WO2024050849A1 - 感知测量方法、装置、设备及存储介质 - Google Patents

感知测量方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024050849A1
WO2024050849A1 PCT/CN2022/118271 CN2022118271W WO2024050849A1 WO 2024050849 A1 WO2024050849 A1 WO 2024050849A1 CN 2022118271 W CN2022118271 W CN 2022118271W WO 2024050849 A1 WO2024050849 A1 WO 2024050849A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
field
frame
dmg
measurement
Prior art date
Application number
PCT/CN2022/118271
Other languages
English (en)
French (fr)
Inventor
高宁
罗朝明
周培
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/118271 priority Critical patent/WO2024050849A1/zh
Publication of WO2024050849A1 publication Critical patent/WO2024050849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of perceptual measurement, and in particular to a perceptual measurement method, device, equipment and storage medium.
  • Wireless Local Area Networks (WLAN) sensing refers to the technology of sensing people or objects in the environment by measuring changes in scattering and/or reflection of WLAN signals through people or objects.
  • WLAN Wireless Local Area Networks
  • sensing There are several types of perception.
  • One type of sensing is cooperative single-base sensing.
  • collaborative single-base sensing the number of sensing measurement devices participating in sensing is greater than one, and each sensing response device senses the environment through spontaneous sensing of Physical Layer Protocol Data Unit (PPDU) and spontaneous echo (Echo) signals.
  • PPDU Physical Layer Protocol Data Unit
  • Echo spontaneous echo
  • sensing initiator device Intelligent device
  • a perceptual measurement method is provided, which is applied to a perceptual measurement device.
  • the method includes:
  • the first field is an exclusive field of the sequential cooperation single base or the parallel cooperation single base, and/or the first field has exclusive meaning in the sequential cooperation single base or the parallel cooperation single base.
  • a perceptual measurement method is provided, which is applied to a perceptual measurement device.
  • the method includes:
  • the first field is an exclusive field of the sequential cooperation single base or the parallel cooperation single base, and/or the first field has exclusive meaning in the sequential cooperation single base or the parallel cooperation single base.
  • a perceptual measurement device which is applied to perceptual measurement equipment, and the device includes:
  • a sending module used to send frames carrying the first field
  • the first field is an exclusive field of the sequential cooperation single base or the parallel cooperation single base, and/or the first field has exclusive meaning in the sequential cooperation single base or the parallel cooperation single base.
  • a perceptual measurement device which is applied to perceptual measurement equipment, and the device includes:
  • a receiving module configured to receive frames carrying the first field
  • the first field is an exclusive field of the sequential cooperation single base or the parallel cooperation single base, and/or the first field has exclusive meaning in the sequential cooperation single base or the parallel cooperation single base.
  • a perception initiating device includes:
  • transceiver coupled to said processor
  • the processor is configured to load the executable instructions so that the perception initiating device implements the perception measurement method as described in the above aspect.
  • a sensing response device is provided, and the device includes:
  • transceiver coupled to said processor
  • the processor is configured to load the executable instructions so that the perception initiating device implements the perception measurement method as described in the above aspect.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the computer-readable storage medium, and the computer program is used to be executed by a perceptual measurement device to implement the above aspects.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions.
  • a perceptual measurement device installed with the chip is running, it is used to implement the above aspects. Perceptual Measurement Methods.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the perceptual measurement device is from The computer-readable storage medium reads and executes the computer instructions to implement the perceptual measurement method described in the above aspect.
  • the sensing initiator sends a frame carrying the first field to the sensing responder, because the first field is a proprietary field of the sequential cooperation single base or the parallel cooperation single base, and/or has Proprietary meaning, therefore, according to the type difference of the first field, specific problems corresponding to the information content carried by the first field can be solved, such as: being able to distinguish the sensing type of the cooperating single base, and/or being able to distinguish the sensing measurement of the cooperating single base
  • the reported polling status, and/or can limit the maximum length of a single base PPDU.
  • the sensing responder When the sensing responder receives the frame sent by the sensing initiator, it reads the fields in the frame, which not only improves the sensing accuracy of the sensing responder, but also facilitates the sensing responder to conduct a more comprehensive collaborative single-base sensing measurement process. understand and analyze.
  • Figure 1 is a block diagram of a perceptual measurement system provided by an exemplary embodiment of the present application
  • Figure 2 is a schematic diagram of the millimeter wave sensing type provided by an exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of a millimeter wave sensing process provided by an exemplary embodiment of the present application.
  • Figure 4 is a schematic diagram of an example of a sequential mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application;
  • Figure 5 is a schematic diagram of an example of a parallel mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application
  • Figure 6 is a schematic diagram of the frame format of the DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic diagram of the format of a beamforming frame provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic diagram of the format of a sensing request frame provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic diagram of the format of a sensing response frame provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic diagram of the format of a sensing polling frame provided by an exemplary embodiment of the present application.
  • Figure 11 is a flow chart of a perceptual measurement method provided by an exemplary embodiment of the present application.
  • Figure 12 is a flow chart of a perceptual measurement method provided by an exemplary embodiment of the present application.
  • Figure 13 is a schematic diagram of the format of a DMG perception measurement setting frame provided by an exemplary embodiment of the present application.
  • Figure 14 is a schematic diagram of the format of a DMG awareness request frame provided by an exemplary embodiment of the present application.
  • Figure 15 is a schematic diagram of the format of a DMG awareness request frame provided by an exemplary embodiment of the present application.
  • Figure 16 is a schematic diagram of the format of a DMG awareness request frame provided by an exemplary embodiment of the present application.
  • Figure 17 is a schematic diagram of the format of a DMG perception measurement setting frame provided by an exemplary embodiment of the present application.
  • Figure 18 is a schematic diagram of the format of a DMG perception measurement setting frame provided by an exemplary embodiment of the present application.
  • Figure 19 is a schematic diagram of the frame format of optional sub-elements in the DMG perception measurement setting frame provided by an exemplary embodiment of the present application;
  • Figure 20 is a schematic diagram of the format of a DMG awareness request frame provided by an exemplary embodiment of the present application.
  • Figure 21 is a schematic flowchart of the parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 22 is a schematic diagram of the frame format of optional sub-elements in the DMG perception measurement setting frame provided by an exemplary embodiment of the present application;
  • Figure 23 is a schematic diagram of the frame format of optional sub-elements in the DMG perception measurement setting frame provided by an exemplary embodiment of the present application.
  • Figure 24 is a schematic diagram of the frame format of optional sub-elements in the DMG perception measurement setting frame provided by an exemplary embodiment of the present application;
  • Figure 25 is a schematic diagram of the frame format of the perception measurement scheduling sub-element in the DMG perception measurement setting frame provided by an exemplary embodiment of the present application;
  • Figure 26 is a block diagram of a perceptual measurement device provided by an exemplary embodiment of the present application.
  • Figure 27 is a block diagram of a perceptual measurement device provided by an exemplary embodiment of the present application.
  • Figure 28 is a schematic structural diagram of a perceptual measurement device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • WLAN Sensing Sensing people or objects in the environment by measuring changes in WLAN signals scattered and/or reflected by people or objects. That is to say, WLAN sensing uses wireless signals to measure and perceive the surrounding environment, so that it can complete many functions such as indoor intrusion/movement/fall detection, gesture recognition, and spatial three-dimensional image creation.
  • Association Identifier used to identify the terminal that is associated with the access point.
  • WLAN devices participating in WLAN awareness may include the following roles:
  • Sensing Initiator It can also be called sensing session initiator, sensing initiating device, and initiator.
  • the sensing initiator is the device that initiates sensing measurement (Sensing Measurement) and wants to know the sensing results;
  • Sensing Responder Also known as Sensing Session Responder, Sensing Response Device, and Responder.
  • a perception responder is a device that participates in a perception measurement that is not a perception initiating device;
  • Sensing Transmitter It can also be called Sensing Signal Transmitter, Sensing Transmitter, Sensing Transmitter, or Transmitter.
  • the sensing signal sender is the device that sends sensing (Sensing) PPDU;
  • Sensing signal receiver (Sensing Receiver): It can also be called sensing signal receiving device, sensing receiver, sensing receiving device, and Receiver.
  • a sensory signal receiver is a device that receives an echo signal.
  • the echo signal is the perceptual physical layer protocol data unit sent by the perceptual signal sender after being scattered and/or reflected by people or objects.
  • a WLAN terminal may have one or more roles in a sensing measurement.
  • a sensing initiator can be just a sensing initiator, a sensing signal sender, a sensing signal receiver, or a sensing signal sender at the same time.
  • perceptual signal receivers The above devices can be collectively referred to as perceptual measurement devices.
  • FIG. 1 is a block diagram of a perceptual measurement system provided by an exemplary embodiment of the present application.
  • the perceptual measurement system includes terminals and terminals, or terminals and network equipment, or access points (Access Point, AP) and stations (Station, STA), which are not limited in this application.
  • This application takes the perceptual measurement system including AP and STA as an example for explanation.
  • the AP can be called AP STA, that is, in a certain sense, the AP is also a kind of STA. In some scenarios, STA is also called non-AP STA (non-AP STA).
  • STAs may include AP STAs and non-AP STAs.
  • Communication in the communication system can be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA can refer to the communication with STA.
  • a device for peer communication may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wireless-Fidelity (Wi-Fi) chip.
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes, and Sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart remote controls
  • smart water meters smart homes
  • Sensors in smart cities, etc.
  • non-AP STA may support but is not limited to the 802.11bf standard.
  • Non-AP STA can also support a variety of current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the AP may be a device supporting the 802.11bf standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA can be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) that supports WLAN/Wi-Fi technology Equipment, wireless equipment in Industrial Control, set-top boxes, wireless equipment in Self Driving, vehicle communication equipment, wireless equipment in Remote Medical, and smart grid Wireless devices, wireless devices in Transportation Safety, wireless devices in Smart City (Smart City) or wireless devices in Smart Home (Smart Home), wireless communication chips/ASIC/SOC/, etc.
  • WLAN technology can support frequency bands including but not limited to: low frequency band (2.4GHz, 5GHz, 6GHz) and high frequency band (60GHz).
  • low frequency band 2.4GHz, 5GHz, 6GHz
  • high frequency band 60GHz
  • One or more links exist between the site and the access point.
  • stations and access points support multi-band communications, for example, communicating on 2.4GHz, 5GHz, 6GHz, and 60GHz frequency bands simultaneously, or communicating on different channels of the same frequency band (or different frequency bands) simultaneously, improving Communication throughput and/or reliability between devices.
  • This kind of device is usually called a multi-band device, or a multi-link device (Multi-Link Device, MLD), sometimes also called a multi-link entity or a multi-band entity.
  • Multilink devices can be access point devices or station devices. If the multilink device is an access point device, the multilink device contains one or more APs; if the multilink device is a site device, the multilink device contains one or more non-AP STAs.
  • a multi-link device including one or more APs is called an AP, and a multi-link device including one or more non-AP STAs is called a Non-AP.
  • the Non-AP may be called a STA.
  • APs may include multiple APs
  • Non-APs may include multiple STAs.
  • Multiple links may be formed between APs in APs and STAs in Non-APs.
  • APs in APs and Non-APs may Corresponding STAs in can communicate with each other through corresponding links.
  • a site may include: User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent or user device.
  • UE User Equipment
  • the site can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • both the station and the access point support the IEEE 802.11 standard, but are not limited to the IEEE 802.11 standard. They may also be other standards related to perception measurement, such as the IEEE 802.11bf D0.1 standard.
  • WLAN terminals participating in sensing include: sensing initiators and sensing responders. Further, perception responders can be divided into perception senders and perception receivers.
  • Perceptual measurement can be applied to cellular network communication systems, wireless local area networks (Wireless Local Area Networks, WLAN) systems or wireless fidelity network (Wi-Fi) systems, and this application is not limited to this.
  • WLAN wireless Local Area Networks
  • Wi-Fi wireless fidelity network
  • the application of perceptual measurement in a WLAN or Wi-Fi system is used as an example for schematic explanation.
  • the perceptual measurement in the embodiment of this application is implemented based on millimeter waves.
  • FIG. 2 is a schematic diagram of the millimeter wave sensing type provided by an exemplary embodiment of the present application.
  • (a) of Figure 2 is single-base sensing.
  • This device senses the environment by spontaneously (self-sending) sensing PPDU and self-receiving (self-receiving) echo signals, which is different from traditional The radar works similarly.
  • spontaneous self-receiving means that when the device sends a sensing PPDU, it will set the sender address and the receiver address of the sensing PPDU to the device's own address.
  • the sensing PPDU sent by the device will form an echo signal after being scattered and/or reflected by the environment.
  • Figure 2(b) shows dual-base sensing. There are two devices participating in sensing. One device sends sensing PPDU, and the other device receives the echo signal to sense the environment.
  • (c) in Figure 2 is cooperative single-base sensing. The number of devices participating in sensing is greater than one. Each device senses the environment through spontaneously sensing PPDUs and self-responsive signals. There is a sensing initiator that controls all other devices to achieve collaboration.
  • (d) in Figure 2 is cooperative dual-base sensing. There are more than two devices participating in sensing, that is, there are at least two pairs of dual-base sensing devices.
  • Each sending device (awareness sender) sends a sensing PPDU separately and is sent by the same group of devices.
  • the receiving device receives the corresponding echo signal, thereby realizing cooperative sensing.
  • (e) in Figure 2 is multi-base sensing. There are more than two devices participating in sensing. One sending device sends sensing PPDU, and multiple receiving devices receive echo signals at the same time and complete environment sensing at the same time.
  • FIG. 3 is a schematic diagram of a millimeter wave sensing process provided by an exemplary embodiment of the present application.
  • this process is the general process of millimeter wave sensing. From left to right, it is the session setup stage, millimeter wave sensing measurement setup (Directional Multi-Gigabit, DMG) Measurement setup. ) stage and the perceptual measurement stage.
  • the sensing measurement stage consists of multiple sensing measurement bursts (Burst), and each burst is composed of multiple sensing measurement instances (DMG Sensing Instance).
  • the time interval between bursts is the inter-burst interval
  • the time interval between adjacent sensing measurement instances in a burst is the intra-burst interval.
  • MACADDR in Figure 3 refers to the Medium Access Control (MAC) address
  • AID refers to the association identifier
  • DMG Measurement setup ID (DMG Measurement setup ID) refers to the millimeter wave sensing measurement setup identifier
  • MS ID refers to the measurement setup (Measurement Setup, MS) identification
  • burst ID (Burst ID) refers to the burst identification
  • the instance (Instance) sequence number (Sequential Number, SN) refers to the identification of the sensing measurement instance, which can also be called the sensing instance.
  • the "burst" in the above description may also be called “burst”.
  • FIG. 4 is a schematic diagram of an example of a sequential mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • FIG. 5 is a parallel mode of millimeter-wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. Schematic diagram of a pattern instance.
  • the similarity between the sequential mode and the parallel mode is that the sensing initiator (Initiator) needs to send millimeter wave sensing request (DMG Sensing Request) frames to each sensing response in the initial stage of the sensing measurement instance. (Responder), and each sensing responder needs to reply a millimeter wave sensing response (DMG Sensing Response) frame to the sensing initiator within the short interframe space (SIFS) time.
  • the DMG sensing request can also be called RQ
  • the DMG sensing response can also be called RSP.
  • each sensing responder sequentially sends and receives a single base sensing measurement frame (Monostatic PPDU) to sense the environment, and in SIFS time Send a Sensing Measurement Report frame (DMG Sensing Measurement Report) to the sensing initiator.
  • DMG Sensing Measurement Report Send a Sensing Measurement Report frame
  • each sensing responder simultaneously sends and receives single-base sensing measurement frames to sense the environment, and then sends DMG sensing measurement report frames (perception measurement report frames) to the sensing initiator in sequence.
  • the grid above the horizontal line corresponding to the sensing initiator or sensing responder represents the frame sent by the device, and the grid (blank grid) below the horizontal line represents the frame received by the device, and There is a correspondence between the sent frame and the received frame.
  • the grid with the center pressed on the horizontal line corresponding to the sensor responder it represents the frame in which the sensor responder spontaneously collects, for example, the single-base sensor measurement frame in which the sensor responder spontaneously collects itself.
  • the sensing initiator sends an RQ to the sensing responder site A (represented by the grid above the horizontal line corresponding to the sensing initiator).
  • the sensing responder site A will receive the RQ (represented by the sensing responder site A).
  • the blank grid below the horizontal line corresponding to site A indicates).
  • the meaning of the blank spaces in other drawings of this application may refer to the above description, and will not be described again.
  • FIG. 6 is a schematic diagram of the frame format of a DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • the DMG sensing measurement setting element carries information for setting a DMG sensing measurement.
  • the DMG sensing measurement setting element is located in the DMG sensing measurement setting request frame (Sensing Measurement Setup Request) and the DMG sensing measurement setting response frame (Sensing Measurement). Setup Response). It includes element ID field, length field, element ID extension field, measurement setting control field, report type (Report Type) field, LCI field, peer position (Peer Orientation) field, and optional sub-element field.
  • the measurement setting control fields include the following fields:
  • Sensing Type Indicates the type of DMG sensing measurement. The specific values and their meanings can be seen in Table 1.
  • Rx Initiator (RXInitiator): Indicates whether the awareness initiator is an awareness receiver or an awareness sender in a double-click awareness type. A value of 1 indicates that the sensing initiator is a sensing receiver; a value of 0 indicates that the sensing initiator is a sensing sender.
  • LCI presence Indicates whether the LCI field exists in the DMG perception measurement setting element. A value of 1 indicates that the LCI field exists in the DMG perception measurement setting element; a value of 0 indicates that the LCI field does not exist in the DMG perception measurement setting element.
  • Orientation Present Indicates whether the Peer Orientation field exists in the DMG perception measurement setting element. A value of 1 indicates that the peer location field exists in the DMG perception measurement setting element; a value of 0 indicates that the peer location field does not exist in the DMG perception measurement setting element.
  • reporting type field in the DMG sensing measurement setting element is used to indicate the type of reporting that the sensing initiator expects the sensing responder to report.
  • the values and their meanings are shown in Table 2.
  • the LCI field carries the LCI field in the Location configuration information report.
  • the peer location field is used to indicate the direction and distance of the peer device, and contains three subfields: Azimuth, Elevation, and Range.
  • the optional sub-element field includes zero or more sub-elements. All sub-elements and their order are as shown in Table 3 below.
  • FIG. 7 is a schematic diagram of the format of a beamforming frame provided by an exemplary embodiment of the present application.
  • the TDD Beamforming frame is a type of control frame. Its MAC frame body consists of two parts: TDD Beamforming Control field and TDD Beamforming Information field.
  • the meanings of the fields in the MAC header of the TDD beamforming frame are as follows:
  • Frame Control Indicates information such as the type of the MAC frame, including information indicating that the frame is a TDD beamforming frame.
  • ⁇ Duration Indicates the length of time the frame is sent.
  • RA MAC Address
  • TA Transmitter Address
  • ⁇ TDD Beamforming Frame Type Indicates the type of TDD beamforming frame. See Table 4 for specific values and their meanings.
  • the values 0, 1, and 2 of the TDD beamforming frame type field all indicate that the TDD beamforming frame is a type related to beam training. This type has nothing to do with the method provided by the embodiment of this application.
  • the value 3 indicates The TDD beamforming frame is a type related to DMG sensing.
  • the TDD Group Beamforming (TDD Group Beamforming) field and the TDD Beam Measurement (TDD Beam Measurement) field jointly indicate the location of a TDD beamforming frame in DMG perception.
  • TDD Group Beamforming TDD Group Beamforming
  • TDD Beam Measurement TDD Beam Measurement
  • the TDD group beamforming field when the value of the TDD group beamforming field is 0 and the value of the TDD beam measurement field is 0, it indicates that the TDD beamforming frame is a DMG sensing request frame (sensing request frame); in TDD When the value of the group beamforming field is 0 and the value of the TDD beam measurement field is 1, it indicates that the TDD beamforming frame is a DMG sensing response frame (perception response frame); the value in the TDD group beamforming field When it is 1 and the TDD beam measurement field value is 0, it indicates that the TDD beamforming frame is a DMG sensing polling frame (sensing polling frame).
  • FIG. 8 is a schematic diagram of the format of a sensing request frame provided by an exemplary embodiment of the present application. As shown in Figure 8, the meanings of the fields in the TDD beamforming information field of the DMG sensing request frame are as follows:
  • ⁇ Measurement Setup ID The identifier of the sensing measurement setup associated with this frame.
  • ⁇ Measurement Burst ID The identifier of the sensing measurement burst associated with this frame.
  • Sequential Number Indicates the sequence number of a sensing measurement instance in a measurement burst.
  • ⁇ Sensing type Indicates the sensing type requested by the frame. See Table 6 for specific values and meanings:
  • ⁇ STA ID Indicates the order in which a STA participates in measurement in a sensing measurement instance.
  • ⁇ First Beam Index Indicates the index of the first transmit beam used in a sensing measurement instance.
  • ⁇ Num of STAs in Instance Indicates the number of STAs participating in the measurement in a sensing measurement instance.
  • ⁇ Num of PPDUs in Instance Indicates the number of PPDUs that appear in a sensing measurement instance.
  • EDMG TRN Length Indicates the number of TRN-units (Unit) contained in a PPDU.
  • ⁇ EDMG TRN-Unit P Indicates the number of TRN subfields (TRN subfields) in which the beam direction is aligned with the opposite end device in a TRN-Unit.
  • ⁇ EDMG TRN-Unit M Indicates the number of TRN subfields with variable beam directions in a TRN-Unit.
  • ⁇ EDMG TRN-Unit N Indicates the number of TRN subfields sent continuously using the same beam direction among the TRN-Unit-M TRN subfields.
  • TRN Subfield Sequence Length Indicates the length of the Gray sequence used for each TRN subfield.
  • ⁇ Bandwidth Indicates the bandwidth used to send the TRN field.
  • FIG 9 is a schematic diagram of the format of a sensing response frame provided by an exemplary embodiment of the present application. As shown in Figure 9, the MAC frame body of the DMG sensing response frame only contains the TDD beamforming control field.
  • FIG. 10 is a schematic diagram of the format of a sensing polling frame provided by an exemplary embodiment of the present application. As shown in Figure 10, the meanings of the fields in the TDD beamforming information field of the DMG sensing polling frame are as follows:
  • ⁇ Measurement Setup ID An identifier indicating the sensing measurement setting associated with this DMG sensing polling frame.
  • ⁇ Measurement Burst ID Indicates the identifier of the sensing measurement burst associated with this DMG sensing polling frame.
  • Sensing instance SN (SensingInstanceSequential Number): indicates the identifier of the sensing measurement instance related to this DMG sensing polling frame.
  • the sensing types of cooperative single-base sensing include two modes: sequential cooperative single-base and parallel cooperative single-base.
  • sequential cooperative single-base and parallel cooperative single-base are: the sensing initiator is in the initial stage of the sensing measurement instance.
  • a DMG sensing request frame needs to be sent to each sensing responder separately, and each sensing responder needs to reply a DMG Sensing Response frame to the sensing initiator within the SIFS time; however, in the sequential cooperation single-base mode, multiple sensing The responder will sequentially send and receive Monostatic PPDUs to sense the environment, and send Sensing Measurement Report frames (DMG Sensing Measurement Report) to the sensing initiator within the SIFS time; in the parallel collaborative single-base mode In, multiple sensing responders simultaneously send and receive Monostatic PPDU sensing environment, and then send sensing measurement report frames to the sensing initiator in sequence.
  • DMG Sensing Measurement Report Sensing Measurement Report
  • the sensing types of cooperative single-base sensing are implemented in different modes, which will lead to differences in the situation of the sensing responder sending and receiving single-base sensing measurement frames.
  • the sensing measurement setting stage or in the sensing measurement instance stage there is no field that can more directly and clearly indicate the sensing type of collaborative single-base sensing.
  • the format and length of the single-base PPDU are not clearly determined in the related art, and only the receiving address (RA) in the physical layer service data unit (PSDU) carried by the single-base PPDU is required. It is equal to the sending address (TA). Therefore, interference problems may arise in the parallel mode of cooperative single-base sensing type. That is, because the length of the single-base PPDU of site B is larger than the length of the single-base PPDU of site A, the single-base PPDU of site B overlaps with the Report frame of site A, causing interference between site A and site B.
  • RA receiving address
  • PSDU physical layer service data unit
  • the method provided by the embodiment of the present application sends a frame carrying the first field to the sensing responder. Since the first field is a proprietary field of the sequential cooperation unit or the parallel cooperation unit, and/or in the sequential cooperation unit Or it has a proprietary meaning in the parallel cooperative single base, so according to the difference in the type of the first field, specific problems corresponding to the information content carried in the first field can be solved, such as: being able to distinguish the sensing type of the cooperative single base, and/or , can distinguish the polling situation reported by cooperative single-base sensing measurement, and/or can limit the maximum length of single-base PPDU.
  • the sensing responder When the sensing responder receives the frame sent by the sensing initiator, it reads the fields in the frame, which not only improves the sensing accuracy of the sensing responder, but also facilitates the sensing responder to conduct a more comprehensive collaborative single-base sensing measurement process. understand and analyze.
  • FIG 11 is a flow chart of a perceptual measurement method provided by an exemplary embodiment of the present application.
  • the method is applied in perceptual measurement equipment.
  • the perception measurement device includes a perception initiating device (a perception initiator) or a perception response device (a perception responder). Taking the sensing initiator to perform the sensing measurement method as an example, the method includes:
  • Step 1102 Send the frame carrying the first field.
  • the first field is an exclusive field of the sequential collaboration unit or the parallel collaboration unit, and/or the first field has exclusive meaning in the sequential collaboration unit or the parallel collaboration unit.
  • the above sensing measurement method is applied to collaborative single-base sensing measurement.
  • the sensing initiator triggers each sensing responder participating in the collaboration to perform all or part of the stages in the sensing measurement process.
  • a schematic diagram of the process of millimeter wave sensing is provided for an exemplary embodiment of the present application, which includes a session establishment phase, a millimeter wave sensing measurement setting phase, and a sensing measurement phase.
  • the sensing measurement stage consists of multiple sensing measurement bursts (Burst), and each burst is composed of multiple sensing measurement instances (DMG Sensing Instance).
  • DMG Sensing Instance There are two modes for millimeter-wave cooperative single-base sensing measurement examples, one is sequential cooperative single-base (sequential mode type of cooperative single-base), and the other is parallel cooperative single-base (parallel mode type of cooperative single-base).
  • the first field is implemented as a proprietary field for indication.
  • the first field is a newly added field in the frame, and the field is used to carry proprietary information content. For example: adding at least one first field to the sensing measurement setting frame; or adding at least one first field to the sensing request frame, etc.
  • the first field has a proprietary meaning for indication.
  • the first field is an existing field in the frame.
  • the value range of the existing field is adjusted, and the set value represents the proprietary information carried. content; or, multi-layer definition of the meaning of existing fields, through which proprietary information content can be obtained.
  • the first frame carrying a sensing type field is sent, where the sensing type field is used to indicate that the sensing type is sequential cooperative single base or parallel cooperative single base.
  • the first frame is at least one of the following frames: a millimeter-wave DMG sensing measurement setting request frame; a millimeter-wave DMG sensing measurement setting response frame; and a millimeter-wave DMG sensing request frame.
  • a second frame carrying a station identification field is sent, and the station identification field is used to indicate the order in which the stations participate in the sequential cooperation unit.
  • the second frame is the DMG sensing request frame.
  • a third frame carrying a reporting polling field is sent, where the reporting polling field is used to indicate whether polling is required for reporting of sensing measurement results.
  • the third frame is at least one of the following frames: a millimeter wave DMG sensing measurement setting request frame; a millimeter wave DMG sensing measurement setting response frame; and a millimeter wave DMG sensing request frame.
  • a fourth frame carrying a maximum duration field of a single-base PPDU is sent, where the maximum duration field of a single-base PPDU is used to indicate the maximum duration of a single-base PPDU used by the sensing responder.
  • the fourth frame is at least one of the following frames: a DMG perception measurement setting request frame; a DMG perception measurement setting response frame.
  • the first field is carried in at least one of the above-mentioned first frame, second frame, third frame and fourth frame.
  • the frame carries at least one type of first field, different types of first fields correspond to different types of information content, and different types of information content can solve different problems.
  • the sensing initiator sends the first field of the corresponding type to solve the above problem.
  • the sensing initiator when implementing the differentiation phase of the cooperative single-base sensing type, sends the first frame carrying the sensing type field, and/or sends the second frame carrying the station identification field, thereby solving the above problem. one.
  • the sensing initiator when distinguishing the polling situation of cooperative single-base sensing measurement reporting, the sensing initiator sends a third frame carrying a reporting polling field, thereby solving the second problem mentioned above.
  • the sensing initiator when the length of a single-base PPDU is limited, the sensing initiator sends a fourth frame carrying the maximum length field of a single-base PPDU, thereby solving the above problem three.
  • the sensing initiator sends the frame carrying the first field to the sensing responder, because the first field is a proprietary field of the sequential cooperation single base or the parallel cooperation single base, and/or It has exclusive meaning in sequential cooperation single base or parallel cooperation single base. Therefore, according to the difference in type of the first field, at least one of the three specific problems corresponding to the information content carried by the first field can be solved, such as:
  • the sensing type of cooperative single-base sensing can be distinguished, and/or the polling status of cooperative single-base sensing measurement report can be distinguished, and/or the maximum length of single-base PPDU can be limited. This facilitates the perception responder to have a more comprehensive understanding and analysis of the collaborative single-base perception measurement process.
  • the sensing initiator can achieve the purpose of conveying different information to the sensing responder.
  • Figure 12 it is a flow chart of a perceptual measurement method provided by an exemplary embodiment of the present application. This method is applied in perceptual measurement equipment.
  • the perception measurement device includes a perception initiating device (a perception initiator) or a perception response device (a perception responder). Schematically, taking the method executed by the sensing responder as an example to illustrate, the method includes:
  • Step 1202 Receive the frame carrying the first field.
  • the first field is an exclusive field of the sequential collaboration unit or the parallel collaboration unit, and/or the first field has exclusive meaning in the sequential collaboration unit or the parallel collaboration unit.
  • the above sensing measurement method is applied to collaborative single-base sensing measurement.
  • the sensing initiator triggers each sensing responder participating in the collaboration to perform all or part of the stages in the sensing measurement process.
  • the sensing initiator triggers each participating sensing responder to perform all or part of the stages in the sensing measurement process.
  • the request phase includes the steps of the sensing initiator sending the sensing request frame to the sensing responder and the sensing responder sending the sensing response frame to the sensing initiator.
  • the sensing measurement phase includes the sensing responder sending the single base sensing frame.
  • the step of measuring the frame, the reporting phase includes the step of the sensing responder sending the sensing measurement report frame to the sensing initiator;
  • the request phase includes the sensing initiator sending the sensing request frame to the sensing responder and the sensing responder sending the sensing request frame to the sensing initiator.
  • the initiator sends a sensing response frame
  • the sensing measurement phase includes the sensing responder sending a single-base sensing measurement frame
  • the reporting phase includes the sensing responder sending a sensing measurement report frame to the sensing initiator.
  • the first frame carrying a sensing type field, where the sensing type field is used to indicate that the sensing type is sequential cooperative single base or parallel cooperative single base.
  • the first frame is at least one of the following frames: a millimeter-wave DMG sensing measurement setting request frame; a millimeter-wave DMG sensing measurement setting response frame; and a millimeter-wave DMG sensing request frame.
  • a second frame carrying a station identification field is received, and the station identification field is used to indicate the order in which the stations participate in the sequential cooperation unit.
  • the second frame is the DMG sensing request frame.
  • a third frame carrying a reporting polling field is received, where the reporting polling field is used to indicate whether polling is required for reporting of sensing measurement results.
  • the third frame is at least one of the following frames: a millimeter wave DMG sensing measurement setting request frame; a millimeter wave DMG sensing measurement setting response frame; and a millimeter wave DMG sensing request frame.
  • a fourth frame carrying a maximum duration field of a single-base PPDU is received, where the maximum duration field of a single-base PPDU is used to indicate the maximum duration of a single-base PPDU used by the sensing responder.
  • the fourth frame is at least one of the following frames: a DMG perception measurement setting request frame; a DMG perception measurement setting response frame.
  • the first field is carried in at least one of the above-mentioned first frame, second frame, third frame and fourth frame.
  • the sensing responder can distinguish the sensing type of the cooperative single-base sensing, and/or can distinguish the polling status of the cooperative single-base sensing measurement report, and/or can limit the single-base PPDU the maximum length. It not only improves the perception accuracy of the perception responder, but also enables the perception responder to more comprehensively understand and analyze the collaborative single-base perception measurement process based on reading the first field.
  • cooperative single-base sensing types include sequential cooperative single-base and parallel cooperative single-base modes.
  • the sequential mode type and the parallel mode type in the perception are accurately distinguished, so there is a problem of unclear indication of the sequential cooperation single base and the parallel cooperation single base.
  • the millimeter wave DMG perception measurement setting frame and/or the format of the millimeter wave DMG perception measurement setting frame is improved so that it carries the third One field.
  • the sensing initiator sends the first frame carrying the sensing type field; the sensing responder receives the first frame carrying the sensing type field.
  • the sensing type field is used to indicate whether the sensing type is a sequential cooperative single base or a parallel cooperative single base, and the sensing type field is used as a form of expression of the first field.
  • the sensing type is used to indicate the mode type of the cooperative single base, that is, the cooperative single base belongs to a sequential cooperative single base or a parallel cooperative single base.
  • the first frame carries a sensing type field, so by reading the first frame, it can be determined that the first frame belongs to a sequential cooperative single base; or, it can be determined that the first frame belongs to a parallel cooperative single base.
  • the first frame is at least one of the following frames: a DMG sensing measurement setting request frame; a DMG sensing measurement setting response frame; and a DMG sensing request frame.
  • the DMG perception measurement setting request frame and the perception measurement setting response frame are the types of frames in the perception measurement setting phase; the DMG perception request frame is the type of frame in the perception measurement instance phase.
  • the DMG perception measurement setting request frame is used to indicate the frame sent by perception measurement device A to perception measurement device B in the perception measurement setting phase;
  • the DMG perception measurement setting response frame is used to indicate that in the perception measurement setting phase, the perception measurement device Frame sent by measurement device B to perceptual measurement device A.
  • the sensing initiator sends a DMG sensing measurement setting request frame to the sensing responder, and the sensing responder selectively sends a DMG sensing measurement setting response frame to the sensing initiator based on the DMG sensing measurement setting request frame sent by the sensing initiator. For example: when the DMG sensing measurement setting request frame sent by the sensing initiator does not meet the reception requirements of the sensing responder, the sensing responder sends a DMG sensing measurement setting response frame to the sensing initiator.
  • the DMG perception measurement setting frame indicates the frame in the perception measurement setting phase, which includes perception measurement settings.
  • the DMG perception measurement setting request frame and the DMG perception measurement setting response frame in the phase are used to perform the following description process of character adjustment in the perception measurement setting phase.
  • the first frame is implemented as a DMG perception measurement setting frame (DMG perception measurement setting request frame, or DMG perception measurement setting response frame).
  • FIG. 6 it is a schematic diagram of the format of a DMG sensing measurement setting frame (DMG sensing measurement setting request frame, or DMG sensing measurement setting response frame). It includes a measurement setting control field, and a sensing type subfield is included under the measurement setting control field. The sensing type subfield is used to indicate the type of DMG sensing measurement.
  • the perception measurement method provided by the embodiment of the present application is used to modify the perception type subfield under the measurement setting control field in the DMG perception measurement setting frame.
  • the value of the sensing type subfield when the value of the sensing type subfield is 0, it means that the type of DMG sensing measurement is the sequential cooperative single-base type; when the value of the sensing type subfield is 1, it means that the DMG sensing type is the parallel cooperative single-base type; when When the value of the perception type subfield is 2, it means that the DMG perception type is cooperative double base; when the value of the perception type subfield is 3, it means that the DMG perception type is double base; when the value of the perception type subfield is 4 When , it means that the DMG sensing type is multi-based.
  • sensing type subfield can also adopt other setting schemes, for example: setting the value to 0 means sequential cooperation with a single base; A value of 4 indicates a single base for parallel cooperation; alternatively, setting the value to 4 indicates a single base for sequential cooperation; a value of 0 indicates a single base for parallel cooperation, etc. This is not limited in the embodiment of the present application.
  • the sequential cooperation unit can also be called the sequential mode of the cooperation unit;
  • the parallel cooperation unit can also be called the cooperation unit.
  • Basic parallel mode, etc. which are not limited in the embodiments of this application.
  • the sensing type subfield is used as the first field, and the first field carries the sensing type field; or the measurement setting control field corresponding to the sensing type subfield is used as the first field, and the first field carries the sensing type field.
  • the sensing type subfield under the measurement setting control field in the sensing measurement setting frame is adjusted.
  • the mode type of the cooperative unit can be more accurately distinguished. , that is, it can be more quickly determined whether it belongs to a sequential cooperative single base or a parallel cooperative single base.
  • the first frame is implemented as a DMG awareness request frame.
  • FIG. 8 Schematically, as shown in Figure 8, it is a schematic diagram of the format of the DMG sensing request frame. It includes a TDD beamforming information field.
  • the TDD beamforming information field includes a sensing type subfield.
  • the sensing type subfield is used to indicate the type of DMG sensing measurement.
  • the perception measurement method provided by the embodiment of the present application is used to modify the perception type subfield under the TDD beamforming information field in the DMG perception request frame.
  • the sensing type subfield (bold) under the TDD beamforming information field in the DMG sensing request frame shown in Figure 8 is modified to obtain the sensing type subfield.
  • the value situation can determine the sensing type under the cooperative single base.
  • the DMG sensing type subfield when the value of the sensing type subfield is 0, it means that the DMG sensing type is a sequential cooperative single base; when the value of the sensing type subfield is 1, it means that the DMG sensing type is a parallel cooperative single base; when the sensing type subfield When the value of the field is 2, it means that the DMG sensing type is cooperative dual-base; when the value of the sensing type subfield is 3, it means that the DMG sensing type is multi-base.
  • the sensing type subfield has a value of 3 to indicate that the sensing type is a dual-base type;
  • the sensing type is dual-base type is indicated through other frames or other fields. Therefore, the dual-base type is not included in Table 8 above.
  • the above is only a schematic example. This article The application examples do not limit this.
  • the perception type subfield is used as the first field, and the first field carries the perception type field; or the TDD beamforming information field corresponding to the perception type subfield is used as the first field, and the first field It carries the perception type field.
  • sensing type subfield can also adopt other setting schemes, for example: setting the value to 0 means sequential cooperation with a single base; A value of 7 represents a single base for parallel collaboration; alternatively, a value of 4 represents a single base for sequential collaboration; a value of 5 represents a single base for parallel collaboration, etc. This is not limited in the embodiments of the present application.
  • the sequential cooperation unit can also be called the sequential mode of the cooperation unit;
  • the parallel cooperation unit can also be called the cooperation unit.
  • Basic parallel mode, etc. which are not limited in the embodiments of this application.
  • the sensing type subfield under the measurement setting control field in the sensing measurement setting frame is adjusted.
  • the mode type of the cooperative unit can be more accurately distinguished. , that is, it can be more quickly determined whether it belongs to a sequential cooperative single base or a parallel cooperative single base.
  • a second frame carrying a station identification field is sent.
  • the site identification field is used to indicate the order in which sites participate in sequential collaboration units.
  • STAs sites
  • sites have their corresponding identifiers.
  • different STAs correspond to different sending orders, and the different sending orders are represented by the site identification field. .
  • the sending order of different STAs in the sequential cooperation single-base mode can be determined.
  • the first frame is implemented as a DMG sensing request frame; the second frame is implemented as a DMG sensing request frame.
  • the first frame and the second frame are implemented as the same frame.
  • FIG. 8 Schematically, as shown in Figure 8, it is a schematic diagram of the format of the DMG sensing request frame. It includes the TDD beamforming information field.
  • the TDD beamforming information field includes the sensing type subfield and the STA ID subfield.
  • the sensing type subfield is used to indicate the type of DMG sensing measurement; the STA ID subfield is used to indicate the SAT. identifier.
  • the perception measurement method provided by the embodiment of this application is used to modify the perception type subfield and STA ID subfield under the TDD beamforming information field in the DMG perception request frame.
  • field and STA ID subfield, through the value of the sensing type subfield and the value of the STA ID subfield the sensing type under the collaborative single base can be determined.
  • the STA ID subfield is processed differently based on the sensing type subfield.
  • the station identification field is used to indicate the order in which the station participates in the sequential coordinated single base.
  • the above-mentioned STA ID subfield indicates the site identification character.
  • the STA ID subfield represents the identifier of the STA and also indicates the order in which the STA participates in sensing measurement; when the value of the sensing type subfield When it is 1, the type of DMG sensing measurement is parallel cooperative single base, then the STA ID subfield represents the identifier of the STA; when the value of the sensing type subfield is 0, it means that the type of DMG sensing measurement is sequential cooperative single base.
  • Base determine that the STA ID subfield represents the identifier of a STA and also represents the order in which the STA participates in sensing measurements.
  • the sensing type subfield and the STA ID subfield are used as the first field, and the first field carries the sensing type field; or, the TDD beamforming corresponding to the sensing type subfield and the STA ID subfield is The information field serves as the first field, and the first field carries the perception type field.
  • sensing type subfield is only illustrative examples.
  • the value of the sensing type subfield can also adopt other setting schemes, which are not limited in the embodiments of the present application.
  • the sensing type subfield and STA ID subfield under the measurement setting control field in the sensing measurement setting frame are adjusted.
  • the collaborative single base can be more accurately determined.
  • the mode type can be distinguished, and the STA identifier and the order in which the STA participates in sensing can also be determined through the STA ID subfield, so that the sensing responder can more fully understand the content information in the sensing measurement process.
  • the second frame is implemented as a DMG awareness request frame.
  • FIG. 8 Schematically, as shown in Figure 8, it is a schematic diagram of the format of the DMG sensing request frame. This includes the TDD beamforming information field, which includes the STA ID subfield, and the STA ID subfield is used to indicate the identifier of the SAT.
  • the perception measurement method provided by the embodiment of this application uses the perception measurement method provided by the embodiment of this application to modify the STA ID subfield under the TDD beamforming information field in the DMG sensing request frame.
  • the STA ID subfield (bold) under the TDD beamforming information field in the DMG sensing request frame shown in Figure 8 is modified to obtain the STA ID subfield.
  • the value situation can determine the sensing type under the cooperative single base.
  • the STA ID subfield is processed differently based on the sensing type subfield.
  • the sensing type field in the DMG sensing request frame indicates a coordinated single base
  • the value of the site identification field belongs to the first range and is used to indicate a sequential coordinated single base
  • the value of the site identification field is also used for Indicates the order in which sites participate in sequential cooperating monobases.
  • the STA ID subfield indicates the site identification character.
  • the sensing type requested by the frame is determined based on the value of the sensing type shown in Table 6 above.
  • the sensing type requested by the frame is multi-radiation, which means that the STA receives the index of the synchronization subfield in the EDMG Multistatic Sensing PPDU; when the value of the sensing type is 1, it is determined
  • the sensing type requested by this frame is cooperative dual base, then the STA ID subfield indicates the identifier of the STA and also indicates the order in which the STA participates in sensing measurements; when the value of the sensing type is 0, determine the requested sensing type of the frame.
  • the sensing type is cooperative single base.
  • the sensing type field in the DMG sensing request frame indicates a coordinated single base
  • the value of the site identification field belongs to the second range and is used to indicate a parallel coordinated single base
  • the site identification field is used to indicate the order in which the site participates in the sequential collaboration unit; when the value of the sensing type When it is 0 and the value range of the STA ID subfield is 0, the site identification field is used to indicate that the site participates in the parallel collaboration single-base mode.
  • the sensing type requested by the frame is cooperative single base.
  • the mode type of cooperative single base is determined based on the value difference of the STA ID subfield.
  • the STA ID subfield not only represents the The identifier of the STA; also indicates the order in which the STA participates in sensing measurements.
  • the mode type of the cooperative single base is the parallel cooperation mode type.
  • the STA ID subfield in the sensing request frame is adjusted.
  • the value range of the STA ID subfield not only the mode type of the cooperative single base can be determined, but also the mode type and
  • the value range of the STA ID subfield selectively determines the identifier of the STA and the order in which the STA participates in sensing, so that the sensing responder can more fully understand the content information in the sensing measurement process.
  • the millimeter wave DMG perception measurement setting frame and/or the format of the millimeter wave DMG perception measurement setting frame is improved, so that the sent The frame carries the first field.
  • the sensing initiator sends the third frame carrying the reporting polling field; the sensing responder receives the third frame carrying the reporting polling field.
  • the report polling field is used to indicate whether polling is required to report the sensing measurement results, and the report polling field is used as a form of expression of the first field.
  • polling is used to indicate the reporting status of perception measurement results.
  • the report polling field can indicate two situations, namely: the report polling field indicates that reporting of perception measurement results requires polling; or the report polling field indicates that polling is required.
  • the reporting of sensing measurement results does not require polling.
  • the third frame carries a reporting polling field. Therefore, by reading the third frame, the polling status of the reporting of the sensing measurement results in the third frame can be determined. For example: after reading the third frame, the reporting of the sensing measurement results can be determined. Polling is required; or, after reading the third frame, it is determined that polling is not required for reporting the sensing measurement results.
  • the third frame is at least one of the following frames: a DMG sensing measurement setting request frame; a DMG sensing measurement setting response frame; and a sensing request frame.
  • the DMG perception measurement setting frame indicates the frame in the perception measurement setting phase, which includes perception measurement settings.
  • the DMG perception measurement setting request frame and the DMG perception measurement setting response frame in the phase are used to perform the following description process of character adjustment in the perception measurement setting phase.
  • the third frame is implemented as a DMG sensing measurement setting frame (DMG sensing measurement setting request frame, or DMG sensing measurement setting response frame), and the reporting polling field is carried in the DMG sensing measurement setting frame (DMG sensing measurement setting request frame).
  • DMG sensing measurement setting request frame or DMG sensing measurement setting response frame
  • the reporting polling field is carried in the DMG sensing measurement setting frame (DMG sensing measurement setting request frame).
  • DMG sensing measurement setting request frame In the sensing measurement setting element of the sensing measurement setting request frame, or the DMG sensing measurement setting response frame).
  • FIG. 6 Schematically, as shown in Figure 6, it is a schematic diagram of the format of a DMG perception measurement setting frame (DMG perception measurement setting request frame; DMG perception measurement setting response frame). It includes element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer location field, and optional sub-element field.
  • the perception measurement method provided by the embodiment of the present application is used to modify the field composition in the DMG perception measurement setting frame, and add a new field in the DMG perception measurement setting frame.
  • the format of the DMG perception measurement setting frame shown in Figure 6 is adjusted, and a report polling field (Report Poll) is added after the reporting type field, in which the reporting polling field is bolded Status indicates that the reporting polling field indicates whether polling is required for reporting of sensing measurement results in a DMG sensing measurement setting.
  • Report Poll a report polling field is added after the reporting type field, thus making the DMG sensing measurement setting frame.
  • the format of the DMG sensing measurement setting frame is implemented as: element ID field, length field, Element ID extension field, measurement setting control field, reporting type field, reporting polling field, LCI field, peer location field, and optional sub-element field.
  • the value of the reporting polling field in the DMG sensing measurement setting frame is 1, it means that reporting of sensing measurement results under the coordinated single base requires polling; when the value of the reporting polling field in the DMG sensing measurement setting frame is The value is 0, indicating that the reporting of sensing measurement results under the cooperative single base does not require polling.
  • the value of the reporting polling field in the DMG sensing measurement setting frame is 0, it means that the reporting of sensing measurement results under the coordinated single base needs to be polled; when the value of the reporting polling field in the DMG sensing measurement setting frame is 1, indicating that the reporting of sensing measurement results under the cooperative single base does not require polling.
  • reporting polling field is only a schematic example; the name of the reporting polling field is only a schematic example; the position of the reporting polling field in the DMG sensing measurement setting frame is also only Illustrative example, different situations may exist.
  • the position of the reporting polling field in the DMG sensing measurement setting frame is used as an example for explanation.
  • the reporting polling field is added after the measurement setting control field in the DMG sensing measurement setting frame; or, the reporting polling field is added after the peer location field in the DMG sensing measurement setting frame.
  • the format of the DMG sensing measurement setting frame is adjusted and a reporting polling field is added, so that the reporting of sensing measurement results under the coordinated single base is more directly determined based on the value of the reporting polling field. Whether polling is required.
  • the third frame is implemented as a DMG sensing measurement setting frame (DMG sensing measurement setting request frame, or DMG sensing measurement setting response frame), and the reporting polling field is carried in the DMG sensing measurement setting frame (DMG sensing measurement setting request frame).
  • DMG sensing measurement setting request frame or DMG sensing measurement setting response frame
  • the reporting polling field is carried in the DMG sensing measurement setting frame (DMG sensing measurement setting request frame).
  • DMG sensing measurement setting request frame In the optional sub-element field of the DMG Sensing Measurement Settings request frame or DMG Sensing Measurement Settings response frame).
  • FIG. 6 Schematically, as shown in Figure 6, a schematic diagram of setting the frame format for DMG sensing measurement. It includes element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer location field, and optional sub-element field. As shown in Table 3 above, the optional sub-element field includes zero or more sub-elements, and all sub-elements include TX Beam List, RX Beam List and DMG Sensing Scheduling.
  • the cooperative single-base specific configuration optional sub-element field includes the sub-element ID, length and reporting polling field. Among them, the value range of the sub-element ID is any integer between 4 and 255. The value of the above-mentioned sub-element ID of 4 is only a schematic example; the length indicates the specific configuration of the cooperative unit in the optional sub-element field. The number of bytes except the sub-element ID and length fields; the reporting polling field indicates whether polling is required for reporting of sensing measurement results in a DMG sensing measurement setting.
  • a new cooperative single-base specific configuration optional sub-element field is added to the optional sub-element type, and the polling field is reported under the cooperative single-base specific configuration optional sub-element field.
  • the value can determine whether the reporting of sensing measurement results under the cooperative single base requires polling.
  • the value of the reporting polling field under the optional sub-element field of the specific configuration of the cooperative single base is 1, it means that the reporting of sensing measurement results under the cooperative single base needs to be polled; when the specific configuration of the cooperative single base is optional The value of the reporting polling field under the sub-element field is 0, indicating that reporting of sensing measurement results under the coordinated single base does not require polling.
  • the value of the reporting polling field under the optional sub-element field of the specific configuration of the cooperative single base is 0, it means that the reporting of the sensing measurement results under the cooperative single base needs to be polled; when the optional sub-element of the specific configuration of the cooperative single base The value of the reporting polling field under the field is 1, which means that reporting of sensing measurement results under the coordinated single base does not require polling.
  • the format of the DMG sensing measurement setting frame is adjusted, the optional sub-elements under the existing optional sub-element fields are adjusted, and a reporting polling field is added to the optional sub-elements, thereby According to the value of the reporting polling field, it is more directly determined whether the reporting of sensing measurement results under the cooperative single base requires polling.
  • the third frame is implemented as a DMG awareness request frame.
  • the reporting polling field is carried in the TDD beam information field of the DMG sensing request frame.
  • FIG. 8 Schematically, as shown in Figure 8, it is a schematic diagram of the format of the DMG sensing request frame.
  • This includes the TDD beamforming information field, which is adjusted so that the reporting polling field is carried in the TDD beam information field of the DMG sensing request frame.
  • a new reporting polling field (bold) is added, thereby obtaining the TDD beamforming information field , that is, the TDD beamforming information field includes a reporting polling field.
  • the reporting polling field indicates whether reporting of sensing measurement results in a DMG sensing measurement setting requires polling.
  • the value of the reporting polling field under the TDD beamforming information field is 1, it means that reporting of the sensing measurement results under the coordinated single base requires polling; when the reporting polling field under the TDD beamforming information field The value of the query field is 0, which means that reporting of sensing measurement results under the cooperative single base does not require polling.
  • the value of the reporting polling field under the TDD beamforming information field is 0, it means that the reporting of sensing measurement results under the coordinated single base needs to be polled; when the reporting polling field under the TDD beamforming information field The value of is 1, indicating that reporting of sensing measurement results under cooperative single base does not require polling.
  • the format of the DMG sensing request frame is adjusted, and a reporting polling field is added after the bandwidth subfield under the TDD beamforming information field, so that according to the value of the reporting polling field, a more direct Determine whether the reporting of sensing measurement results under the cooperative single base requires polling.
  • FIG. 21 a schematic flowchart of the parallel mode of cooperative single-base sensing measurement is provided for an exemplary embodiment of the present application.
  • the process involves one sensing initiator (STA) and two sensing responders (site A, site B), including the following processes (from left to right):
  • station A After the SIFS time, station A replies with a DMG sensing response frame to the sensing initiator;
  • site B replies the DMG sensing response frame to the Initiator;
  • site A and site B spontaneously receive a single-base sensing measurement frame at the same time to sense the environment;
  • station A After the SIFS time, station A sends a DMG sensing measurement report frame to the sensing initiator to report the sensing measurement results;
  • the sensing initiator replies with an ACK frame to site A;
  • the sensing initiator sends a DMG sensing reporting polling frame to site B, triggering site B to report sensing measurement results;
  • site B After the SIFS time, site B sends a DMG sensing measurement report frame to the sensing initiator to report the sensing measurement results;
  • the sensing initiator replies with an ACK frame to site B.
  • the format of the millimeter wave DMG perception measurement setting frame is improved so that the sent frame carries the first field.
  • the sensing initiator sends the fourth frame carrying the maximum duration field of the single-base PPDU; the sensing responder sends the fourth frame carrying the maximum duration field of the single-base PPDU.
  • the maximum duration field of a single-base PPDU is used to indicate the maximum duration of a single-base PPDU used by the sensing responder, and the maximum duration field of a single-base PPDU is used as a representation of the first field.
  • the fourth frame carries the maximum duration field of a single-base PPDU. Therefore, by reading the fourth frame, the maximum duration field of a single-base PPDU in the fourth frame can be determined.
  • the fourth frame is implemented as a DMG perception measurement setting frame.
  • the maximum duration field of a single-base PPDU is carried in the optional sub-element field of the DMG sensing measurement setting frame. According to the differences in the selected optional sub-element fields, the setting of the maximum duration field of a single base PPDU carried in the optional sub-element field of the DMG perception measurement setting frame is explained.
  • the DMG perception measurement setting frame indicates the frame in the perception measurement setting phase, which includes perception measurement settings.
  • the DMG perception measurement setting request frame and the DMG perception measurement setting response frame in the phase are used to perform the following description process of character adjustment in the perception measurement setting phase.
  • the optional sub-element field is a second collaborative unit-specific configuration sub-element.
  • FIG. 6 it is a schematic diagram of the format of a DMG sensing measurement setting frame (DMG sensing measurement setting request frame, or DMG sensing measurement setting response frame). It includes element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer location field, and optional sub-element field. As shown in Table 3 above, the optional sub-element field includes zero or more sub-elements, and all sub-elements include TX Beam List, RX Beam List and DMG Sensing Scheduling.
  • the optional sub-elements under the optional sub-element field in the DMG perception measurement setting frame shown in Figure 6 are adjusted, where the optional sub-elements in the DMG perception measurement setting frame are
  • the element fields are shown in bold; as shown in Table 10 below, a new coordinated monostatic specific configuration optional sub-element field (Coordinated Monostatic Specific Configuration) is added to the optional sub-element field, where the coordinated monostatic specific configuration sub-element field
  • the bold status is used to indicate that the cooperative single-base specific configuration optional sub-element field is used to carry extended configuration information.
  • the cooperative single-base specific configuration optional sub-element field includes the sub-element ID, length and the maximum duration field of the single-base PPDU.
  • the value range of the sub-element ID is any integer between 4 and 255.
  • the value of the above-mentioned sub-element ID of 4 is only a schematic example; the length indicates the specific configuration of the cooperative unit in the optional sub-element field.
  • the number of bytes except the sub-element ID and length fields; the maximum duration of a single-base PPDU field indicates the maximum duration of a single-base PPDU used by the sensing responder STA in a DMG sensing measurement setting.
  • the maximum duration of a single-base PPDU field is The unit is the unit of time used by the Timing Synchronization Function (TSF), that is: microseconds (us).
  • TSF Timing Synchronization Function
  • each STA in the same DMG sensing measurement setting frame should be configured with the same maximum duration field of a single base PPDU.
  • the above process of configuring the maximum duration field of a single base PPDU is applicable to the sensing measurement instance process occurring during the service period (Serviceperiod, SP).
  • the format of the DMG perception measurement setting frame is adjusted, the optional sub-elements under the optional sub-element field are adjusted, and a new sub-element field is added to the optional sub-element field, and the sub-element field is added to the optional sub-element field.
  • the element field includes the maximum duration field of a single-base PPDU, so that the maximum duration of a single-base PPDU can be determined more directly based on the value of the maximum duration field of a single-base PPDU.
  • the optional sub-element field is a sensing measurement scheduling sub-element.
  • FIG. 6 it is a schematic diagram of the format of a DMG sensing measurement setting frame (DMG sensing measurement setting request frame, or DMG sensing measurement setting response frame). It includes element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer location field, and optional sub-element field. As shown in Table 3 above, the optional sub-element field includes zero or more sub-elements, and all sub-elements include TX Beam List, RX Beam List and DMG Sensing Scheduling.
  • the perceptual measurement method provided by the embodiment of the present application is used to adjust the optional sub-elements under the optional sub-element field in the DMG perceptual measurement setting frame.
  • the sensing measurement scheduling sub-element DMG Sensing Scheduling
  • the sensing measurement scheduling sub-element is used for the related configuration information of sensing measurement instances and sensing measurement bursts.
  • the optional sub-elements under the optional sub-element field in the DMG perception measurement setting frame shown in Figure 6 are adjusted, where the optional sub-elements in the DMG perception measurement setting frame are The element fields are expressed in bold state; as shown in Table 11 below, in the optional sub-element field, the sensing measurement scheduling sub-element is adjusted, and a new field is added to the sensing measurement scheduling sub-element, in which, for the sensing measurement scheduling sub-element, Elements are shown in bold.
  • the perceptual measurement scheduling sub-element also carries at least one of the following fields: the start time of the perceptual measurement burst; the time interval between adjacent perceptual measurement bursts; the time interval between adjacent perceptual measurement instances in a perceptual measurement burst ;The number of receiving beams used in one sensing measurement instance; the number of repeated transmissions required in one sensing measurement instance; the number of repetitions of sensing measurement bursts.
  • the perceptual measurement scheduling sub-element includes the sub-element ID field, the length field, the start time field of the perceptual measurement burst (Startof Burst), the time interval field of adjacent perceptual measurement bursts (Inter-burst interval), and a perceptual measurement
  • the time interval field between adjacent sensing measurement instances in the burst (Intra-burst interval), the number of receiving beams used in a sensing measurement instance (Number TXBeams Per Instance) field; the number of repeated transmissions required in a sensing measurement instance field (Repeat Per Instance), the number of repetitions field of sensing measurement bursts (Number Bursts), and the maximum duration field of a single base PPDU.
  • the value of the sub-element ID field is any integer between 4 and 255.
  • the above value of 4 is only a schematic example
  • the length field indicates the number of bytes in the sensing measurement scheduling sub-element except the sub-element ID field and the length field;
  • the start time field of the sensing measurement burst is used to indicate the time when a burst starts, and the time is the unit of TSF time - us;
  • the time interval field of adjacent sensing measurement bursts is used to indicate the time interval between adjacent bursts, and the unit is the unit of TSF time - us;
  • the time interval between adjacent sensing measurement instances in a sensing measurement burst field is used to indicate the time interval between adjacent instances in a burst, and the unit is the unit of TSF time - us;
  • the number of receiving beams used in a sensing measurement instance field is used to indicate the number of TX beams to be used in an instance
  • the number of times of repeated transmission required in a sensing measurement instance field is used to indicate the number of times of repeated transmission required in an instance
  • the number of repetitions field of the sensing measurement burst is used to indicate the number of times the Burst is repeated, and a value of 0 indicates that the Burst is repeated until the sensing measurement setting is terminated;
  • the maximum duration field of a single-base PPDU is used to indicate the maximum duration of a single-base PPDU used by the sensing responder STA in a DMG sensing measurement setting.
  • the unit of the maximum duration field of a single-base PPDU is the unit of TSF time.
  • Each STA in the same DMG sensing measurement setting should be configured with the same maximum duration of Monostatic PPDU (Maximum Duration of Monostatic PPDU).
  • the above process of configuring the maximum duration field of a single base PPDU is applicable to the sensing measurement instance process occurring during the service period (Serviceperiod, SP).
  • the existing perception measurement scheduling sub-element is adjusted, and a maximum duration field of a single base PPDU is added to the perception measurement scheduling sub-element, so that The maximum duration of a single-base PPDU is determined more directly based on the value of the maximum duration field of a single-base PPDU.
  • the sensing initiator when it sends a frame carrying the first field to the sensing responder, it can convey different information contents to the sensing responder.
  • Different types of first fields can It can achieve the purpose of conveying different information to the perception responders more quickly and directly.
  • the above-mentioned sensing type field, site identification field, reporting polling field, maximum duration field of a single base PPDU and other proprietary fields can all be implemented as a first field.
  • the frame sent by the sensing initiator to the sensing responder includes at least one first field among the above-mentioned plurality of first fields. According to different first fields, the sensing initiator can convey at least one kind of information content to the sensing responder.
  • the positions of proprietary fields such as the measurement type field, site identification field, reporting polling field, and maximum duration field of a single base PPDU can also be combined in any way.
  • first frame, second frame, third frame and fourth frame mentioned above do not represent the order of frames.
  • first frame, second frame and third frame And any two frames or at least two frames in the fourth frame can be implemented as the same frame.
  • the frame belongs to the first frame and the second frame, that is, the first frame and the second frame belong to the same frame; or, when a frame contains the sensing type field and the maximum duration field of a single base PPDU, then the frame belongs to the first frame and the third frame, that is, the first frame and the third frame belong to the same frame.
  • the above is only an illustrative example. , the embodiment of the present application does not limit this.
  • Figure 26 is a block diagram of a perceptual measurement device 2600 provided by an exemplary embodiment of the present application. As shown in Figure 26, the device is located in the perception measurement equipment, and the device includes:
  • the sending module 2601 is used to send the frame carrying the first field
  • the first field is an exclusive field of the sequential cooperation single base or the parallel cooperation single base, and/or the first field has exclusive meaning in the sequential cooperation single base or the parallel cooperation single base.
  • the sending module 2601 is also configured to send the first frame carrying a sensing type field, where the sensing type field is used to indicate that the sensing type is the sequential collaborative single base or the parallel collaboration. Single base.
  • the first frame is at least one of the following frames:
  • the sending module 2601 is also configured to send a second frame carrying a site identification field, where the site identification field is used to indicate the order in which sites participate in the sequential cooperative unit.
  • the second frame is a DMG sensing request frame
  • the site identification field is used to indicate the order in which the site participates in the sequential coordination unit.
  • the value of the site identification field belongs to the first range for indicating the sequential coordinated single base, and the value of the site identification field The value is also used to indicate the order in which the site participates in the sequential cooperating unit.
  • the sensing type field in the DMG sensing request frame indicates the collaborative single base
  • the value of the site identification field belongs to the second range and is used to indicate the parallel collaboration. Single base.
  • the sending module 2601 is also configured to send a third frame carrying a reporting polling field, where the reporting polling field is used to indicate whether polling is required for reporting of sensing measurement results.
  • the third frame is at least one of the following frames:
  • the reporting polling field is carried in the sensing measurement setting element of the DMG sensing measurement setting request frame; or,
  • the reporting polling field is carried in the perception measurement setting element of the DMG perception measurement setting response frame; or,
  • the reporting polling field is carried in the optional sub-element field of the DMG sensing measurement setting request frame; or,
  • the reporting polling field is carried in the optional sub-element field of the DMG sensing measurement setting response frame; or,
  • the reporting polling field is carried in the TDD beam information field of the DMG sensing request frame.
  • the optional sub-element field is a first collaborative unit-specific configuration sub-element.
  • the sending module 2601 is also configured to send the fourth frame carrying the maximum duration field of a single-base PPDU, where the maximum duration field of a single-base PPDU is used to indicate the response rate used by the sensing responder.
  • the maximum duration of a single base PPDU is also configured to send the fourth frame carrying the maximum duration field of a single-base PPDU, where the maximum duration field of a single-base PPDU is used to indicate the response rate used by the sensing responder. The maximum duration of a single base PPDU.
  • the fourth frame is at least one of the following frames:
  • the maximum duration field of a single base PPDU is carried in an optional sub-element field of the DMG sensing measurement setting frame.
  • the optional sub-element field is a second collaborative single-base dedicated configuration sub-element
  • the optional sub-element field is the sensing measurement scheduling sub-element.
  • the sensing measurement scheduling sub-element also carries at least one of the following fields:
  • the number of receive beams used in one sensing measurement instance is the number of receive beams used in one sensing measurement instance
  • Perception measures the number of repetitions of a burst.
  • Figure 27 is a block diagram of a perceptual measurement device 2700 provided by an exemplary embodiment of the present application. As shown in Figure 27, the device is located in the perception measurement equipment, and the device includes:
  • the receiving module 2701 is configured to receive a frame carrying a first field; wherein the first field is a dedicated field of a sequential coordinated single base or a parallel coordinated single base, and/or the first field is in the sequential Cooperative single base or said parallel cooperative single base has exclusive meaning.
  • the receiving module 2701 is configured to receive the first frame carrying a sensing type field, where the sensing type field is used to indicate that the sensing type is the sequential cooperative unit or the parallel cooperative unit. base.
  • the first frame is at least one of the following frames:
  • the receiving module 2701 is further configured to receive a second frame carrying a site identification field, where the site identification field is used to indicate the order in which sites participate in the sequential cooperative unit.
  • the second frame is a DMG sensing request frame
  • the site identification field is used to indicate the order in which the site participates in the sequential coordination unit.
  • the sensing type field in the DMG sensing request frame indicates a coordinated single base and the current sensing measurement is the sequential coordinated single base
  • the value of the station identification field belongs to the first range and is used to indicate the sequential collaboration.
  • Single base, and the value of the site identification field is also used to indicate the order in which the site participates in the sequential cooperative single base.
  • the receiving module 2701 is also configured to: when the sensing type field in the DMG sensing request frame indicates the cooperative single base, the value of the site identification field belongs to the second The scope is used to indicate the parallel cooperative single base.
  • the receiving module 2701 is further configured to receive a third frame carrying a reporting polling field, where the reporting polling field is used to indicate whether polling is required for reporting of sensing measurement results.
  • the third frame is at least one of the following frames:
  • Millimeter wave DMG sensing measurement request response frame
  • the reporting polling field is carried in the sensing measurement setting element of the DMG sensing measurement setting request frame; or, the reporting polling field is carried in the DMG sensing measurement setting response frame. in the sensing measurement setting element; or, the reporting polling field is carried in the optional sub-element field of the DMG sensing measurement setting frame; or, the reporting polling field is carried in the DMG sensing measurement setting response frame in the optional sub-element field; or, the reporting polling field is carried in the TDD beam information field of the DMG sensing request frame.
  • the optional sub-element field is a first collaborative single-base specific configuration sub-element.
  • the receiving module 2701 is also configured to receive the fourth frame carrying the maximum duration field of a single-base PPDU.
  • the maximum duration field of a single-base PPDU is used to indicate the time used by the sensing responder.
  • the maximum duration of a single base PPDU is also configured to receive the fourth frame carrying the maximum duration field of a single-base PPDU.
  • the fourth frame is at least one of the following frames: a DMG sensing measurement setting request frame; a DMG sensing measurement setting response frame.
  • the maximum duration field of a single base PPDU is carried in an optional sub-element field of the DMG sensing measurement setting frame.
  • the optional sub-element field is a second collaborative single-base dedicated configuration sub-element
  • the optional sub-element field is the sensing measurement scheduling sub-element.
  • the sensing measurement scheduling sub-element also carries at least one of the following fields:
  • the number of receive beams used in one sensing measurement instance is the number of receive beams used in one sensing measurement instance
  • the perception measures the number of times a burst is repeated.
  • the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG 28 is a schematic structural diagram of a perception measurement device (perception initiator and/or perception responder) provided by an exemplary embodiment of the present application.
  • the perception measurement device 2800 includes: a processor 2801, a receiver 2802, a transmitter 2803, and a memory. 2804 and bus 2805.
  • the processor 2801 includes one or more processing cores.
  • the processor 2801 executes various functional applications and information processing by running software programs and modules.
  • the receiver 2802 and the transmitter 2803 can be implemented as a communication component, and the communication component can be a communication chip.
  • Memory 2804 is connected to processor 2801 through bus 2805.
  • the memory 2804 can be used to store at least one instruction, and the processor 2801 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 2804 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • PROM Programmable Read-Only Memory
  • Embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored, and the computer program is used to be executed by a perceptual measurement device to implement the above-mentioned perceptual measurement device (perception initiator). and/or perceived responders) collaborative perception measurement method.
  • a perceptual measurement device to implement the above-mentioned perceptual measurement device (perception initiator). and/or perceived responders) collaborative perception measurement method.
  • the computer-readable storage medium may include: read-only memory (Read-Only Memory, ROM), random access memory (Random-Access Memory, RAM), solid state drive (Solid State Drives, SSD) or optical disk, etc.
  • random access memory can include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • Embodiments of the present application also provide a chip, which includes a programmable logic circuit and/or program instructions, and is used to implement the perceptual measurement method of the perceptual measurement device when the perceptual measurement device installed with the chip is running.
  • Embodiments of the present application also provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the perceptual measurement device is readable from the computer.
  • the storage medium reads and executes the computer instructions to implement the perceptual measurement method of the perceptual measurement device.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知测量方法、装置、设备及存储介质,属于感知测量领域。所述方法包括:在感知测量的过程中,感知发起者向感知响应者发送携带有第一字段的帧,由于第一字段是顺序协作单基或并行协作单基的专有字段,和/或在顺序协作单基或并行协作单基中具有专有含义,因此根据第一字段的种类差异,能够解决与第一字段所携带信息内容对应的三种特定问题中的至少一种,如:能够区别协作单基感知的感知类型,和/或,能够区别协作单基感知测量上报的轮询情况,和/或,能够限制单基PPDU的最大长度。从而方便感知响应者对协作单基感知测量过程进行更全面地了解和分析。

Description

感知测量方法、装置、设备及存储介质 技术领域
本申请涉及感知测量领域,特别涉及一种感知测量方法、装置、设备及存储介质。
背景技术
无线局域网(Wireless Local Area Networks,WLAN)感知是指通过测量WLAN信号经过人或物的散射和/或反射的变化来感知环境中的人或物的技术。
感知类型分为多种。一种感知类型为协作单基感知。在协作单基感知中,参与感知的感知测量设备数量大于一个,每个感知响应设备通过自发感知物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)和自收回响(Echo)信号来感知环境,存在一个感知发起设备(Initiator)控制所有其他感知响应设备以实现协作。
发明内容
本申请提供了一种感知测量方法、装置、设备及存储介质。所述技术方案如下:
根据本申请的一方面,提供了一种感知测量方法,应用于感知测量设备,所述方法包括:
发送携带有第一字段的帧;
其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
根据本申请的一方面,提供了一种感知测量方法,应用于感知测量设备,所述方法包括:
接收携带有第一字段的帧;
其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
根据本申请的另一方面,提供了一种感知测量装置,应用于感知测量设备,所述装置包括:
发送模块,用于发送携带有第一字段的帧;
其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
根据本申请的另一方面,提供了一种感知测量装置,应用于感知测量设备,所述装置包括:
接收模块,用于接收携带有第一字段的帧;
其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
根据本申请的另一方面,提供了一种感知发起设备,所述设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如上述方面所述的感知测量方法。
根据本申请的另一方面,提供了一种感知响应设备,所述设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如上述方面所述的感知测量方法。
根据本申请实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现上述方面所述的感知测量方法。
根据本申请实施例的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现上述方面所述的感知测量方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述方面所述的感知测量方法。
本申请实施例提供的技术方案至少包括如下有益效果:
感知发起者向感知响应者发送携带有第一字段的帧,由于第一字段是顺序协作单基或并行协作单基的 专有字段,和/或在顺序协作单基或并行协作单基中具有专有含义,因此根据第一字段的种类差异,能够解决与第一字段所携带信息内容对应的特定问题,如:能够区别协作单基的感知类型,和/或,能够区别协作单基感知测量上报的轮询情况,和/或,能够限制单基PPDU的最大长度。当感知响应者接收到感知发起者发送的帧后,通过对帧中的字段进行读取,不仅提高了感知响应者的感知准确率,还便于感知响应者对协作单基感知测量过程进行更全面地了解和分析。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的感知测量***的框图;
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图;
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图;
图4是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图;
图5是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图;
图6是本申请一个示例性实施例提供的DMG感知测量设置元素的帧格式的示意图;
图7是本申请一个示例性实施例提供的波束赋形帧的格式的示意图;
图8是本申请一个示例性实施例提供的感知请求帧的格式的示意图;
图9是本申请一个示例性实施例提供的感知响应帧的格式的示意图;
图10是本申请一个示例性实施例提供的感知轮询帧的格式的示意图;
图11是本申请一个示例性实施例提供的感知测量方法的流程图;
图12是本申请一个示例性实施例提供的感知测量方法的流程图;
图13是本申请一个示例性实施例提供的DMG感知测量设置帧的格式的示意图;
图14是本申请一个示例性实施例提供的DMG感知请求帧的格式的示意图;
图15是本申请一个示例性实施例提供的DMG感知请求帧的格式的示意图;
图16是本申请一个示例性实施例提供的DMG感知请求帧的格式的示意图;
图17是本申请一个示例性实施例提供的DMG感知测量设置帧的格式的示意图;
图18是本申请一个示例性实施例提供的DMG感知测量设置帧的格式的示意图;
图19是本申请一个示例性实施例提供的DMG感知测量设置帧中可选子元素的帧的格式示意图;
图20是本申请一个示例性实施例提供的DMG感知请求帧的格式的示意图;
图21是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图;
图22是本申请一个示例性实施例提供的DMG感知测量设置帧中可选子元素的帧的格式示意图;
图23是本申请一个示例性实施例提供的DMG感知测量设置帧中可选子元素的帧的格式示意图;
图24是本申请一个示例性实施例提供的DMG感知测量设置帧中可选子元素的帧的格式示意图;
图25是本申请一个示例性实施例提供的DMG感知测量设置帧中感知测量调度子元素的帧的格式示意图;
图26是本申请一个示例性实施例提供的感知测量装置的框图;
图27是本申请一个示例性实施例提供的感知测量装置的框图;
图28是本申请一个示例性实施例提供的感知测量设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
首先,对本申请实施例涉及的一些名词作如下介绍:
WLAN感知(WLAN Sensing):通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN感知通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵/移动/跌倒等的检测、姿势识别以及空间三维图像建立等诸多功能。
关联标识符(Association Identifier,AID):用于标识跟接入点建立关联后的终端。
参与WLAN感知的WLAN设备可能包括如下角色(Role):
感知发起者(Sensing Initiator):也可称为感知会话发起者、感知发起设备、Initiator。感知发起者是发起感知测量(Sensing Measurement)并想要获知感知结果的设备;
感知响应者(Sensing Responder):也可称为感知会话响应者、感知响应设备、Responder。感知响应者是参与感知测量的非感知发起设备的设备;
感知信号发送者(Sensing Transmitter):也可称为感知信号发送设备、感知发送者、感知发送设备、Transmitter。感知信号发送者是发送感知(Sensing)PPDU的设备;
感知信号接收者(Sensing Receiver):也可称为感知信号接收设备、感知接收者、感知接收设备、Receiver。感知信号接收者是接收回响(Echo)信号的设备。回响信号是感知信号发送者发送的感知物理层协议数据单元经过人或物散射和/或反射得到的。
WLAN终端在一个感知测量中可能有一个或多个角色,例如感知发起者可以仅仅是感知发起者,也可以成为感知信号发送者,也可以成为感知信号接收者,还可以同时是感知信号发送者和感知信号接收者。上述设备可统称为感知测量设备。
接着,对本申请实施例涉及的相关技术背景进行介绍:
图1是本申请一个示例性实施例提供的感知测量***的框图。该感知测量***中包括终端与终端,或终端与网络设备,或接入点(Access Point,AP)与站点(Station,STA),本申请对此不作限定。本申请中以感知测量***中包括:AP和STA为例进行说明。
在一些场景中,AP可以或称AP STA,即在某种意义上来说,AP也是一种STA。在一些场景中,STA或称非AP STA(non-AP STA)。
在一些实施例中,STA可以包括AP STA和non-AP STA。
通信***中的通信可以是AP与non-AP STA之间通信,也可以是non-AP STA与non-AP STA之前通信,或者STA和peer STA之间通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有无线保真(Wireless-Fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信***中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet ofThings,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持但不限于802.11bf制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式。
在一些实施例中,AP可以为支持802.11bf制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/Wi-Fi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(Industrial Control)中的无线设备、机顶盒、无人驾驶(Self Driving)中的无线设备、车载通信设备、远程医疗(Remote Medical)中的无线设备、智能电网(Smart Grid)中的无线设备、运输安全(Transportation Safety)中的无线设备、智慧城市(Smart City)中的无线设备或智慧家庭(Smart Home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(60GHz)。
站点和接入点之间存在一个或多个链路。
在一些实施例中,站点和接入点支持多频段通信,例如,同时在2.4GHz,5GHz,6GHz以及60GHz频段上进行通信,或者同时在同一频段(或不同频段)的不同信道上通信,提高设备之间的通信吞吐量和/或可靠性。这种设备通常称为多频段设备,或称为多链路设备(Multi-Link Device,MLD),有时也称为多链路实体或多频段实体。多链路设备可以是接入点设备,也可以是站点设备。如果多链路设备是接入点 设备,则多链路设备中包含一个或多个AP;如果多链路设备是站点设备,则多链路设备中包含一个或多个non-AP STA。
包括一个或多个AP的多链路设备或称AP,包括一个或多个non-AP STA的多链路设备或称Non-AP,在申请实施例中,Non-AP可以称为STA。
在本申请实施例中,AP可以包括多个AP,Non-AP包括多个STA,AP中的AP和Non-AP中的STA之间可以形成多条链路,AP中的AP和Non-AP中的对应STA之间可以通过对应的链路进行数据通信。
AP是一种部署在无线局域网中用以为STA提供无线通信功能的设备。站点可以包括:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,站点还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,本申请实施例对此并不限定。
在本申请实施例中,站点和接入点均支持IEEE 802.11标准,但不限于IEEE 802.11标准,也可以是其它与感知测量有关的标准,例如为IEEE 802.11bf D0.1标准。
在WLAN感知场景下,参与感知的WLAN终端包括:感知发起者和感知响应者。进一步的,感知响应者可分为感知发送者和感知接收者。
感知测量可应用于蜂窝网络通信***、无线局域网(Wireless Local Area Networks,WLAN)***或无线保真网络(Wi-Fi)***中,本申请对此不做限定。本申请中以感知测量应用于WLAN或Wi-Fi***中为例进行示意性说明。
可选地,本申请实施例中的感知测量是基于毫米波实现的。对毫米波感知类型进行介绍:
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图。如图2所示,图2的(a)为单基感知,参与感知的设备仅有一个,该设备通过自发(自行发送)感知PPDU和自收(自行接收)回响信号来感知环境,与传统的雷达工作方式相似。其中,自发自收指设备在发送感知PPDU时,会将该感知PPDU的发送方地址以及接收方地址均设置为该设备自身的地址。设备发送的感知PPDU经过环境的散射和/或反射,会形成回响信号,之后该设备可通过自身的地址接收到该回响信号,通过分析该回响信号能够实现对环境的感知。图2的(b)为双基感知,参与感知的设备有两个,其中一个设备发送感知PPDU,另一个设备接收回响信号来感知环境。图2的(c)为协作单基感知,参与感知的设备数量大于一个,每个设备通过自发感知PPDU和自收回响信号来感知环境,存在一个感知发起者控制所有其他设备以实现协作。图2的(d)为协作双基感知,参与感知的设备多于两个,即存在至少两对双基感知设备,每个发送设备(感知发送者)分别发送感知PPDU且由与其同组的接收设备(感知接收者)接收相应的回响信号,从而实现协作感知。图2的(e)为多基感知,参与感知的设备大于两个,一个发送设备发送感知PPDU,多个接收设备同时接收回响信号并同时完成环境感知。
对毫米波感知的流程进行介绍:
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图。如图3所示,该流程为毫米波感知的一般流程,从左向右依次为会话建立(session setup)阶段、毫米波感知测量设置(方向性多吉比特(Directional Multi-Gigabit,DMG)Measurement setup)阶段和感知测量阶段。其中,感知测量阶段由多个感知测量猝发(Burst)组成,每个猝发又由多个感知测量实例(DMG Sensing Instance)组成。猝发与猝发之间的时间间隔为猝发间间隔(Inter-burst interval),一个猝发中相邻的感知测量实例之间的时间间隔为猝发内间隔(Intra-burst interval)。图3中的MACADDR是指媒体接入控制(Medium Access Control,MAC)地址(address),AID是指关联标识符,DMG测量设置ID(DMG Measurement setup ID)是指毫米波感知测量设置标识,MS ID是指测量设置(Measurement Setup,MS)标识,猝发ID(Burst ID)是指猝发标识,实例(Instance)序列号(Sequential Number,SN)是指感知测量实例的标识,也可称为感知实例SN(SensingInstanceSN)。上述描述中的“猝发”也可称为“突发”。
对毫米波协作单基感知测量实例进行介绍:
毫米波协作单基感知测量实例存在两种模式,一种为顺序模式,另一种为并行模式。示例地,图4是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图,图5是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图。
如图4和图5所示,顺序模式与并行模式的相同点在于:感知发起者(Initiator)在感知测量实例的初始阶段需要分别发送毫米波感知请求(DMG Sensing Request)帧至每个感知响应者(Responder),而且每个感知响应者需要在短帧间隔(Short Interframe Space,SIFS)时间内回复一个毫米波感知响应(DMG Sensing Response)帧至感知发起者。DMG感知请求也可称为RQ,DMG感知响应也可称为RSP。
如图4和图5所示,顺序模式与并行模式的不同点在于:顺序模式中,每个感知响应者依次自行发送 且接收单基感知测量帧(Monostatic PPDU)来感知环境,并在SIFS时间内发送感知测量报告帧(DMG Sensing Measurement Report)至感知发起者。并行模式中,每个感知响应者同时发送且接收单基感知测量帧来感知环境,随后依次发送DMG感知测量报告帧(感知测量报告帧)至感知发起者。
需要说明的是,图4和图5中,在感知发起者或感知响应者对应的横线上方的格子,表示设备发送的帧,横线下方的格子(空白格)表示设备接收的帧,并且发送的帧和接收的帧之间是对应的。对于正中压在感知响应者对应的横线上的格子,表示感知响应者自发自收的帧,例如感知响应者自发自收的单基感知测量帧。例如,图4中感知发起者向感知响应者站点A发送了RQ(由感知发起者对应的横线上方的格子表示),相应的,感知响应者站点A会接收到该RQ(由感知响应者站点A对应的横线下方的空白格子表示)。本申请的其它附图中的空白格的含义可参照上述说明,对此不再赘述。
对DMG感知测量设置元素的帧格式进行介绍:
图6为本申请一个示例性实施例提供的DMG感知测量设置元素的帧格式的示意图。如图6所示,DMG感知测量设置元素携带用于设置一个DMG感知测量的信息,DMG感知测量设置元素位于DMG感知测量设置请求帧(Sensing Measurement Setup Request)和DMG感知测量设置响应帧(Sensing Measurement Setup Response)之中。其中包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型(Report Type)字段、LCI字段、对端位置(Peer Orientation)字段、可选子元素字段。测量设置控制字段中包括以下几个字段:
感知类型(Sensing Type):指示DMG感知测量的类型,具体取值及其含义可见表1。
表1
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 双基(Bistatic)
3 多基(Multistatic)
4 保留(Reserved)
Rx发起者:(RXInitiator):指示在双击感知类型中感知发起者是感知接收者或感知发送者。取值为1指示感知发起者是感知接收者;取值为0指示感知发起者是感知发送者。
LCI存在(LCI Present):指示LCI字段是否存在于DMG感知测量设置元素中。取值为1指示LCI字段存在于DMG感知测量设置元素;取值为0指示LCI字段不存在于DMG感知测量设置元素中。
位置存在(Orientation Present):指示对端位置(Peer Orientation)字段是否存在于DMG感知测量设置元素中。取值为1指示对端位置字段存在于DMG感知测量设置元素中;取值为0指示对端位置字段不存在于DMG感知测量设置元素中。
此外,DMG感知测量设置元素中的上报类型字段,用于指示感知发起者期望感知响应者上报的类型,取值及其含义见表2。
表2
Figure PCTCN2022118271-appb-000001
此外,LCI字段携带位置配置信息报告(Location configuration information report)中的LCI字段。
对端位置字段用于指示对端设备的方向和距离,包含方向角(Azimuth)、俯仰角(Elevation)和距离 (Range)三个子字段。
可选子元素字段中包括零个或多个子元素,全部的子元素以及子元素的顺序如下表3所示。
表3
Figure PCTCN2022118271-appb-000002
对时分双工(Time Division Duplexing,TDD)波束赋形帧进行介绍:
图7是本申请一个示例性实施例提供的波束赋形帧的格式的示意图。如图7所示,TDD波束赋形帧(TDD Beamforming frame)为控制帧的一种。其MAC帧体由两部分组成:TDD波束赋形控制(TDD Beamforming Control)字段和TDD波束赋形信息(TDD Beamforming Information)字段。TDD波束赋形帧的MAC帧头中的字段的含义如下:
·帧控制(Frame Control):指示该MAC帧的类型等信息,其中包括指示该帧为TDD波束赋形帧的信息。
·时长(Duration):指示该帧的发送时间长度。
·接收方地址(Receiver Address,RA):指示帧接收者的MAC地址。
·发送方地址(Transmitter Address,TA):指示帧发送者的MAC地址。
·TDD波束赋形帧类型(TDD Beamforming Frame Type):指示TDD波束赋形帧的类型,具体取值及其含义可参见表4。
表4
取值 含义
0 TDD扇区扫描(Sector Sweep,SSW)
1 TDD SSW反馈(Feedback)
2 TDD SSW确认(Ack)
3 DMG感知
如表4所示,TDD波束赋形帧类型字段取值0、1、2均表示TDD波束赋形帧为波束训练相关的类型,该类型与本申请实施例提供的方法无关,取值3表示TDD波束赋形帧为DMG感知相关的类型。
当TDD波束赋形帧类型字段的取值为3时,TDD群组波束赋形(TDD Group Beamforming)字段和TDD波束测量(TDD Beam Measurement)字段共同指示一个TDD波束赋形帧在DMG感知中的用途,具体取值及其含义可参见表5。
表5
Figure PCTCN2022118271-appb-000003
如表5所示,在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知请求帧(感知请求帧);在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为1时,指示该TDD波束赋形帧为DMG感知响应帧(感知响应帧);在TDD群组波束赋形字段取值为1且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知轮询帧(感知轮询帧)。
对DMG感知请求帧进行介绍:
图8是本申请一个示例性实施例提供的感知请求帧的格式的示意图。如图8所示,DMG感知请求帧的TDD波束赋形信息字段中的字段的含义如下:
·测量设置ID(Measurement Setup ID):与该帧相关的感知测量设置的标识符。
·测量猝发ID(Measurement Burst ID):与该帧相关的感知测量猝发的标识符。
·感知实例(Sensing Instance)序列号(Sequential Number,SN):指示一个感知测量实例在一个测量猝发中的序号。
·感知类型(Sensing type):指示该帧所请求的感知类型,具体取值及含义可参见表6:
表6
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 多基(Multistatic)
3 保留(Reserved)
·STA ID:指示某个STA在一个感知测量实例中参与测量的顺序。
·第一波束索引(First Beam Index):指示在一个感知测量实例中第一个使用的发送波束的索引。
·实例中STA数量(Num of STAs in Instance):指示一个感知测量实例中参与测量的STA的个数。
·实例中PPDU数量(Num of PPDUs in Instance):指示一个感知测量实例中出现的PPDU的个数。
·增强型方向性多吉比特(Enhanced Directional Multi-Gigabit,EDMG)TRN长度(EDMG TRN Length):指示一个PPDU中包含的TRN-单元(Unit)的个数。
·每个发送(Transmit,TX)TRN-Unit的接收(Receive,RX)TRN-Unit的数量(RX TRN-Units per Each TX TRN-Unit):指示连续向相同方向发送的TRN-Unit的数量。
·EDMG TRN-Unit P:指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段(TRN subfield)的个数。
·EDMG TRN-Unit M:指示在一个TRN-Unit中波束方向可变的TRN子字段的个数。
·EDMG TRN-Unit N:指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数。
·TRN子字段序列长度(TRN Subfield Sequence Length):指示每个TRN子字段所使用的格雷序列的长度。
·带宽(Bandwidth):指示发送TRN字段所使用的带宽。
对DMG感知响应帧进行介绍:
图9是本申请一个示例性实施例提供的感知响应帧的格式的示意图。如图9所示,DMG感知响应帧的MAC帧体仅包含TDD波束赋形控制字段。
对DMG感知轮询帧进行介绍:
图10是本申请一个示例性实施例提供的感知轮询帧的格式的示意图。如图10所示,DMG感知轮询帧的TDD波束赋形信息字段中的字段的含义如下:
·测量设置ID(Measurement Setup ID):指示与该DMG感知轮询帧相关的感知测量设置的标识符。
·测量猝发ID(Measurement Burst ID):指示与该DMG感知轮询帧相关的感知测量猝发的标识符。
·感知实例SN(SensingInstanceSequential Number):指示与该DMG感知轮询帧相关的感知测量实例的标识符。
可选地,对协作单基感知过程中的具体信息实现为如下三种情况进行说明。
示意性的,协作单基感知的感知类型包括顺序协作单基和并行协作单基两种模式,虽然顺序协作单基和并行协作单基的相同点在于:感知发起者在感知测量实例的初始阶段需要分别发送DMG感知请求帧至每个感知响应者,而且每个感知响应者需要在SIFS时间内回复一个DMG Sensing Response帧至感知发起者;然而,在顺序协作单基的模式中,多个感知响应者会先后依次发送且接收单基感知测量帧(Monostatic PPDU)来感知环境,并在SIFS时间内分别发送感知测量报告帧(DMG Sensing Measurement Report)至感知发起者;在并行协作单基的模式中,多个感知响应者同时发送且接收Monostatic PPDU感知环境,随后依次发送感知测量报告帧至感知发起者。也即:协作单基感知的感知类型实现为不同的模式,会导致感知响应者发送且接收单基感知测量帧的情况差异。但是,在相关技术中,无论是在感知测量设置阶段,还是在感知测量实例阶段,都没有一个字段可以更直接、更明确地指示协作单基感知的感知类型。
示意性的,在协作单基感知的测量过程中,协作单基感知测量上报存在两种方式:无轮询和有轮询。但是相关技术中,无论是在感知测量设置阶段,还是在感知测量实例阶段中,都没有一个字段可以更直接、更明确地区分这两种方式,从而导致指示不清的问题。
示意性的,相关技术中未对单基PPDU的格式和长度做明确的决定,仅仅要求单基PPDU所承载的物理层服务数据单元(Physical layer Service Data Unit,PSDU)中的接收地址(RA)等于发送地址(TA)即可。因此,在协作单基感知类型的并行模式下会出现干扰问题。即:由于站点B的单基PPDU的长度大于站点A的单基PPDU的长度,所以站点B的单基PPDU与站点A的Report帧存在重叠,从而导致站点A 和站点B之间产生干扰。
因此,在上述单基感知测量的方法流程中,感知发起者在向感知响应者发送帧后,不仅无法使得感知响应者通过字段读取方式,直接读取到协作单基感知过程中的具体信息,也容易因为传输过程中的失真原因,使得感知响应者获取到错误的具体信息,从而导致指示不清的问题。
本申请实施例提供的方法感知发起者向感知响应者发送携带有第一字段的帧,由于第一字段是顺序协作单基或并行协作单基的专有字段,和/或在顺序协作单基或并行协作单基中具有专有含义,因此根据第一字段的种类差异,能够解决与第一字段所携带信息内容对应的特定问题,如:能够区别协作单基感知的感知类型,和/或,能够区别协作单基感知测量上报的轮询情况,和/或,能够限制单基PPDU的最大长度。当感知响应者接收到感知发起者发送的帧后,通过对帧中的字段进行读取,不仅提高了感知响应者的感知准确率,还便于感知响应者对协作单基感知测量过程进行更全面地了解和分析。
图11是本申请一个示例性实施例提供的感知测量方法的流程图,该方法应用于感知测量设备中。其中,感知测量设备包括感知发起设备(感知发起者)或感知响应设备(感知响应者)。以感知发起者进行该感知测量方法为例进行说明,该方法包括:
步骤1102:发送携带有第一字段的帧。
其中,第一字段是顺序协作单基或并行协作单基的专有字段,和/或,第一字段在顺序协作单基或并行协作单基中具有专有含义。
上述感知测量方法应用于协作单基感知测量中,在协作单基感知测量的流程中,感知发起者会触发每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
如图3所示,为本申请一个示例性实施例提供的毫米波感知的流程的示意图,其中包括会话建立阶段、毫米波感知测量设置阶段以及感知测量阶段。其中,感知测量阶段由多个感知测量猝发(Burst)组成,每个猝发又由多个感知测量实例(DMG Sensing Instance)组成。毫米波协作单基感知测量实例存在两种模式,一种为顺序协作单基(协作单基的顺序模式类型),另一种为并行协作单基(协作单基的并行模式类型)。
示意性的,第一字段实现为专有字段用于指示,该第一字段为帧中新增的字段,该字段用于携带专有的信息内容。例如:在感知测量设置帧中新增至少一个第一字段;或者,在感知请求帧中新增至少一个第一字段等。
示意性的,第一字段具有专有含义用于指示,该第一字段为帧中已有的字段,对已有字段的取值范围进行调整,通过设定的取值表示携带的专有信息内容;或者,对已有字段的含义进行多层定义,通过该字段能够获取到专有信息内容等。
可选地,发送携带有感知类型字段的第一帧,感知类型字段用于指示感知类型为顺序协作单基或并行协作单基。第一帧为如下帧中的至少一种:毫米波DMG感知测量设置请求帧;毫米波DMG感知测量设置响应帧;毫米波DMG感知请求帧。
可选地,发送携带有站点标识字段的第二帧,站点标识字段用于指示站点参与顺序协作单基的顺序。第二帧为DMG感知请求帧。
可选地,发送携带有上报轮询字段的第三帧,报告上报轮询字段用于指示感知测量结果的上报是否需要轮询。第三帧为如下帧中的至少一种:毫米波DMG感知测量设置请求帧;毫米波DMG感知测量设置响应帧;毫米波DMG感知请求帧。
可选地,发送携带有单基PPDU的最大时长字段的第四帧,单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。第四帧为如下帧中的至少一种:DMG感知测量设置请求帧;DMG感知测量设置响应帧。
示意性的,第一字段携带在上述第一帧、第二帧、第三帧以及第四帧中的至少一种帧中。
可选地,帧中携带有至少一种第一字段,不同种类的第一字段对应不同种类的信息内容,不同种类的信息内容能够解决不同的问题。
问题一:如何实现协作单基感知的感知类型的区分,即区别是顺序协作单基还是并行协作单基。
问题二:如何区别协作单基感知测量上报的轮询情况,即区别是无轮询还是有轮询。
问题三:如何限制单基PPDU长度情况,即单基PPDU的最大长度限制。
针对上述问题,感知发起者发送对应种类的第一字段以解决上述问题。
可选地,在实现协作单基感知类型的区分阶段时,感知发起者发送携带有感知类型字段的第一帧,和/或,发送携带有站点标识字段的第二帧,从而能够解决上述问题一。
可选地,在区别协作单基感知测量上报的轮询情况时,感知发起者发送携带有上报轮询字段的第三帧,从而能够解决上述问题二。
可选地,在限制单基PPDU长度情况时,感知发起者发送携带有单基PPDU的最大长度字段的第四帧,从而能够解决上述问题三。
综上所述,本实施例提供的方法,感知发起者向感知响应者发送携带有第一字段的帧,由于第一字段是顺序协作单基或并行协作单基的专有字段,和/或在顺序协作单基或并行协作单基中具有专有含义,因此根据第一字段的种类差异,能够解决与第一字段所携带信息内容对应的三种特定问题中的至少一种,如:能够区别协作单基感知的感知类型,和/或,能够区别协作单基感知测量上报的轮询情况,和/或,能够限制单基PPDU的最大长度。从而方便感知响应者对协作单基感知测量过程进行更全面地了解和分析。
示意性的,基于感知发起者向感知响应者发送携带有上述不同种类的第一字段的帧,感知发起者能够实现向感知响应者传达不同信息的目的。如图12所示,是本申请一个示例性实施例提供的感知测量方法的流程图。该方法应用于感知测量设备中。其中,感知测量设备包括感知发起设备(感知发起者)或感知响应设备(感知响应者)。示意性的,以该方法由感知响应者执行为例进行说明,该方法包括:
步骤1202:接收携带有第一字段的帧。
其中,第一字段是顺序协作单基或并行协作单基的专有字段,和/或,第一字段在顺序协作单基或并行协作单基中具有专有含义。
上述感知测量方法应用于协作单基感知测量中,在协作单基感知测量的流程中,感知发起者会触发每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。在协作单基感知测量的流程中,感知发起者会触发每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
示例地,在顺序协作单基中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤;在并行协作单基中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤。
可选地,接收携带有感知类型字段的第一帧,感知类型字段用于指示感知类型为顺序协作单基或并行协作单基。第一帧为如下帧中的至少一种:毫米波DMG感知测量设置请求帧;毫米波DMG感知测量设置响应帧;毫米波DMG感知请求帧。
可选地,接收携带有站点标识字段的第二帧,站点标识字段用于指示站点参与顺序协作单基的顺序。第二帧为DMG感知请求帧。
可选地,接收携带有上报轮询字段的第三帧,报告上报轮询字段用于指示感知测量结果的上报是否需要轮询。第三帧为如下帧中的至少一种:毫米波DMG感知测量设置请求帧;毫米波DMG感知测量设置响应帧;毫米波DMG感知请求帧。
可选地,接收携带有单基PPDU的最大时长字段的第四帧,单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。第四帧为如下帧中的至少一种:DMG感知测量设置请求帧;DMG感知测量设置响应帧。
示意性的,第一字段携带在上述第一帧、第二帧、第三帧以及第四帧中的至少一种帧中。
综上所述,本实施例提供的方法,由于感知发起者向感知响应者发送的帧是携带有第一字段的帧,第一字段是顺序协作单基或并行协作单基的专有字段,因此根据第一字段的种类差异,能够解决与第一字段所携带信息内容对应的三种特定问题中的至少一种。当感知响应者接收到感知发起者发送的帧后,能够区别协作单基感知的感知类型,和/或,能够区别协作单基感知测量上报的轮询情况,和/或,能够限制单基PPDU的最大长度。不仅提高了感知响应者的感知准确率,还可以使得感知响应者基于对第一字段的读取,对协作单基感知测量过程进行更全面地了解和分析。
针对上述问题一:
相关技术中,协作单基感知类型包括顺序协作单基和并行协作单基两种模式,但无论是在DMG感知测量设置元素中,还是在DMG感知请求帧中,都没有一个字段对协作单基感知中的顺序模式类型和并行模式类型进行准确区分,因此存在对顺序协作单基和并行协作单基指示不清的问题。
采用本申请实施例提供的感知测量方法,在区分协作单基感知的感知类型时,对毫米波DMG感知测量设置帧和/或毫米波DMG感知测量设置帧的格式进行改进,使得其携带有第一字段。
在一个可选的实施例中,感知发起者发送携带有感知类型字段的第一帧;感知响应者接收携带有感知类型字段的第一帧。
其中,感知类型字段用于指示感知类型为顺序协作单基或并行协作单基,将感知类型字段作为第一字段的一种表现形式。
示意性的,感知类型用于指示协作单基的模式类型,即:协作单基属于顺序协作单基或者并行协作单基。第一帧中携带有感知类型字段,因此通过读取第一帧,能够确定第一帧属于顺序协作单基;或者,确定第一帧属于并行协作单基。
在一个可选的实施例中,第一帧为如下帧中的至少一种:DMG感知测量设置请求帧;DMG感知测量 设置响应帧;DMG感知请求帧。
其中,DMG感知测量设置请求帧和感知测量设置响应帧是感知测量设置阶段中的帧的类型;DMG感知请求帧是感知测量实例阶段中的帧的类型。
示意性的,DMG感知测量设置请求帧用于指示在感知测量设置阶段中,感知测量设备A向感知测量设备B发送的帧;DMG感知测量设置响应帧用于指示在感知测量设置阶段中,感知测量设备B向感知测量设备A发送的帧。例如:以感知测量设备A实现为感知发起者,感知测量设备B实现为感知响应者为例进行说明。感知发起者向感知响应者发送DMG感知测量设置请求帧,感知响应者基于感知发起者发送的DMG感知测量设置请求帧,选择性地向感知发起者发送DMG感知测量设置响应帧。如:当感知发起者发送的DMG感知测量设置请求帧不符合感知响应者的接收要求,感知响应者向感知发起者发送DMG感知测量设置响应帧。
可选地,由于DMG感知测量设置请求帧与DMG感知测量设置响应帧均为感知测量设置阶段中的帧的类型,以DMG感知测量设置帧指示感知测量设置阶段中的帧,其中包括感知测量设置阶段中的DMG感知测量设置请求帧和DMG感知测量设置响应帧,从而进行下述在感知测量设置阶段中字符调整的说明过程。
示意性的,以第一帧实现为上述不同中类型的帧为例进行如下说明。
在一个可选的实施例中,第一帧实现为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)。
示意性的,如图6所示,为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)的格式的示意图。其中包括测量设置控制字段,在测量设置控制字段下包括感知类型子字段,感知类型子字段用于指示DMG感知测量的类型。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知测量设置帧中测量设置控制字段下的感知类型子字段进行修改。如图13所示,对图6所示的DMG感知测量设置帧中的测量设置控制字段下的感知类型子字段(加粗)进行修改,得到感知类型子字段,通过感知类型子字段的取值情况,能够确定协作单基下的感知类型。
示意性的,感知类型子字段的具体取值以及其含义见如下表7。
表7
取值 含义
0 顺序协作单基(Sequential Coordinated Monostatic)
1 并行协作单基(Parallel Coordinated Monostatic)
2 协作双基(Coordinated Bistatic)
3 双基(Bistatic)
4 多基(Multistatic)
5-7 保留(Reserved)
其中,当感知类型子字段的取值为0时,代表DMG感知测量的类型为顺序协作单基类型;当感知类型子字段的取值为1时,代表DMG感知类型为并行协作单基;当感知类型子字段的取值为2时,代表DMG感知类型为协作双基;当感知类型子字段的取值为3时,代表DMG感知类型为双基;当感知类型子字段的取值为4时,代表DMG感知类型为多基。
也即:当感知类型子字段的取值为0时,确定协作单基下DMG感知类型为顺序协作单基;当感知类型子字段的取值为1时,确定协作单基下DMG感知类型为并行协作单基。
值得注意的是,上述感知类型子字段的具体取值仅为示意性的举例,感知类型子字段的取值情况还可以采用其他设置方案,例如:设置取值为0表示顺序协作单基;取值为4表示并行协作单基;或者,设置取值为4表示顺序协作单基;取值为0表示并行协作单基等,本申请实施例对此不加以限定。
此外,上述顺序协作单基、并行协作单基的含义名称也仅为示意性的举例,如:顺序协作单基还可以称为协作单基的顺序模式;并行协作单基还可以称为协作单基的并行模式等,本申请实施例对此不加以限定。
可选地,将感知类型子字段作为第一字段,该第一字段中携带有感知类型字段;或者,将感知类型子字段所对应的测量设置控制字段作为第一字段,该第一字段中携带有感知类型字段。
在本申请实施例中,对感知测量设置帧中的测量设置控制字段下的感知类型子字段进行调整,通过感知类型子字段的取值情况,能够更准确地对协作单基的模式类型进行区别,即:能够更快速地确定属于顺序协作单基还是并行协作单基。
在一个可选的实施例中,第一帧实现为DMG感知请求帧。
示意性的,如图8所示,为DMG感知请求帧的格式的示意图。其中包括TDD波束赋形信息字段,在 TDD波束赋形信息字段中包括感知类型子字段,感知类型子字段用于指示DMG感知测量的类型。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知请求帧中TDD波束赋形信息字段下的感知类型子字段进行修改。如图14所示,对图8所示的DMG感知请求帧中的TDD波束赋形信息字段下的感知类型子字段(加粗)进行修改,得到感知类型子字段,通过感知类型子字段的取值情况,能够确定协作单基下的感知类型。
示意性的,感知类型子字段的具体取值以及其含义见如下表8。
表8
取值 含义
0 顺序协作单基(Sequential Coordinated Monostatic)
1 并行协作单基(Parallel Coordinated Monostatic)
2 协作双基(Coordinated Bistatic)
3 多基(Multistatic)
4-7 保留(Reserved)
其中,当感知类型子字段的取值为0时,代表DMG感知类型为顺序协作单基;当感知类型子字段的取值为1时,代表DMG感知类型为并行协作单基;当感知类型子字段的取值为2时,代表DMG感知类型为协作双基;当感知类型子字段的取值为3时,代表DMG感知类型为多基。
也即:当感知类型子字段的取值为0时,确定协作单基下DMG感知类型为顺序协作单基;当感知类型子字段的取值为1时,确定协作单基下DMG感知类型为并行协作单基。
示意性的,如上表7所示,在感知测量设置阶段(感知测量设置请求帧,或,感知测量设置响应帧)中,感知类型子字段取值为3用于指示感知类型为双基类型;在感知测量实例阶段(DMG感知请求帧)中,感知类型为双基类型的情况通过其它帧或其他字段予以指示,故上表8中不含双基类型,以上仅为示意性的举例,本申请实施例对此不加以限定。
可选地,将感知类型子字段作为第一字段,该第一字段中携带有感知类型字段;或者,将感知类型子字段所对应的TDD波束赋形信息字段作为第一字段,该第一字段中携带有感知类型字段。
值得注意的是,上述感知类型子字段的具体取值仅为示意性的举例,感知类型子字段的取值情况还可以采用其他设置方案,例如:设置取值为0表示顺序协作单基;取值为7表示并行协作单基;或者,设置取值为4表示顺序协作单基;取值为5表示并行协作单基等,本申请实施例对此不加以限定。
此外,上述顺序协作单基、并行协作单基的含义名称也仅为示意性的举例,如:顺序协作单基还可以称为协作单基的顺序模式;并行协作单基还可以称为协作单基的并行模式等,本申请实施例对此不加以限定。
在本申请实施例中,对感知测量设置帧中的测量设置控制字段下的感知类型子字段进行调整,通过感知类型子字段的取值情况,能够更准确地对协作单基的模式类型进行区别,即:能够更快速地确定属于顺序协作单基还是并行协作单基。
在一个可选的实施例中,发送携带有站点标识字段的第二帧。
其中,站点标识字段用于指示站点参与顺序协作单基的顺序。
示意性的,不同的STA(站点)分别有其对应的标识符,协作单基实现为顺序协作单基模式时,不同的STA对应有不同的发送顺序,不同的发送顺序通过站点标识字段进行表示。
也即:通过对多个站点标识字段进行读取,能够确定顺序协作单基模式下,不同STA的发送顺序情况。
在一个可选的实施例中,第一帧实现为DMG感知请求帧;第二帧实现为DMG感知请求帧。
其中,第一帧和第二帧实现为相同的帧。
示意性的,如图8所示,为DMG感知请求帧的格式的示意图。其中包括TDD波束赋形信息字段,在TDD波束赋形信息字段中包括感知类型子字段以及STA ID子字段,感知类型子字段用于指示DMG感知测量的类型;STA ID子字段用于指示SAT的标识符。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知请求帧中TDD波束赋形信息字段下的感知类型子字段和STA ID子字段进行修改。如图15所示,对图8所示的DMG感知请求帧中的TDD波束赋形信息字段下的感知类型子字段(加粗)以及STA ID子字段(加粗)进行修改,得到感知类型子字段以及STA ID子字段,通过感知类型子字段的取值情况,以及STA ID子字段的取值情况,能够确定协作单基下的感知类型。
示意性的,感知类型子字段的具体取值以及其含义见如上表8。也即:当感知类型子字段的取值为0时,确定协作单基下DMG感知类型为顺序协作单基;当感知类型子字段的取值为1时,确定协作单基下DMG感知类型为并行协作单基。
可选地,基于感知类型子字段,对STA ID子字段进行不同的处理。
示意性的,在DMG感知请求帧(第一帧)中的感知类型为顺序协作单基的情况下,站点标识字段用于指示站点参与顺序协作单基的顺序。其中,上述STA ID子字段即指示站点标识字符。
示意性的,当感知类型子字段的取值为3时,DMG感知测量的类型为多基(Multistatic),则表示STA接收EDMG Multistatic Sensing PPDU中同步子字段的索引;当感知类型子字段的取值为2时,DMG感知测量的类型为协作双基(Coordinated Bistatic),则该STA ID子字段表示该STA的标识符,也指示该STA参与感知测量的顺序;当感知类型子字段的取值为1时,DMG感知测量的类型为并行协作单基,则该STA ID子字段表示该STA的标识符;当感知类型子字段的取值为0时,代表DMG感知测量的类型为顺序协作单基,确定STA ID子字段表示一个STA的标识符,也表示STA参与感知测量的顺序。
可选地,将感知类型子字段以及STA ID子字段作为第一字段,该第一字段中携带有感知类型字段;或者,将感知类型子字段以及STA ID子字段所共同对应的TDD波束赋形信息字段作为第一字段,该第一字段中携带有感知类型字段。
值得注意的是,上述感知类型子字段的具体取值仅为示意性的举例,感知类型子字段的取值情况还可以采用其他设置方案,本申请实施例对此不加以限定。
在本申请实施例中,对感知测量设置帧中的测量设置控制字段下的感知类型子字段以及STA ID子字段进行调整,通过感知类型子字段的取值情况,能够更准确地对协作单基的模式类型进行区别,还可以通过STA ID子字段,对STA的标识符以及STA参与感知的顺序进行确定,便于感知响应者更全面地了解感知测量过程中内容信息。
在一个可选的实施例中,第二帧实现为DMG感知请求帧。
示意性的,如图8所示,为DMG感知请求帧的格式的示意图。其中包括TDD波束赋形信息字段,在TDD波束赋形信息字段中包括STA ID子字段,STA ID子字段用于指示SAT的标识符。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知请求帧中TDD波束赋形信息字段下的STA ID子字段进行修改。如图16所示,对图8所示的DMG感知请求帧中的TDD波束赋形信息字段下的STA ID子字段(加粗)进行修改,得到STA ID子字段,通过STA ID子字段的取值情况,能够确定协作单基下的感知类型。
可选地,基于感知类型子字段,对STA ID子字段进行不同的处理。
示意性的,在DMG感知请求帧中的感知类型字段指示协作单基的情况下,站点标识字段的取值属于第一范围用于指示顺序协作单基,且站点标识字段的取值还用于指示站点参与顺序协作单基的顺序。其中,STA ID子字段即指示站点标识字符。
示意性的,在如图16所示的DMG感知请求帧的格式的示意图中,根据如上表6所示的感知类型的取值情况,确定该帧所请求的感知类型。
可选地,在根据感知类型的取值情况确定该帧所请求的感知类型后,对STA ID子字段进行不同的处理。
示意性的,当感知类型的取值为2,确定该帧所请求的感知类型为多基,则表示STA接收EDMG Multistatic Sensing PPDU中同步子字段的索引;当感知类型的取值为1,确定该帧所请求的感知类型为协作双基,则该STA ID子字段表示该STA的标识符,也指示该STA参与感知测量的顺序;当感知类型的取值为0,确定该帧所请求的感知类型为协作单基。
示意性的,在DMG感知请求帧中的感知类型字段指示协作单基的情况下,站点标识字段的取值属于第二范围用于指示并行协作单基。
可选地,在感知类型的取值为0且STA ID子字段的取值范围为1-7的情况下,站点标识字段用于指示站点参与顺序协作单基的顺序;在感知类型的取值为0且STA ID子字段的取值范围为0的情况下,站点标识字段用于指示站点参与并行协作单基模式。
可选地,当感知类型的取值为0,则该帧所请求的感知类型为协作单基,此时根据STA ID子字段的取值差异,确定协作单基的模式类型。
示意性的,当感知类型的取值为0,且STA ID子字段的取值范围为1-7,则表示协作单基的模式类型为顺序协作模式类型,此时STA ID子字段不仅表示该STA的标识符;也指示该STA参与感知测量的顺序。
示意性的,当感知类型的取值为0,且STA ID子字段的取值为0,则表示协作单基的模式类型为并行协作模式类型。
值得注意的是,上述感知类型的具体取值仅为示意性的举例,感知类型的取值情况还可以采用其他设置方案,本申请实施例对此不加以限定。
在本申请实施例中,对感知请求帧中的STA ID子字段进行调整,通过STA ID子字段的取值范围,不仅能够确定协作单基的模式类型,还能够基于协作单基的模式类型和STA ID子字段的取值范围,有选择地对STA的标识符以及STA参与感知的顺序进行确定,便于感知响应者更全面地了解感知测量过程中内 容信息。
针对上述问题二:
相关技术中,协作单基感知测量上报存在两种方式:无轮询和有轮询。但无论是在DMG感知测量设置元素中,还是在DMG感知请求帧中,都没有一个字段对协作单基感知中的轮询情况进行准确确定,因此存在对轮询情况指示不清的问题。
采用本申请实施例提供的感知测量方法,在区分协作单基感知上报的轮询情况时,对毫米波DMG感知测量设置帧和/或毫米波DMG感知测量设置帧的格式进行改进,使得发送的帧携带有第一字段。
在一个可选的实施例中,感知发起者发送携带有上报轮询字段的第三帧;感知响应者接收携带有上报轮询字段的第三帧。
其中,报告轮询字段用于指示感知测量结果的上报是否需要轮询,将报告轮询字段作为第一字段的一种表现形式。
示意性的,轮询用于指示感知测量结果的上报情况,报告轮询字段能够指示两种情况,即:报告轮询字段指示感知测量结果的上报需要进行轮询;或者,报告轮询字段指示感知测量结果的上报不需要进行轮询。
第三帧中携带有上报轮询字段,因此通过读取第三帧,能够确定第三帧中的感知测量结果上报的轮询情况,如:读取第三帧后,确定感知测量结果的上报需要进行轮询;或者,读取第三帧后,确定感知测量结果的上报不需要进行轮询。
在一个可选的实施例中,第三帧为如下帧中的至少一种:DMG感知测量设置请求帧;DMG感知测量设置响应帧;感知请求帧。
可选地,由于DMG感知测量设置请求帧与DMG感知测量设置响应帧均为感知测量设置阶段中的帧的类型,以DMG感知测量设置帧指示感知测量设置阶段中的帧,其中包括感知测量设置阶段中的DMG感知测量设置请求帧和DMG感知测量设置响应帧,从而进行下述在感知测量设置阶段中字符调整的说明过程。
在一个可选的实施例中,第三帧实现为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧),上报轮询字段携带在DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)的感知测量设置元素中。
示意性的,如图6所示,为DMG感知测量设置帧(DMG感知测量设置请求帧;DMG感知测量设置响应帧)的格式的示意图。其中包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知测量设置帧中的字段组成进行修改,在DMG感知测量设置帧中新增一个字段。
示意性的,如图17所示,对图6所示的DMG感知测量设置帧的格式进行调整,在上报类型字段之后新增上报轮询字段(Report Poll),其中上报轮询字段采用加粗状态表示,上报轮询字段指示一个DMG感知测量设置中的感知测量结果的上报是否需要轮询。在对DMG感知测量设置帧的格式进行调整后,上报类型字段之后新增了上报轮询字段,从而使得DMG感知测量设置帧,DMG感知测量设置帧的格式实现为:元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、上报轮询字段、LCI字段、对端位置字段、可选子元素字段。
其中,通过DMG感知测量设置帧中上报轮询字段的取值情况,能够确定协作单基下的感知测量结果的上报是否需要进行轮询。
示意性的,当DMG感知测量设置帧中上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报需要进行轮询;当DMG感知测量设置帧中上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报不需要进行轮询。
或者,当DMG感知测量设置帧中上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报需要进行轮询;当DMG感知测量设置帧中上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报不需要进行轮询。
值得注意的是,上述上报轮询字段的具体取值仅为示意性的举例;上报轮询字段的名称仅为示意性的举例;上报轮询字段在DMG感知测量设置帧中的位置也仅为示意性的举例,可能存在不同情况。
示意性的,以上报轮询字段在DMG感知测量设置帧中的位置为例进行说明。上报轮询字段在DMG感知测量设置帧中的测量设置控制字段后新增上报轮询字段;或者,在DMG感知测量设置帧中的对端位置字段后新增上报轮询字段等。以上仅为示意性的举例,本申请实施例对此不加以限定。
在本申请实施例中,对DMG感知测量设置帧的格式进行调整,新增上报轮询字段,从而根据上报轮询字段的取值情况,更直接地确定协作单基下的感知测量结果的上报是否需要轮询。
在一个可选的实施例中,第三帧实现为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧),上报轮询字段携带在DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)的可选子元素字段中。
示意性的,如图6所示,为DMG感知测量设置帧的格式的示意图。其中包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。如上表3所示,可选子元素字段中包括零个或多个子元素,全部的子元素包括TX Beam List、RX Beam List以及DMG Sensing Scheduling。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整,在可选子元素字段中新增一个子元素字段。
示意性的,如图18所示,对图6所示的DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整,其中,将DMG感知测量设置帧中的可选子元素字段采用加粗状态表示;如下表9所示,在可选子元素字段中新增协作单基特定配置可选子元素字段(Coordinated Monostatic Specific Configuration),其中,协作单基特定配置子元素字段采用加粗状态表示,协作单基特定配置可选子元素字段用于携带扩展的配置信息。
表9
子元素ID 子元素名称 可扩展性
1 TX波束列表
2 RX波束列表
3 DMG感知调度
4 协作单基特定配置
5-255 保留
在协作单基特定配置可选子元素字段中,具体的帧格式如图19所示,协作单基特定配置可选子元素字段中包括子元素ID、长度以及上报轮询字段。其中,子元素ID的取值范围为4-255之间的任意整数,上述子元素ID为4的取值进行仅为示意性的举例;长度指示该协作单基特定配置可选子元素字段中除了子元素ID和长度字段之外的字节数;上报轮询字段指示一个DMG感知测量设置中的感知测量结果的上报是否需要轮询。
在对DMG感知测量设置帧的格式进行调整后,可选子元素类型中新增了协作单基特定配置可选子元素字段,通过协作单基特定配置可选子元素字段下上报轮询字段的取值情况,能够确定协作单基下的感知测量结果的上报是否需要进行轮询。
示意性的,当协作单基特定配置可选子元素字段下上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报需要进行轮询;当协作单基特定配置可选子元素字段下上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报不需要进行轮询。
或者,当协作单基特定配置可选子元素字段下上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报需要进行轮询;当协作单基特定配置可选子元素字段下上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报不需要进行轮询。
值得注意的是,上述协作单基特定配置可选子元素字段的具体取值仅为示意性的举例,协作单基特定配置可选子元素字段的取值情况还可以采用其他设置方案,本申请实施例对此不加以限定。此外,上述协作单基特定配置、协作单基特定配置可选子元素字段的名称也仅为示意性的举例,本申请实施例对此不加以限定。
在本申请实施例中,对DMG感知测量设置帧的格式进行调整,对已有的可选子元素字段下的可选子元素进行调整,在可选子元素中新增上报轮询字段,从而根据上报轮询字段的取值情况,更直接地确定协作单基下的感知测量结果的上报是否需要轮询。
在一个可选的实施例中,第三帧实现为DMG感知请求帧。
可选地,上报轮询字段携带在DMG感知请求帧的TDD波束信息字段中。
示意性的,如图8所示,为DMG感知请求帧的格式的示意图。其中包括TDD波束赋形信息字段,对TDD波束赋形信息字段进行调整,从而将上报轮询字段携带在DMG感知请求帧的TDD波束信息字段中。如图20所示,在图8所示的DMG感知请求帧中的TDD波束赋形信息字段下的带宽子字段后,新增上报轮询字段(加粗),从而得到TDD波束赋形信息字段,也即:TDD波束赋形信息字段下包括上报轮询字段。
其中,上报轮询字段指示一个DMG感知测量设置中的感知测量结果的上报是否需要轮询。
示意性的,当TDD波束赋形信息字段下的上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报需要进行轮询;当TDD波束赋形信息字段下的上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报不需要进行轮询。
或者,当TDD波束赋形信息字段下的上报轮询字段的取值为0,表示协作单基下的感知测量结果的上报需要进行轮询;当TDD波束赋形信息字段下的上报轮询字段的取值为1,表示协作单基下的感知测量结果的上报不需要进行轮询。
在本申请实施例中,对DMG感知请求帧的格式进行调整,在TDD波束赋形信息字段下的带宽子字段后新增上报轮询字段,从而根据上报轮询字段的取值情况,更直接地确定协作单基下的感知测量结果的上报是否需要轮询。
针对上述问题三:
相关技术中,无法准确指示在并行模式的协作单基感知中单基PPDU的长度。一般而言,Monostatic PPDU的格式以及长度并未进行明确规定,通常仅仅要求单基PPDU所承载的PSDU中的接收地址等于发送地址即可,因此,在协作单基感知类型的并行模式下,有时会出现如图21所示的干扰问题。
如图21所示,为本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图。如图21所示,该流程由一个感知发起者(STA)和两个感知响应者(站点A,站点B)参与,包括以下过程(从左至右):
(1)感知发起者发送DMG感知请求帧至站点A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,站点A回复DMG感知响应帧至感知发起者;
(3)SIFS时间后,感知发起者发送DMG感知请求帧至站点B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,站点B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,站点A和站点B同时分别自发自收1个单基感知测量帧从而感知环境;
(6)SIFS时间后,站点A发送DMG感知测量报告帧至感知发起者,上报感知测量的结果;
(7)SIFS时间后,感知发起者回复ACK帧至站点A;
(8)SIFS时间后,感知发起者发送DMG感知上报轮询帧至站点B,触发站点B上报感知测量结果;
(9)SIFS时间后,站点B发送DMG感知测量报告帧至感知发起者,上报感知测量的结果;
(10)SIFS时间后,感知发起者回复ACK帧至站点B。
需要说明的是,上述(7)和(10)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder发送DMG感知测量报告帧。
如图21所示,在上述过程中,当站点B自发自收的单基感知测量帧(Monostatic PPDU)的长度大于站点A自发自收的单基感知测量帧的长度时,站点B自发自收的单基感知测量帧与站点A发送的DMG感知测量报告帧存在重叠,从而导致站点A与站点B之间产生干扰。
采用本申请实施例提供的感知测量方法,在显示单基PPDU的最大长度时,对毫米波DMG感知测量设置帧的格式进行改进,使得发送的帧携带有第一字段。
在一个可选的实施例中,感知发起者发送携带有单基PPDU的最大时长字段的第四帧;感知响应者携带有单基PPDU的最大时长字段的第四帧。
其中,单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长,将单基PPDU的最大时长字段作为第一字段的一种表现形式。第四帧中携带有单基PPDU的最大时长字段,因此通过读取第四帧,能够确定第四帧中单基PPDU的最大时长字段。
在一个可选的实施例中,第四帧实现为DMG感知测量设置帧。
示意性的,在将单基PPDU的最大时长字段设置于DMG感知测量设置帧时,将单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段。根据所选取的可选子元素字段的差异,对将单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段的设置情况进行说明。
可选地,由于DMG感知测量设置请求帧与DMG感知测量设置响应帧均为感知测量设置阶段中的帧的类型,以DMG感知测量设置帧指示感知测量设置阶段中的帧,其中包括感知测量设置阶段中的DMG感知测量设置请求帧和DMG感知测量设置响应帧,从而进行下述在感知测量设置阶段中字符调整的说明过程。
在一个可选的实施例中,可选子元素字段为第二协作单基专有配置子元素。
示意性的,如图6所示,为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)的格式的示意图。其中包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。如上表3所示,可选子元素字段中包括零个或多个子元素,全部的子元素包括TX Beam List、RX Beam List以及DMG Sensing Scheduling。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整,在可选子元素字段中新增一个子元素字段。
示意性的,如图22所示,对图6所示的DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整,其中,将DMG感知测量设置帧中的可选子元素字段采用加粗状态表示;如下表10所示,在可选子元素字段中新增协作单基特定配置可选子元素字段(Coordinated Monostatic Specific Configuration),其中,协作单基特定配置子元素字段采用加粗状态表示,协作单基特定配置可选子元素字段用于携带扩展的配置信息。
表10
子元素ID 子元素名称 可扩展性
1 TX波束列表
2 RX波束列表
3 DMG感知调度
4 协作单基特定配置
5-255 保留
在协作单基特定配置可选子元素字段中,具体的帧格式如图23所示,协作单基特定配置可选子元素字段中包括子元素ID、长度以及单基PPDU的最大时长字段。其中,子元素ID的取值范围为4-255之间的任意整数,上述子元素ID为4的取值进行仅为示意性的举例;长度指示该协作单基特定配置可选子元素字段中除了子元素ID和长度字段之外的字节数;单基PPDU的最大时长字段指示一个DMG感知测量设置中感知响应者STA所使用的单基PPDU的最大时长,单基PPDU的最大时长字段的单位为定时同步功能计时器(Timing Synchronization Function,TSF)所采用的时间的单位,即:微秒(us)。
其中,同一个DMG感知测量设置帧中的每个STA应当配置相同的单基PPDU的最大时长字段。可选地,上述配置单基PPDU的最大时长字段的过程适用于感知测量实例过程发生在服务周期(Serviceperiod,SP)期间。
在本申请实施例中,对DMG感知测量设置帧的格式进行调整,对可选子元素字段下的可选子元素进行调整,在可选子元素字段中新增一个子元素字段,且该子元素字段包括单基PPDU的最大时长字段,从而根据单基PPDU的最大时长字段的取值情况,更直接地确定单基PPDU的最大时长。
在一个可选的实施例中,可选子元素字段为感知测量调度子元素。
示意性的,如图6所示,为DMG感知测量设置帧(DMG感知测量设置请求帧,或,DMG感知测量设置响应帧)的格式的示意图。其中包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。如上表3所示,可选子元素字段中包括零个或多个子元素,全部的子元素包括TX Beam List、RX Beam List以及DMG Sensing Scheduling。
可选地,采用本申请实施例提供的感知测量方法,对DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整。示意性的,对可选子元素字段中的感知测量调度子元素(DMG Sensing Scheduling)进行调整。其中,感知测量调度子元素用于感知测量实例和感知测量突发的相关配置信息。
示意性的,如图24所示,对图6所示的DMG感知测量设置帧中的可选子元素字段下的可选子元素进行调整,其中,将DMG感知测量设置帧中的可选子元素字段采用加粗状态表示;如下表11所示,在可选子元素字段中,对感知测量调度子元素进行调整,在感知测量调度子元素上新增一个字段,其中,对感知测量调度子元素采用加粗状态表示。
表11
子元素ID 子元素名称 可扩展性
1 TX波束列表 Yes
2 RX波束列表 Yes
3 DMG感知调度 Yes
4-255 保留 No
感知测量调度子元素还携带有如下字段中的至少之一:感知测量突发的开始时间;相邻感知测量突发的时间间隔;一个感知测量突发中相邻感知测量实例之间的时间间隔;一个感知测量实例中使用的接收波束的数量;一个感知测量实例中需要重复传输的次数;感知测量突发的重复次数。
示意性的,如图25所示,为感知测量调度子元素的帧格式情况,也即:感知测量调度子元素中携带的字段情况。
在感知测量调度子元素中,包括子元素ID字段、长度字段、感知测量突发的开始时间字段(Startof Burst)、相邻感知测量突发的时间间隔字段(Inter-burst interval)、一个感知测量突发中相邻感知测量实例之间的时间间隔字段(Intra-burst interval)、一个感知测量实例中使用的接收波束的数量字段(Number TXBeams Per Instance);一个感知测量实例中需要重复传输的次数字段(Repeat Per Instance)、感知测量突 发的重复次数字段(Number Bursts)以及单基PPDU的最大时长字段。
其中,子元素ID字段的取值为4-255之间的任意整数,上述取值为4仅为示意性的举例;
其中,长度字段指示感知测量调度子元素中除了子元素ID字段以及长度字段之外的字节数;
其中,感知测量突发的开始时间字段用于指示一个突发开始的时间,时间为TSF时间的单位——us;
其中,相邻感知测量突发的时间间隔字段用于指示相邻的突发之间的时间间隔,单位为TSF时间的单位——us;
其中,一个感知测量突发中相邻感知测量实例之间的时间间隔字段用于指示一个突发中相邻instance之间的时间间隔,单位为TSF时间的单位——us;
其中,一个感知测量实例中使用的接收波束的数量字段用于指示一个instance中将要使用的TX波束的数量;
其中,一个感知测量实例中需要重复传输的次数字段用于指示一个instance中需要重复传输的次数;
其中,感知测量突发的重复次数字段用于指示Burst重复的次数,取值为0指示重复Burst直至感知测量设置终止;
其中,单基PPDU的最大时长字段用于指示一个DMG感知测量设置中感知响应者STA所使用的单基PPDU的最大时长,单基PPDU的最大时长字段的单位为TSF时间的单位。同一个DMG感知测量设置中的每个STA应配置相同的单基PPDU的最大时长(Maximum Duration of Monostatic PPDU)。可选地,上述配置单基PPDU的最大时长字段的过程适用于感知测量实例过程发生在服务周期(Serviceperiod,SP)期间。
在本申请实施例中,在对DMG感知测量设置帧的格式进行调整时,对已有的感知测量调度子元素进行调整,在感知测量调度子元素上新增单基PPDU的最大时长字段,从而根据单基PPDU的最大时长字段的取值情况,更直接地确定单基PPDU的最大时长。
示意性的,根据第一字段所携带信息的差异,在感知发起者向感知响应者发送携带有第一字段的帧时,能够向感知响应者传达不同的信息内容,不同种类的第一字段都能够实现更快速、更直接地向感知响应者传达不同信息的目的。
上述感知类型字段、站点标识字段、上报轮询字段、单基PPDU的最大时长字段等专有字段都能够实现为一种第一字段。感知发起者向感知响应者发送的帧中包括上述多种第一字段中的至少一种第一字段,根据不同的第一字段,感知发起者能够向感知响应者传达至少一种信息内容。此外,测量类型字段、站点标识字段、上报轮询字段、单基PPDU的最大时长字段等专有字段的位置也可以进行任意组合。
值得注意的是,上述第一帧、第二帧、第三帧以及第四帧并不代表帧的顺序,当一个帧中携带有上述多种字段,第一帧、第二帧、第三帧以及第四帧中的任意两帧或至少两帧可以实现为相同的帧。例如:当一个帧中携带有感知类型字段以及上报轮询字段,则该帧属于第一帧,也属于第二帧,即:第一帧与第二帧属于相同的帧;或者,当一个帧中携带有感知类型字段以及单基PPDU的最大时长字段,则该帧属于第一帧,也属于第三帧,即:第一帧与第三帧属于相同的帧,以上仅为示意性的举例,本申请实施例对此不加以限定。
也即:需要说明的是,上述各个实施例可以自由组合或拆分为新的实施例,本申请对此不加以限定。
图26是本申请一个示例性实施例提供的感知测量装置2600的框图。如图26所示,该装置位于感知测量设备,该装置包括:
发送模块2601,用于发送携带有第一字段的帧;
其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
在一个可选的实施例中,所述发送模块2601还用于发送携带有感知类型字段的第一帧,所述感知类型字段用于指示感知类型为所述顺序协作单基或所述并行协作单基。
所述第一帧为如下帧中的至少一种:
毫米波DMG感知测量设置请求帧;
毫米波DMG感知测量设置响应帧;
毫米波DMG感知请求帧。
在一个可选的实施例中,所述发送模块2601还用于发送携带有站点标识字段的第二帧,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序。
所述第二帧为DMG感知请求帧;
在一个可选的实施例中,在所述DMG感知请求帧中的感知类型字段指示所述顺序协作单基的情况下,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序;
或,
在所述DMG感知请求帧中的感知类型字段指示协作单基的情况下,所述站点标识字段的取值属于第一范围用于指示所述顺序协作单基,且所述站点标识字段的取值还用于指示所述站点参与所述顺序协作单基的顺序。
在一个可选的实施例中,在所述DMG感知请求帧中的感知类型字段指示所述协作单基的情况下,所述站点标识字段的取值属于第二范围用于指示所述并行协作单基。
在一个可选的实施例中,所述发送模块2601还用于发送携带有上报轮询字段的第三帧,所述报告上报轮询字段用于指示感知测量结果的上报是否需要轮询。
所述第三帧为如下帧中的至少一种:
毫米波DMG感知测量设置请求帧;
毫米波DMG感知测量设置响应帧;
毫米波DMG感知请求帧。
在一个可选的实施例中,
所述上报轮询字段携带在所述DMG感知测量设置请求帧的感知测量设置元素中;或,
所述上报轮询字段携带在所述DMG感知测量设置响应帧的感知测量设置元素中;或,
所述上报轮询字段携带在所述DMG感知测量设置请求帧的可选子元素字段中;或,
所述上报轮询字段携带在所述DMG感知测量设置响应帧的可选子元素字段中;或,
所述上报轮询字段携带在所述DMG感知请求帧的TDD波束信息字段中。
在一个可选的实施例中,所述可选子元素字段为第一协作单基专有配置子元素。
在一个可选的实施例中,所述发送模块2601还用于发送携带有单基PPDU的最大时长字段的第四帧,所述单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。
所述第四帧为如下帧中的至少一种:
是DMG感知测量设置请求帧;
DMG感知测量设置响应帧。
所述单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段。
在一个可选的实施例中,所述可选子元素字段为第二协作单基专有配置子元素;
或,
所述可选子元素字段为感知测量调度子元素。
在一个可选的实施例中,所述感知测量调度子元素还携带有如下字段中的至少之一:
感知测量突发的开始时间;
相邻感知测量突发的时间间隔;
一个感知测量突发中相邻感知测量实例之间的时间间隔;
一个感知测量实例中使用的接收波束的数量;
一个感知测量实例中需要重复传输的次数;
感知测量突发的重复次数。
图27是本申请一个示例性实施例提供的感知测量装置2700的框图。如图27所示,该装置位于感知测量设备,该装置包括:
接收模块2701,用于接收携带有第一字段的帧;其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
在一个可选的实施例中,所述接收模块2701用于接收携带有感知类型字段的第一帧,所述感知类型字段用于指示感知类型为所述顺序协作单基或所述并行协作单基。
所述第一帧为如下帧中的至少一种:
毫米波DMG感知测量设置请求帧;
毫米波DMG感知测量设置响应帧;
毫米波DMG感知请求帧。
在一个可选的实施例中,所述接收模块2701还用于接收携带有站点标识字段的第二帧,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序。
所述第二帧为DMG感知请求帧;
在一个可选的实施例中,在所述DMG感知请求帧中的感知类型字段指示所述顺序协作单基的情况下,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序;
或,
在所述DMG感知请求帧中的感知类型字段指示协作单基且当前感知测量为所述顺序协作单基的情况下,所述站点标识字段的取值属于第一范围用于指示所述顺序协作单基,且所述站点标识字段的取值还用 于指示所述站点参与所述顺序协作单基的顺序。
在一个可选的实施例中,所述接收模块2701还用于在所述DMG感知请求帧中的感知类型字段指示所述协作单基的情况下,所述站点标识字段的取值属于第二范围用于指示所述并行协作单基。
在一个可选的实施例中,所述接收模块2701还用于接收携带有上报轮询字段的第三帧,所述报告上报轮询字段用于指示感知测量结果的上报是否需要轮询。
所述第三帧为如下帧中的至少一种:
毫米波DMG感知测量设置请求帧;
毫米波DMG感知测量请求响应帧。
在一个可选的实施例中,所述上报轮询字段携带在所述DMG感知测量设置请求帧的感知测量设置元素中;或,所述上报轮询字段携带在所述DMG感知测量设置响应帧的感知测量设置元素中;或,所述上报轮询字段携带在所述DMG感知测量设置帧的可选子元素字段中;或,所述上报轮询字段携带在所述DMG感知测量设置响应帧的可选子元素字段中;或,所述上报轮询字段携带在所述DMG感知请求帧的TDD波束信息字段中。
所述可选子元素字段为第一协作单基专有配置子元素。
在一个可选的实施例中,所述接收模块2701还用于接收携带有单基PPDU的最大时长字段的第四帧,所述单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。
所述第四帧为如下帧中的至少一种:是DMG感知测量设置请求帧;DMG感知测量设置响应帧。
所述单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段。
在一个可选的实施例中,所述可选子元素字段为第二协作单基专有配置子元素;
或,
所述可选子元素字段为感知测量调度子元素。
在一个可选的实施例中,所述感知测量调度子元素还携带有如下字段中的至少之一:
感知测量突发的开始时间;
相邻的所述感知测量突发的时间间隔;
一个感知测量突发中相邻感知测量实例之间的时间间隔;
一个感知测量实例中使用的接收波束的数量;
一个感知测量实例中需要重复传输的次数;
所述感知测量突发的重复次数。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图28是本申请一个示例性实施例提供的感知测量设备(感知发起者和/或感知响应者)的结构示意图,该感知测量设备2800包括:处理器2801、接收器2802、发射器2803、存储器2804和总线2805。
处理器2801包括一个或者一个以上处理核心,处理器2801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器2802和发射器2803可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器2804通过总线2805与处理器2801相连。存储器2804可用于存储至少一个指令,处理器2801用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器2804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现上述感知测量设备(感知发起者和/或感知响应者)的协作感知测量方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现上述感知测量设备的感知测量方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述感知测量设备的感知测量方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (37)

  1. 一种感知测量方法,其特征在于,应用于感知测量设备,所述方法包括:
    发送携带有第一字段的帧;
    其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
  2. 根据权利要求1所述的方法,其特征在于,所述发送携带有第一字段的帧,包括:
    发送携带有感知类型字段的第一帧,所述感知类型字段用于指示感知类型为所述顺序协作单基或所述并行协作单基。
  3. 根据权利要求2所述的方法,其特征在于,所述第一帧为如下帧中的至少一种:
    毫米波方向性多吉比特DMG感知测量设置请求帧;
    毫米波DMG感知测量设置响应帧;
    毫米波DMG感知请求帧。
  4. 根据权利要求1所述的方法,其特征在于,所述发送携带有第一字段的帧,包括:
    发送携带有站点标识字段的第二帧,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序。
  5. 根据权利要求4所述的方法,其特征在于,所述第二帧为DMG感知请求帧;
    在所述DMG感知请求帧中的感知类型字段指示所述顺序协作单基的情况下,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序;
    或,
    在所述DMG感知请求帧中的感知类型字段指示协作单基的情况下,所述站点标识字段的取值属于第一范围用于指示所述顺序协作单基,且所述站点标识字段的取值还用于指示所述站点参与所述顺序协作单基的顺序。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述DMG感知请求帧中的感知类型字段指示所述协作单基的情况下,所述站点标识字段的取值属于第二范围用于指示所述并行协作单基。
  7. 根据权利要求1所述的方法,其特征在于,所述发送携带有第一字段的帧,包括:
    发送携带有上报轮询字段的第三帧,所述上报轮询字段用于指示感知测量结果的上报是否需要轮询。
  8. 根据权利要求7所述的方法,其特征在于,所述第三帧为如下帧中的至少一种:
    毫米波DMG感知测量设置请求帧;
    毫米波DMG感知测量设置响应帧;
    毫米波DMG感知请求帧。
  9. 根据权利要求8所述的方法,其特征在于,
    所述上报轮询字段携带在所述DMG感知测量设置请求帧的感知测量设置元素中;或,
    所述上报轮询字段携带在所述DMG感知测量设置响应帧的感知测量设置元素中;或,
    所述上报轮询字段携带在所述DMG感知测量设置请求帧的可选子元素字段中;或,
    所述上报轮询字段携带在所述DMG感知测量设置响应帧的可选子元素字段中;或,
    所述上报轮询字段携带在所述DMG感知请求帧的对时分双工TDD波束信息字段中。
  10. 根据权利要求9所述的方法,其特征在于,所述可选子元素字段为第一协作单基专有配置子元素。
  11. 根据权利要求1所述的方法,其特征在于,所述发送携带有第一字段的帧,包括:
    发送携带有单基物理层协议数据单元PPDU的最大时长字段的第四帧,所述单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。
  12. 根据权利要求11所述的方法,其特征在于,所述第四帧为如下帧中的至少一种:
    DMG感知测量设置请求帧;
    DMG感知测量设置响应帧。
  13. 根据权利要求11所述的方法,其特征在于,所述单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段。
  14. 根据权利要求13所述的方法,其特征在于,
    所述可选子元素字段为第二协作单基专有配置子元素;
    或,
    所述可选子元素字段为感知测量调度子元素。
  15. 根据权利要求14所述的方法,其特征在于,所述感知测量调度子元素还携带有如下字段中的至少之一:
    感知测量突发的开始时间;
    相邻感知测量突发的时间间隔;
    一个感知测量突发中相邻感知测量实例之间的时间间隔;
    一个感知测量实例中使用的接收波束的数量;
    一个感知测量实例中需要重复传输的次数;
    感知测量突发的重复次数。
  16. 一种感知测量方法,其特征在于,应用于感知测量设备,所述方法包括:
    接收携带有第一字段的帧;
    其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
  17. 根据权利要求16所述的方法,其特征在于,所述接收携带有第一字段的帧,包括:
    接收携带有感知类型字段的第一帧,所述感知类型字段用于指示感知类型为所述顺序协作单基或所述并行协作单基。
  18. 根据权利要求17所述的方法,其特征在于,所述第一帧为如下帧中的至少一种:
    毫米波DMG感知测量设置请求帧;
    毫米波DMG感知测量设置响应帧;
    毫米波DMG感知请求帧。
  19. 根据权利要求16所述的方法,其特征在于,所述接收携带有第一字段的帧,包括:
    接收携带有站点标识字段的第二帧,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序。
  20. 根据权利要求19所述的方法,其特征在于,所述第二帧为DMG感知请求帧;
    在所述DMG感知请求帧中的感知类型字段指示所述顺序协作单基的情况下,所述站点标识字段用于指示站点参与所述顺序协作单基的顺序;
    或,
    在所述DMG感知请求帧中的感知类型字段指示协作单基且当前感知测量为所述顺序协作单基的情况下,所述站点标识字段的取值属于第一范围用于指示所述顺序协作单基,且所述站点标识字段的取值还用于指示所述站点参与所述顺序协作单基的顺序。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    在所述DMG感知请求帧中的感知类型字段指示所述协作单基的情况下,所述站点标识字段的取值属于第二范围用于指示所述并行协作单基。
  22. 根据权利要求16所述的方法,其特征在于,所述接收携带有第一字段的帧,包括:
    接收携带有上报轮询字段的第三帧,所述报告上报轮询字段用于指示感知测量结果的上报是否需要轮询。
  23. 根据权利要求22所述的方法,其特征在于,所述第三帧为如下帧中的至少一种:
    毫米波DMG感知测量设置请求帧;
    毫米波DMG感知测量请求响应帧。
  24. 根据权利要求23所述的方法,其特征在于,
    所述上报轮询字段携带在所述DMG感知测量设置请求帧的感知测量设置元素中;或,
    所述上报轮询字段携带在所述DMG感知测量设置响应帧的感知测量设置元素中;或,
    所述上报轮询字段携带在所述DMG感知测量设置帧的可选子元素字段中;或,
    所述上报轮询字段携带在所述DMG感知测量设置响应帧的可选子元素字段中;或,
    所述上报轮询字段携带在所述DMG感知请求帧的TDD波束信息字段中。
  25. 根据权利要求24所述的方法,其特征在于,所述可选子元素字段为第一协作单基专有配置子元素。
  26. 根据权利要求16所述的方法,其特征在于,所述接收携带有第一字段的帧,包括:
    接收携带有单基PPDU的最大时长字段的第四帧,所述单基PPDU的最大时长字段用于指示感知响应者所使用的单基PPDU的最大时长。
  27. 根据权利要求26所述的方法,其特征在于,所述第四帧为如下帧中的至少一种:
    DMG感知测量设置请求帧;
    DMG感知测量设置响应帧。
  28. 根据权利要求26所述的方法,其特征在于,所述单基PPDU的最大时长字段携带在DMG感知测量设置帧的可选子元素字段。
  29. 根据权利要求28所述的方法,其特征在于,
    所述可选子元素字段为第二协作单基专有配置子元素;
    或,
    所述可选子元素字段为感知测量调度子元素。
  30. 根据权利要求29所述的方法,其特征在于,所述感知测量调度子元素还携带有如下字段中的至少之一:
    感知测量突发的开始时间;
    相邻的所述感知测量突发的时间间隔;
    一个感知测量突发中相邻感知测量实例之间的时间间隔;
    一个感知测量实例中使用的接收波束的数量;
    一个感知测量实例中需要重复传输的次数;
    所述感知测量突发的重复次数。
  31. 一种感知测量装置,其特征在于,应用于感知测量设备,所述装置包括:
    发送模块,用于发送携带有第一字段的帧;
    其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
  32. 一种感知测量装置,其特征在于,应用于感知测量设备,所述装置包括:
    接收模块,用于接收携带有第一字段的帧;
    其中,所述第一字段是顺序协作单基或并行协作单基的专有字段,和/或,所述第一字段在所述顺序协作单基或所述并行协作单基中具有专有含义。
  33. 一种感知发起设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如权利要求1至15中任一所述的感知测量方法。
  34. 一种感知响应设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述感知响应设备实现如权利要求16至30中任一所述的感知测量方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现权利要求1至30中任一所述的感知测量方法。
  36. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现权利要求1至30中任一所述的感知测量方法。
  37. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现权利要求1至30中任一所述的感知测量方法。
PCT/CN2022/118271 2022-09-09 2022-09-09 感知测量方法、装置、设备及存储介质 WO2024050849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118271 WO2024050849A1 (zh) 2022-09-09 2022-09-09 感知测量方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118271 WO2024050849A1 (zh) 2022-09-09 2022-09-09 感知测量方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024050849A1 true WO2024050849A1 (zh) 2024-03-14

Family

ID=90192565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118271 WO2024050849A1 (zh) 2022-09-09 2022-09-09 感知测量方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024050849A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200305231A1 (en) * 2019-05-14 2020-09-24 Bahareh Sadeghi WLAN SENSING USING HIGH-EFFICIENCY (HE) TRIGGER-BASED (TB) PPDUs (HE TB PPDUs)
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
US20220070927A1 (en) * 2020-09-03 2022-03-03 Lg Electronics Inc. Wlan sensing based on multiple channel or resource
CN114667753A (zh) * 2022-02-16 2022-06-24 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200305231A1 (en) * 2019-05-14 2020-09-24 Bahareh Sadeghi WLAN SENSING USING HIGH-EFFICIENCY (HE) TRIGGER-BASED (TB) PPDUs (HE TB PPDUs)
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
US20220070927A1 (en) * 2020-09-03 2022-03-03 Lg Electronics Inc. Wlan sensing based on multiple channel or resource
CN114667753A (zh) * 2022-02-16 2022-06-24 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN108700641B (zh) 用于无线局域网测距和测向的单播和广播协议
JP2023538286A (ja) 無線ローカルエリアネットワークセンシングのための通信装置および通信方法
CN112771397B (zh) 无线网络中基于定时测量的位置信息确定
WO2020239125A1 (zh) 雷达测试方法及装置
CN113037400A (zh) 信道探测方法及装置
WO2021204113A1 (zh) 通信方法及装置
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2023016441A1 (zh) 通信方法以及装置
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
CN114915319B (zh) 基于mimo波束赋形的感知方法及相关装置
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2024040612A1 (zh) 无线通信的方法和设备
WO2023245664A1 (zh) 无线通信的方法和设备
US10820328B2 (en) Method and apparatus for de-centralized spatial reuse in wireless communications systems
WO2023130384A1 (zh) 感知上报方法和设备
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023123000A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2023141996A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957817

Country of ref document: EP

Kind code of ref document: A1