CN112626447A - 一种磁性优良的高磁感取向硅钢的气氛控制工艺 - Google Patents

一种磁性优良的高磁感取向硅钢的气氛控制工艺 Download PDF

Info

Publication number
CN112626447A
CN112626447A CN202011472273.8A CN202011472273A CN112626447A CN 112626447 A CN112626447 A CN 112626447A CN 202011472273 A CN202011472273 A CN 202011472273A CN 112626447 A CN112626447 A CN 112626447A
Authority
CN
China
Prior art keywords
temperature
silicon steel
oriented silicon
annealing
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011472273.8A
Other languages
English (en)
Inventor
严九江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haian Huacheng New Material Co ltd
Original Assignee
Haian Huacheng New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haian Huacheng New Material Co ltd filed Critical Haian Huacheng New Material Co ltd
Priority to CN202011472273.8A priority Critical patent/CN112626447A/zh
Publication of CN112626447A publication Critical patent/CN112626447A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明涉及取向硅钢技术领域,且公开了包括以下步骤:步骤一:冶炼,冶炼经转炉和RH精炼后得到钢水,在进行冶炼的过程中通入空气并设置总进气量100‑300Nl/min,且通入的空气中氧含量为20‑21%之间。该磁性优良的高磁感取向硅钢的气氛控制工艺,通过在不同的流程中,加入一定配比的氧气和氮气的含量,有效的提升每个阶段的气氛控制精度,从而得到最终的高磁感取向硅钢达到优良,避免了因气压、流量等因素影响最终高磁感取向硅钢磁力效果,炉渣中FeO含量减少,提高钢回收率和炉衬寿命,进而也起到降低生产成本的效果,且进行精确的气氛控制,使得在进行高磁感取向硅钢的冶炼中,使得冶炼的效果更好,使得冶炼出来的高磁感取向硅钢的磁性更加的优良。

Description

一种磁性优良的高磁感取向硅钢的气氛控制工艺
技术领域
本发明涉及取向硅钢技术领域,具体为一种磁性优良的高磁感取向硅钢的气氛控制工艺。
背景技术
硅钢具有低损耗、低磁致伸缩等有优良磁特性,是电力、电子工业中最为重要的磁性材料。硅钢通常分为取向硅钢和无取向硅钢。其中,取向硅钢是利用晶粒发生二次再结晶异常长大,使得成品组织呈高斯织构的择优取向。由于其成品晶粒的取向特征,内部晶格的轴尽可能与轧制方向平行,该种材料在轧制方向具有良好导磁性,能获得高磁感强度,因此被广泛地用在变压器铁芯制造。
现有的高磁感取向硅钢在制取的时候,需要一些气氛气体在内,而现有的工艺在气氛输入的时候不能够有效的进行控制,从而导致出现的高磁感取向硅钢出现劣质品,导致出现原材料的浪费,且现有的工艺制取的高磁感取向硅钢的磁性性能不佳,从而达不到后续使用的要求,从而使得生产的高磁感取向硅钢无法使用,造成一定程度上的资源浪费,且在工艺生产中现有技术制备的时候,工艺复杂,不易于控制,需要的氮含量过高,需要的生产成本过大。
发明内容
本发明提供了一种磁性优良的高磁感取向硅钢的气氛控制工艺,具备有效的进行气氛控制,增强高磁感取向硅钢的磁性,以及减少生产成本的优点,解决了背景技术中提出的问题。
本发明提供如下技术方案:一种磁性优良的高磁感取向硅钢的气氛控制工艺,包括以下步骤:
步骤一:冶炼,冶炼经转炉和RH精炼后得到钢水,在进行冶炼的过程中通入空气并设置总进气量100-300Nl/min,且通入的空气中氧含量为20-21%之间;
步骤二:连铸,钢水在过热度小于50℃时浇注,拉坯速度为0.8~1.0m/min,铸坯厚度为200~250mm;
步骤三:热轧,铸坯加热温度为1180~1220℃,加热时间为180~240min,粗轧采用第一机架1道次和第二机架3道次的模式,共轧制4道次,中间坯厚度为40~60mm;
步骤四:常化,常化工艺采用二段式常化,第一段保温温度为1060~1100℃,保温2~4min,第二段保温温度为850~900℃,开始冷却温度750~800℃,水喷淋温度为40~50℃,水流量为250~350m3/h,常化时同步完成渗氮,常化渗氮温度1050~1150℃、时间50~100s、露点15~75℃、气氛5~35%NH3(体积百分比),其余气体为N2;常化渗氮后热轧板内渗入的氮含量60~250ppm;
步骤五:冷轧,冷轧采用森吉米尔二十辊轧机,总压下率为84%~88%,采用5道次轧制,并且在第3道次采用时效轧制;
步骤六:脱碳退火及渗氮处理及涂MgO,脱碳退火工艺为脱碳温度800~850℃,保温3~5min,气氛为含10%~20%H2和90%~80%N2的保护气,加湿温度50~70℃;渗氮处理工艺为在75%H2+25%N2中采用NH3渗氮(PH2O/PH2≤0.04,d.p.=+10~-10℃)800~860℃×30s进行;涂敷MgO涂层后,经500~600℃干燥烧结后卷取;
步骤七:高温退火工艺,高温退火先以50~100℃/h速度在N2气氛下升到600~650℃,再在含75%H2+25%N2保护气氛在该温度保温5~10h,之后以15~20℃/h速度升到1200℃,升温过程中气氛为含75%N2+5%H2的保护气,1200℃时采用纯H2保护,保温20~40h,之后以50℃/h降到800℃以下,随炉冷到<300℃出炉;
步骤八,热拉伸平整退火及涂绝缘层,涂绝缘层后在500℃以下烘干并在800~900℃经0.25%~0.75%伸长率的拉伸平整退火,得到磁性优良的高磁感取向硅钢。
优选的,所述常化渗氮后,通过控制冷却工艺来实现尺寸≤300nm的AlN颗粒的体积分数占AlN总体积的60%以上;常化冷却,快速冷却起始温度700~950℃,降温至550℃的快速冷却速度15~40℃/se。
优选的,所述的硅钢化学成分重量百分比为:C:0.055~0.120%,Si:2.9~4.0%,Mn:0.05~0.20%,S:0.005~0.010%,Als:0.015~0.035%,N:0.001~0.009%,Sn:0.005~0.070%,其余为Fe及不可避免的夹杂物。
优选的,所述在高温退火板表面涂敷绝缘涂层,并经热拉伸平整退火得到磁性优良的高磁感取向硅钢。
优选的,所述MgO涂层及高温退火:脱碳退火的钢板进行MgO涂层和在罩式炉中进行高温退火,退火温度1200℃~1250℃。
本发明具备以下有益效果:
1.该磁性优良的高磁感取向硅钢的气氛控制工艺,通过在不同的流程中,加入一定配比的氧气和氮气的含量,有效的提升每个阶段的气氛控制精度,从而得到最终的高磁感取向硅钢达到优良,避免了因气压、流量等因素影响最终高磁感取向硅钢磁力效果,炉渣中FeO含量减少,提高钢回收率和炉衬寿命,进而也起到降低生产成本的效果,且进行精确的气氛控制,使得在进行高磁感取向硅钢的冶炼中,使得冶炼的效果更好,冶炼的速度更快,同时保证了冶炼的质量,使得冶炼出来的高磁感取向硅钢的磁性更加的优良,适用于工业生产中,提高了整体的冶炼效率。
2.该磁性优良的高磁感取向硅钢的气氛控制工艺,在进行常化的同时,同步完成渗氮,增加了碳的含量,碳可使热轧时γ-相增多,热轧板组织细化并为层状分布的细形变晶粒和小的再结晶晶粒,初次晶粒细小均匀,此外,碳含量高还可改善热轧和冷轧的加工性,防止热轧板产生横裂;冶炼操作容易,使得常化后板内就已经有了满足低温取向硅钢要求的氮含量,这样就可以在冷轧板脱碳退火时省去渗氮工序,简化了工艺要求,常化过程中同时渗氮,将极大地提高生产效率,也可以大大节省氨气的用量。
附图说明
图1为本发明工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,一种磁性优良的高磁感取向硅钢的气氛控制工艺,包括以下步骤:
步骤一:冶炼,冶炼经转炉和RH精炼后得到钢水,在进行冶炼的过程中通入空气并设置总进气量100-300Nl/min,且通入的空气中氧含量为20-21%之间;
步骤二:连铸,钢水在过热度小于50℃时浇注,拉坯速度为0.8~1.0m/min,铸坯厚度为200~250mm;
步骤三:热轧,铸坯加热温度为1180~1220℃,加热时间为180~240min,粗轧采用第一机架1道次和第二机架3道次的模式,共轧制4道次,中间坯厚度为40~60mm;
步骤四:常化,常化工艺采用二段式常化,第一段保温温度为1060~1100℃,保温2~4min,第二段保温温度为850~900℃,开始冷却温度750~800℃,水喷淋温度为40~50℃,水流量为250~350m3/h,常化时同步完成渗氮,常化渗氮温度1050~1150℃、时间50~100s、露点15~75℃、气氛5~35%NH3(体积百分比),其余气体为N2;常化渗氮后热轧板内渗入的氮含量60~250ppm;
步骤五:冷轧,冷轧采用森吉米尔二十辊轧机,总压下率为84%~88%,采用5道次轧制,并且在第3道次采用时效轧制;
步骤六:脱碳退火及渗氮处理及涂MgO,脱碳退火工艺为脱碳温度800~850℃,保温3~5min,气氛为含10%~20%H2和90%~80%N2的保护气,加湿温度50~70℃;渗氮处理工艺为在75%H2+25%N2中采用NH3渗氮(PH2O/PH2≤0.04,d.p.=+10~-10℃)800~860℃×30s进行;涂敷MgO涂层后,经500~600℃干燥烧结后卷取;
步骤七:高温退火工艺,高温退火先以50~100℃/h速度在N2气氛下升到600~650℃,再在含75%H2+25%N2保护气氛在该温度保温5~10h,之后以15~20℃/h速度升到1200℃,升温过程中气氛为含75%N2+5%H2的保护气,1200℃时采用纯H2保护,保温20~40h,之后以50℃/h降到800℃以下,随炉冷到<300℃出炉;
步骤八,热拉伸平整退火及涂绝缘层,涂绝缘层后在500℃以下烘干并在800~900℃经0.25%~0.75%伸长率的拉伸平整退火,得到磁性优良的高磁感取向硅钢。
其中,常化渗氮后,通过控制冷却工艺来实现尺寸≤300nm的AlN颗粒的体积分数占AlN总体积的60%以上;常化冷却,快速冷却起始温度700~950℃,降温至550℃的快速冷却速度15~40℃/se。
其中,的硅钢化学成分重量百分比为:C:0.055~0.120%,Si:2.9~4.0%,Mn:0.05~0.20%,S:0.005~0.010%,Als:0.015~0.035%,N:0.001~0.009%,Sn:0.005~0.070%,其余为Fe及不可避免的夹杂物。
其中,在高温退火板表面涂敷绝缘涂层,并经热拉伸平整退火得到磁性优良的高磁感取向硅钢。
其中,MgO涂层及高温退火:脱碳退火的钢板进行MgO涂层和在罩式炉中进行高温退火,退火温度1200℃~1250℃。
其中,通过在不同的流程中,加入一定配比的氧气和氮气的含量,有效的提升每个阶段的气氛控制精度,从而得到最终的高磁感取向硅钢达到优良,避免了因气压、流量等因素影响最终高磁感取向硅钢磁力效果,炉渣中FeO含量减少,提高钢回收率和炉衬寿命,进而也起到降低生产成本的效果,且进行精确的气氛控制,使得在进行高磁感取向硅钢的冶炼中,使得冶炼的效果更好,冶炼的速度更快,同时保证了冶炼的质量。
其中,在进行常化的同时,同步完成渗氮,增加了碳的含量,碳可使热轧时γ-相增多,热轧板组织细化并为层状分布的细形变晶粒和小的再结晶晶粒,初次晶粒细小均匀,此外,碳含量高还可改善热轧和冷轧的加工性,防止热轧板产生横裂;冶炼操作容易,使得常化后板内就已经有了满足低温取向硅钢要求的氮含量,这样就可以在冷轧板脱碳退火时省去渗氮工序,简化了工艺要求。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种磁性优良的高磁感取向硅钢的气氛控制工艺,其特征在于,包括以下步骤:
步骤一:冶炼,冶炼经转炉和RH精炼后得到钢水,在进行冶炼的过程中通入空气并设置总进气量100-300Nl/min,且通入的空气中氧含量为20-21%之间;
步骤二:连铸,钢水在过热度小于50℃时浇注,拉坯速度为0.8~1.0m/min,铸坯厚度为200~250mm;
步骤三:热轧,铸坯加热温度为1180~1220℃,加热时间为180~240min,粗轧采用第一机架1道次和第二机架3道次的模式,共轧制4道次,中间坯厚度为40~60mm;
步骤四:常化,常化工艺采用二段式常化,第一段保温温度为1060~1100℃,保温2~4min,第二段保温温度为850~900℃,开始冷却温度750~800℃,水喷淋温度为40~50℃,水流量为250~350m3/h,常化时同步完成渗氮,常化渗氮温度1050~1150℃、时间50~100s、露点15~75℃、气氛5~35%NH3(体积百分比),其余气体为N2;常化渗氮后热轧板内渗入的氮含量60~250ppm;
步骤五:冷轧,冷轧采用森吉米尔二十辊轧机,总压下率为84%~88%,采用5道次轧制,并且在第3道次采用时效轧制;
步骤六:脱碳退火及渗氮处理及涂MgO,脱碳退火工艺为脱碳温度800~850℃,保温3~5min,气氛为含10%~20%H2和90%~80%N2的保护气,加湿温度50~70℃;渗氮处理工艺为在75%H2+25%N2中采用NH3渗氮(PH2O/PH2≤0.04,d.p.=+10~-10℃)800~860℃×30s进行;涂敷MgO涂层后,经500~600℃干燥烧结后卷取;
步骤七:高温退火工艺,高温退火先以50~100℃/h速度在N2气氛下升到600~650℃,再在含75%H2+25%N2保护气氛在该温度保温5~10h,之后以15~20℃/h速度升到1200℃,升温过程中气氛为含75%N2+5%H2的保护气,1200℃时采用纯H2保护,保温20~40h,之后以50℃/h降到800℃以下,随炉冷到<300℃出炉;
步骤八,热拉伸平整退火及涂绝缘层,涂绝缘层后在500℃以下烘干并在800~900℃经0.25%~0.75%伸长率的拉伸平整退火,得到磁性优良的高磁感取向硅钢。
2.根据权利要求1所述的一种磁性优良的高磁感取向硅钢的气氛控制工艺,其特征在于:所述常化渗氮后,通过控制冷却工艺来实现尺寸≤300nm的AlN颗粒的体积分数占AlN总体积的60%以上;常化冷却,快速冷却起始温度700~950℃,降温至550℃的快速冷却速度15~40℃/se。
3.根据权利要求1所述的一种磁性优良的高磁感取向硅钢的气氛控制工艺,其特征在于:所述的硅钢化学成分重量百分比为:C:0.055~0.120%,Si:2.9~4.0%,Mn:0.05~0.20%,S:0.005~0.010%,Als:0.015~0.035%,N:0.001~0.009%,Sn:0.005~0.070%,其余为Fe及不可避免的夹杂物。
4.根据权利要求1所述的一种磁性优良的高磁感取向硅钢的气氛控制工艺,其特征在于:所述在高温退火板表面涂敷绝缘涂层,并经热拉伸平整退火得到磁性优良的高磁感取向硅钢。
5.根据权利要求1所述的一种磁性优良的高磁感取向硅钢的气氛控制工艺,其特征在于:所述MgO涂层及高温退火:脱碳退火的钢板进行MgO涂层和在罩式炉中进行高温退火,退火温度1200℃~1250℃。
CN202011472273.8A 2020-12-14 2020-12-14 一种磁性优良的高磁感取向硅钢的气氛控制工艺 Pending CN112626447A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011472273.8A CN112626447A (zh) 2020-12-14 2020-12-14 一种磁性优良的高磁感取向硅钢的气氛控制工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011472273.8A CN112626447A (zh) 2020-12-14 2020-12-14 一种磁性优良的高磁感取向硅钢的气氛控制工艺

Publications (1)

Publication Number Publication Date
CN112626447A true CN112626447A (zh) 2021-04-09

Family

ID=75313685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011472273.8A Pending CN112626447A (zh) 2020-12-14 2020-12-14 一种磁性优良的高磁感取向硅钢的气氛控制工艺

Country Status (1)

Country Link
CN (1) CN112626447A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415143A (zh) * 2020-11-19 2021-02-26 无锡普天铁心股份有限公司 一种取向硅钢内碳硫含量分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法
CN102719593A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种冶炼超低碳钢的方法
CN102758127A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
CN103695619A (zh) * 2012-09-27 2014-04-02 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法
CN102719593A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种冶炼超低碳钢的方法
CN102758127A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
CN103695619A (zh) * 2012-09-27 2014-04-02 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李云凯: "《金属材料学》", 31 January 2019 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415143A (zh) * 2020-11-19 2021-02-26 无锡普天铁心股份有限公司 一种取向硅钢内碳硫含量分析装置

Similar Documents

Publication Publication Date Title
JP2782086B2 (ja) 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
CN102758127B (zh) 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN110735088A (zh) 一种薄板坯生产的无取向硅钢及其制造方法
CN107974543B (zh) 一种厚度≤0.20mm低温高磁感取向硅钢的生产方法
JPH05112827A (ja) 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
CN101395284A (zh) 磁特性非常优异的方向性电磁钢板的制造方法
CN101643881A (zh) 一种含铜取向硅钢的生产方法
CN104561795A (zh) 一种b800≥1.94t的高磁感取向硅钢及生产方法
CN106702260A (zh) 一种高磁感低铁损无取向硅钢及其生产方法
JP2020063512A (ja) 方向性電磁鋼板およびその製造方法
CN101358318B (zh) 一种综合性能好的无取向电工钢的成分设计及制备方法
JPH0277525A (ja) 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
CN108411205A (zh) Csp流程生产高磁感低铁损无取向电工钢的方法
CN114645207A (zh) 一种后天抑制剂高磁感取向硅钢的制造方法
CN110819879A (zh) 一种磁性能优良的无取向硅钢及其制造方法
CN112626447A (zh) 一种磁性优良的高磁感取向硅钢的气氛控制工艺
JP2019127616A (ja) 方向性電磁鋼板の製造方法
JPH06128646A (ja) 鉄損の低い高磁束密度一方向性電磁鋼板の製造方法
CN114645202B (zh) 一种高取向度GOSS织构Fe-3%Si材料的获得方法
WO2019132356A1 (ko) 방향성 전기 강판 및 이의 제조방법
CN107699670A (zh) 一种高磁感取向硅钢的生产方法
JP3382804B2 (ja) グラス皮膜の優れる方向性電磁鋼板の製造方法
JP2560579B2 (ja) 高透磁率を有する高珪素鋼板の製造方法
CN114867872A (zh) 取向电工钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210409

RJ01 Rejection of invention patent application after publication