C:0.021~0.100wt%,Si:2.5~4.5wt%,其中还含有硅钢板坯形成抑制剂,其余铁和不可避免的其他杂质,形成热轧卷取钢板,卷取冷却温度≤700℃,该温度比实际的热轧卷取钢板的温度降低80%以上,在热轧钢板的工作表上组成的平衡一个或多个元素,采取至少一次冷轧生产取向硅钢,该产品磁感可以达到1.90T以上。
公开号为US5472521,公开日为1995年12月5日,名称为“一种具有优异磁性晶粒取向的电工钢板的制造方法”的美国专利文献,其公开了一种提高磁性和稳定晶粒取向的电工钢板的制造方法。其采用低温板坯加热技术、免常化的一次冷轧工艺生产取向硅钢,同时还涉及了冶炼后氮含量与钢板磁感的关系。
上述现有技术存在以下缺点:
(1)采用MnS或MnSe为主抑制剂,导致成品磁性偏低;
(2)为了使MnS或MnSe抑制剂充分固溶,加热温度最高需达到1400℃,这是传统加热炉的极限水平;此外,由于加热温度高、烧损大,加热炉需频繁修补,利用率低;同时,加热温度高导致能耗高,热轧卷的边裂大,致使冷轧工序生产困难,成材率低,成本也高;
(3)在现有化学成分体系下,整个生产过程需要采用常化、中间退火以及两次冷轧法才能获得磁性符合要求的普通取向硅钢成品,从而导致工序繁复、制造工艺流程长,生产效率过低;
(4)现有普通取向硅钢中的MnS或MnSe为完全固溶非氮化型,其在实际生成中由于板坯再加热温度过高,会发生板坯内抑制剂强度不均匀,易生成粗大晶粒等,这都会导致二次再结晶不完善,磁感降低等问题。
发明内容
本发明的目的在于提供一种高磁感普通取向硅钢的制造方法,采用该制造方法能在省去常化、中间退火等工序的前提下,仅采用一次免时效轧制即可获得较高磁感(B8≥1.88T)的普通取向硅钢。
为了实现上述发明目的,本发明提供了一种高磁感普通取向硅钢的制造方法,其包括下列步骤:
(1)冶炼、连铸后得到板坯,控制冶炼阶段的N含量为0.002~0.014wt%;
(2)热轧:加热温度为1090~1200℃;
(3)冷轧:一次免时效轧制;
(4)脱碳退火;
(5)氮化处理:渗入氮含量[N]D满足328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c;其中,a为冶炼步骤Als的含量,单位为ppm;b为冶炼步骤N元素的含量,单位为ppm;c为初次晶粒尺寸,单位为μm;
(6)钢板表面涂覆氧化镁涂层,进行退火;
(7)涂敷绝缘涂层。
发明人通过大量试验发现,在炼钢过程中适当控制氮含量,既能获得磁感较高的产品,又能免去常化和中间退火等工序,并且将二次冷轧法转为一次冷轧法,使得生产周期缩短,生产效率明显提高。由于在本技术方案中,脱碳退火工序后还需要采取氮化处理,因此需要在冶炼阶段可将N含量控制在较低范围内,从而避免用高温来进行加热,本技术方案中采用了1090~1200℃的低温板坯加热技术进行生产制造。在本技术技术方案中,当N含量不足0.002%时,不能获得稳定的一次抑制剂效果,初次再结晶尺寸的控制变得困难,二次再结晶也不完善。此时,需要采用中间退火和二次冷轧工艺来改善成品磁性。然而,当N含量超过0.014%时,在实际的生产过程中既需要使板坯再加热温度升至1350℃以上,又由于后工序的氮化处理,会使高斯取向度降低。另外,当N含量较高时,还需要增加常化工序来使得AlN抑制剂细小弥散的析出,并采用一次冷轧时效轧制工艺来获得最终成品厚度的冷轧板。因此,结合成品磁性,生产效率及综合各项因素而言,在本发明的技术方案中,需要将N含量控制在0.002~0.014wt%。
本技术方案中的氮化处理是针对本技术方案中的低温板坯加热技术的,其对冷轧脱碳板进行渗氮处理,从而补充基板中不足抑制剂的强度,所增加的抑制剂是专门为进行二次再结晶所准备的二次抑制剂,其数量的多少直接决定了脱碳钢板在高温退火过程中二次再结晶的完善程度。当氮化处理中的渗入氮含量过少时,会使抑制剂强度偏弱,从而导致二次再结晶晶核位置扩展到板厚方向,不仅钢板近表层的尖锐高斯取向,而且中心层的正常晶粒也发生二次再结晶,致使取向度变差,磁特性劣化,使得成品的B8降低。反之,氮化处理中渗入氮含量过多时,高斯取向度也会极为劣化,并且在高温退火过程中形成的硅酸镁玻璃膜上会发生露出金属缺陷,且缺陷率会显著增加。因此,氮化处理的渗入氮含量应满足关系式:328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c(a为冶炼步骤中Als的含量,ppm;b为冶炼步骤中N元素的含量,ppm;c为初次晶粒尺寸,μm)。
进一步地,在上述步骤(2)中,1180℃以下开轧,860℃以上终轧,轧后卷取,卷取温度小于650℃。
进一步地,在上述步骤(3)中,控制冷轧压下率≥80%。
进一步地,在上述步骤(4)中,控制升温速度15~35℃/s,脱碳温度800~860℃,脱碳露点60~70℃。
进一步地,在上述步骤(4)中保护气氛为75%H2+25%N2(体积分数)。
进一步地,在上述步骤(5)中,采用体积分数为0.5~4.0%的NH3进行渗氮,渗氮温度760~860℃,渗氮时间20~50s,氧化度为0.045~0.200。
与现有技术相比,本发明所述的高磁感普通取向硅钢的制造方法,通过控制冶炼过程中的N含量,并根据冶炼步骤中Als的含量,N元素的含量和初次晶粒尺寸控制后续过程中氮化处理的渗入氮含量,在减少生产工艺流程的前提下,获得了磁感较高(B8≥1.88T)的普通取向硅钢,不仅节省了生产工序,提高了生产效率,而且还保证普通取向硅钢具备理想的磁性能和优良的取向度。
具体实施方式
以下将结合具体实施例和比较例对本发明所述的技术方案作进一步的解释说明。
实施例1-3和比较例1-2:
采用转炉或电炉炼钢,钢水经二次精炼,并在连铸后得到板坯,其化学元素质量百分数为:C:0.02~0.08%,Si:2.0~3.5%,Mn:0.05~0.20%,S:0.005~0.012%,Als:0.010~0.060%,N:0.002~0.014%,Sn:≤0.10%,余量为Fe及其他不可避免的杂质。将不同成分的板坯放在1150℃加热后热轧至厚度为2.3mm的热轧板,开轧和终轧温度分别为1070℃和935℃,卷取温度636℃。热轧板经酸洗后,一次冷轧到成品厚度0.30mm。脱碳退火升温速率25℃/s、脱碳温度845℃,脱碳露点67℃的条件下进行脱碳退火,使钢板中[C]含量降到30ppm以下。氮化处理工艺:780℃×30sec,氧化度是0.065,NH3用量3.2wt%,渗入[N]含量160ppm。涂布MgO为主要成分的隔离剂后,在罩式炉中进行高温退火。开卷后经过涂敷绝缘涂层及拉伸平整退火,得到的成品B8和生产周期见表1。
表1.(余量为Fe和其他不可避免的杂质,wt%)
(序号1-3分别为实施例1-3,序号4-5分别为对比例1-2)
从表1可以看出,当N元素含量控制在0.002~0.014%范围内时,成品的磁感普遍较高,都能达到B8≥1.88T。反之,对比例1-2的N元素不满足本发明所述的技术方案,其磁感与实施例1-3相比较稍低。
此外,从表1还可以看出,当冶炼阶段的N含量满足0.002~0.014%时,可以免去常化和中间退火步骤,同时采用一次冷轧工艺技术,这就使得从热轧板到最终成品冷轧板的生产周期控制在48小时以内。否则,当N含量不满足要求时,由于需要进行常化、中间退火和二次冷轧等工序,会将生产周期延长约5~20小时。
实施例4-8和对比例3-7:
采用转炉或电炉炼钢,钢水经二次精炼,并在连铸后得到板坯,其化学元素质量百分数为Si:3.0%,C:0.05%,Mn:0.11%,S:0.007%,Als:0.03%,N:0.007%,Sn:0.06%,其余为Fe及不可避免的杂质;然后进行热轧,不同的热轧工艺条件如下表2所示。热轧板经酸洗,一次冷轧到成品厚度0.30mm。脱碳退火升温速率25℃/s、脱碳温度840℃,脱碳露点70℃的条件下进行脱碳退火,使钢板中[C]含量降到30ppm以下。氮化处理工艺:800℃×30sec,氧化度是0.14,NH3用量1.1wt%,渗入[N]含量200ppm。涂布MgO为主要成分的隔离剂后,在罩式炉中进行高温退火。开卷后经过涂敷绝缘涂层及拉伸平整退火,得到的成品B8见表2。
表2
从表2结果可以看到,当热轧工艺满足:板坯在加热炉内加热到1090~1200℃,开轧温度1180℃以下,终轧温度为860℃以上,轧后层流冷却,650℃温度以下卷取时,实施例4-8的磁感普遍更高,都能达到B8≥1.88T。反之,当热轧工艺与本技术方案不符时,对比例3-7的磁感都较实施例偏低。
实施例9-13和对比例8-13:
采用转炉或电炉炼钢,钢水经二次精炼,并在连铸后得到板坯,其化学元素质量百分数为Si:2.8%,C:0.04%,S:0.009%,Als:0.04%,N:0.005%,Mn:0.10%,Sn:0.03%,其余为Fe及不可避免的杂质。将板坯在1130℃下加热,而后热轧至厚度为2.5mm的热轧板,开轧和终轧温度分别为1080℃和920℃,卷取温度605℃。热轧板经酸洗,冷轧到成品厚度0.35mm,然后进行脱碳退火,不同的脱碳退火工艺条件如下表3所示。脱碳退火后,使钢板中[C]含量降到30ppm以下。渗氮退火工艺:800℃×30sec,氧化度是0.15,NH3用量0.9wt%,渗入[N]含量170ppm。涂布MgO为主要成分的隔离剂后,在罩式炉中进行高温退火。开卷后经过涂敷绝缘涂层及拉伸平整退火,得到的成品B8见表3。
表3
从表3可以看到,当脱碳退火工艺满足:脱碳升温速度15~35℃/sec,脱碳温度800~860℃,脱碳露点60~70℃时,实施例9-13的成品的磁感普遍更高,都能达到B8≥1.88T。反之,当脱碳退火工艺与本技术方案不符时,对比例8-13的磁感都偏低。
实施例14-23和对比例14-19:
采用转炉或电炉炼钢,钢水经二次精炼,并在连铸后得到板坯,其化学元素质量百分数为Si:3.0%,C:0.05%,Mn:0.11%,S:0.007%,Als:0.03%,N:0.007%,Sn:0.06%,其余为Fe及不可避免的杂质。将板坯放在1120℃下进行加热,热轧至厚度为2.5mm的热轧板,开轧和终轧温度分别为1080℃和920℃,卷取温度605℃。热轧板经酸洗,冷轧到成品厚度0.35mm。而后以升温速度30℃/sec,脱碳温度840℃,脱碳露点68℃下进行脱碳退火。然后进行氮化处理,不同的渗氮退火工艺条件如下表4所示。涂布MgO为主要成分的隔离剂后,在罩式炉中进行高温退火。开卷后经过涂敷绝缘涂层及拉伸平整退火,得到的成品B8见表4。
表4
从表4的试验结果可以看到,当渗氮退火工艺满足本技术方案:渗氮温度760~860℃,渗氮时间20~50sec,氧化度0.045~0.200,NH3:0.5~4.0wt%,渗入氮含量328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c时,实施例14-23的磁感普遍更高,都能达到B8≥1.88T。反之,当渗氮退火工艺与本技术方案不符时,对比例14-19的成品磁感都偏低。
实施例24-29和对比例20-25:
采用转炉或电炉炼钢,钢水经二次精炼,并在连铸后得到板坯,其化学元素质量百分数为Si:2.8%,C:0.045%,Mn:0.06%,S:0.009%,Als:0.024%,N:0.009%,Sn:0.04%,其余为Fe及不可避免的杂质。将板坯放在1120℃下进行加热,热轧至厚度为2.3mm的热轧板,开轧和终轧温度分别为1070℃和900℃,卷取温度570℃。热轧板经酸洗,冷轧到成品厚度0.30mm。而后以升温速度20℃/sec,脱碳温度830℃,脱碳露点70℃下进行脱碳退火。然后进行氮化处理,不同的渗入氮含量对成品B8的影响如下表5所示。涂布MgO为主要成分的隔离剂后,在罩式炉中进行高温退火。开卷后经过涂敷绝缘涂层及拉伸平整退火,得到的成品B8见表5。
表5
表5反映了渗入氮含量对成品B8的影响。从表5可以看出,渗入氮含量需要满足根据冶炼阶段Als含量a、N含量b和初次晶粒尺寸c理论计算得到的渗入氮含量[N]D(328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c)。当实际渗氮量在计算值范围内时,如实施例24-29,成品的磁感较高;反之,如对比例20-25,其成品磁感偏低。
要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (6)

1.一种高磁感普通取向硅钢的制造方法,其特征在于,包括下列步骤:
(1)冶炼、连铸后得到板坯,控制冶炼阶段的N含量为0.002~0.014wt%;
(2)热轧:加热温度为1090~1200℃;
(3)冷轧:一次免时效轧制;
(4)脱碳退火;
(5)氮化处理:渗入氮含量[N]D满足328-0.14a-0.85b-2.33c≤[N]D≤362-0.16a-0.94b-2.57c;其中,a为冶炼步骤Als的含量,ppm;b为冶炼步骤N元素的含量,ppm;c为初次晶粒尺寸,μm;
(6)钢板表面涂覆氧化镁涂层,进行退火;
(7)涂敷绝缘涂层。
2.如权利要求1所述的高磁感普通取向硅钢的制造方法,其特征在于,所述步骤(2)中,1180℃以下开轧,860℃以上终轧,轧后卷取,卷取温度小于650℃。
3.如权利要求2所述的高磁感普通取向硅钢的制造方法,其特征在于,所述步骤(3)中,冷轧压下率≥80%。
4.如权利要求3所述的高磁感普通取向硅钢的制造方法,其特征在于,所述步骤(4)中,升温速度15~35℃/s,脱碳温度800~860℃,脱碳露点60~70℃。
5.如权利要求4所述的高磁感普通取向硅钢的制造方法,其特征在于,所述步骤(4)中保护气氛为75%H2+25%N2
6.如权利要求1-5中任意一项所述的高磁感普通取向硅钢的制造方法,其特征在于,所述步骤(5)中,采用体积分数为0.5~4.0%的NH3进行渗氮,渗氮温度760~860℃,渗氮时间20~50s,氧化度为0.045~0.200。
CN201210365931.2A 2012-09-27 2012-09-27 一种高磁感普通取向硅钢的制造方法 Active CN103695619B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201210365931.2A CN103695619B (zh) 2012-09-27 2012-09-27 一种高磁感普通取向硅钢的制造方法
EP12885574.9A EP2902507B1 (en) 2012-09-27 2012-12-11 Manufacturing method of common grain-oriented silicon steel with high magnetic induction
MX2015003320A MX366340B (es) 2012-09-27 2012-12-11 Metodo de fabricacion de acero al silicio de grano orientado comun con alta induccion magnetica.
JP2015533391A JP6461798B2 (ja) 2012-09-27 2012-12-11 高磁束密度汎用方向性ケイ素鋼の製造方法
PCT/CN2012/001682 WO2014047757A1 (zh) 2012-09-27 2012-12-11 一种高磁感普通取向硅钢的制造方法
RU2015108466A RU2609605C2 (ru) 2012-09-27 2012-12-11 Способ получения обычной текстурированной кремнистой стали с высокой магнитной индукцией
KR1020157007230A KR20150043504A (ko) 2012-09-27 2012-12-11 높은 자기유도를 가지는 일반 방향성 규소강의 제조방법
US14/430,463 US9905361B2 (en) 2012-09-27 2012-12-11 Manufacturing method of common grain-oriented silicon steel with high magnetic induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210365931.2A CN103695619B (zh) 2012-09-27 2012-09-27 一种高磁感普通取向硅钢的制造方法

Publications (2)

Publication Number Publication Date
CN103695619A CN103695619A (zh) 2014-04-02
CN103695619B true CN103695619B (zh) 2016-02-24

Family

ID=50357279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210365931.2A Active CN103695619B (zh) 2012-09-27 2012-09-27 一种高磁感普通取向硅钢的制造方法

Country Status (8)

Country Link
US (1) US9905361B2 (zh)
EP (1) EP2902507B1 (zh)
JP (1) JP6461798B2 (zh)
KR (1) KR20150043504A (zh)
CN (1) CN103695619B (zh)
MX (1) MX366340B (zh)
RU (1) RU2609605C2 (zh)
WO (1) WO2014047757A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592351A (zh) * 2019-10-31 2019-12-20 重庆望变电气(集团)股份有限公司 高磁感取向钢的生产工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292147B2 (ja) * 2015-02-25 2018-03-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6292146B2 (ja) * 2015-02-25 2018-03-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法
BR112018011105B1 (pt) * 2015-12-04 2021-10-26 Jfe Steel Corporation Método para fabricar chapa de aço eletromagnética de grão orientado
CN107881411B (zh) * 2016-09-29 2019-12-31 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
CN107699670A (zh) * 2017-09-25 2018-02-16 北京首钢股份有限公司 一种高磁感取向硅钢的生产方法
DE102017220714B3 (de) * 2017-11-20 2019-01-24 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung
DE102017220718A1 (de) * 2017-11-20 2019-05-23 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung II
KR102079771B1 (ko) * 2017-12-26 2020-02-20 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN110551968A (zh) * 2018-06-04 2019-12-10 武汉尚瑞科技有限公司 一种高磁感取向硅钢渗氮退火的生产方法及其产品
KR102105529B1 (ko) * 2018-09-27 2020-04-28 주식회사 포스코 이방향성 전기강판 및 그의 제조방법
CN109371213B (zh) * 2018-09-29 2020-02-07 武汉钢铁有限公司 取向硅钢氧化镁涂液温度的控制方法
CN110055489A (zh) * 2019-04-19 2019-07-26 武汉钢铁有限公司 低温高磁感取向硅钢的快速渗氮方法
CN112626447A (zh) * 2020-12-14 2021-04-09 海安华诚新材料有限公司 一种磁性优良的高磁感取向硅钢的气氛控制工艺
CN114107639A (zh) * 2021-11-25 2022-03-01 包头钢铁(集团)有限责任公司 一种普通级稀土取向硅钢制备方法
CN115502072B (zh) * 2022-10-26 2023-08-22 内蒙古工业大学 一种取向硅钢表面氧化镁涂覆方法
CN115652204B (zh) * 2022-11-01 2023-11-28 包头钢铁(集团)有限责任公司 一种实验室含Sn高效无取向硅钢热轧钢板及其制备方法
CN115747650B (zh) * 2022-11-14 2023-08-18 鞍钢股份有限公司 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837149A2 (en) * 1996-10-21 1998-04-22 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
CN1231703A (zh) * 1996-09-05 1999-10-13 阿奇亚斯佩丝阿里特尔尼公司 由薄板坯生产晶粒取向电工钢带的方法
US6296719B1 (en) * 1996-08-30 2001-10-02 Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strip having high magnetic characteristics, starting from thin slabs
KR100340495B1 (ko) * 1997-06-27 2002-11-22 주식회사 포스코 저온슬라브가열방식의고자속밀도방향성전기강판의제조방법
CN101353760A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 一种高磁感取向硅钢及其生产方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法
CN102021282A (zh) * 2009-09-21 2011-04-20 宝山钢铁股份有限公司 一种用于晶粒取向硅钢制备的退火隔离剂及其使用方法
CN102605267A (zh) * 2012-03-02 2012-07-25 咸宁泉都带钢科技有限责任公司 一种低温加热工艺优化的高磁感取向电工钢板及生产方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JPH0717961B2 (ja) * 1988-04-25 1995-03-01 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH0730395B2 (ja) * 1989-03-31 1995-04-05 新日本製鐵株式会社 表面脹れ欠陥の無い一方向性電磁鋼板の製造法
JPH0753885B2 (ja) 1989-04-17 1995-06-07 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0774388B2 (ja) 1989-09-28 1995-08-09 新日本製鐵株式会社 磁束密度の高い一方向性珪素鋼板の製造方法
JPH0730397B2 (ja) * 1990-04-13 1995-04-05 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0791586B2 (ja) * 1990-04-17 1995-10-04 新日本製鐵株式会社 磁気特性の優れた厚い板厚の一方向性電磁鋼板の製造方法
JP2519615B2 (ja) * 1991-09-26 1996-07-31 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
JP3485409B2 (ja) * 1996-01-09 2004-01-13 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
JPH10310822A (ja) * 1997-05-09 1998-11-24 Nippon Steel Corp 磁気特性の安定した方向性電磁鋼板の製造方法
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
CN1078624C (zh) 1998-03-11 2002-01-30 新日本制铁株式会社 单取向电工钢板及其制备方法
JP2000282142A (ja) * 1999-03-29 2000-10-10 Nippon Steel Corp 一方向性電磁鋼板の製造方法
JP2002129236A (ja) * 2000-10-24 2002-05-09 Nippon Steel Corp 一方向性電磁鋼板の安定製造方法
JP2002212639A (ja) * 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
US7251773B2 (en) 2003-08-01 2007-07-31 Hewlett-Packard Development Company, L.P. Beacon to visually locate memory module
JP4598702B2 (ja) * 2006-03-23 2010-12-15 新日本製鐵株式会社 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
JP4608467B2 (ja) * 2006-07-11 2011-01-12 新日本製鐵株式会社 電磁鋼板の製造方法
CN101545072B (zh) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 一种高电磁性能取向硅钢的生产方法
CN101643881B (zh) * 2008-08-08 2011-05-11 宝山钢铁股份有限公司 一种含铜取向硅钢的生产方法
JP5332946B2 (ja) * 2009-06-25 2013-11-06 新日鐵住金株式会社 窒化型方向性電磁鋼板の窒化後のコイル巻き取り方法
WO2011063934A1 (en) * 2009-11-25 2011-06-03 Tata Steel Ijmuiden B.V. Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
JP5684481B2 (ja) * 2010-02-15 2015-03-11 新日鐵住金株式会社 方向性電磁鋼板の製造方法
CN102443736B (zh) * 2010-09-30 2013-09-04 宝山钢铁股份有限公司 一种高磁通密度取向硅钢产品的生产方法
WO2012089696A1 (en) * 2011-01-01 2012-07-05 Tata Steel Nederland Technology Bv Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
CN102787276B (zh) * 2012-08-30 2014-04-30 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
US11239012B2 (en) * 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296719B1 (en) * 1996-08-30 2001-10-02 Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strip having high magnetic characteristics, starting from thin slabs
CN1231703A (zh) * 1996-09-05 1999-10-13 阿奇亚斯佩丝阿里特尔尼公司 由薄板坯生产晶粒取向电工钢带的方法
EP0837149A2 (en) * 1996-10-21 1998-04-22 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
KR100340495B1 (ko) * 1997-06-27 2002-11-22 주식회사 포스코 저온슬라브가열방식의고자속밀도방향성전기강판의제조방법
CN101353760A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 一种高磁感取向硅钢及其生产方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法
CN102021282A (zh) * 2009-09-21 2011-04-20 宝山钢铁股份有限公司 一种用于晶粒取向硅钢制备的退火隔离剂及其使用方法
CN102605267A (zh) * 2012-03-02 2012-07-25 咸宁泉都带钢科技有限责任公司 一种低温加热工艺优化的高磁感取向电工钢板及生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592351A (zh) * 2019-10-31 2019-12-20 重庆望变电气(集团)股份有限公司 高磁感取向钢的生产工艺

Also Published As

Publication number Publication date
JP2015537112A (ja) 2015-12-24
JP6461798B2 (ja) 2019-01-30
RU2015108466A (ru) 2016-11-20
EP2902507A4 (en) 2016-06-01
EP2902507A1 (en) 2015-08-05
US20150255211A1 (en) 2015-09-10
CN103695619A (zh) 2014-04-02
MX366340B (es) 2019-07-05
MX2015003320A (es) 2015-06-05
RU2609605C2 (ru) 2017-02-02
KR20150043504A (ko) 2015-04-22
US9905361B2 (en) 2018-02-27
WO2014047757A1 (zh) 2014-04-03
EP2902507B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN101545072B (zh) 一种高电磁性能取向硅钢的生产方法
CN101654757B (zh) 涂层半工艺无取向电工钢板及制造方法
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
CN101845582B (zh) 一种高磁感取向硅钢产品的生产方法
CN104946968B (zh) 一种饮料罐底盖用冷轧镀锡板及其生产方法
CN103805918B (zh) 一种高磁感取向硅钢及其生产方法
CN101928875A (zh) 具有良好成形性能的高强度冷轧钢板及其制备方法
CN107502819B (zh) 一种600MPa级0.6mm以下薄规格冷轧双相钢及其制备方法
CN105112776A (zh) 一种含磷低碳冷轧硬质镀锡钢板及其生产方法
CN102787276A (zh) 一种高磁感取向硅钢及其制造方法
CN101906577A (zh) 采用薄板连铸连轧生产的无取向电工钢及其方法
CN102762751A (zh) 方向性电磁钢板的制造方法
CN102762752A (zh) 方向性电磁钢板的制造方法
CN103320691A (zh) 一种q345系列卷板的制造方法
CN114250420A (zh) 一种罩式中间退火高牌号无取向硅钢50bw350的生产方法
CN110714165B (zh) 一种320MPa级家电面板用冷轧薄板及其生产方法
CN105950966A (zh) 采用固有抑制剂法和铸坯低温加热工艺生产Hi-B钢的方法
CN114934231A (zh) 一种高锰低磁高强度奥氏体钢及其制造方法
CN101275201A (zh) 一种取向电工钢及其制造方法
CN102676913B (zh) 药芯焊丝用冷轧带钢及其制造方法
CN114107639A (zh) 一种普通级稀土取向硅钢制备方法
CN114000068A (zh) 一种厚度4-10mm的低氮超高强热轧钢带及其生产方法
CN111676420A (zh) 一种家电用电视机背板及其制造方法
CN115261732B (zh) 一种350MPa级低成本高磁感冷轧磁极钢及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant