CN102130164A - Ldmos的埋层 - Google Patents

Ldmos的埋层 Download PDF

Info

Publication number
CN102130164A
CN102130164A CN2010100272898A CN201010027289A CN102130164A CN 102130164 A CN102130164 A CN 102130164A CN 2010100272898 A CN2010100272898 A CN 2010100272898A CN 201010027289 A CN201010027289 A CN 201010027289A CN 102130164 A CN102130164 A CN 102130164A
Authority
CN
China
Prior art keywords
ldmos
buried layer
type
trap
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010100272898A
Other languages
English (en)
Inventor
张帅
遇寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN2010100272898A priority Critical patent/CN102130164A/zh
Publication of CN102130164A publication Critical patent/CN102130164A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种LDMOS的埋层,在衬底(10)和外延层(13)之间具有多个埋层结构(11a),这些埋层结构(11a)在水平方向上相互间隔。本发明将传统LDMOS的整个为一块的埋层(11)变为多块相互间隔的埋层结构(11a),这些埋层结构仍然保持了隔离器件的效果,又可以降低漂移区表面电场,从而提高LDMOS器件的击穿电压。并且本发明没有增加LDMOS器件的导通电阻,对于现有的BCD工艺也不做改变,因而不会对其他双极器件和CMOS器件造成影响。

Description

LDMOS的埋层
技术领域
本发明涉及一种半导体集成电路器件,特别是涉及一种LDMOS(laterally diffused MOS,横向扩散MOS晶体管)器件。
背景技术
请参阅图1,这是现有的以BCD(Bipolar、CMOS、DMOS)工艺制造的n型LDMOS的剖面示意图。在p型衬底10上具有n型埋层11和p型埋层12,再往上则是n型外延层13。n型外延层13中有多个隔离区14,这些隔离区14将n型外延层13中的高压p阱151、高压n阱152、高压p阱153、高压n阱154、高压p阱155相互隔离。
高压p阱151中具有低压p阱161。高压n阱152中具有低压n阱162,作为LDMOS器件的漏极。高压p阱153中具有低压p阱163。高压n阱154中具有低压n阱164。高压p阱155中间具有低压p阱165。
低压p阱161中具有p型重掺杂区171。低压n阱162中具有n型重掺杂区172,作为LDMOS器件的漏极。低压p阱163中具有p型重掺杂区173和n型重掺杂区174,两者之间由隔离结构14相隔离。p型重掺杂区173作为LDMOS器件的体电极(body)。n型重掺杂区174作为LDMOS器件的源极。低压n阱164中具有n型重掺杂区175,作为LDMOS器件的漏极。低压p阱165中具有p型重掺杂区176。
所述n型重掺杂区172、175在版图上为同一个环形结构,因此同作为漏极。
n型外延层13之上具有栅氧化层18,再往上为栅极19,作为LDMOS器件的栅极。栅极19的四周都被介质包围而成为浮栅。栅极19的下方包括隔离区14、n型外延层13和低压p阱163三个部分。
上述n型LDMOS中,将各部分结构的掺杂类型变为相反,即变为p型LDMOS,也是可行的。
图1所示的LDMOS中,n型埋层11和p型埋层12是在p型衬底10和n型外延层13中采用离子注入工艺形成,这两个埋层既用来做隔离,也用来降低LDMOS器件的导通电阻。其中n型埋层11上会有不可移动的正电荷,这些正电荷在栅极19表面会形成一个与漂移区(即n型外延层13和高压n阱154)表面电场方向一致的电场,该电场与漂移区表面电场的叠加会造成漂移区表面电场强度增大,从而使得LDMOS器件很容易在漂移区表面提早击穿。
发明内容
本发明所要解决的技术问题是提供一种LDMOS的埋层结构,可以提高LDMOS器件的击穿电压。
为解决上述技术问题,本发明LDMOS的埋层,在衬底(10)和外延层(13)之间具有多个埋层结构(11a),这些埋层结构(11a)在水平方向上相互间隔。
本发明将传统LDMOS的整个为一块的埋层(11)变为多块相互间隔的埋层结构(11a),这些埋层结构仍然保持了隔离器件的效果,又可以降低漂移区表面电场,从而提高LDMOS器件的击穿电压。并且本发明没有增加LDMOS器件的导通电阻,对于现有的BCD工艺也不做改变,因而不会对其他双极(Bipolar)器件和CMOS器件造成影响。
附图说明
图1是现有的LDMOS的剖面示意图;
图2是本发明LDMOS的剖面示意图。
图中附图标记说明:
10为p型衬底;11为n型埋层;11a为n型埋层结构;12为p型埋层;13为n型外延层;14为隔离结构;151、153、155为高压p阱;152、154为高压n阱;161、163、165为低压p阱;162、164为低压n阱;171、173、176为n型重掺杂区;172、174、175为p型重掺杂区;18为栅氧化层;19为栅极。
具体实施方式
请参阅图2,本发明LDMOS器件与传统LDMOS器件的区别在于:在p型衬底10上具有多个n型埋层结构11a和p型埋层12,再往上则是n型外延层13。其中多个n型埋层结构11a在水平方向上相互分隔,并取代了现有的整体为一块的n型埋层11。
这些埋层结构11a的数量及间距以离子注入、并经过退火扩散后仍然可以起到隔离p型衬底10和n型外延层13的作用为准。这些埋层结构11a之间可以是相等的间距,也可以是不等的间距。
如果是p型LDMOS,则图2中各部分结构的掺杂类型变为相反;即n型衬底p型外延层之间具有多个p型埋层结构,也是可行的。
对于LDMOS器件而言,提高击穿电压有以下几种途径:
其一,增加器件漂移区的长度;但是这会增加导通电阻,还会增大LDMOS器件的面积。
其二,调节高压p阱和高压n阱的浓度;但是这会影响双极器件和CMOS器件的性能。BCD工艺是在同一芯片上制造双极器件、CMOS器件和DMOS器件,需要保证这三种器件都具有良好性能。
其三,去除图1中的n型埋层11来降低漂移区表面电场,但是这回导致LDMOS器件的导通电阻显著增加,且不能对p型衬底10和n型外延层13之间进行隔离。
本发明巧妙地将原有的埋层划分为多块埋层结构,一方面仍然可以很好地起到衬底和外延层之间的隔离效果,另一方面又降低了漂移区表面电场,提高了LDMOS器件的击穿电压。具体而言,多个埋层结构相对于整个一块的n型埋层,其掺杂浓度降低,提供的正电荷在栅极表面所形成的电场减弱,使得漂移区表面不容易被击穿,保护了栅氧化层,也提高了击穿电压。通过TCAD软件模拟,本发明相对于传统LDMOS器件,可以将击穿电压提高3V。本发明还兼顾了BJT(双极器件)及CMOS器件的性能,也不增加LDMOS器件的尺寸,还保持了LDMOS器件的较低的导通电阻。
在制造方法上,与原有LDMOS的制造工艺相比,本发明仅是调整了离子注入的区域,将原来整个一块离子注入区域改为多个相互分隔的离子注入区域,仍保持了BCD工艺不做变动,因此不会对其它的BJT(双极器件)和CMOS器件造成影响。

Claims (4)

1.一种LDMOS的埋层,其特征是,在衬底(10)和外延层(13)之间具有多个埋层结构(11a),这些埋层结构(11a)在水平方向上相互间隔。
2.根据权利要求1所述的LDMOS的埋层,其特征是,所述衬底(10)为p型,外延层(13)和埋层结构(11a)为n型。
3.根据权利要求1所述的LDMOS的埋层,其特征是,所述衬底(10)为n型,外延层(13)和埋层结构(11a)为p型。
4.根据权利要求1所述的LDMOS的埋层,其特征是,所述多个埋层结构(11a)之间的间距相等。
CN2010100272898A 2010-01-18 2010-01-18 Ldmos的埋层 Pending CN102130164A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100272898A CN102130164A (zh) 2010-01-18 2010-01-18 Ldmos的埋层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100272898A CN102130164A (zh) 2010-01-18 2010-01-18 Ldmos的埋层

Publications (1)

Publication Number Publication Date
CN102130164A true CN102130164A (zh) 2011-07-20

Family

ID=44268153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100272898A Pending CN102130164A (zh) 2010-01-18 2010-01-18 Ldmos的埋层

Country Status (1)

Country Link
CN (1) CN102130164A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901524A (zh) * 2011-07-28 2013-01-30 上海腾怡半导体有限公司 低噪声低失调电压的霍尔传感器
CN103022125A (zh) * 2011-09-22 2013-04-03 上海华虹Nec电子有限公司 Bcd工艺中的nldmos器件及制造方法
CN103035525A (zh) * 2011-10-10 2013-04-10 上海华虹Nec电子有限公司 高压隔离n型ldmos器件的制造方法
CN103745988A (zh) * 2014-01-07 2014-04-23 无锡芯朋微电子股份有限公司 一种高压驱动电路的隔离结构
CN103840008A (zh) * 2014-03-31 2014-06-04 成都立芯微电子科技有限公司 基于bcd工艺的高压ldmos器件及制造工艺
CN104518023A (zh) * 2013-09-30 2015-04-15 无锡华润上华半导体有限公司 高压ldmos器件
CN104681621A (zh) * 2015-02-15 2015-06-03 上海华虹宏力半导体制造有限公司 一种源极抬高电压使用的高压ldmos及其制造方法
CN104701372A (zh) * 2013-12-06 2015-06-10 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN104821334A (zh) * 2015-03-11 2015-08-05 上海华虹宏力半导体制造有限公司 N型ldmos器件及工艺方法
CN105140303A (zh) * 2014-05-30 2015-12-09 无锡华润上华半导体有限公司 结型场效应晶体管及其制备方法
CN107887436A (zh) * 2016-09-30 2018-04-06 上海华虹宏力半导体制造有限公司 Pldmos结构及其制造方法
US9997626B2 (en) 2015-05-25 2018-06-12 Shanghai Huahong Grace Semiconductor Manufacturing Corporation NLDMOS device and method for manufacturing the same
CN110120414A (zh) * 2018-02-07 2019-08-13 联华电子股份有限公司 晶体管结构

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901524A (zh) * 2011-07-28 2013-01-30 上海腾怡半导体有限公司 低噪声低失调电压的霍尔传感器
CN103022125A (zh) * 2011-09-22 2013-04-03 上海华虹Nec电子有限公司 Bcd工艺中的nldmos器件及制造方法
CN103035525B (zh) * 2011-10-10 2015-06-03 上海华虹宏力半导体制造有限公司 高压隔离n型ldmos器件的制造方法
CN103035525A (zh) * 2011-10-10 2013-04-10 上海华虹Nec电子有限公司 高压隔离n型ldmos器件的制造方法
CN104518023B (zh) * 2013-09-30 2017-12-15 无锡华润上华科技有限公司 高压ldmos器件
CN104518023A (zh) * 2013-09-30 2015-04-15 无锡华润上华半导体有限公司 高压ldmos器件
CN104701372B (zh) * 2013-12-06 2017-10-27 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN104701372A (zh) * 2013-12-06 2015-06-10 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体器件及其制造方法
US20160240659A1 (en) * 2013-12-06 2016-08-18 Csmc Technologies Fab1 Co., Ltd. Laterally diffused metal oxide semiconductor device and manufacturing method therefor
CN103745988B (zh) * 2014-01-07 2017-01-25 无锡芯朋微电子股份有限公司 一种高压驱动电路的隔离结构
CN103745988A (zh) * 2014-01-07 2014-04-23 无锡芯朋微电子股份有限公司 一种高压驱动电路的隔离结构
CN103840008A (zh) * 2014-03-31 2014-06-04 成都立芯微电子科技有限公司 基于bcd工艺的高压ldmos器件及制造工艺
CN103840008B (zh) * 2014-03-31 2016-06-08 成都立芯微电子科技有限公司 基于bcd工艺的高压ldmos器件及制造工艺
CN105140303A (zh) * 2014-05-30 2015-12-09 无锡华润上华半导体有限公司 结型场效应晶体管及其制备方法
CN105140303B (zh) * 2014-05-30 2017-12-12 无锡华润上华科技有限公司 结型场效应晶体管及其制备方法
CN104681621B (zh) * 2015-02-15 2017-10-24 上海华虹宏力半导体制造有限公司 一种源极抬高电压使用的高压ldmos及其制造方法
CN104681621A (zh) * 2015-02-15 2015-06-03 上海华虹宏力半导体制造有限公司 一种源极抬高电压使用的高压ldmos及其制造方法
CN104821334A (zh) * 2015-03-11 2015-08-05 上海华虹宏力半导体制造有限公司 N型ldmos器件及工艺方法
CN104821334B (zh) * 2015-03-11 2018-08-21 上海华虹宏力半导体制造有限公司 N型ldmos器件及工艺方法
US9997626B2 (en) 2015-05-25 2018-06-12 Shanghai Huahong Grace Semiconductor Manufacturing Corporation NLDMOS device and method for manufacturing the same
CN107887436A (zh) * 2016-09-30 2018-04-06 上海华虹宏力半导体制造有限公司 Pldmos结构及其制造方法
CN110120414A (zh) * 2018-02-07 2019-08-13 联华电子股份有限公司 晶体管结构

Similar Documents

Publication Publication Date Title
CN102130164A (zh) Ldmos的埋层
US9660074B2 (en) Methods and apparatus for LDMOS devices with cascaded RESURF implants and double buffers
CN102169903B (zh) Ldmos器件
US8564057B1 (en) Power devices, structures, components, and methods using lateral drift, fixed net charge, and shield
CN103489912B (zh) 一种高压结型场效应晶体管
CN102244092A (zh) 一种横向高压功率半导体器件的结终端结构
KR102068842B1 (ko) 반도체 전력소자
CN104347683A (zh) 半导体器件
CN101924131B (zh) 横向扩散mos器件及其制备方法
CN104518023B (zh) 高压ldmos器件
CN102569403A (zh) ***栅型沟槽功率mos器件的终端结构及其制造方法
JP2018530922A (ja) 横方向拡散金属酸化物半導体電界効果トランジスタ
CN103855208A (zh) 一种高压ldmos集成器件
CN102104068A (zh) 功率mos晶体管的结构及其制备方法
CN102263125A (zh) 一种横向扩散金属氧化物功率mos器件
CN102104026B (zh) 集成有肖特基二极管的功率mos晶体管器件的制造方法
CN102637731A (zh) 一种沟槽功率mos器件的终端结构及其制造方法
CN102637744B (zh) Soi横向超结功率mosfet器件
CN104201203B (zh) 高耐压ldmos器件及其制造方法
CN102263107A (zh) 一种半导体功率器件及其制造方法
CN103022125A (zh) Bcd工艺中的nldmos器件及制造方法
KR20110078861A (ko) 수평형 디모스 트랜지스터
CN103426932A (zh) 双resurf ldmos器件
CN102694020A (zh) 一种半导体装置
CN102983161A (zh) 非埋层的双深n型阱高压隔离n型ldmos及制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20110720

RJ01 Rejection of invention patent application after publication