WO2024087224A1 - 感知测量方法、装置、设备、介质和程序产品 - Google Patents

感知测量方法、装置、设备、介质和程序产品 Download PDF

Info

Publication number
WO2024087224A1
WO2024087224A1 PCT/CN2022/128424 CN2022128424W WO2024087224A1 WO 2024087224 A1 WO2024087224 A1 WO 2024087224A1 CN 2022128424 W CN2022128424 W CN 2022128424W WO 2024087224 A1 WO2024087224 A1 WO 2024087224A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
perception
subfield
frame
dmg
Prior art date
Application number
PCT/CN2022/128424
Other languages
English (en)
French (fr)
Inventor
高宁
罗朝明
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/128424 priority Critical patent/WO2024087224A1/zh
Publication of WO2024087224A1 publication Critical patent/WO2024087224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of the present application relate to the field of perception measurement, and in particular, to a perception measurement method, apparatus, device, medium and program product.
  • Wireless Local Area Networks (WLAN) perception refers to the technology of sensing people or objects in the environment by measuring the changes in the scattering and/or reflection of WLAN signals passing through people or objects.
  • WLAN Wireless Local Area Networks
  • the present application provides a perception measurement method, device, equipment, medium and program product.
  • the technical solution at least includes:
  • a perception measurement method is provided. The method is performed by a perception participating device, and the method includes:
  • a frame carrying a first field is sent or received, where the first field is used to indicate information related to the coordinate system setting.
  • a perception measurement method is provided. The method is performed by a perception participating device, and the method includes:
  • a frame carrying a second field is sent or received, where the second field is used to indicate information related to the duration of the single-base PPDU.
  • a perception participation device comprising:
  • the transceiver module is used to send or receive a frame carrying a first field during a perception measurement process, where the first field is used to indicate information related to the coordinate system setting.
  • a perception participation device comprising:
  • the transceiver module is used to send or receive a frame carrying a second field in a collaborative single-base perception process in a parallel mode, where the second field is used to indicate information related to the duration of the single-base PPDU.
  • a perception participation device comprising:
  • transceiver coupled to the processor
  • a memory for storing executable instructions for the processor
  • the processor is configured to load executable instructions so that the perception participating device implements the perception measurement methods in various aspects as described above.
  • a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement the perceptual measurement method as described in the above aspects.
  • a computer program product (or computer program) is provided, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the perception measurement method as described in each aspect above.
  • a chip which includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the perception measurement method as described in the above aspects.
  • FIG1 is a schematic diagram of a perception measurement system provided by an exemplary embodiment of the present application.
  • FIG2 is a schematic diagram of a millimeter wave sensing type provided by an exemplary embodiment of the present application.
  • FIG3 is a schematic diagram of a process of millimeter wave sensing provided by an exemplary embodiment of the present application.
  • FIG4 is a flow chart of a perception measurement method provided by an exemplary embodiment of the present application.
  • FIG5 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device according to an exemplary embodiment of the present application;
  • FIG6 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device according to an exemplary embodiment of the present application;
  • FIG7 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device according to an exemplary embodiment of the present application;
  • FIG8 is a schematic diagram of a frame structure of a beacon frame provided by the related art.
  • FIG9 is a schematic diagram of a frame structure of a management frame provided by a related art.
  • FIG. 10 is a schematic diagram of the frame structure of a declaration frame, an information request frame, and an information response frame provided by the related art
  • FIG11 is a schematic diagram of a frame structure of a perception measurement setting request frame provided by a related art
  • FIG12 is a schematic diagram of a frame structure of a perception measurement setting response frame provided by a related art
  • FIG13 is a schematic diagram of the element structure of a DMG perception beam descriptor element provided by the related art
  • FIG14 is a schematic diagram of the element structure of a DMG perception beam descriptor element provided by an exemplary embodiment of the present application.
  • FIG15 is a schematic diagram of the element structure of a DMG perception beam descriptor element provided by an exemplary embodiment of the present application.
  • 16 is a schematic diagram of the element structure of the DMG beacon sector descriptor element provided by the related art
  • 17 is a schematic diagram of the element structure of a DMG beacon sector descriptor element provided by an exemplary embodiment of the present application.
  • FIG18 is a schematic diagram of the element structure of a DMG beacon sector descriptor element provided by an exemplary embodiment of the present application.
  • FIG20 is a schematic diagram of the element structure of a DMG passive sensing beacon information element provided by an exemplary embodiment of the present application.
  • FIG21 is a schematic diagram of the element structure of a DMG passive sensing beacon information element provided by an exemplary embodiment of the present application.
  • FIG22 is a schematic diagram of the element structure of the DMG perception short capability element provided by the related art.
  • FIG23 is a schematic diagram of DMG perception measurement setting elements provided by the related art.
  • FIG24 is a schematic diagram of the element structure of a DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • FIG25 is a schematic diagram of the element structure of a DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • FIG26 is a schematic diagram of an example of a sequential mode of millimeter wave cooperative monostatic sensing measurement provided by an exemplary embodiment of the present application.
  • FIG27 is a schematic diagram of an example of a parallel mode of millimeter wave cooperative monostatic sensing measurement provided by an exemplary embodiment of the present application.
  • FIG28 is a schematic diagram of the format of a perception request frame provided by the related art.
  • FIG29 is a flow chart of a parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • FIG30 is a flow chart of a perception measurement method provided by an exemplary embodiment of the present application.
  • FIG31 is a schematic diagram of the element structure of the DMG perception measurement setting element provided by the related art.
  • FIG32 is a schematic diagram of the element structure of a cooperative single-base proprietary configuration optional sub-element provided by an exemplary embodiment of the present application;
  • FIG33 is a schematic diagram of the element structure of a cooperative single-base proprietary configuration optional sub-element provided by an exemplary embodiment of the present application;
  • FIG34 is a schematic diagram of a format of a TDD beamforming frame provided by a related art
  • FIG35 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application.
  • FIG36 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application.
  • FIG37 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application.
  • FIG38 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application.
  • FIG39 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application.
  • FIG40 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application.
  • FIG41 is a block diagram of a perception participation device provided by an exemplary embodiment of the present application.
  • FIG42 is a block diagram of a perception participation device provided by an exemplary embodiment of the present application.
  • FIG43 is a schematic diagram of the structure of a perception participation device provided by an exemplary embodiment of the present application.
  • user information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • first, second, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first parameter may also be referred to as the second parameter, and similarly, the second parameter may also be referred to as the first parameter.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • WLAN Sensing It senses people or objects in the environment by measuring the changes in WLAN signals scattered and/or reflected by people or objects. In other words, WLAN sensing measures and senses the surrounding environment through wireless signals, so as to complete many functions such as detection of indoor intrusion/movement/fall, posture recognition, and spatial three-dimensional image creation.
  • Association Identifier Used to identify the terminal after establishing an association with an access point.
  • WLAN devices participating in WLAN awareness may include the following roles:
  • Sensing Initiator It can also be called the sensing session initiator, sensing initiator device, or sensing initiator device.
  • the sensing initiator is the device that initiates the sensing measurement and wants to know the sensing result.
  • Sensing Responder It can also be called Sensing Session Responder, Sensing Responder Device, or Sensing Responder Device.
  • a Sensing Responder is a device that participates in sensing measurements other than the sensing initiator device.
  • Sensing Transmitter It can also be called sensing signal sending device, sensing sender, sensing sending device, and sensing sending device.
  • the sensing signal sender is a device that sends the sensing physical layer protocol data unit (PPDU).
  • Sensing Receiver It can also be called sensing signal receiving device, sensing receiver, sensing receiving device, sensing receiving apparatus.
  • a sensing signal receiver is a device that receives echo signals. Echo signals are the sensing physical layer protocol data units sent by a sensing signal sender that are scattered and/or reflected by people or objects.
  • a WLAN terminal may have one or more roles in a perception measurement.
  • a perception initiator may be only a perception initiator, a perception signal sender, a perception signal receiver, or both.
  • the above devices may be collectively referred to as perception measurement devices.
  • FIG1 is a schematic diagram of a perception measurement system 10 provided by an exemplary embodiment of the present application.
  • the perception measurement system includes terminals and terminals, or terminals and network devices, or access points (AP) and stations (STA), which are not limited in the present application.
  • the present application takes the perception measurement system including: AP110 and STA120 as an example for explanation.
  • AP can be called AP STA, that is, in a sense, AP is also a STA. In some scenarios, STA is called non-AP STA.
  • STA may include AP STA and non-AP STA.
  • the communication in the communication system can be between AP and non-AP STA, between non-AP STA and non-AP STA, or between STA and peer STA, where peer STA can refer to a device that communicates with the STA peer, for example, peer STA may be AP or non-AP STA.
  • AP is equivalent to a bridge connecting wired network and wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to Ethernet.
  • AP devices can be terminal devices (such as mobile phones) or network devices (such as routers) with wireless fidelity (Wireless-Fidelity, Wi-Fi) chips.
  • the role of STA in the communication system is not absolute.
  • the mobile phone when a mobile phone is connected to a router, the mobile phone is a non-AP STA.
  • the mobile phone plays the role of an AP.
  • APs and non-AP STAs can be devices used in Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras, smart remote controls, smart water and electricity meters in smart homes, and sensors in smart cities.
  • IoT Internet of Things
  • non-AP STA may support but is not limited to 802.11bf.
  • Non-AP STA may also support various current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the AP may be a device supporting the 802.11bf standard.
  • the AP may also be a device supporting various current and future WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • STA may be a mobile phone, tablet computer, computer, virtual reality (VR) device, augmented reality (AR) device, wireless device in industrial control, set-top box, wireless device in unmanned driving, vehicle communication equipment, wireless device in telemedicine, wireless device in smart grid, wireless device in transportation safety, wireless device in smart city or wireless device in smart home, wireless communication chip/ASIC/SOC/etc. that supports WLAN/Wi-Fi technology.
  • VR virtual reality
  • AR augmented reality
  • WLAN technology can support frequency bands including but not limited to: low frequency bands (2.4GHz, 5GHz, 6GHz) and high frequency bands (60GHz).
  • low frequency bands 2.4GHz, 5GHz, 6GHz
  • high frequency bands 60GHz
  • the station and access point support multi-band communication, for example, communicating on the 2.4 GHz, 5 GHz, 6 GHz, and 60 GHz bands at the same time, or communicating on different channels of the same band (or different bands) at the same time, to improve the communication throughput and/or reliability between devices.
  • a device is generally referred to as a multi-band device, or a multi-link device (MLD), sometimes also referred to as a multi-link entity or a multi-band entity.
  • MLD multi-link device
  • a multi-link device can be an access point device or a station device. If the multi-link device is an access point device, the multi-link device includes one or more APs; if the multi-link device is a station device, the multi-link device includes one or more non-AP STAs.
  • a multi-link device including one or more APs is called AP, and a multi-link device including one or more non-AP STAs is called Non-AP.
  • Non-AP can be called STA.
  • an AP may include multiple APs
  • a Non-AP may include multiple STAs
  • multiple links may be formed between the APs in the AP and the STAs in the Non-AP
  • data communication may be performed between the APs in the AP and the corresponding STAs in the Non-AP through corresponding links.
  • the AP is a device deployed in a wireless local area network to provide wireless communication functions for STA.
  • the site may include: User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent or user device.
  • the site can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, and the embodiments of the present application are not limited to this.
  • both the station and the access point support the IEEE 802.11 standard, but are not limited to the IEEE 802.11 standard, and may also be other standards related to perception measurement, such as the IEEE 802.11bf D0.1 standard.
  • the WLAN terminals participating in sensing include: sensing initiators and sensing responders. Further, the sensing responders can be divided into sensing senders and sensing receivers.
  • the perception measurement can be applied to a cellular network communication system, a WLAN system or a Wi-Fi system, and this application does not limit this.
  • the perception measurement applied to a WLAN or Wi-Fi system is used as an example for schematic description.
  • the perception measurement in the embodiment of the present application is implemented based on millimeter waves.
  • the millimeter wave perception type is introduced as follows:
  • FIG2 is a schematic diagram of a millimeter wave sensing type provided by an exemplary embodiment of the present application.
  • FIG2 (a) is single-base sensing, and there is only one device participating in the sensing.
  • the device senses the environment by spontaneously (self-sending) sensing PPDU and self-receiving (self-receiving) echo signals, which is similar to the working mode of traditional radar.
  • spontaneous self-receiving means that when the device sends the sensing PPDU, the sender address and the receiver address of the sensing PPDU are set to the address of the device itself.
  • the sensing PPDU sent by the device will form an echo signal after scattering and/or reflection by the environment, and then the device can receive the echo signal through its own address, and the environment can be perceived by analyzing the echo signal.
  • FIG2 (b) is dual-base sensing, and there are two devices participating in the sensing, one of which sends the sensing PPDU and the other receives the echo signal to sense the environment.
  • FIG2 (c) is collaborative single-base sensing, and the number of devices participating in the sensing is greater than one. Each device senses the environment by spontaneously sensing PPDU and self-receiving echo signals. There is a sensing initiator that controls all other devices to achieve collaboration.
  • Figure 2 (d) is cooperative dual-base sensing, where there are more than two devices participating in the sensing, that is, there are at least two pairs of dual-base sensing devices, each sending device (sensing sender) sends a sensing PPDU and the receiving device (sensing receiver) in the same group receives the corresponding echo signal, thereby achieving cooperative sensing.
  • Figure 2 (e) is multi-base sensing, where there are more than two devices participating in the sensing, one sending device sends a sensing PPDU, and multiple receiving devices simultaneously receive the echo signal and complete environmental sensing at the same time.
  • FIG3 is a schematic diagram of a millimeter wave sensing process provided by an exemplary embodiment of the present application.
  • the process is a general process of millimeter wave sensing, which includes, from left to right, a session establishment phase, a millimeter wave sensing measurement setup (Directional Multi-Gigabit (DMG) Measurement setup) phase, and a sensing measurement phase.
  • the sensing measurement phase consists of multiple sensing measurement bursts, and each burst consists of multiple sensing measurement instances.
  • the time interval between bursts is the inter-burst interval
  • the time interval between adjacent sensing measurement instances in a burst is the intra-burst interval.
  • MAC ADDR in FIG3 refers to a media access control (MAC) address
  • AID refers to an association identifier
  • DMG measurement setup ID (DMG Measurement setup Identity Document) refers to a millimeter wave sensing measurement setup identifier
  • MS ID refers to a measurement setup (MS) identifier
  • burst ID refers to a burst identifier
  • an instance sequence number (SN) refers to an identifier of a sensing measurement instance, which may also be referred to as a sensing instance SN or a sensing instance ID.
  • the sensing participating device needs to be able to obtain the angle information of the sensing beam, so it needs information about the beam azimuth and/or beam elevation.
  • the beam azimuth/beam elevation cannot be accurately indicated, resulting in inaccurate indication of the coordinate system of the sensing beam angle, affecting the normal progress of the sensing process.
  • the sensing measurement method provided in this application can effectively solve this problem.
  • FIG4 is a flow chart of a perception measurement method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method being performed by a perception participating device as an example, and the perception participating device includes at least one of a perception initiating device and a perception responding device. The method includes:
  • Step 410 Send or receive a frame carrying a first field during the perception measurement process, where the first field is used to indicate information related to the coordinate system setting.
  • the information related to the coordinate system setting is setting information or configuration information related to the coordinate system used in the perception measurement process.
  • the information related to the coordinate system setting includes: the type of the reference coordinate system.
  • the first field is a coordinates field, which is used to indicate the type of the reference coordinate system, and the type of the reference coordinate system includes at least one of the following:
  • the coordinate system of any STA can be the coordinate system of the perception initiating device, or the coordinate system of the perception responding device, or the coordinate system of the perception sending device, or the coordinate system of the perception receiving device.
  • the perception measurement method by sending or receiving a frame carrying the first field during the perception measurement process, can set or negotiate information related to the coordinate system between the perception participating devices, thereby clearly indicating the coordinate system of the azimuth/elevation angle, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • a frame carrying a coordinate field is sent or received:
  • sending or receiving a frame carrying a first field during a perception measurement process includes at least one of the following two steps:
  • a frame carrying a coordinate field is sent or received
  • frames carrying coordinate fields are sent or received.
  • the perception measurement process can be divided into at least: the perception measurement process based on trigger frame (Trigger Based, TB) ( Figure 5), the perception measurement process based on non-trigger frame (Based Non-Trigger, Based Non-TB) ( Figure 6), and the perception measurement process based on passive perception (7).
  • the perception measurement process based on non-trigger frame can also be called non-trigger frame (Non-Trigger Based, Non-TB).
  • FIG5 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device according to an exemplary embodiment of the present application.
  • the perception initiating device is an AP and the perception responding device is an associated STA.
  • the STA obtains the wireless network information of the AP through passive scanning or active scanning to understand the distribution of the surrounding wireless networks.
  • Passive scanning refers to the STA passively listening to the beacon frame (Beacon frame) broadcast periodically by the AP on the specified channel.
  • the beacon frame can carry capability information (Capability Information), service set identifier (Service Set Identifier, SSID) and other information;
  • STA actively sends a Probe Request frame to AP and receives a Probe Response frame returned by AP.
  • the Probe Request frame and the Probe Response frame can carry capability information, SSID, Extended Capability, etc.
  • the capability information in the above different frames refers to the capability information of the device sending the current frame.
  • the STA establishes an association relationship with a certain AP based on the acquired wireless network information of the AP, so as to obtain full access to the wireless network, thereby becoming an associated STA.
  • the Association Request frame can carry information such as capability information, Listen Interval, SSID, Supported Rates, Quality of Service (QoS Capability), etc.
  • the Association Response frame can carry information such as capability information, Status Code, Association Identify (AID), and extended capability.
  • a STA When a STA is not connecting to an AP for the first time, it will unicast a Reassociation Request frame to the AP and receive a Reassociation Response frame returned by the AP.
  • the information it carries is similar to that of the Reassociation Request frame and the Reassociation Response frame.
  • the AP sends a sensing measurement setting request frame (Sensing Measurement Set Request frame, MS Request frame) to the associated STA and receives the returned sensing measurement setting response frame (MS Response frame), thereby completing the setting of a sensing measurement.
  • the sensing measurement setting request frame can carry information such as the measurement frame (Null Data Physical layer Protocol Data Unit, NDP) bandwidth, NDP type, and reporting type; the sensing measurement setting response frame can carry information such as the status code.
  • a perception measurement instance (Measurement Instance) is established between the associated STA and AP, and they start sending and receiving NDP and performing channel perception.
  • Figure 6 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device provided by an exemplary embodiment of the present application.
  • the process of establishing perception between a non-associated STA and an AP is similar to the process of an associated STA, and both use beacon frames, probe request frames, and probe response frames to scan the wireless network information of the AP.
  • the non-associated STA does not need to establish an association relationship with the AP, that is, it does not need to send an association request frame to the AP and receive an association response frame, nor does it need to send a reassociation request frame to the AP and receive a reassociation response frame.
  • the non-associated STA can send a perception measurement setting query frame (MS Query frame) to the AP after scanning to initiate the perception measurement setting step, and then complete the perception measurement setting step by receiving a perception measurement setting request frame and sending a perception measurement setting response frame.
  • MS Query frame perception measurement setting query frame
  • a perception measurement instance is established between the non-associated STA and the AP, and NDP is sent and received to perform channel perception.
  • FIG7 is a schematic diagram of a perception measurement process established by a perception initiating device and a perception responding device provided by an exemplary embodiment of the present application.
  • the perception initiating device is an AP and the perception responding device is a non-associated STA.
  • STA passively listens to the beacon frames (Beacon frame) and announcement frames (Announce frame) periodically broadcast by AP on the specified channel to obtain the wireless network information of AP. Then STA sends an information request frame (Information Request) to AP, and AP sends an information response frame (Information Response) to STA after receiving it.
  • Beacon frame Beacon frame
  • announcement frames Announce frame
  • the frame structure of the beacon frame is shown in FIG8, including the following arranged in sequence: a frame control (Frame Control) field, a duration (Duration) field, a basic service set identifier (Basic Service Set Identifier, BSSID) field, a frame body (Frame Body) field, and a frame check (FCS) field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the BSSID field occupies 6 bytes
  • the frame body field occupies a variable number of bytes
  • the frame check field occupies 4 bytes.
  • the frame body field of the DMG beacon frame can carry at least one of the DMG sensing beam descriptor element and the DMG sensing short capability element.
  • the association request frame, the association response frame, the reassociation request frame, the reassociation response frame, the probe request frame, and the probe response frame are all subtypes of the management frame.
  • the type (Type) and subtype (Subtype) fields in the frame control (Frame Control) field are used to jointly indicate which subtype of the management frame it is.
  • the frame structure of the management frame is shown in FIG9 , including the following arranged in sequence: the frame control field, the duration field, the address (Address) 1 field, the address 2 field, the address 3 field, the sequence control (Sequence Control) field, the high-throughput (High-Throughput, HT) control field, the frame body field, and the frame check field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the address 1 field occupies 6 bytes
  • the address 2 field occupies 6 bytes
  • the address 3 field occupies 6 bytes
  • the sequence control field occupies 2 bytes
  • the HT control field occupies 0 or 4 bytes
  • the frame body field occupies a variable number of bytes
  • the frame check field occupies 4 bytes.
  • the frame control field includes the following arranged in sequence: a protocol version (Protocol Version) subfield, a type (Type) subfield, a subtype (Subtype) subfield, a to distributed system (Distributed System, DS) subfield, a from DS subfield, a more fragments (More Fragments) subfield, a retry (Retry) subfield, a power adjustment (Power Management) subfield, more data (More Data) subfield, a protected frame (Protected Frame) subfield, and a +High-Throughput Control (+HTC) subfield.
  • the subfields can be referred to as fields for short.
  • the protocol version subfield occupies 2 bits in total, B0-B1
  • the type subfield occupies 2 bits in total, B2-B3
  • the subtype subfield occupies 4 bits in total
  • B4-B7 the Go to DS subfield occupies 1 bit in total
  • B8 the From DS subfield occupies 1 bit in total
  • B9 the More Fragments subfield occupies 1 bit in total
  • B11 the Retry subfield occupies 1 bit in total
  • the Power Adjustment subfield occupies 1 bit in total
  • B12 the More Data subfield occupies 1 bit in total
  • the Protected Frame subfield occupies 1 bit in total, B14
  • the +HTC subfield occupies 1 bit in total, B15.
  • the association request frame, the association response frame, the re-association request frame, the re-association response frame, the detection request frame and the detection response frame may carry at least one of the DMG sensing beam descriptor element and the DMG sensing short capability element.
  • the frame structures of the declaration frame, information request frame, and information response frame are shown in FIG10, which are all action frame structures.
  • the action frame is a subtype of the management frame and is used to extend the management frame.
  • the first field in the frame body field of the action frame is the action field, in which the Category subfield and the Action Details subfield are used to indicate the subtypes of different action frames.
  • the fields and elements contained in the frame body field of action frames of different subtypes are different.
  • the action frame structure includes the following arranged in sequence: frame control field, duration field, address 1 field, address 2 field, address 3 field, sequence control field, HT control field, frame body field, and frame check field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the address 1 field occupies 6 bytes
  • the address 2 field occupies 6 bytes
  • the address 3 field occupies 6 bytes
  • the sequence control field occupies 2 bytes
  • the HT control field occupies 0 or 4 bytes
  • the frame body field occupies a variable number of bytes
  • the frame check field occupies 4 bytes.
  • the frame body field includes an action field
  • the action field includes: a category subfield and an action detail subfield, the category subfield occupies 1 byte, and the action detail subfield occupies a variable number of bytes.
  • the declaration frame can carry at least one of the DMG sensing beam descriptor element and the DMG sensing short capability element; the information response frame can carry at least one of the DMG beacon sector descriptor element and the DMG passive sensing beacon information element; the information request frame can carry the element ID of the DMG passive sensing beacon information element.
  • the above-mentioned coordinate field can be carried between the perception initiating device and the perception responding device through at least one of the above-mentioned beacon frames, detection request frames, detection response frames, association request frames, association response frames, reassociation request frames, reassociation response frames, and declaration frames.
  • the coordinate field may be carried by at least one of the perception measurement setting query frame, the perception measurement setting request frame, and the perception measurement setting response frame.
  • the frame structure of the perception measurement setting request frame is shown in Figure 11, including the following: frame control field, duration field, address 1 field, address 2 field, address 3 field, sequence control field, HT control field, frame body field, and frame check field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the address 1 field occupies 6 bytes
  • the address 2 field occupies 6 bytes
  • the address 3 field occupies 6 bytes
  • the sequence control field occupies 2 bytes
  • the HT control field occupies 0 or 4 bytes
  • the frame body field occupies 1 byte
  • the frame check field occupies 4 bytes.
  • the frame body field includes an action field, the action field occupies a variable number of bytes, and the action field includes the following arranged in sequence: a category subfield, an unprotected DMG action subfield, a dialog token subfield, a DMG measurement setup element ID subfield, and a DMG sensing measurement setup element subfield.
  • the category subfield occupies 1 byte
  • the unprotected DMG action subfield occupies 1 byte
  • the dialog token subfield occupies 1 byte
  • the DMG measurement setup ID subfield occupies 1 byte
  • the DMG sensing measurement setup element subfield occupies a variable number of bytes.
  • the sensing measurement setup request frame can carry the DMG sensing measurement setup element.
  • the frame structure of the perception measurement setting response frame is shown in Figure 12, including the following: frame control field, duration field, address 1 field, address 2 field, address 3 field, sequence control field, HT control field, frame body field, and frame check field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the address 1 field occupies 6 bytes
  • the address 2 field occupies 6 bytes
  • the address 3 field occupies 6 bytes
  • the sequence control field occupies 2 bytes
  • the HT control field occupies 0 or 4 bytes
  • the frame body field occupies 1 byte
  • the frame check field occupies 4 bytes.
  • the frame body field includes an action field, the action field occupies a variable number of bytes, and the action field includes the following arranged in sequence: a category subfield, an unprotected DMG action subfield, a dialog token subfield, a DMG measurement setting ID subfield, a status code (Status Code) subfield, a DMG sensing measurement setting element subfield, a DMG sensing image range axis look-up table (DMG Sensing Image Doppler Axis Look Up Table) subfield, and a DMG sensing image Doppler axis look-up table (DMG Sensing Image Doppler Axis Look Up Table) subfield.
  • a category subfield an unprotected DMG action subfield
  • a dialog token subfield a DMG measurement setting ID subfield
  • a status code (Status Code) subfield a DMG sensing measurement setting element subfield
  • DMG sensing image range axis look-up table DMG Sensing Image Doppler Axis
  • the category subfield occupies 1 byte
  • the unprotected DMG action subfield occupies 1 byte
  • the dialog token subfield occupies 1 byte
  • the DMG measurement setting ID subfield occupies 1 byte
  • the status code subfield occupies 2 bytes
  • the DMG sensing measurement setting element subfield occupies a variable number of bytes
  • the DMG sensing image range axis look-up table subfield occupies a variable number of bytes
  • the DMG sensing image Doppler axis look-up table subfield occupies a variable number of bytes.
  • the perception measurement setting response frame may carry the DMG perception measurement setting element.
  • the coordinate field is carried in at least one of the following elements, including:
  • FIG13 is a schematic diagram of the element structure of the DMG perception beam descriptor element provided by the related art.
  • the DMG perception beam descriptor element includes the following arranged in sequence: Element ID field, Length field, Element ID Extension field, Transmit flag field, Beam Descriptor 1 field to Beam Descriptor N field.
  • the Element ID field occupies 1 byte
  • the Length field occupies 1 byte
  • the Element ID Extension field occupies 1 byte
  • the Transmit flag field occupies 1 byte
  • the Beam Descriptor 1 field to the Beam Descriptor N field each occupies 6 bytes.
  • the beam descriptor 1 field includes the following arranged in sequence: a beam azimuth subfield, a beam elevation subfield, an azimuth beamwidth subfield, an elevation beamwidth subfield, and a beam gain subfield.
  • the beam azimuth subfield occupies 12 bits from B0 to B11
  • the beam elevation subfield occupies 12 bits from B12 to B23
  • the azimuth beamwidth subfield occupies 9 bits from B24 to B32
  • the elevation beamwidth subfield occupies 8 bits from B33 to B40
  • the beam gain subfield occupies 7 bits from B41 to B47.
  • Transmit flag indicates a transmit (Transmit, TX) beam descriptor or a receive (Receive, RX) beam descriptor.
  • each subfield of the beam descriptor field includes:
  • Beam azimuth indicates the azimuth of the beam, in units of (360/4096)°, with a value range of 0 to 4095. Referred to as the azimuth field or azimuth subfield.
  • Beam elevation indicates the elevation of the beam.
  • the encoding method is 2's complement, the unit is (180/4096)°, and the value range is -2048 to 2047. It is referred to as the elevation field or elevation subfield.
  • Azimuth beamwidth Contains the 3dB bandwidth of the beam in the azimuth direction, expressed in (360/512)°.
  • Elevation beamwidth Contains the 3dB bandwidth of the beam in the elevation direction, in units of (180/256)°.
  • Beam gain Contains the gain of the beam, in units of 0.5dB. A value of 0 represents 0dBi.
  • the present application adds a coordinate field in the DMG perception beam descriptor element.
  • the coordinate field is a field of the same level as the N beam descriptor fields, and is used to indicate the reference coordinate system of all beam azimuth fields and beam elevation fields in the DMG perception beam descriptor element.
  • the coordinate field takes the first value, it indicates the earth coordinate system; when the coordinate field takes the second value, it indicates any STA coordinate system.
  • a coordinate field is added to the DMG perception beam descriptor element, as shown in FIG14, which is a schematic diagram of the element structure of the DMG perception beam descriptor element provided by an exemplary embodiment of the present application, including the following: element ID field, length field, element ID extension field, transmission identification field, coordinate field, beam descriptor 1 field to beam descriptor N field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the transmission identification field occupies 1 byte
  • the coordinate field occupies 1 byte
  • the beam descriptor 1 field to the beam descriptor N field each occupy 6 bytes.
  • the beam descriptor 1 field is the same as the beam descriptor 1 field in Figure 13 and is not repeated here.
  • the coordinate field indicates the reference coordinate system of all beam azimuth subfields and beam elevation subfields in the DMG perception beam descriptor element.
  • the coordinate field may also take a value of 0 to indicate the earth coordinate system; or a value of 1 to indicate any STA coordinate system, which is not limited in this application.
  • This embodiment adds a coordinate field in the DMG perception beam descriptor element so that the coordinate field indicates the reference coordinate system of all beam azimuth subfields and beam elevation subfields in the DMG perception beam descriptor element, thereby reducing overhead, unifying the coordinate system indicating the azimuth/elevation angle, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • the coordinate field corresponds to the beam descriptor field one-to-one, and is used to indicate the reference coordinate system of the beam azimuth field and the beam elevation field in the beam descriptor field. That is, the DMG perception beam descriptor element includes N beam descriptor fields, and each subfield of the beam descriptor field includes: beam azimuth field, beam elevation field and coordinate field, and N is a positive integer.
  • the coordinate value is the first value, it indicates the earth coordinate system; when the coordinate value is the second value, it indicates any STA coordinate system.
  • FIG15 is a schematic diagram of the element structure of a DMG perception beam descriptor element provided by an exemplary embodiment of the present application, including: an element ID field, a length field, an element ID extension field, a transmission identification field, and a beam descriptor 1 field to a beam descriptor N field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the transmission identification field occupies 1 byte
  • the beam descriptor 1 field to the beam descriptor N field each occupy 7 bytes.
  • the beam descriptor 1 field includes the following arranged in sequence: beam azimuth subfield, beam elevation subfield, azimuth beam width subfield, elevation beam width subfield, beam gain subfield, coordinate subfield, and reserved subfield.
  • the beam azimuth subfield occupies 12 bits from B0 to B11
  • the beam elevation subfield occupies 12 bits from B12 to B23
  • the azimuth beam width subfield occupies 9 bits from B24 to B32
  • the elevation beam width subfield occupies 8 bits from B33 to B40
  • the beam gain subfield occupies 7 bits from B41 to B47
  • the coordinate subfield occupies 1 bit from B48
  • the reserved subfield occupies 7 bits from B49 to B55.
  • the coordinate subfield indicates the reference coordinate system of the beam azimuth and beam elevation subfields in the beam descriptor field where the subfield is located. That is, the coordinate subfield in the i-th beam descriptor field is used to indicate the reference coordinate system of the beam azimuth and beam elevation subfields in the i-th beam descriptor field.
  • This embodiment adds a coordinate subfield in the DMG perception beam descriptor element so that the coordinate subfield indicates the reference coordinate system of the beam azimuth subfield and the beam elevation subfield in the beam descriptor field, thereby flexibly indicating the azimuth/elevation coordinate system, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • Fig. 16 is a schematic diagram of the element structure of the DMG beacon sector descriptor element provided by the related art.
  • the DMG beacon sector descriptor element includes the following arranged in sequence: element ID field, length field, element ID extension field, transmission identification field, sector descriptor 1 field to sector descriptor N field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the transmission identification field occupies 1 byte
  • the sector descriptor 1 field to the sector descriptor N field each occupies 8 bytes.
  • the sector descriptor 1 field includes the following arranged in sequence: sector azimuth (Sector Azimuth) subfield, sector elevation (Sector Elevation) subfield, azimuth beamwidth subfield, elevation beamwidth subfield, sector gain (Sector Gain) subfield, sector ID (Sector ID) subfield, DMG antenna identification (DMG Ant ID) subfield, and reserved subfield.
  • the sector azimuth subfield occupies a total of 12 bits from B0 to B11
  • the sector elevation subfield occupies a total of 12 bits from B12 to B23
  • the azimuth beam width subfield occupies a total of 9 bits from B24 to B32
  • the elevation beam width subfield occupies a total of 8 bits from B33 to B40
  • the sector gain subfield occupies a total of 8 bits from B40 to B47
  • the sector ID subfield occupies a total of 8 bits from B48 to B55
  • the DMG antenna identification subfield occupies a total of 3 bits from B56 to B58
  • the reserved subfield occupies a total of 5 bits from B59 to B63.
  • the DMG beacon sector descriptor element includes N sector descriptor fields.
  • the subfields may be referred to as fields.
  • the meaning of the subfields of each sector descriptor field is as follows:
  • Sector azimuth indicates the azimuth of the beam, the unit is (360/4096)°, the value range is 0 to 4095, referred to as azimuth.
  • Sector elevation angle indicates the elevation angle of the beam.
  • the encoding method is signed 2's complement.
  • the unit is (180/4096)°.
  • the value range is -2048 to 2047. It is referred to as elevation angle.
  • Azimuth beamwidth Contains the 3dB bandwidth of the beam in the azimuth direction, in units of (360/256)°.
  • Elevation beamwidth Contains the 3dB bandwidth of the beam in the elevation direction, in units of (180/256)°.
  • Sector gain Contains the gain of the beam, in units of 0.5 dB, and ranges from 0 to 255.
  • DMG Antenna Identification Same as the DMG Antenna Identification field used in the beacon.
  • the present application adds a coordinate field in the DMG beacon sector descriptor element.
  • the DMG beacon sector descriptor element includes N sector descriptor fields, and the subfields of each sector descriptor field include: sector azimuth field and sector elevation field, where N is a positive integer.
  • the coordinate field is a field of the same level as the N sector descriptor fields, and the coordinate field is used to indicate the reference coordinate system of all sector azimuth fields and sector elevation fields in the DMG beacon sector descriptor element. When the coordinate field takes the first value, it indicates the earth coordinate system; when the coordinate field takes the second value, it indicates any STA coordinate system.
  • a coordinate field is added to the DMG beacon sector descriptor element, as shown in FIG17, which is a schematic diagram of the element structure of the DMG beacon sector descriptor element provided by an exemplary embodiment of the present application, including: element ID field, length field, element ID extension field, transmission identification field, coordinate field, sector descriptor 1 field to sector descriptor N field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the transmission identification field occupies 1 byte
  • the coordinate field occupies 1 byte
  • the sector descriptor 1 field to the sector descriptor N field each occupy 8 bytes.
  • the subfields included in the sector descriptor 1 field are the same as the subfields included in the sector descriptor 1 field in Figure 16, and are not repeated here.
  • the coordinate field indicates the reference coordinate system of all sector azimuth and sector elevation subfields in the DMG beacon sector descriptor element where the field is located.
  • the coordinate field may also take a value of 0 to indicate the earth coordinate system; or a value of 1 to indicate any STA coordinate system, which is not limited in this application.
  • This embodiment adds a coordinate field in the DMG beacon sector descriptor element so that the coordinate field indicates the reference coordinate system of all sector azimuth subfields and sector elevation subfields in the DMG beacon sector descriptor element, thereby reducing overhead, unifying the coordinate system indicating the azimuth/elevation angle, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • the DMG beacon sector descriptor element includes N sector description fields.
  • the subfields of each sector descriptor field include: sector azimuth field, sector elevation field and coordinate field, where N is a positive integer.
  • the coordinate field corresponds to the sector descriptor field one by one.
  • the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and sector elevation field in the sector descriptor field. When the coordinate field takes the first value, it indicates the earth coordinate system; when the coordinate field takes the second value, it indicates any STA coordinate system.
  • a coordinate subfield is added to the DMG beacon sector descriptor element, as shown in FIG18, which is a schematic diagram of the element structure of the DMG beacon sector descriptor element provided by an exemplary embodiment of the present application, including: element ID field, length field, element ID extension field, transmission identification field, sector descriptor 1 field to sector descriptor N field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the transmission identification field occupies 1 byte
  • the sector descriptor 1 field to the sector descriptor N field each occupy 8 bytes.
  • the sector descriptor 1 field includes the following arranged in sequence: sector azimuth subfield, sector elevation subfield, azimuth beamwidth subfield, elevation beamwidth subfield, sector gain subfield, sector ID subfield, DMG antenna identification subfield, coordinate subfield, and reserved subfield.
  • the sector azimuth subfield occupies 12 bits from B0 to B11
  • the sector elevation subfield occupies 12 bits from B12 to B23
  • the azimuth beamwidth subfield occupies 9 bits from B24 to B32
  • the elevation beamwidth subfield occupies 8 bits from B33 to B40
  • the sector gain subfield occupies 8 bits from B40 to B47
  • the sector ID subfield occupies 8 bits from B48 to B55
  • the DMG antenna identification subfield occupies 3 bits from B56 to B58
  • the coordinate subfield occupies 1 bit from B59
  • the reserved subfield occupies 4 bits from B60 to B63.
  • the coordinate subfield indicates the reference coordinate system of the sector azimuth and sector elevation subfields in the sector descriptor field where the subfield is located.
  • the coordinate subfield may also take a value of 0 to indicate the earth coordinate system; or a value of 1 to indicate any STA coordinate system, which is not limited in this application.
  • This embodiment adds a coordinate subfield in the DMG beacon sector descriptor element, so that the coordinate subfield indicates the reference coordinate system of the sector azimuth subfield and the sector elevation subfield in the beacon sector descriptor element, thereby flexibly indicating the azimuth/elevation coordinate system, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • FIG19 is a schematic diagram of the element structure of the DMG passive sensing beacon information element provided by the related art.
  • the DMG passive sensing beacon information element includes the following arranged in sequence: element ID field, length field, element ID extension field, number of sectors field, beacon information control field, and local communication interface (LCI) field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the number of sectors field occupies 1 byte
  • the beacon information control field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes.
  • the beacon information control field includes the following arranged in sequence: a beacon constant (Beacon Constant) subfield, a next beacon (Next Beacon) subfield, an LCI present (LCI Present) subfield, and a reserved subfield.
  • the beacon constant subfield occupies B0 for a total of 1 bit
  • the next beacon subfield occupies B1 for a total of 1 bit
  • the LCI present subfield occupies B2 for a total of 1 bit
  • the reserved subfield occupies B3 to B7 for a total of 5 bits.
  • the subfield can be referred to as a field for short.
  • LCI exists Indicates whether the LCI field exists in the DMG passive sensing beacon information element. A value of 1 indicates existence, and a value of 0 indicates non-existence.
  • the present application adds a coordinate field in the DMG passive sensing beacon information element.
  • the DMG passive sensing beacon information element includes a beacon information control field.
  • the coordinate field and the beacon information control field are fields of the same level.
  • the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and the sector elevation field in the DMG beacon sector descriptor element carried in the frame. When the coordinate field takes the first value, it indicates the earth coordinate system; when the coordinate field takes the second value, it indicates any STA coordinate system.
  • a coordinate field is added to the DMG passive sensing beacon information element, as shown in FIG20, which is a schematic diagram of the element structure of the DMG passive sensing beacon information element provided by an exemplary embodiment of the present application, including: element ID field, length field, element ID extension field, sector number field, beacon information control field, LCI field, coordinate field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the sector number field occupies 1 byte
  • the beacon information control field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes
  • the coordinate field occupies 1 byte.
  • the subfields included in the beacon information control field are the same as the subfields included in the beacon information control field of Figure 19, and are not repeated here.
  • the coordinate field indicates the reference coordinate system of the sector azimuth and sector elevation subfields in the DMG beacon sector descriptor element carried in the frame where the element is located.
  • the coordinate field may also take a value of 0 to indicate the earth coordinate system; or a value of 1 to indicate any STA coordinate system, which is not limited in this application.
  • This embodiment adds a coordinate field in the DMG passive perception beacon information element so that the coordinate field indicates the reference coordinate system of all sector azimuth subfields and sector elevation subfields in the DMG beacon sector descriptor element carried in the frame where the element is located, thereby reducing overhead, unifying the coordinate system indicating the azimuth/elevation angle, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • the DMG passive sensing beacon information element includes a beacon information control field.
  • the subfield of the beacon information control field includes a coordinate field.
  • the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and the sector elevation field in the DMG beacon sector descriptor element carried in the frame. When the coordinate field takes the first value, it indicates the earth coordinate system; when the coordinate field takes the second value, it indicates any STA coordinate system.
  • a coordinate subfield is added to the DMG passive sensing beacon information element, as shown in FIG21, which is a schematic diagram of the element structure of the DMG passive sensing beacon information element provided by an exemplary embodiment of the present application, including: element ID field, length field, element ID extension field, sector number field, beacon information control field, LCI field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the sector number field occupies 1 byte
  • the beacon information control field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes.
  • the beacon information control field includes the following arranged in sequence: a beacon constant subfield, a next beacon subfield, an LCI existence subfield, a coordinate subfield, and a reserved subfield.
  • the beacon constant subfield occupies B0 for a total of 1 bit
  • the next beacon subfield occupies B1 for a total of 1 bit
  • the LCI existence subfield occupies B2 for a total of 1 bit
  • the coordinate subfield occupies B3 for a total of 1 bit
  • the reserved subfield occupies B4 to B7 for a total of 4 bits.
  • the subfield may be referred to as a field for short.
  • the coordinate subfield indicates the reference coordinate system of the sector azimuth and sector elevation subfields in the DMG beacon sector descriptor element carried in the frame in which the element is located.
  • the coordinate subfield may also take a value of 0 to indicate the earth coordinate system; or a value of 1 to indicate any STA coordinate system, which is not limited in this application.
  • This embodiment adds a coordinate subfield to the DMG passive perception beacon information element, so that the coordinate subfield indicates the reference coordinate system of the sector azimuth subfield and the sector elevation subfield in the DMG beacon sector descriptor element carried in the frame where the element is located, thereby flexibly indicating the azimuth/elevation coordinate system, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • FIG22 is a schematic diagram of the element structure of the DMG sensing short capability element provided by the related art, including: an element ID field, a length field, an element ID extension field, and a DMG sensing short capability (Short DMG Sensing Capabilities) field arranged in sequence.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the DMG sensing short capability field occupies 1 byte.
  • the DMG sensing short capability field includes the following arranged in sequence: sensing support (Sensing Support) subfield, passive sensing support (Passive Sensing Support) subfield, accurate timing of beacons (Accurate Timing of Beacons) subfield, available location (Location Available) subfield, earth coordinates (Earth Coordinates) subfield, reserved subfield.
  • the sensing support subfield B0 has a total of 1 bit
  • the passive sensing support subfield occupies B1 for a total of 1 bit
  • the accurate timing of beacons subfield occupies B2 for a total of 1 bit
  • the available location subfield occupies B3 for a total of 1 bit
  • the earth coordinates subfield occupies B4 for a total of 1 bit
  • the reserved subfield occupies B5 to B7 for a total of 3 bits.
  • Perception Support Indicates whether any of the DMG perception types are supported.
  • Passive Sensing Support Indicates whether DMG passive sensing is supported by providing beacon direction and optional location information.
  • Inter-beacon accurate timing Indicates that the time interval between beacons is sample accurate.
  • Available Location Indicates that the AP can provide its location information for passive sensing.
  • the present application modifies the meaning of the earth coordinate subfield in the DMG perception short capability element.
  • the subfield can be referred to as the field for short.
  • the coordinate field in this method is the earth coordinate subfield in the DMG perception short capability element.
  • This embodiment modifies the meaning of the earth coordinate subfield in the DMG perception short capability element so that the coordinate field indicates the reference coordinate system of the azimuth subfield and the elevation subfield in the frame where the element is located, thereby clearly indicating the azimuth/elevation coordinate system, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • the coordinate field is carried in the DMG perception measurement setting element to indicate the reference coordinate system of the azimuth field and elevation field in the DMG perception measurement setting element.
  • the sensing initiator sends or receives a frame carrying a coordinate field to the sensing responder
  • the sensing responder sends or receives a frame carrying a coordinate field to the sensing initiator.
  • FIG23 is a schematic diagram of a DMG perception measurement setting element provided by the related art.
  • the DMG perception measurement setting element includes the following arranged in sequence: an element ID field, a length field, an element ID extension field, a measurement setting control field, a report type field, an LCI field, a peer orientation field, and an optional subelements field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the measurement setting control field occupies 1 byte
  • the report type field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes
  • the peer orientation field occupies 0 to 5 bytes
  • the optional subelements field occupies a variable number of bytes.
  • the measurement setting control field includes the following arranged in sequence: a sensing type subfield, an RX initiator subfield, an LCI present subfield, an orientation present subfield, and a reserved subfield.
  • the sensing type subfield occupies 3 bits from B0 to B2
  • the RX initiator subfield occupies 1 bit from B3
  • the LCI present subfield occupies 1 bit from B4
  • the orientation present subfield occupies 1 bit from B5
  • the reserved subfield occupies 2 bits from B6 to B7.
  • the subfield may be referred to as a field.
  • the peer location field includes: an azimuth subfield, an elevation subfield, and a range subfield, which are arranged in sequence.
  • the azimuth subfield occupies 12 bits from B0 to B11
  • the elevation subfield occupies 12 bits from B12 to B23
  • the range subfield occupies 16 bits from B24 to B39.
  • the DMG perception measurement setting element carries information for setting a DMG perception measurement.
  • the DMG perception measurement setting element is carried in the frame body field of at least one of the following frames:
  • the DMG perception measurement setting element includes an element ID field, a length field, an element ID extension field, a measurement setting control field, a reporting type field, an LCI field, a peer location field, and an optional sub-element field.
  • the measurement setting control field includes the following fields:
  • Perception Type Indicates the type of DMG perception measurement. The specific values and their meanings can be found in Table 1.
  • Rx initiator indicates whether the sensing initiator is a sensing receiver or a sensing sender in the dual-base sensing type. A value of 1 indicates that the sensing initiator is a sensing receiver; a value of 0 indicates that the sensing initiator is a sensing sender.
  • LCI exists indicates whether the LCI field exists in the DMG perception measurement setting element. A value of 1 indicates that the LCI field exists in the DMG perception measurement setting element; a value of 0 indicates that the LCI field does not exist in the DMG perception measurement setting element.
  • Location exists indicates whether the peer location field exists in the DMG perception measurement setting element. A value of 1 indicates that the peer location field exists in the DMG perception measurement setting element; a value of 0 indicates that the peer location field does not exist in the DMG perception measurement setting element.
  • reporting type field in the DMG perception measurement setting element is used to indicate the type of report that the perception initiator expects the perception responder to report.
  • the values and their meanings are shown in Table 2.
  • the LCI field carries the LCI field in the location configuration information report.
  • the peer location field is used to indicate the direction and distance of the peer device, and includes three subfields: direction angle, elevation angle, and distance.
  • the optional sub-element field includes zero or more sub-elements. All sub-elements and their order are shown in Table 3 below.
  • the coordinate field is a subfield of the measurement setting control field, and the azimuth field and elevation field are subfields of the peer direction field.
  • the value of the Earth Coordinate field in the DMG Perception Short Capability Element is the first value
  • the value of the coordinate field is unique and the reference coordinates used to indicate the azimuth field and the elevation field are the coordinate system of any STA;
  • the coordinate field is used to indicate that the reference coordinates of the azimuth field and the elevation field are the coordinate system of any STA;
  • the reference coordinates used by the coordinate field for the azimuth field and the elevation field are the earth coordinate system.
  • FIG. 24 is a schematic diagram of the element structure of the DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • the DMG perception measurement setting element includes the following arranged in sequence: element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer position field, and optional sub-element field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the measurement setting control field occupies 1 byte
  • the reporting type field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes
  • the peer position field occupies 0 to 5 bytes
  • the optional sub-element field occupies a variable number of bytes.
  • the measurement setting control field includes the following arranged in sequence: a sensing type subfield, an RX initiator subfield, an LCI presence subfield, a location presence subfield, a coordinate subfield, and a reserved subfield.
  • the sensing type subfield occupies 3 bits in total, B0-B2
  • the RX initiator subfield occupies 1 bit in total
  • B3 the LCI presence subfield occupies 1 bit in total
  • B4 the location presence subfield occupies 1 bit in total
  • B5 the coordinate subfield occupies 1 bit in total
  • B6 the reserved subfield occupies 1 bit in total.
  • the subfield may be referred to as a field for short.
  • the peer location field includes: an azimuth subfield, an elevation subfield, and a distance subfield, arranged in sequence, wherein the azimuth subfield occupies 12 bits from B0 to B11, the elevation subfield occupies 12 bits from B12 to B23, and the distance subfield occupies 16 bits from B24 to B39.
  • a coordinate subfield is added to the measurement setting control field. If the subfield in the measurement setting control field where the subfield is located has a subfield value of 0, the subfield is reserved.
  • the value of this subfield is unique (only 1 or only 0) and indicates that the Azimuth subfield and Elevation subfield in the Opposite Location field are relative to any STA coordinate system;
  • this subfield indicates the reference coordinate system of the azimuth subfield and the elevation subfield in the peer position field in the DMG perception measurement setting element. For example, when the value of the coordinate subfield is 1, it indicates the earth coordinate system, and when the value of the coordinate subfield is 0, it indicates any STA coordinate system.
  • This embodiment adds a coordinate subfield to the measurement setting control field of the DMG perception measurement setting element, so that the coordinate subfield indicates the reference coordinate system of the azimuth subfield and the elevation subfield in the opposite end position field in the DMG perception measurement setting element, thereby ensuring the normal progress of the response perception process and the accuracy of the perception measurement results.
  • the coordinate field, azimuth field, and elevation field are all subfields of the opposite direction field.
  • the value of the Earth Coordinate field in the DMG Perception Short Capability Element is the first value
  • the value of the coordinate field is unique and the reference coordinates used to indicate the azimuth field and the elevation field are the coordinate system of any STA;
  • the coordinate field is used to indicate that the reference coordinates of the azimuth field and the elevation field are the coordinate system of any STA;
  • the reference coordinates used by the coordinate field for the azimuth field and the elevation field are the earth coordinate system.
  • FIG. 25 is a schematic diagram of the element structure of the DMG perception measurement setting element provided by an exemplary embodiment of the present application.
  • the DMG perception measurement setting element includes the following arranged in sequence: element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer position field, and optional sub-element field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the measurement setting control field occupies 1 byte
  • the reporting type field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes
  • the peer position field occupies 0 to 6 bytes
  • the optional sub-element field occupies a variable number of bytes.
  • the measurement setting control field includes: a sensing type subfield, an RX initiator subfield, an LCI presence subfield, a position presence subfield, and a reserved subfield, which are arranged in sequence.
  • the sensing type subfield occupies 3 bits from B0 to B2
  • the RX initiator subfield occupies 1 bit from B3
  • the LCI presence subfield occupies 1 bit from B4
  • the position presence subfield occupies 1 bit from B5
  • the reserved subfield occupies 2 bits from B6 to B7.
  • the subfield may be referred to as a field.
  • the peer location field includes the following arranged in sequence: azimuth subfield, elevation subfield, distance subfield, coordinate subfield, and reserved subfield.
  • azimuth subfield occupies 12 bits from B0 to B11
  • elevation subfield occupies 12 bits from B12 to B23
  • distance subfield occupies 16 bits from B24 to B39
  • the coordinate subfield occupies 1 bit from B40
  • the reserved subfield occupies 7 bits from B41 to B47.
  • a coordinate subfield is added to the peer location field.
  • the value of this subfield is unique (only 1 or only 0) and indicates that the azimuth subfield and elevation subfield in the opposite end location field where this subfield is located are relative to any STA coordinate system;
  • this subfield indicates the reference coordinate system of the azimuth subfield and the elevation subfield in the opposite end location field. For example, when the value of the coordinate subfield is 1, it indicates the earth coordinate system, and when the value of the coordinate subfield is 0, it indicates any STA coordinate system.
  • This embodiment adds a coordinate subfield to the opposite end position field of the DMG perception measurement setting element, so that the coordinate subfield indicates the reference coordinate system of the azimuth subfield and the elevation subfield in the opposite end position field, thereby ensuring the normal progress of the response perception process and the accuracy of the perception measurement results.
  • the azimuth field and the elevation field are both subfields of the opposite direction field.
  • Azimuth field Contains the azimuth of the addressed STA measured by the STA sending the frame, in units of (360/4096)°, ranging from 0 to 4095.
  • the azimuth coordinate system is a coordinate system related to the direction of the STA sending the frame.
  • Elevation Angle field contains the elevation angle of the addressed STA measured by the STA sending the frame, in units of (180/4096) degrees, ranging from -2048 to 2047.
  • the elevation angle coordinate system is a coordinate system related to the direction of the STA sending the frame.
  • This embodiment ensures the normal progress of the response perception process and the accuracy of the perception measurement result by modifying the meaning of the azimuth angle field and the elevation angle field.
  • the single-base PPDU may overlap with the perception measurement report frame to cause interference, thereby affecting the normal progress of the perception process.
  • the perception measurement method provided in the present application can effectively solve this problem.
  • FIG26 is a schematic diagram of a sequential mode instance of a millimeter wave collaborative single-base sensing measurement provided by an exemplary embodiment of the present application
  • FIG27 is a schematic diagram of a parallel mode instance of a millimeter wave collaborative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • the sensing initiator needs to send a millimeter wave sensing request frame to each sensing responder at the initial stage of the sensing measurement instance, and each sensing responder needs to reply a millimeter wave sensing response frame to the sensing initiator within the short interframe space (SIFS) time.
  • the DMG sensing request can also be called RQ
  • the DMG sensing response can also be called RSP.
  • each sensing responder sends and receives a single-base sensing measurement frame to sense the environment in turn, and sends a sensing measurement report frame to the sensing initiator within the SIFS time.
  • each sensing responder simultaneously sends and receives a single-base sensing measurement frame to sense the environment, and then sends a DMG sensing measurement report frame (sensing measurement report frame) to the sensing initiator in turn.
  • the grids above the horizontal lines corresponding to the perception initiator or the perception responder represent frames sent by the device, and the grids below the horizontal lines (blank grids) represent frames received by the device, and the sent frames and the received frames correspond to each other.
  • the grid directly above the horizontal line corresponding to the perception responder it represents the frame sent and received by the perception responder, such as the single-base perception measurement frame sent and received by the perception responder.
  • the perception initiator sends an RQ to the perception responder STA A (represented by the grid above the horizontal line corresponding to the perception initiator), and correspondingly, the perception responder STA A will receive the RQ (represented by the blank grid below the horizontal line corresponding to the perception responder STA A).
  • RQ represented by the blank grid below the horizontal line corresponding to the perception responder STA A.
  • FIG28 is a schematic diagram of the format of a DMG perception request frame provided by the related art.
  • the perception request frame includes a MAC frame header, a MAC frame body, and a frame check field.
  • the MAC frame header includes the following fields: a frame control field, a duration field, a receiver address (RA) field, and a transmitter address (TA) field
  • the MAC frame body includes the following fields: a TDD beamforming control (TDD Beamforming Control) field and a TDD beamforming information (TDD Beamforming Information) field, wherein the frame control field occupies 2 bytes, the duration field occupies 2 bytes, the receiving address field occupies 6 bytes, the transmitting address field occupies 6 bytes, the TDD beamforming control field occupies 1 byte, the TDD beamforming information field occupies 10 bytes, and the frame check field occupies 4 bytes.
  • TDD Beamforming Control TDD beamforming control
  • TDD Beamforming Information TDD Beamforming Information
  • the TDD beamforming control field includes the following arranged in sequence: a TDD group beamforming (TDD Group Beamforming) subfield, a TDD beam measurement (TDD Beam Measurement) subfield, a TDD beamforming frame type (TDD Beamforming Frame Type) subfield, a training end subfield, and a reserved subfield.
  • TDD group Beamforming TDD Group Beamforming
  • TDD beam measurement TDD Beam Measurement
  • TDD beamforming frame type TDD Beamforming Frame Type
  • the TDD group beamforming subfield occupies B0, a total of 1 bit, and the value is 0, the TDD beam measurement subfield occupies B1, a total of 1 bit, and the value is 0, the TDD beamforming frame type subfield occupies B2-B3, a total of 2 bits, and the value is 3, the training end subfield occupies B4, a total of 1 bit, and the reserved subfield occupies B5-B7, a total of 3 bits.
  • the TDD beamforming information field includes the following arranged in sequence: a measurement setup ID subfield, a measurement burst ID subfield, a measurement instance number subfield, a perception type subfield, a STA ID subfield, a first beam index subfield, a number of STAs in an instance subfield, a number of PPDUs in an instance subfield, an enhanced directional multi-gigabit token ring length subfield, and an enhanced directional multi-gigabit token ring length subfield.
  • EDMG TRN Length anced Directional Multi-Gigabit Token Ring Network Length subfield, the number of RX TRN-Units per Each TX TRN-Unit) subfield, EDMG TRN-Unit P subfield, EDMG TRN-Unit M subfield, EDMG TRN-Unit N subfield, TRN Subfield Sequence Length subfield, Bandwidth subfield, and Reserved subfield.
  • the measurement setting ID subfield occupies 8 bits from B0 to B7
  • the measurement burst ID subfield occupies 8 bits from B8 to B15
  • the measurement instance number subfield occupies 8 bits from B16 to B23
  • the perception type subfield occupies 3 bits from B24 to B26
  • the STA ID subfield occupies 3 bits from B27 to B29
  • the first beam index subfield occupies 8 bits from B30 to B37
  • the number of STAs in the instance subfield occupies 3 bits from B38 to B40
  • the number of PPDUs in the instance subfield occupies 2 bits from B41 to B42
  • the EDMG TRN length subfield occupies 3 bits from B27 to B29.
  • the EDMG TRN-Unit P subfield occupies 2 bits from B59 to B60
  • the EDMG TRN-Unit M subfield occupies 4 bits from B61 to B64
  • the EDMG TRN-Unit N subfield occupies 2 bits from B65 to B66
  • the TRN subfield sequence length subfield occupies 2 bits from B67 to B68
  • the bandwidth subfield occupies 8 bits from B69 to B76
  • the reserved subfield occupies 3 bits from B77 to B79.
  • Measurement Setup ID Identifier of the perception measurement setup associated with this frame.
  • Measurement Burst ID Identifier of the perception measurement burst associated with this frame.
  • Measurement instance number indicates the number of a perception measurement instance in a measurement burst.
  • Perception Type Indicates the perception type requested by the frame. For specific values and meanings, see Table 4:
  • STA ID Indicates the order in which a STA participates in a perception measurement instance.
  • First beam index indicates the index of the first transmit beam used in a perception measurement instance.
  • Number of STAs in an instance indicates the number of STAs participating in a perception measurement instance.
  • Number of PPDUs in an instance indicates the number of PPDUs that appear in a perception measurement instance.
  • EDMG TRN length indicates the number of TRN units contained in one PPDU.
  • Number of RX TRN-Units per TX TRN-Unit Indicates the number of TRN-Units sent consecutively in the same direction.
  • EDMG TRN-Unit P Indicates the number of TRN subfields in a TRN-Unit whose beam direction is aligned with the peer device.
  • EDMG TRN-Unit M Indicates the number of TRN subfields with variable beam directions in one TRN-Unit.
  • EDMG TRN-Unit N indicates the number of TRN subfields that are continuously transmitted using the same beam direction among TRN-Unit-M TRN subfields.
  • TRN subfield sequence length indicates the length of the Golay sequence used by each TRN subfield.
  • Bandwidth Indicates the bandwidth used to send the TRN field.
  • FIG. 29 is a flow chart of a parallel mode of collaborative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • the process involves a sensing initiator (STA) and two sensing responders (station A, station B), and includes the following processes (from left to right):
  • the perception initiator sends a DMG perception request frame to station A, in which the "number of STAs in the instance" is set to 2, the “number of PPDUs” is set to 1, and the "STA ID” is set to 0;
  • site A replies with a DMG sensing response frame to the sensing initiator;
  • the perception initiator sends a DMG perception request frame to station B, in which "number of STAs in the instance" is set to 2, “number of PPDUs" to 1, and "STA ID" to 1;
  • site B replies with a DMG sensing response frame to the sensing initiator;
  • station A and station B simultaneously send and receive a single-base sensing measurement frame to sense the environment;
  • station A After the SIFS time, station A sends a DMG perception measurement report frame to the perception initiator to report the perception measurement results;
  • the sensing initiator replies with an Acknowledge (ACK) frame to site A;
  • the sensing initiator sends a DMG sensing reporting polling frame to site B, triggering site B to report the sensing measurement results;
  • station B After the SIFS time, station B sends a DMG perception measurement report frame to the perception initiator to report the perception measurement result;
  • the sensing initiator replies with an ACK frame to site B.
  • FIG30 is a flowchart of a perception measurement method provided by an exemplary embodiment of the present application. The method is executed by a perception participating device and includes:
  • Step 3010 Send or receive a frame carrying a second field during the collaborative single-base perception process in parallel mode, where the second field is used to indicate duration-related information of the single-base PPDU.
  • Solution 1 The perception responder actively informs the perception initiator of the duration-related information of the single-base PPDU it uses, and the perception initiator selects the appropriate time to send the DMG perception polling frame based on this information according to certain rules; exemplarily, perception responder 1 and perception responder 2 inform the perception initiator that the duration of the single-base PPDU is t1 and t2 respectively, and t1 is greater than t2, then the perception initiator sends the DMG perception polling frame after SIFS time after duration t1.
  • the duration-related information of the single-base PPDU in Solution 1 refers to the actual duration information of the single-base PPDU sent by the perception responder.
  • the sensing response device sends a frame carrying a second field to the sensing initiator device, where the frame is a DMG sensing measurement setting response frame or a DMG sensing response frame;
  • the perception initiating device receives a frame carrying a second field sent by the perception responding device, where the frame is a DMG perception measurement setting response frame or a DMG perception response frame.
  • the sensing initiating device selects a suitable time to send the DMG sensing polling frame according to the following rules:
  • the sensing initiating device In a collaborative single-base sensing instance, if the instance is in parallel mode, the sensing initiating device must send the first DMG sensing polling frame within SIFS time after the longest single-base PPDU is sent to trigger the sensing responding device to report the sensing measurement results.
  • the perception responder passively receives the duration configuration information of the single-base PPDU from the perception initiator, and sends the appropriate single-base PPDU based on this information. At the same time, the perception initiator also selects the appropriate time to send the DMG perception polling frame based on the duration configuration information of these single-base PPDUs. Exemplarily, the duration configuration information of the single-base PPDU of the perception initiator is t3, then the duration of the single-base PPDU sent by perception responder 1 and perception responder 2 cannot exceed t3.
  • the duration-related information of the single-base PPDU in Solution 2 refers to the maximum sending duration of the single-base PPDU required by the perception initiator, and the actual sending duration of the single-base PPDU sent by the perception responder cannot exceed the maximum sending duration of the single-base PPDU required by the perception initiator.
  • the sensing initiating device sends a frame carrying a second field to the sensing responding device, where the frame is a DMG sensing measurement setting request frame or a DMG sensing request frame;
  • the perception responding device receives a frame carrying a second field sent by the perception initiating device, where the frame is a DMG perception measurement setting request frame or a DMG perception request frame.
  • the perception initiator selects the appropriate time to send the DMG perception polling frame according to the following rules:
  • the sensing responder In a cooperative single-base sensing instance, if the cooperative single-base sensing instance is in parallel mode, the sensing responder must send a single-base PPDU that meets the requirements according to the relevant configuration information of the sensing initiator;
  • the sensing initiator In a collaborative single-base sensing instance, if the collaborative single-base sensing instance is in parallel mode, the sensing initiator must send the first DMG sensing polling frame within SIFS time after the longest single-base PPDU is sent to trigger the sensing responder to report the sensing measurement results.
  • the perception responder reports the single-base PPDU duration related information to the perception initiator.
  • the second field is carried in the DMG perception measurement setting element, specifically, the second field is carried in the collaborative single-base dedicated configuration optional sub-element of the DMG perception measurement setting element.
  • FIG31 is a schematic diagram of the element structure of the DMG perception measurement setting element.
  • the DMG perception measurement setting element includes the following arranged in sequence: element ID field, length field, element ID extension field, measurement setting control field, reporting type field, LCI field, peer position field, and optional sub-element field.
  • the element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the element ID extension field occupies 1 byte
  • the measurement setting control field occupies 1 byte
  • the reporting type field occupies 1 byte
  • the LCI field occupies 0 or 16 bytes
  • the peer position field occupies 0 to 5 bytes
  • the optional sub-element field occupies a variable number of bytes.
  • a new sub-element type is defined in the optional sub-element field in the DMG perception measurement setting element, and the newly defined cooperative single-base proprietary configuration optional sub-element is shown in Table 5:
  • Sub-element ID Sub-element name Scalability 1 TX beam list yes 2 RX beam list yes 3 DMG-aware scheduling yes 4 Collaborative single-base proprietary configuration yes 5-255 reserve no
  • the second field is the duration field of the single-base PPDU after removing the TRN field in the coordinated single-base specific configuration optional sub-element.
  • the coordinated single-base specific configuration optional sub-element also includes: at least one of a sub-element identification field and a length field.
  • the cooperative single-base dedicated configuration optional sub-element field includes a subelement ID field, a length field, and a duration field of a monostatic PPDU without a TRN field.
  • the subelement ID field occupies 1 byte
  • the length field occupies 1 byte
  • the duration field of a monostatic PPDU without a TRN field occupies 1 or 2 or 4 or 6 or 8 bytes.
  • the sub-element ID is any integer between 4 and 255, with the value 4 being used as an example.
  • the length indicates the number of bytes of the element excluding the sub-element ID and length fields.
  • the duration of the monostatic PPDU without the TRN field indicates the duration of the monostatic PPDU used by the device in the collaborative monostatic awareness measurement instance (excluding the duration of the TRN field, the duration of the TRN field is fixed), and the unit is TSF time unit.
  • the second field is a duration field of the single base PPDU in the coordinated single base specific configuration optional sub-element
  • the coordinated single base specific configuration optional sub-element further includes: at least one of a sub-element identification field and a length field.
  • the cooperative single-base specific configuration optional sub-element field includes a sub-element ID field, a length field, and a duration field of the single-base PPDU.
  • the remaining fields are the same as above and will not be repeated here.
  • the duration of the single-base PPDU indicates the duration of the single-base PPDU used by the device in the collaborative single-base awareness measurement instance, in TSF time units.
  • the second field is the data length field in the cooperative single-base dedicated configuration optional sub-element.
  • the specific frame format is shown in FIG. 33 .
  • the optional sub-elements of the cooperative single-base proprietary configuration include the following arranged in order: sub-element ID field, length field, PPDU type (PPDU Type) field, data length (Data Length) field, modulation and coding scheme (MCS) field, additional EDMG PPDU (Additional EDMG PPDU) field, number of spatial streams (Number of Spatial Stream) field, number of users (Number of Users) field, and guard interval (Guard Interval, GI) type field.
  • the sub-element ID field occupies 1 byte
  • the length field occupies 1 byte
  • the PPDU type field occupies 1 byte
  • the data length field occupies 3 bytes
  • the MCS field occupies 1 byte
  • the additional EDMG PPDU field occupies 1 byte
  • the number of spatial streams field occupies 1 byte
  • the number of users field occupies 1 byte
  • the GI type occupies 1 byte.
  • the MCS field includes: a basic MCS (Base MCS) subfield, an extended SC MCS indication (Extended SC MCS Indication) subfield and a reserved subfield arranged in sequence, wherein the basic MCS subfield occupies 5 bits from B0 to B4, the extended SC MCS indication subfield occupies 1 bit from B5, and the reserved subfield occupies 2 bits from B6 to B7.
  • Basic MCS Basic MCS
  • extended SC MCS indication Extended SC MCS Indication
  • the sub-element ID is any integer between 4 and 255, with the value 4 being used as an example.
  • the length indicates the number of bytes of the element excluding the sub-element ID and length fields.
  • PPDU Type indicates the type of single-base PPDU used by the device in the cooperative single-base sensing measurement instance. The values and their meanings are shown in Table 6:
  • the data length indicates the length of the PSDU carried in the single-base PPDU used by the device in the cooperative single-base awareness measurement instance, in bytes.
  • Basic MCS and Extended SC MCS indication The values and meanings are consistent with the basic MCS and extended SC MCS indication fields in the L-Header in the single-base PPDU.
  • the PPDU Type field indicates "EDMG control mode PPDU”, "EDMG SC mode PPDU” or "EDMG OFDM mode PPDU", the extended SC MCS indication field is reserved.
  • the value and meaning of the Extra EDMG PPDU field are consistent with the Extra PPDU field in the L-Header of the Single-Base PPDU.
  • a value of 1 indicates that another PPDU (without a preamble) is immediately followed by the Single-Base PPDU without the need for an SIF interval.
  • a value of 0 indicates that no additional PPDU follows this Single-Base PPDU.
  • Number of spatial streams The value and meaning are the same as the number of spatial streams field in EDMG-Header-A in the single-base PPDU. Indicates the number of spatial streams contained in the single-base PPDU sent by the device in the collaborative single-base sensing measurement instance.
  • Number of users Indicates the number of users included in the single-base PPDU sent by the device in the coordinated single-base sensing measurement instance.
  • GI Type The value and meaning are consistent with the GI Length field in the L-Header of the single-base PPDU. Indicates the type of GI used by the single-base PPDU sent by the device in the collaborative single-base sensing measurement instance. The value and meaning are shown in Table 7.
  • the second field is carried in the DMG perception measurement setting element, and the second field is the duration field of the single-base PPDU in the collaborative single-base dedicated configuration optional sub-element or the duration field or data length field of the single-base PPDU after removing the TRN field.
  • each perception responder only needs to transmit information related to the single-base PPDU duration once, and the signaling overhead is small.
  • the sensing responder reports the single-base PPDU duration related information to the sensing initiator.
  • the second field is carried in the TDD beamforming field, and the second field is the duration field of the single-base PPDU in the TDD beamforming field or the duration field or data length field of the single-base PPDU after removing the TRN field.
  • Time Division Duplexing (TDD) beamforming frames
  • FIG 34 is a schematic diagram of the format of a TDD beamforming frame provided by the related art.
  • the TDD beamforming frame is a type of control frame.
  • the TDD beamforming frame includes a MAC frame header, a MAC frame body, and a frame check field.
  • the MAC frame header includes the following: a frame control field, a duration field, an RA field, and a TA field
  • the MAC frame body includes the following: a TDD beamforming control field and a TDD beamforming information field, which are arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies a variable number of bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 0, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • Frame control indicates the type of the MAC frame, including information indicating that the frame is a TDD beamforming frame.
  • Duration Indicates the length of time it takes to send the frame.
  • RA Indicates the MAC address of the frame receiver.
  • TA Indicates the MAC address of the frame sender.
  • TDD beamforming frame type indicates the type of TDD beamforming frame. For specific values and their meanings, see Table 8.
  • the TDD beamforming frame type field values 0, 1, and 2 all indicate that the TDD beamforming frame is a type related to beam training, which is irrelevant to the method provided in the embodiment of the present application.
  • the value 3 indicates that the TDD beamforming frame is a type related to DMG perception.
  • the TDD group beamforming field and the TDD beam measurement field together indicate the purpose of a TDD beamforming frame in DMG perception. For specific values and their meanings, see Table 9.
  • FIG35 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field arranged in sequence, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 1 or 2 or 3 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 1, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • the TDD beamforming information field includes a duration subfield of the single-base PPDU, and the duration subfield of the single-base PPDU occupies 8 or 16 or 24 bits in total, B0-B7 or B15 or B23.
  • a single-base PPDU duration subfield is added to the TDD beamforming information field.
  • this subfield is reserved to indicate the duration of the single-base PPDU to be sent by the perception responder in the perception measurement instance where the frame is located, in TSF time units.
  • FIG36 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field arranged in sequence, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field arranged in sequence, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 1 or 2 or 3 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 1, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • the TDD beamforming information field includes a duration subfield of the single-base PPDU without TRN, and the duration subfield of the single-base PPDU without TRN occupies 8 or 16 or 24 bits in total, B0-B7 or B15 or B23.
  • a duration subfield of the single-base PPDU after removing the TRN field is added to the TDD beamforming information field.
  • this subfield is retained to indicate the duration of the single-base PPDU to be sent by the perception responder in the perception measurement instance where the frame is located (excluding the duration of the TRN field, the duration of the TRN field is fixed), and the unit is TSF time unit.
  • FIG37 is a schematic diagram of a DMG perception response frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field arranged in sequence, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 6 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 1, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • subfields are added to the TDD beamforming information field, including at least one of the following subfields: PPDU type subfield, data length subfield, basic MCS subfield, extended SC MCS indication subfield, spatial stream number subfield, user number subfield, additional EDMG PPDU subfield, GI type field, and reserved subfield.
  • the PPDU type subfield occupies 3 bits from B0 to B2
  • the data length subfield occupies 24 bits from B3 to B26
  • the basic MCS subfield occupies 5 bits from B27 to B31
  • the extended SC MCS indication subfield occupies 1 bit from B32
  • the spatial stream number subfield occupies 3 bits from B33 to B35
  • the user number subfield occupies 3 bits from B36 to B38
  • the additional EDMG PPDU subfield occupies 1 bit from B39
  • the GI type subfield occupies 2 bits from B40 to B42
  • the reserved subfield occupies 6 bits from B42 to B47.
  • the second field is carried in the TDD beamforming field, and the second field is the duration field of the monostatic PPDU in the TDD beamforming field or the duration field or data length field of the monostatic PPDU after removing the TRN field.
  • the information related to the duration of the monostatic PPDU can be transmitted once in each perception measurement instance, so the monostatic PPDU used in different perception measurement instances can have different durations, which is highly flexible.
  • the embodiments in the perception measurement setting stage are the same as the embodiments in the perception measurement setting stage of Solution 1, and are not repeated here.
  • the second field is carried in the TDD beamforming field, and the second field is the duration field of the single-base PPDU in the TDD beamforming field or the duration field or data length field of the single-base PPDU after removing the TRN field.
  • FIG38 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field arranged in sequence, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 11 or 12 or 13 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 0, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • the TDD beamforming information field includes, in sequence: a measurement setting ID subfield, a measurement burst ID, a perception instance SN subfield, a perception type subfield, a STA ID subfield, a first beam index subfield, a number of STAs in an instance subfield, a number of PPDUs in an instance subfield, an EDMG TRN length subfield, a number of RX TRN-Units per TX TRN-Unit subfield, an EDMG TRN-Unit P subfield, an EDMG TRN-Unit M subfield, an EDMG TRN-Unit N subfield, a TRN subfield sequence length subfield, a bandwidth subfield, a duration subfield of a single-base PPDU, and a reserved subfield.
  • the measurement setting ID subfield occupies 8 bits from B0 to B7
  • the measurement burst ID subfield occupies 8 bits from B8 to B15
  • the measurement instance sequence number subfield occupies 8 bits from B16 to B23
  • the perception type subfield occupies 3 bits from B24 to B26
  • the STA ID subfield occupies 3 bits from B27 to B29
  • the first beam index subfield occupies 8 bits from B30 to B37
  • the number of STAs in the instance subfield occupies 3 bits from B38 to B40
  • the number of PPDUs in the instance subfield occupies 2 bits from B41 to B42
  • the EDMG TRN length subfield occupies 8 bits from B43 to B50
  • the RX of each TX TRN-Unit occupies 8 bits from B44 to B50.
  • the number subfield of TRN-Unit occupies 8 bits in total from B51 to B58
  • the EDMG TRN-Unit P subfield occupies 2 bits in total from B59 to B60
  • the EDMG TRN-Unit M subfield occupies 4 bits in total from B61 to B64
  • the EDMG TRN-Unit N subfield occupies 2 bits in total from B65 to B66
  • the TRN subfield sequence length subfield occupies 2 bits in total from B67 to B68
  • the bandwidth subfield occupies 8 bits in total from B69 to B76
  • the duration subfield of the single-base PPDU occupies 8 or 16 or 24 bits in total from B77 to B84 or B92 or B100
  • the reserved subfield occupies 3 bits in total from B101 to B103.
  • a single-base PPDU duration subfield is added to the TDD beamforming information field. When the sensing measurement type is not cooperative single-base sensing, this subfield is reserved. It indicates the duration of the single-base PPDU to be sent by the sensing responder in the sensing measurement instance where this frame is located, in TSF time units.
  • FIG39 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field arranged in sequence, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 11 or 12 or 13 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 0, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • the TDD beamforming information field includes, in sequence: a measurement setting ID subfield, a measurement burst ID, a perception instance SN subfield, a perception type subfield, a STA ID subfield, a first beam index subfield, a number of STAs in an instance subfield, a number of PPDUs in an instance subfield, an EDMG TRN length subfield, a number of RX TRN-Units per TX TRN-Unit subfield, an EDMG TRN-Unit P subfield, an EDMG TRN-Unit M subfield, an EDMG TRN-Unit N subfield, a TRN subfield sequence length subfield, a bandwidth subfield, a duration subfield of a single-base PPDU, and a reserved subfield.
  • the measurement setting ID subfield occupies 8 bits from B0 to B7
  • the measurement burst ID subfield occupies 8 bits from B8 to B15
  • the measurement instance sequence number subfield occupies 8 bits from B16 to B23
  • the perception type subfield occupies 3 bits from B24 to B26
  • the STA ID subfield occupies 3 bits from B27 to B29
  • the first beam index subfield occupies 8 bits from B30 to B37
  • the number of STAs in the instance subfield occupies 3 bits from B38 to B40
  • the number of PPDUs in the instance subfield occupies 2 bits from B41 to B42
  • the EDMG TRN length subfield occupies 8 bits from B43 to B50
  • the RX TRN of each TX TRN-Unit -The number of -Unit subfield occupies 8 bits from B51 to B58
  • the EDMG TRN-Unit P subfield occupies 2 bits from B59 to B60
  • the EDMG TRN-Unit M subfield occupies 4
  • a duration subfield of the single-base PPDU after removing the TRN field is added to the TDD beamforming information field.
  • this subfield is reserved. Indicates the duration of the single-base PPDU to be sent by the perception responder in the perception measurement instance where the frame is located (the duration of the TRN field is removed), in TSF time units.
  • FIG40 is a schematic diagram of a DMG perception request frame structure provided by an exemplary embodiment of the present application, including: a MAC frame header, a MAC frame body, and a frame check field, the MAC frame header includes: a frame control field, a duration field, an RA field, and a TA field arranged in sequence, and the MAC frame body includes: a TDD beamforming control field and a TDD beamforming information field arranged in sequence.
  • the frame control field occupies 2 bytes
  • the duration field occupies 2 bytes
  • the RA field occupies 6 bytes
  • the TA field occupies 6 bytes
  • the TDD beamforming control field occupies 1 byte
  • the TDD beamforming information field occupies 11 or 12 or 13 bytes
  • the frame check field occupies 4 bytes.
  • the TDD beamforming control field includes the following arranged in sequence: TDD group beamforming subfield, TDD beam measurement subfield, TDD beamforming frame type subfield, training end subfield, and reserved subfield.
  • the TDD group beamforming subfield occupies 1 bit in B0, with a value of 0, the TDD beam measurement subfield occupies 1 bit in B1, with a value of 0, the TDD beamforming frame type subfield occupies 2 bits in B2-B3, with a value of 3, the training end subfield occupies 1 bit in B4, and the reserved subfield occupies 3 bits in B5-B7.
  • the TDD beamforming information field includes, in sequence: a measurement setting ID subfield, a measurement burst ID, a perception instance SN subfield, a perception type subfield, a STA ID subfield, a first beam index subfield, a number of STAs in an instance subfield, a number of PPDUs in an instance subfield, an EDMG TRN length subfield, a number of RX TRN-Units per TX TRN-Unit subfield, an EDMG TRN-Unit P subfield, an EDMG TRN-Unit M subfield, an EDMG TRN-Unit N subfield, a TRN subfield sequence length subfield, a bandwidth subfield, a duration subfield of a single-base PPDU, and a reserved subfield.
  • the measurement setting ID subfield occupies 8 bits from B0 to B7
  • the measurement burst ID subfield occupies 8 bits from B8 to B15
  • the measurement instance number subfield occupies 8 bits from B16 to B23
  • the perception type subfield occupies 3 bits from B24 to B26
  • the STA ID subfield occupies 3 bits from B27 to B29
  • the first beam index subfield occupies 8 bits from B30 to B37
  • the number of STAs in the instance subfield occupies 3 bits from B38 to B40
  • the number of PPDUs in the instance subfield occupies 2 bits from B41 to B42
  • the EDMG TRN length subfield occupies 8 bits from B43 to B50
  • the number of RX TRN-Units per TX TRN-Unit subfield occupies 8 bits from B51 to B58
  • the EDMG TRN-Unit P subfield occupies 2 bits from B59 to B60
  • the M subfield occupies 4 bits from B61
  • subfields are added to the TDD beamforming field, including at least one of the following subfields: PPDU type subfield, data length subfield, basic MCS subfield, extended SC MCS indication subfield, number of spatial streams subfield, number of users subfield, additional EDMG PPDU subfield, GI type subfield, and reserved subfield.
  • PPDU type subfield data length subfield
  • basic MCS subfield basic MCS subfield
  • extended SC MCS indication subfield number of spatial streams subfield
  • number of users subfield number of users subfield
  • additional EDMG PPDU subfield additional EDMG PPDU subfield
  • GI type subfield GI type subfield
  • reserved subfield reserved.
  • the perception measurement method provided in this embodiment by sending or receiving a frame carrying the second field during the collaborative single-base perception process in parallel mode, can set or negotiate the duration-related information of the single-base PPDU between the perception participating devices, thereby avoiding the overlap of the single-base perception measurement frame and the DMG perception measurement report frame, ensuring the normal progress of the response perception process, and ensuring the accuracy of the perception measurement results.
  • FIG. 41 is a block diagram of a perception participation device 4100 provided by an exemplary embodiment of the present application.
  • the perception participation device 4100 may be at least one of a perception response device, a perception initiation device, a perception sending device, and a perception receiving device.
  • the perception participation device 4100 includes:
  • the transceiver module 4110 is used to send or receive a frame carrying a first field during the perception measurement process, where the first field is used to indicate information related to the coordinate system setting.
  • the first field is a coordinate field, which is used to indicate the type of the reference coordinate system.
  • the first field is at least one of the azimuth field and the elevation field in the DMG perception measurement setting element, which is used to indicate that the reference coordinate system is a coordinate system related to the STA orientation of the sending frame.
  • the type of reference coordinate system includes at least one of the following:
  • the coordinate field is carried in the DMG Perceptual Beam Descriptor element:
  • the DMG perception beam description element also includes N beam description fields, and the subfields of each beam descriptor field include: beam azimuth field and beam elevation field, where N is a positive integer.
  • the coordinate field is a field at the same level as the N beam descriptor fields, and the coordinate field is used to indicate the reference coordinate system of all beam azimuth fields and beam elevation fields in the DMG perception beam descriptor element.
  • the DMG perception beam descriptor element also includes N beam descriptor fields, and the subfields of each beam descriptor field include: beam azimuth field, beam elevation field and coordinate field, and N is a positive integer.
  • the coordinate field corresponds to the beam descriptor field one by one, and the coordinate field is used to indicate the reference coordinate system of the beam azimuth field and the beam elevation field in the beam descriptor field.
  • the DMG perception beam descriptor element is carried in the frame body field of at least one of the following frames:
  • the coordinates field is carried in the DMG Beacon Sector Descriptor element:
  • the DMG beacon sector descriptor element also includes N sector descriptor fields, and the subfields of each sector descriptor field include: sector azimuth field and sector elevation field, where N is a positive integer.
  • the coordinate field is a field of the same level as the N sector descriptor fields, and the coordinate field is used to indicate the reference coordinate system of all sector azimuth fields and sector elevation fields in the DMG beacon sector descriptor element.
  • the DMG beacon sector descriptor element also includes N sector description fields, and the subfields of each sector descriptor field include: a sector azimuth field, a sector elevation field, and a coordinate field, where N is a positive integer.
  • the coordinate field corresponds to the sector descriptor field one by one, and the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and the sector elevation field in the sector descriptor field.
  • the DMG Beacon Sector Descriptor element is carried in the Frame Body field of the following frames:
  • the coordinate field is carried in the DMG Passive Awareness Beacon Information Element.
  • the DMG passive sensing beacon information element also includes a beacon information control field.
  • the coordinate field and the beacon information control field are fields of the same level, and the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and the sector elevation field in the DMG beacon sector descriptor element carried in the frame.
  • the DMG passive sensing beacon information element also includes a beacon information control field.
  • the subfields of the beacon information control field include: a coordinate field.
  • the coordinate field is used to indicate the reference coordinate system of the sector azimuth field and the sector elevation field in the DMG beacon sector descriptor element carried in the frame.
  • the DMG passive sensing beacon information element is carried in the frame body field of at least one of the following frames:
  • the coordinate field is carried in a DMG-aware short capability element.
  • the coordinate field is the earth coordinate subfield in the DMG perception short capability element.
  • the value of the earth coordinate subfield is the first value, it is used to indicate that the STA can only send the azimuth and elevation of the earth coordinate system.
  • the DMG-aware short capability element is carried in the frame body field of at least one of the following frames:
  • sending or receiving a frame carrying a first field during a perception measurement process includes:
  • frames carrying coordinate fields are sent or received.
  • frames carrying coordinate fields are sent or received.
  • a coordinate field is carried in a DMG perception measurement setting element, and the coordinate field is used to indicate a reference coordinate system of an azimuth field and an elevation field in the DMG perception measurement setting element.
  • the DMG-aware measurement settings element includes a measurement settings control field and a peer direction field;
  • the coordinate field is a subfield of the measurement setup control field, and the azimuth field and the elevation field are subfields of the opposite end direction field;
  • the coordinate field, the azimuth field, and the elevation field are all subfields of the opposite end direction field.
  • the value of the earth coordinate field in the DMG perception short capability element is the first value
  • the value of the coordinate field is unique and the reference coordinates used to indicate the azimuth field and the elevation field are the coordinate system of any STA;
  • the coordinate field is used to indicate that the reference coordinates of the azimuth field and the elevation field are the coordinate system of any STA;
  • the coordinate field is used to indicate that the reference coordinates of the azimuth field and the elevation field are the earth coordinate system.
  • the DMG-aware measurement settings element is carried in a frame body field of at least one of the following frames:
  • FIG. 42 is a block diagram of a perception participation device 4200 provided by an exemplary embodiment of the present application.
  • the perception participation device 4200 may be at least one of a perception response device, a perception initiation device, a perception sending device, and a perception receiving device.
  • the perception participation device 4200 includes:
  • the transceiver module 4210 is used to send or receive a frame carrying a second field during the collaborative single-base perception process in the parallel mode, where the second field is used to indicate the duration-related information of the single-base PPDU.
  • the sensing participating device includes a sensing responding device, which sends a frame carrying the second field to the sensing initiating device during a collaborative single-base sensing process in a parallel mode.
  • the sensing participating device includes a sensing initiating device, which receives a frame carrying the second field sent by a sensing responding device during a collaborative single-base sensing process in a parallel mode.
  • the sensing participating device includes a sensing initiating device, which sends a frame carrying the second field to the sensing responding device during a collaborative single-base sensing process in a parallel mode.
  • the perception participating device includes a perception responding device, which receives a frame carrying the second field sent by the perception initiating device during a collaborative single-base perception process in a parallel mode.
  • the second field is carried in a cooperative single base specific configuration optional sub-element in a DMG aware measurement setting element.
  • the second field is the duration field of the single-base PPDU after removing the TRN field in the collaborative single-base specific configuration optional sub-element
  • the collaborative single-base specific configuration optional sub-element also includes: at least one of a sub-element identification field and a length field.
  • the second field is a data length field in a collaborative single-base exclusive configuration optional sub-element
  • the collaborative single-base exclusive configuration optional sub-element also includes at least one of the following: a sub-element identification field, a length field, a PPDU type field, a data length field, an MCS field, an additional EDMG PPDU field, a spatial stream number field, a user number field, and a GI type.
  • the frame is a DMG sensing measurement setting response frame
  • the frame is a DMG perception measurement setting request frame.
  • the perception participating device includes a perception initiating device.
  • the perception initiating device sends the first DMG perception polling frame within no more than SIFS time after the single-base PPDU with the longest duration is sent, to trigger the perception responding device to report the perception measurement results.
  • the second field is carried in a TDD beamforming field.
  • the second field is a duration field of the monobase PPDU in the TDD beamforming field
  • the second field is the duration field of the single-base PPDU after removing the TRN field in the TDD beamforming field.
  • the second field is the data length field in the TDD beamforming field
  • the collaborative single-base exclusive configuration optional sub-element also includes at least one of the following: a sub-element identification field, a length field, a PPDU type field, a data length field, an MCS field, an additional EDMG PPDU field, a spatial stream number field, a user number field, a GI type, and a reserved field.
  • the frame is a DMG perception response frame.
  • the frame is a DMG perception request frame.
  • the perception participating device includes a perception responding device.
  • the perception responding device sends a single-base PPDU that meets the requirements according to the duration-related information configured by the perception initiating device.
  • the device provided in the above embodiment realizes its function, it only uses the division of the above-mentioned functional modules as an example.
  • the above-mentioned functions can be assigned to different functional modules according to actual needs, that is, the content structure of the device can be divided into different functional modules to complete all or part of the functions described above.
  • FIG43 is a schematic diagram of the structure of a perception participating device 4300 provided by an exemplary embodiment of the present application, and the perception participating device 4300 may be at least one of an AP, a STA, a perception sending device, a perception receiving device, a perception initiating device, and a perception responding device.
  • the perception participating device 4300 includes: a processor 4301, a receiver 4302, a transmitter 4303, a memory 4304, and a bus 4305.
  • the processor 4301 includes one or more processing cores.
  • the processor 4301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 4302 and the transmitter 4303 may be implemented as a communication component, which may be a communication chip.
  • the memory 4304 is connected to the processor 4301 via a bus 4305.
  • the memory 4304 may be used to store at least one instruction, and the processor 4301 may be used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 4304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • Volatile or non-volatile storage devices include but are not limited to: magnetic disks or optical disks, electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static random-access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, and programmable read-only memory (PROM).
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is used to be executed by a perception measurement device to implement the collaborative perception measurement method of the above-mentioned perception measurement device (perception initiator and/or perception responder).
  • the computer readable storage medium may include: a read-only memory (ROM), a random access memory (RAM), a solid state drive (SSD) or an optical disk, etc.
  • the random access memory may include a resistance random access memory (ReRAM) and a dynamic random access memory (DRAM).
  • An embodiment of the present application further provides a chip, which includes a programmable logic circuit and/or program instructions.
  • the chip is used to implement the perception measurement method of the above-mentioned perception measurement device.
  • An embodiment of the present application also provides a computer program product or a computer program, which includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the perception measurement device reads and executes the computer instructions from the computer-readable storage medium to implement the perception measurement method of the above-mentioned perception measurement device.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知测量方法、装置、设备、介质和程序产品,属于感知测量领域。该方法由感知参与设备执行,该方法包括:在感知测量过程中发送或接收携带有第一字段的帧,该第一字段用于指示坐标系设置相关的信息;在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,该第二字段用于指示单基PPDU的时长相关信息。该方法通过在感知测量过程中发送或接收携带有第一字段的帧,使得感知参与设备之间设置或协商坐标系相关的信息,从而明确指示方位角/仰角的坐标系;通过在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,使得感知参与设备之间设置或协商单基PPDU的时长相关信息,保证感知测量的结果准确性。

Description

感知测量方法、装置、设备、介质和程序产品 技术领域
本申请实施例涉及感知测量领域,特别涉及一种感知测量方法、装置、设备、介质和程序产品。
背景技术
无线局域网(Wireless Local Area Networks,WLAN)感知是指通过测量WLAN信号经过人或物的散射和/或反射的变化来感知环境中的人或物的技术。
发明内容
本申请提供了一种感知测量方法、装置、设备、介质和程序产品。该技术方案至少包括:
根据本申请实施例的一个方面,提供了一种感知测量方法,该方法由感知参与设备执行,该方法包括:
在感知测量过程中发送或接收携带有第一字段的帧,该第一字段用于指示坐标系设置相关的信息。
根据本申请实施例的另一个方面,提供了一种感知测量方法,该方法由感知参与设备执行,该方法包括:
在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,该第二字段用于指示单基PPDU的时长相关信息。
根据本申请实施例的另一个方面,提供了一种感知参与装置,该装置包括:
收发模块,用于在感知测量过程中发送或接收携带有第一字段的帧,该第一字段用于指示坐标系设置相关的信息。
根据本申请实施例的另一个方面,提供了一种感知参与装置,该装置包括:
收发模块,用于在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,该第二字段用于指示单基PPDU的时长相关信息。
根据本申请实施例的另一个方面,提供了一种感知参与设备,感知参与设备包括:
处理器;
与处理器相连的收发器;
用于存储处理器的可执行指令的存储器;
其中,处理器被配置为加载可执行指令以使得感知参与设备实现如上各个方面的感知测量方法。
根据本申请实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述各个方面的感知测量方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品(或者计算机程序),该计算机程序产品(或者计算机程序)包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方面的感知测量方法。
根据本申请实施例的另一个方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上述各个方面的感知测量方法。
本申请实施例提供的技术方案包括以下有益效果:
通过在感知测量过程中发送或接收携带有第一字段的帧,使得感知参与设备之间设置或协商坐标系相关的信息,从而明确指示方位角/仰角的坐标系;通过在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,使得感知参与设备之间设置或协商单基PPDU的时长相关信息,确保响应感知流程的正常进行,保证感知测量的结果准确性。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的感知测量***的示意图;
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图;
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图;
图4是本申请一个示例性实施例提供的感知测量方法的流程图;
图5是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图;
图6是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图;
图7是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图;
图8是相关技术提供的信标帧的帧结构示意图;
图9是相关技术提供的管理帧的帧结构示意图;
图10是相关技术提供的宣告帧、信息请求帧、信息响应帧的帧结构示意图;
图11是相关技术提供的感知测量设置请求帧的帧结构示意图;
图12是相关技术提供的感知测量设置响应帧的帧结构示意图;
图13是相关技术提供的DMG感知波束描述符元素的元素结构示意图;
图14是本申请一个示例性实施例提供的DMG感知波束描述符元素的元素结构示意图;
图15是本申请一个示例性实施例提供的DMG感知波束描述符元素的元素结构示意图;
图16是相关技术提供的DMG信标扇区描述符元素的元素结构示意图;
图17是本申请一个示例性实施例提供的DMG信标扇区描述符元素的元素结构示意图;
图18是本申请一个示例性实施例提供的DMG信标扇区描述符元素的元素结构示意图;
图19是相关技术提供的DMG消极感知信标信息元素的元素结构示意图;
图20是本申请一个示例性实施例提供的DMG消极感知信标信息元素的元素结构示意图;
图21是本申请一个示例性实施例提供的DMG消极感知信标信息元素的元素结构示意图;
图22是相关技术提供的DMG感知短能力元素的元素结构示意图;
图23是相关技术提供的DMG感知测量设置元素的示意图;
图24是本申请一个示例性实施例提供的DMG感知测量设置元素的元素结构示意图;
图25是本申请一个示例性实施例提供的DMG感知测量设置元素的元素结构示意图;
图26是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图;
图27是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图;
图28是相关技术提供的感知请求帧的格式的示意图;
图29是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图;
图30是本申请一个示例性实施例提供的感知测量方法的流程图;
图31是相关技术提供的DMG感知测量设置元素的元素结构示意图;
图32是本申请一个示例性实施例提供的协作单基专有配置可选子元素的元素结构示意图;
图33是本申请一个示例性实施例提供的协作单基专有配置可选子元素的元素结构示意图;
图34是相关技术提供的TDD波束赋形帧的格式的示意图;
图35是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图;
图36是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图;
图37是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图;
图38是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图;
图39是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图;
图40是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图;
图41是本申请一个示例性实施例提供的感知参与装置的框图;
图42是本申请一个示例性实施例提供的感知参与装置的框图;
图43是本申请一个示例性实施例提供的感知参与设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
应当理解,尽管在本申请可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一参数也可以被 称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请中部分关键术语简介如下:
WLAN感知(WLAN Sensing):通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN感知通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵/移动/跌倒等的检测、姿势识别以及空间三维图像建立等诸多功能。
关联标识符(Association Identifier,AID):用于标识跟接入点建立关联后的终端。
参与WLAN感知的WLAN设备可能包括如下角色:
感知发起者(Sensing Initiator):也可称为感知会话发起者、感知发起设备、感知发起装置。感知发起者是发起感知测量(Sensing Measurement)并想要获知感知结果的设备;
感知响应者(Sensing Responder):也可称为感知会话响应者、感知响应设备、感知响应装置。感知响应者是参与感知测量的非感知发起设备的设备;
感知信号发送者(Sensing Transmitter):也可称为感知信号发送设备、感知发送者、感知发送设备、感知发送装置。感知信号发送者是发送感知物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)的设备;
感知信号接收者(Sensing Receiver):也可称为感知信号接收设备、感知接收者、感知接收设备、感知接收装置。感知信号接收者是接收回响(Echo)信号的设备。回响信号是感知信号发送者发送的感知物理层协议数据单元经过人或物散射和/或反射得到的。
WLAN终端在一个感知测量中可能有一个或多个角色,例如感知发起者可以仅仅是感知发起者,也可以成为感知信号发送者,也可以成为感知信号接收者,还可以同时是感知信号发送者和感知信号接收者。上述设备可统称为感知测量设备。
接着,对本申请实施例涉及的相关技术背景进行介绍:
图1是本申请一个示例性实施例提供的感知测量***10的示意图。该感知测量***中包括终端与终端,或终端与网络设备,或接入点(Access Point,AP)与站点(Station,STA),本申请对此不作限定。本申请中以感知测量***中包括:AP110和STA120为例进行说明。
在一些场景中,AP可以或称AP STA,即在某种意义上来说,AP也是一种STA。在一些场景中,STA或称非AP STA(non-AP STA)。
在一些实施例中,STA可以包括AP STA和non-AP STA。
通信***中的通信可以是AP与non-AP STA之间通信,也可以是non-AP STA与non-AP STA之前通信,或者STA和peer STA之间通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有无线保真(Wireless-Fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信***中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持但不限于802.11bf制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式。
在一些实施例中,AP可以为支持802.11bf制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/Wi-Fi技术的手机、平板电脑、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制中的无线设备、机顶盒、无人驾驶中的无线设备、车载通信设备、远程医疗中的无线设备、智能电网中的无线设备、运输安全中的无线设备、智慧城市中的无线设备或智慧家庭中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(60GHz)。
站点和接入点之间存在一个或多个链路。
在一些实施例中,站点和接入点支持多频段通信,例如,同时在2.4GHz,5GHz,6GHz以及60GHz频段上进行通信,或者同时在同一频段(或不同频段)的不同信道上通信,提高设备之间的通信吞吐量和/或可靠性。这种设备通常称为多频段设备,或称为多链路设备(Multi-Link Device,MLD),有时也称为多链路实体或多频段实体。多链路设备可以是接入点设备,也可以是站点设备。如果多链路设备是接入点设 备,则多链路设备中包含一个或多个AP;如果多链路设备是站点设备,则多链路设备中包含一个或多个non-AP STA。
包括一个或多个AP的多链路设备或称AP,包括一个或多个non-AP STA的多链路设备或称Non-AP,在申请实施例中,Non-AP可以称为STA。
在本申请实施例中,AP可以包括多个AP,Non-AP包括多个STA,AP中的AP和Non-AP中的STA之间可以形成多条链路,AP中的AP和Non-AP中的对应STA之间可以通过对应的链路进行数据通信。
AP是一种部署在无线局域网中用以为STA提供无线通信功能的设备。站点可以包括:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,站点还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,本申请实施例对此并不限定。
在本申请实施例中,站点和接入点均支持IEEE 802.11标准,但不限于IEEE 802.11标准,也可以是其它与感知测量有关的标准,例如为IEEE 802.11bf D0.1标准。
在WLAN感知场景下,参与感知的WLAN终端包括:感知发起者和感知响应者。进一步的,感知响应者可分为感知发送者和感知接收者。
感知测量可应用于蜂窝网络通信***、WLAN***或Wi-Fi***中,本申请对此不做限定。本申请中以感知测量应用于WLAN或Wi-Fi***中为例进行示意性说明。
可选地,本申请实施例中的感知测量是基于毫米波实现的。对毫米波感知类型进行介绍:
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图。如图2所示,图2的(a)为单基感知,参与感知的设备仅有一个,该设备通过自发(自行发送)感知PPDU和自收(自行接收)回响信号来感知环境,与传统的雷达工作方式相似。其中,自发自收指设备在发送感知PPDU时,会将该感知PPDU的发送方地址以及接收方地址均设置为该设备自身的地址。设备发送的感知PPDU经过环境的散射和/或反射,会形成回响信号,之后该设备可通过自身的地址接收到该回响信号,通过分析该回响信号能够实现对环境的感知。图2的(b)为双基感知,参与感知的设备有两个,其中一个设备发送感知PPDU,另一个设备接收回响信号来感知环境。图2的(c)为协作单基感知,参与感知的设备数量大于一个,每个设备通过自发感知PPDU和自收回响信号来感知环境,存在一个感知发起者控制所有其他设备以实现协作。图2的(d)为协作双基感知,参与感知的设备多于两个,即存在至少两对双基感知设备,每个发送设备(感知发送者)分别发送感知PPDU且由与其同组的接收设备(感知接收者)接收相应的回响信号,从而实现协作感知。图2的(e)为多基感知,参与感知的设备大于两个,一个发送设备发送感知PPDU,多个接收设备同时接收回响信号并同时完成环境感知。
对毫米波感知的流程进行介绍:
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图。如图3所示,该流程为毫米波感知的一般流程,从左向右依次为会话建立阶段、毫米波感知测量设置(方向性多吉比特(Directional Multi-Gigabit,DMG)Measurement setup)阶段和感知测量阶段。其中,感知测量阶段由多个感知测量突发组成,每个突发又由多个感知测量实例组成。突发与突发之间的时间间隔为突发间间隔,一个突发中相邻的感知测量实例之间的时间间隔为突发内间隔。图3中的MAC ADDR是指媒体接入控制(Medium Access Control,MAC)地址(address),AID是指关联标识符,DMG测量设置ID(DMG Measurement setup Identity Document)是指毫米波感知测量设置标识,MS ID是指测量设置(Measurement Setup,MS)标识,突发ID是指突发标识,实例序列号(Sequential Number,SN)是指感知测量实例的标识,也可称为感知实例SN或感知实例ID。
在相关技术中的毫米波感知测量过程中,感知参与设备需要能够获得感知波束的角度信息,因此需要有关波束方位角和/或波束仰角的信息。但在相关技术的帧格式设计中存在无法准确指示波束方位角/波束仰角的问题,导致感知波束角度的坐标系指示不准确,影响感知流程的正常进行,本申请提供的感知测量方法可以有效解决这个问题。
图4是本申请一个示例性实施例提供的感知测量方法的流程图,本实施例以该方法由感知参与设备执行来举例说明,感知参与设备包括感知发起设备和感知响应设备中的至少一个。该方法包括:
步骤410:在感知测量过程中发送或接收携带有第一字段的帧,该第一字段用于指示坐标系设置相关的信息。
该坐标系设置相关的信息是与感知测量过程中所使用的坐标系有关的设置信息或配置信息。可选地,该坐标系设置相关的信息包括:参考坐标系的类型。
在一些实施例中,第一字段为坐标(coordinates)字段,该坐标字段用于指示参考坐标系的类型,参考 坐标系的类型包括如下至少之一:
·地球坐标系;
·任意一个STA的坐标系。
其中,任意一个STA的坐标系可以是感知发起设备的坐标系,或,感知响应设备的坐标系,或,感知发送设备的坐标系,或,感知接收设备的坐标系。
综上所述,本实施例提供的感知测量方法,通过在感知测量过程中发送或接收携带有第一字段的帧,能够使得感知参与设备之间设置或协商坐标系相关的信息,从而明确指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.1在感知会话建立阶段或在感知测量设置阶段,发送或接收携带有坐标字段的帧:
在一些实施例中,在感知测量过程中发送或接收携带有第一字段的帧,包括如下两个步骤中的至少一种:
在感知会话建立阶段,发送或接收携带有坐标字段的帧;
在感知测量设置阶段,发送或接收携带有坐标字段的帧。
感知测量过程至少可分为:基于触发帧(Trigger Based,TB)的感知测量过程(图5)、基于非触发帧(Based Non-Trigger,Based Non-TB)的感知测量过程(图6),以及基于消极感知的感知测量过程(7)。其中,基于非触发帧也可称为非基于触发帧(Non-Trigger Based,Non-TB)。
图5是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图,示例性的,感知发起设备为AP,感知响应设备为关联STA。
首先,在感知会话建立阶段,STA通过被动扫描或主动扫描获取到AP的无线网络信息,以便了解周围的无线网络分布情况。
·被动扫描:指STA在指定信道上被动监听AP周期广播的信标帧(Beacon frame)。其中,信标帧可以携带能力信息(Capability Information)、服务集标识(Service Set Identifier,SSID)等信息;
·主动扫描:指STA主动发送探测请求帧(Probe Request frame)至AP并且接收AP返回的探测响应帧(Probe Response frame)。其中,探测请求帧和探测响应帧可以携带能力信息、SSID、扩展能力(Extended Capability)等信息。上述不同帧中的能力信息是指发送当前帧的设备的能力信息。
其次,STA基于获取到的AP的无线网络信息建立与某一个AP的关联关系,以便获得无线网络的完全访问权,从而成为关联STA。
·STA首次连接一个AP时,STA会单播关联请求帧(Association Request frame)至AP并接收AP返回的关联响应帧(Association Response frame)。其中,关联请求帧可以携带能力信息、监听间隔(Listen Interval)、SSID、支持速率(Supported Rates)、服务质量能力(Quality of Service,QoS Capability)等信息;关联响应帧可以携带能力信息、状态码(Status Code)、关联标识符(Association Identify,AID)、扩展能力等信息。
·STA非首次连接一个AP时,STA会单播重关联请求帧(Reassociation Request frame)至AP并接收AP返回的重关联响应帧(Reassociation Response frame)。其携带信息与关联请求帧和关联响应帧类似。
再次,在感知测量设置阶段,基于上述环节中STA和AP交互的多种能力信息,AP发送感知测量设置请求帧(Sensing Measurement Set Request frame,MS Request frame)至关联STA并接收返回的感知测量设置响应帧(MS Response frame),从而完成一个感知测量的设置。感知测量设置请求帧中可以携带测量帧(Null Data Physical layer Protocol Data Unit,NDP)带宽、NDP类型、上报类型等信息;感知测量设置响应帧中可以携带状态码等信息。
最后,在感知测量实例阶段,关联STA和AP之间建立感知测量实例(Measurement Instance),开始发送和接收NDP并进行信道感知。
图6是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图,在感知会话建立阶段,非关联STA与AP建立感知的流程与关联STA的流程相似,都使用信标帧、探测请求帧和探测响应帧来扫描AP的无线网络信息。
不同的是,非关联STA无需与AP建立关联关系,即无需向AP发送关联请求帧和接收关联响应帧,也无需向AP发送重关联请求帧和接收重关联响应帧。在感知测量设置阶段,非关联STA在扫描之后即可向AP发送感知测量设置查询帧(MS Query frame)来发起感知测量设置步骤,随后通过接收感知测量设置请求帧和发送感知测量设置响应帧来完成感知测量设置步骤。
最后,在感知测量实例阶段,非关联STA和AP之间建立感知测量实例,开始发送和接收NDP并进行信道感知。
图7是本申请一个示例性实施例提供的感知发起设备与感知响应设备建立感知测量流程的示意图,示例性的,感知发起设备为AP,感知响应设备为非关联STA。
STA在指定信道上被动监听AP周期广播的信标帧(Beacon frame)和宣告帧(Announce frame)来获取到AP的无线网络信息。之后STA向AP发送信息请求帧(Information Request),AP收到后向STA发送信息响应帧(Information Response)。
在一些实施例中,信标帧的帧结构如图8所示,包括依次排列的:帧控制(Frame Control)字段、时长(Duration)字段、基本服务集标识符(Basic Service Set Identifier,BSSID)字段、帧体(Frame Body)字段、帧检验(FCS)字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,BSSID字段占用6个字节,帧体字段占用字节数可变,帧校验字段占用4个字节。DMG信标帧的帧体字段可以携带DMG感知波束描述符元素、DMG感知短能力元素中的至少一种。
在一些实施例中,关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、探测请求帧、探测响应帧都是管理帧的一种子类型,通过帧控制(Frame Control)字段中的类型(Type)和子类型(Subtype)字段来联合指示是管理帧的哪一种子类型,管理帧的帧结构如图9所示,包括依次排列的:帧控制字段、时长字段、地址(Address)1字段、地址2字段、地址3字段、序列控制(Sequence Control)字段、高吞吐量(High-Throughput,HT)控制字段、帧体字段、帧校验字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,地址1字段占用6个字节,地址2字段占用6个字节,地址3字段占用6个字节,序列控制字段占用2个字节,HT控制字段占用0或4个字节,帧体字段占用字节数可变,帧校验字段占用4个字节。
在一些实施例中,帧控制字段包括依次排列的:协议版本(Protocol Version)子字段、类型(Type)子字段、子类型(Subtype)子字段、前往分布式***(Distributed System,DS)子字段、来自DS子字段、更多片段(More Fragments)子字段、重试(Retry)子字段、功率调节(Power Management)子字段、更多数据(More Data)子字段、受保护帧(Protected Frame)子字段、+高吞吐量控制(+High-Throughput Control,+HTC)子字段,本申请中,子字段可以简称为字段。
其中,协议版本子字段占用B0-B1共2个比特,类型子字段占用B2-B3共2个比特,子类型子字段占用B4-B7共4个比特,前往DS子字段占用B8共1个比特,来自DS子字段占用B9共1个比特,更多片段子字段占用B10共1个比特,重试子字段占用B11共1个比特,功率调节子字段占用B12共1个比特,更多数据子字段占用B13共1个比特,受保护帧子字段占用B14共1个比特,+HTC子字段占用B15共1个比特。
关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、探测请求帧、探测响应帧可以携带DMG感知波束描述符元素、DMG感知短能力元素中的至少一种。
在一些实施例中,宣告帧、信息请求帧、信息响应帧的帧结构如图10所示,都是行动(Action)帧结构,行动帧是管理帧的一种子类型,用于扩展管理帧。行动帧的帧体字段中的第一个字段是行动字段,其中的类别(Category)子字段和行动细节(Action Details)子字段用于指示不同行动帧的子类型。不同子类型的行动帧的帧体字段中含有的字段和元素各不相同。行动帧结构包括依次排列的:帧控制字段、时长字段、地址1字段、地址2字段、地址3字段、序列控制字段、HT控制字段、帧体字段、帧校验字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,地址1字段占用6个字节,地址2字段占用6个字节,地址3字段占用6个字节,序列控制字段占用2个字节,HT控制字段占用0或4个字节,帧体字段占用字节数可变,帧校验字段占用4个字节。
在一些实施例中,帧体字段包括行动字段,行动字段包括:类别子字段和行动细节子字段,类别子字段占用1个字节,行动细节子字段占用字节数可变。
宣告帧可以携带DMG感知波束描述符元素、DMG感知短能力元素中的至少一种;信息响应帧可以携带DMG信标扇区描述符元素、DMG消极感知信标信息元素中的至少一种;信息请求帧可以携带DMG消极感知信标信息元素的元素ID。
综上所述,在感知会话建立阶段,感知发起设备和感知响应设备之间,可以通过上述信标帧、探测请求帧、探测响应帧、关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、宣告帧中的至少一种帧来携带上述坐标字段。
在感知测量设置阶段,感知发起设备和感知响应设备之间,可以通过上述感知测量设置查询帧、感知测量设置请求帧、感知测量设置响应帧中的至少一种帧来携带上述坐标字段。
感知测量设置请求帧的帧结构如图11所示,包括依次排列的:帧控制字段、时长字段、地址1字段、地址2字段、地址3字段、序列控制字段、HT控制字段、帧体字段、帧校验字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,地址1字段占用6个字节,地址2字段占用6个字节,地址3字段占用6个字节,序列控制字段占用2个字节,HT控制字段占用0或4个字节,帧体字段占用1个字节,帧校验字段占用4个字节。
在一些实施例中,帧体字段包括行动字段,行动字段占用字节数可变,行动字段包括依次排列的:类 别子字段、不受保护的DMG行动(Unprotected DMG Action)子字段、对话令牌(Dialog Token)子字段、DMG测量设置(DMG Measurement Setup Element)ID子字段、DMG感知测量设置元素(DMG Sensing Measurement Setup Element)子字段。其中,类别子字段占用1个字节,不受保护的DMG行动子字段占用1个字节,对话令牌子字段占用1个字节,DMG测量设置ID子字段占用1个字节,DMG感知测量设置元素子字段占用字节数可变。感知测量设置请求帧可以携带DMG感知测量设置元素。
感知测量设置响应帧的帧结构如图12所示,包括依次排列的:帧控制字段、时长字段、地址1字段、地址2字段、地址3字段、序列控制字段、HT控制字段、帧体字段、帧校验字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,地址1字段占用6个字节,地址2字段占用6个字节,地址3字段占用6个字节,序列控制字段占用2个字节,HT控制字段占用0或4个字节,帧体字段占用1个字节,帧校验字段占用4个字节。
在一些实施例中,帧体字段包括行动字段,行动字段占用字节数可变,行动字段包括依次排列的:类别子字段、不受保护的DMG行动子字段、对话令牌子字段、DMG测量设置ID子字段、状态代码(Status Code)子字段、DMG感知测量设置元素子字段、DMG感知图像距离坐标轴查询表(DMG Sensing Image Range Axis Look Up Table)子字段、DMG感知图像多普勒坐标轴查询表(DMG Sensing Image Doppler Axis Look Up Table)子字段。其中,类别子字段占用1个字节,不受保护的DMG行动子字段占用1个字节,对话令牌子字段占用1个字节,DMG测量设置ID子字段占用1个字节,状态代码子字段占用2个字节,DMG感知测量设置元素子字段占用字节数可变,DMG感知图像距离坐标轴查询表子字段占用字节数可变,DMG感知图像多普勒坐标轴查询表子字段占用字节数可变。感知测量设置响应帧可以携带DMG感知测量设置元素。
1.2针对感知会话建立阶段:
在一些实施例中,在感知会话建立阶段,该坐标字段携带在以下至少一种元素中,包括:
1.1.1DMG感知波束描述符元素(DMG Sensing Beam Description element);
1.1.2DMG信标扇区描述符元素(DMG Beacon Sector Descriptor element);
1.1.3DMG消极感知信标信息元素(DMG Passive Sensing Beacon Information element);
1.1.4DMG感知短能力元素(DMG Sensing Short Capability element)。
图13是相关技术提供的DMG感知波束描述符元素的元素结构示意图,DMG感知波束描述符元素包括依次排列的:元素ID(Element ID)字段、长度(Length)字段、元素ID扩展(Element ID Extension)字段、发送标识(TX flag)字段、波束描述符(Beam Descriptor)1字段至波束描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,发送标识字段占用1个字节,波束描述符1字段至波束描述符N字段各自占用6个字节。
在一些实施例中,波束描述符1字段包括依次排列的:波束方位角(Beam Azimuth)子字段、波束仰角(Beam Elevation)子字段、方位角波束宽度(Azimuth Beamwidth)子字段、仰角波束宽度(Elevation Beamwidth)子字段、波束增益(Beam Gain)子字段。其中,波束方位角子字段占用B0-B11共12个比特,波束仰角子字段占用B12-B23共12个比特,方位角波束宽度子字段占用B24-B32共9个比特,仰角波束宽度子字段占用B33-B40共8个比特,波束增益子字段占用B41-B47共7个比特。
DMG感知波束描述符元素中的字段的含义如下:
发送标识:指示发送(Transmit,TX)波束描述符或者接收(Receive,RX)波束描述符。
DMG感知波束描述符元素中有N个波束描述符字段,N为正整数。本申请中,子字段可以简称为字段,每个波束描述符字段的子字段中包括:
波束方位角:指示波束的方位角,单位为(360/4096)°,取值范围为0到4095。简称方位角字段或方位角子字段。
波束仰角:指示波束的仰角,编码方式为2进制补码,单位为(180/4096)°,取值范围为-2048到2047。简称仰角字段或仰角子字段。
方位角波束宽度:包含波束在方位角方向上的3dB带宽,单位为(360/512)°。
仰角波束宽度:包含波束在仰角方向上的3dB带宽,单位为(180/256)°。
波束增益:包含波束的增益,单位为0.5dB,取值0代表0dBi。
DMG感知波束描述符元素携带在以下至少一种帧的帧体字段中:
·DMG信标帧;
·关联请求帧;
·关联响应帧;
·重关联请求帧;
·重关联响应帧;
·探测请求帧;
·探测响应帧;
·宣告帧;
为了解决感知波束角度的坐标系指示不准确的问题,本申请在DMG感知波束描述符元素中增加了坐标字段。
1.2.1.1实施例一:
坐标字段与N个波束描述符字段是同层级字段,用于指示DMG感知波束描述符元素中所有的波束方位角字段和波束仰角字段的参考坐标系。坐标字段取值为第一取值时,指示地球坐标系;坐标字段取值为第二取值时,指示任意一个STA坐标系。
示例性的,在DMG感知波束描述符元素中新增一个坐标字段,如图14所示,图14是本申请一个示例性实施例提供的DMG感知波束描述符元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、发送标识字段、坐标字段、波束描述符1字段至波束描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,发送标识字段占用1个字节,坐标字段占用1个字节,波束描述符1字段至波束描述符N字段各自占用6个字节。
在一些实施例中,波束描述符1字段与图13中波束描述符1字段相同,此处不再赘述。
坐标字段指示所在的DMG感知波束描述符元素中所有波束方位角子字段和波束仰角子字段的参考坐标系,坐标字段可以取0-255之间任意两个值。示例性的,坐标字段取值1指示地球坐标系(比如,波束方位角=0为北,波束仰角=0为地平线);坐标字段取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标字段也可取值0指示地球坐标系;取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG感知波束描述符元素中新增一个坐标字段,使得坐标字段指示所在的DMG感知波束描述符元素中所有波束方位角子字段和波束仰角子字段的参考坐标系,从而减少开销,统一指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.1.2实施例二:
坐标字段与波束描述符字段一一对应,用于指示所在的波束描述符字段中的波束方位角字段和波束仰角字段的参考坐标系。也即DMG感知波束描述符元素包括N个波束描述符字段,每个波束描述符字段的子字段中包括:波束方位角字段、波束仰角字段和坐标字段,N为正整数。坐标取值为第一取值时,指示地球坐标系;坐标取值为第二取值时,指示任意一个STA坐标系。
如图15所示,图15是本申请一个示例性实施例提供的DMG感知波束描述符元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、发送标识字段、波束描述符1字段至波束描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,发送标识字段占用1个字节,波束描述符1字段至波束描述符N字段各自占用7个字节。
在一些实施例中,波束描述符1字段包括依次排列的:波束方位角子字段、波束仰角子字段、方位角波束宽度子字段、仰角波束宽度子字段、波束增益子字段、坐标子字段、保留(Reserved)子字段。其中,波束方位角子字段占用B0-B11共12个比特,波束仰角子字段占用B12-B23共12个比特,方位角波束宽度子字段占用B24-B32共9个比特,仰角波束宽度子字段占用B33-B40共8个比特,波束增益子字段占用B41-B47共7个比特,坐标子字段占用B48共1个比特,保留子字段占用B49-B55共7个比特。
坐标子字段指示该子字段所在的波束描述符字段中波束方位角和波束仰角子字段的参考坐标系。也即,第i个波束描述符字段中的坐标子字段,用于指示第i个波束描述符字段中波束方位角和波束仰角子字段的参考坐标系。示例性的,坐标子字段取值1指示地球坐标系(比如,波束方位角=0为北,波束仰角=0为地平线);坐标子字段取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标字段也可取值0指示地球坐标系(比如,波束方位角=0为北,波束仰角=0为地平线);取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG感知波束描述符元素中新增一个坐标子字段,使得坐标子字段指示所在的波束描述符字段中波束方位角子字段和波束仰角子字段的参考坐标系,从而灵活指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.2对DMG信标扇区描述符元素进行介绍:
图16是相关技术提供的DMG信标扇区描述符元素的元素结构示意图,DMG信标扇区描述符元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、发送标识字段、扇区描述符1字段至扇区描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字 节,发送标识字段占用1个字节,扇区描述符1字段至扇区描述符N字段各自占用8个字节。
在一些实施例中,扇区描述符1字段包括依次排列的:扇区方位角(Sector Azimuth)子字段、扇区仰角(Sector Elevation)子字段、方位角波束宽度子字段、仰角波束宽度子字段、扇区增益(Sector Gain)子字段、扇区ID(Sector ID)子字段、DMG天线标识(DMG Ant ID)子字段、保留子字段。其中,扇区方位角子字段占用B0-B11共12个比特,扇区仰角子字段占用B12-B23共12个比特,方位角波束宽度子字段占用B24-B32共9个比特,仰角波束宽度子字段占用B33-B40共8个比特,扇区增益子字段占用B40-B47共8个比特,扇区ID子字段占用B48-B55共8个比特,DMG天线标识子字段占用B56-B58共3个比特,保留子字段占用B59-B63共5个比特。
DMG信标扇区描述符元素包括N个扇区描述符字段,本申请中,子字段可以简称为字段,每个扇区描述符字段的子字段含义如下:
扇区方位角:指示波束的方位角,单位为(360/4096)°,取值范围为0到4095,简称方位角。
扇区仰角:指示波束的仰角,编码方式为有符号2进制补码,单位为(180/4096)°,取值范围为-2048到2047,简称仰角。
方位角波束宽度:包含波束在方位角方向上的3dB带宽,单位为(360/256)°。
仰角波束宽度:包含波束在仰角方向上的3dB带宽,单位为(180/256)°。
扇区增益:包含波束的增益,单位为0.5dB,取值范围为0到255。
扇区ID:与信标中使用的信标ID字段相同,以方位角和仰角来描述。
DMG天线标识:与信标中使用的DMG天线标识字段相同。
DMG信标扇区描述符元素携带在以下帧的帧体字段中:
·信息响应帧;
为了解决感知波束角度的坐标系指示不准确的问题,本申请在DMG信标扇区描述符元素中增加了坐标字段。
1.2.2.1实施例一:
DMG信标扇区描述符元素包括N个扇区描述符字段,每个扇区描述符字段的子字段中包括:扇区方位角字段和扇区仰角字段,N为正整数。坐标字段与N个扇区描述符字段是同层级字段,坐标字段用于指示DMG信标扇区描述符元素中所有的扇区方位角字段和扇区仰角字段的参考坐标系。坐标字段取值为第一取值时,指示地球坐标系;坐标字段取值为第二取值时,指示任意一个STA坐标系。
示例性的,在DMG信标扇区描述符元素中新增一个坐标字段,如图17所示,图17是本申请一个示例性实施例提供的DMG信标扇区描述符元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、发送标识字段、坐标字段、扇区描述符1字段至扇区描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,发送标识字段占用1个字节,坐标字段占用1个字节,扇区描述符1字段至扇区描述符N字段各自占8个字节。
在一些实施例中,扇区描述符1字段包括的子字段与图16中扇区描述符1字段包括的子字段相同,此处不再赘述。
坐标字段指示该字段所在的DMG信标扇区描述符元素中所有扇区方位角和扇区仰角子字段的参考坐标系,坐标字段可以取0-255之间任意两个值。示例性的,坐标字段取值1指示地球坐标系(比如,扇区方位角=0为北,扇区仰角=0为地平线);取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标字段也可取值0指示地球坐标系;取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG信标扇区描述符元素中新增一个坐标字段,使得坐标字段指示所在的DMG信标扇区描述符元素中所有扇区方位角子字段和扇区仰角子字段的参考坐标系,从而减少开销,统一指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.2.2实施例二:
DMG信标扇区描述符元素包括N个扇区描述字段,每个扇区描述符字段的子字段中包括:扇区方位角字段、扇区仰角字段和坐标字段,N为正整数。坐标字段与扇区描述符字段一一对应,坐标字段用于指示所在的扇区描述符字段中的扇区方位角字段和扇区仰角字段的参考坐标系。坐标字段取值为第一取值时,指示地球坐标系;坐标字段取值为第二取值时,指示任意一个STA坐标系。
示例性的,在DMG信标扇区描述符元素中新增一个坐标子字段,如图18所示,图18是本申请一个示例性实施例提供的DMG信标扇区描述符元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、发送标识字段、扇区描述符1字段至扇区描述符N字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,发送标识字段占用1个字节,扇 区描述符1字段至扇区描述符N字段各自占8个字节。
在一些实施例中,扇区描述符1字段包括依次排列的:扇区方位角子字段、扇区仰角子字段、方位角波束宽度子字段、仰角波束宽度子字段、扇区增益子字段、扇区ID子字段、DMG天线标识子字段、坐标子字段、保留子字段。其中,扇区方位角子字段占用B0-B11共12个比特,扇区仰角子字段占用B12-B23共12个比特,方位角波束宽度子字段占用B24-B32共9个比特,仰角波束宽度子字段占用B33-B40共8个比特,扇区增益子字段占用B40-B47共8个比特,扇区ID子字段占用B48-B55共8个比特,DMG天线标识子字段占用B56-B58共3个比特,坐标子字段占用B59共1个比特,保留子字段占用B60-B63共4个比特。
坐标子字段指示该子字段所在扇区描述符字段中扇区方位角和扇区仰角子字段的参考坐标系,示例性的,坐标子字段取值1指示地球坐标系(比如,扇区方位角=0为北,扇区仰角=0为地平线);坐标子字段取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标子字段也可取值0指示地球坐标系;取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG信标扇区描述符元素中新增一个坐标子字段,使得坐标子字段指示所在的信标扇区描述符元素中扇区方位角子字段和扇区仰角子字段的参考坐标系,从而灵活指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.3对DMG消极感知信标信息元素进行介绍:
图19是相关技术提供的DMG消极感知信标信息元素的元素结构示意图,DMG消极感知信标信息元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、扇区数(Number of Sectors)字段、信标信息控制(Beacon Information Control)字段、本地通信接口(Local Communication Interface,LCI)字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,扇区数字段占用1个字节,信标信息控制字段占用1个字节,LCI字段占用0或16个字节。
在一些实施例中,信标信息控制字段包括依次排列的:信标常数(Beacon Constant)子字段、下一信标(Next Beacon)子字段、LCI存在(LCI Present)子字段、保留子字段。其中,信标常数子字段占用B0共1个比特,下一信标子字段占用B1共1个比特,LCI存在子字段占用B2共1个比特,保留子字段占用B3至B7共5个比特,本申请中,子字段可以简称为字段。
DMG消极感知信标信息元素中的字段的含义如下:
LCI存在:指示LCI字段是否存在于DMG消极感知信标信息元素。取值1指示存在,取值0指示不存在。
DMG消极感知信标信息元素携带在以下帧的帧体字段中:
·信息请求帧;
·信息响应帧;
为了解决感知波束角度的坐标系指示不准确的问题,本申请在DMG消极感知信标信息元素中增加了坐标字段。
1.2.3.1实施例一:
DMG消极感知信标信息元素包括信标信息控制字段。坐标字段与信标信息控制字段是同层级字段,坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字段的参考坐标系。坐标字段取值为第一取值时,指示地球坐标系;坐标字段取值为第二取值时,指示任意一个STA坐标系。
示例性的,在DMG消极感知信标信息元素中新增一个坐标字段,如图20所示,图20是本申请一个示例性实施例提供的DMG消极感知信标信息元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、扇区数字段、信标信息控制字段、LCI字段、坐标字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,扇区数字段占用1个字节,信标信息控制字段占用1个字节,LCI字段占用0或16个字节,坐标字段占用1个字节。
在一些实施例中,信标信息控制字段包括的子字段与图19信标信息控制字段包括的子字段相同,此处不再赘述。
坐标字段指示该元素所在帧中携带的DMG信标扇区描述符元素中的扇区方位角和扇区仰角子字段的参考坐标系,坐标字段可以取0-255之间任意两个值。示例性的,坐标字段取值1指示地球坐标系(比如,扇区方位角=0为北,扇区仰角=0为地平线);坐标字段取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标字段也可取值0指示地球坐标系;取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG消极感知信标信息元素中新增一个坐标字段,使得坐标字段指示该元素所在帧中携带的DMG信标扇区描述符元素中所有扇区方位角子字段和扇区仰角子字段的参考坐标系,从而减少开销,统一指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.3.2实施例二:
DMG消极感知信标信息元素包括信标信息控制字段。信标信息控制字段的子字段中包括坐标字段。坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字段的参考坐标系。坐标字段取值为第一取值时,指示地球坐标系;坐标字段取值为第二取值时,指示任意一个STA坐标系。
示例性的,在DMG消极感知信标信息元素中新增一个坐标子字段,如图21所示,图21是本申请一个示例性实施例提供的DMG消极感知信标信息元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、扇区数字段、信标信息控制字段、LCI字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,扇区数字段占用1个字节,信标信息控制字段占用1个字节,LCI字段占用0或16个字节。
在一些实施例中,信标信息控制字段包括依次排列的:信标常数子字段、下一信标子字段、LCI存在子字段、坐标子字段、保留子字段。其中,信标常数子字段占用B0共1个比特,下一信标子字段占用B1共1个比特,LCI存在子字段占用B2共1个比特,坐标子字段占用B3共1个比特,保留子字段占用B4至B7共4个比特,本申请中,子字段可以简称为字段。
坐标子字段指示该元素所在帧中携带的DMG信标扇区描述符元素中的扇区方位角和扇区仰角子字段的参考坐标系。示例性的,坐标子字段取值1指示地球坐标系(比如,扇区方位角=0为北,扇区仰角=0为地平线);坐标子字段取值0指示任意一个STA坐标系。如果DMG感知短能力元素中的地球坐标字段取值为0,则该字段的取值唯一(仅为1或仅为0)且指示任意一个STA坐标系。
在不同的实施例中,坐标子字段也可取值0指示地球坐标系;取值1指示任意一个STA坐标系,本申请对此不加以限定。
本实施例通过在DMG消极感知信标信息元素新增一个坐标子字段,使得坐标子字段指示该元素所在帧中携带的DMG信标扇区描述符元素中扇区方位角子字段和扇区仰角子字段的参考坐标系,从而灵活指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.2.4对DMG感知短能力元素进行介绍:
图22是相关技术提供的DMG感知短能力元素的元素结构示意图,包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、DMG感知短能力(Short DMG Sensing Capabilities)字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,DMG感知短能力字段占用1个字节。
在一些实施例中,DMG感知短能力字段包括依次排列的:感知支持(Sensing Support)子字段、消极感知支持(Passive Sensing Support)子字段、信标间准确计时(Accurate Timing of Beacons)子字段、可用位置(Location Available)子字段、地球坐标(Earth Coordinates)子字段、保留子字段。其中,感知支持子字段B0共1个比特,消极感知支持子字段占用B1共1个比特,信标间准确计时子字段占用B2共1个比特,可用位置子字段占用B3共1个比特,地球坐标子字段占用B4共1个比特,保留子字段占用B5至B7共3个比特。
DMG感知短能力元素中的字段的含义如下:
感知支持:指示是否支持任何一种DMG感知类型。
消极感知支持:指示是否支持通过提供信标方向和可选的位置信息来支持DMG消极感知。
信标间准确计时:指示信标之间的时间间隔是采样准确的。
可用位置:指示AP可以为消极感知提供其位置信息。
地球坐标:指示STA能够发送地球坐标系下的方位角和仰角(方位角=0为北,仰角=0为地平线)。如果该子字段设置为0,方位角和仰角都是相对于一个任意STA坐标系。
DMG感知短能力元素携带在以下至少一种帧的帧体字段中:
·DMG信标帧;
·关联请求帧;
·关联响应帧;
·重关联请求帧;
·重关联响应帧;
·探测请求帧;
·探测响应帧;
·信息响应帧;
·宣告帧。
为了解决感知波束角度的坐标系指示不准确的问题,本申请修改了DMG感知短能力元素中的地球坐标子字段的含义,本申请中,子字段可以简称为字段。
本方法中的坐标字段是DMG感知短能力元素中的地球坐标子字段,地球坐标子字段的取值为第一取值时用于指示STA仅能发送地球坐标系的方位角和仰角,即修改地球坐标子字段的含义为指示STA仅能发送地球坐标系下的方位角和仰角(方位角=0为北,仰角=0为地平线)。如果该子字段设置为0,方位角和仰角都是相对于一个任意STA坐标系。
本实施例通过修改DMG感知短能力元素中的地球坐标子字段的含义,使得坐标字段指示该元素所在帧中方位角子字段和仰角子字段的参考坐标系,从而明确指示方位角/仰角的坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.3针对感知测量设置阶段:
在感知测量设置阶段,坐标字段携带在DMG感知测量设置元素中,用于指示DMG感知测量设置元素中的方位角字段和仰角字段的参考坐标系。
在一些实施例中,感知发起者向感知响应者发送或接收携带有坐标字段的帧;
或,在一些实施例中,感知响应者向感知发起者发送或接收携带有坐标字段的帧。
1.3.1对DMG感知测量设置元素进行介绍:
图23是相关技术提供的DMG感知测量设置元素的示意图,DMG感知测量设置元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、测量设置控制(Measurement Setup Control)字段、上报类型(Report Type)字段、LCI字段、对端位置(Peer Orientation)字段、可选子元素(Optional Subelements)字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,测量设置控制字段占用1个字节,上报类型字段占用1个字节,LCI字段占用0或16个字节,对端位置字段占用0至5个字节,可选子元素字段占用字节数可变。
在一些实施例中,测量设置控制字段包括依次排列的:感知类型(Sensing Type)子字段、RX发起者(RX Initiator)子字段、LCI存在(LCI Present)子字段、位置存在(Orientation Present)子字段、保留子字段。其中,感知类型子字段占用B0-B2共3个比特,RX发起者子字段占用B3共1个比特,LCI存在子字段占用B4共1个比特,位置存在子字段占用B5共1个比特,保留子字段占用B6-B7共2个比特,本申请中,子字段可简称为字段。
在一些实施例中,对端位置字段包括依次排列的:方位角子字段、仰角子字段、距离(Range)子字段。其中,方位角子字段占用B0-B11共12个比特,仰角子字段占用B12-B23共12个比特,距离子字段占用B24-B39共16个比特。
DMG感知测量设置元素携带用于设置一个DMG感知测量的信息,DMG感知测量设置元素携带在以下至少一种帧的帧体字段中:
感知测量设置请求帧;
感知测量设置响应帧;
DMG感知测量设置请求帧;
DMG感知测量设置响应帧。
DMG感知测量设置元素包括元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。测量设置控制字段中包括以下几个字段:
感知类型:指示DMG感知测量的类型,具体取值及其含义可见表1。
表1
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 双基(Bistatic)
3 多基(Multistatic)
4-7 保留(Reserved)
Rx发起者:指示在双基感知类型中感知发起者是感知接收者或感知发送者。取值为1指示感知发起者是感知接收者;取值为0指示感知发起者是感知发送者。
LCI存在:指示LCI字段是否存在于DMG感知测量设置元素中。取值为1指示LCI字段存在于DMG 感知测量设置元素;取值为0指示LCI字段不存在于DMG感知测量设置元素中。
位置存在:指示对端位置字段是否存在于DMG感知测量设置元素中。取值为1指示对端位置字段存在于DMG感知测量设置元素中;取值为0指示对端位置字段不存在于DMG感知测量设置元素中。
此外,DMG感知测量设置元素中的上报类型字段,用于指示感知发起者期望感知响应者上报的类型,取值及其含义见表2。
表2
Figure PCTCN2022128424-appb-000001
此外,LCI字段携带位置配置信息报告中的LCI字段。
对端位置字段用于指示对端设备的方向和距离,包含方向角、仰角和距离三个子字段。
可选子元素字段中包括零个或多个子元素,全部的子元素以及子元素的顺序如下表3所示。
表3
Figure PCTCN2022128424-appb-000002
1.3.1.1实施例一:
坐标字段是测量设置控制字段的子字段,方位角字段和仰角字段是对端方向字段的子字段。
在DMG感知短能力元素中的地球坐标字段的取值为第一取值的情况下,坐标字段的取值唯一且用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第一取值的情况下,坐标字段用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第二取值的情况下,坐标字段用于方位角字段和仰角字段的参考坐标是地球坐标系。
如图24所示,图24是本申请一个示例性实施例提供的DMG感知测量设置元素的元素结构示意图。DMG感知测量设置元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,测量设置控制字段占用1个字节,上报类型字段占用1个字节,LCI字段占用0或16个字节,对端位置字段占用0至5个字节,可选子元素字段占用字节数可变。
在一些实施例中,测量设置控制字段包括依次排列的:感知类型子字段、RX发起者子字段、LCI存在子字段、位置存在子字段、坐标子字段、保留子字段。其中,感知类型子字段占用B0-B2共3个比特,RX发起者子字段占用B3共1个比特,LCI存在子字段占用B4共1个比特,位置存在子字段占用B5共1个比特,坐标子字段占用B6共1个比特,保留子字段占用B7共1个比特,本申请中,子字段可简称为字 段。
在一些实施例中,对端位置字段包括依次排列的:方位角子字段、仰角子字段、距离子字段。其中,方位角子字段占用B0-B11共12个比特,仰角子字段占用B12-B23共12个比特,距离子字段占用B24-B39共16个比特。
示例性的,在测量设置控制字段新增一个坐标子字段。如果该子字段所在的测量设置控制字段中的位置存在子字段的取值为0,则该子字段保留。
在DMG感知短能力元素中的地球坐标字段取值为0的情况下,该子字段的取值唯一(仅为1或仅为0)且指示对端位置字段中的方位角子字段和仰角子字段是相对于任意一个STA坐标系;
在DMG感知短能力元素中的地球坐标字段取值为1的情况下,该子字段指示DMG感知测量设置元素中对端位置字段中的方位角子字段和仰角子字段的参考坐标系,示例性的,坐标子字段取值1的情况下指示地球坐标系,坐标子字段取值0的情况下指示任意一个STA坐标系。
本实施例通过在DMG感知测量设置元素的测量设置控制字段新增一个坐标子字段,使得坐标子字段指示DMG感知测量设置元素中对端位置字段中的方位角子字段和仰角子字段的参考坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.3.1.2实施例二:
坐标字段、方位角字段和仰角字段均为对端方向字段的子字段。
在DMG感知短能力元素中的地球坐标字段的取值为第一取值的情况下,坐标字段的取值唯一且用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第一取值的情况下,坐标字段用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第二取值的情况下,坐标字段用于方位角字段和仰角字段的参考坐标是地球坐标系。
如图25所示,图25是本申请一个示例性实施例提供的DMG感知测量设置元素的元素结构示意图。DMG感知测量设置元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,测量设置控制字段占用1个字节,上报类型字段占用1个字节,LCI字段占用0或16个字节,对端位置字段占用0至6个字节,可选子元素字段占用字节数可变。
在一些实施例中,测量设置控制字段包括依次排列的:感知类型子字段、RX发起者子字段、LCI存在子字段、位置存在子字段、保留子字段。其中,感知类型子字段占用B0-B2共3个比特,RX发起者子字段占用B3共1个比特,LCI存在子字段占用B4共1个比特,位置存在子字段占用B5共1个比特,保留子字段占用B6-B7共2个比特,本申请中,子字段可简称为字段。
在一些实施例中,对端位置字段包括依次排列的:方位角子字段、仰角子字段、距离子字段、坐标子字段、保留子字段。其中,方位角子字段占用B0-B11共12个比特,仰角子字段占用B12-B23共12个比特,距离子字段占用B24-B39共16个比特,坐标子字段占用B40共1个比特,保留子字段占用B41-B47共7个比特。
示例性的,在对端位置字段新增一个坐标子字段。
在DMG感知短能力元素中的地球坐标字段取值为0的情况下,该子字段的取值唯一(仅为1或仅为0)且指示该子字段所在的对端位置字段中的方位角子字段和仰角子字段是相对于任意一个STA坐标系;
在DMG感知短能力元素中的地球坐标字段取值为1的情况下,该子字段指示所在对端位置字段中的方位角子字段和仰角子字段的参考坐标系,示例性的,坐标子字段取值1的情况下指示地球坐标系,坐标子字段取值0的情况下指示任意一个STA坐标系。
本实施例通过在DMG感知测量设置元素的对端位置字段新增一个坐标子字段,使得坐标子字段指示所在对端位置字段中的方位角子字段和仰角子字段的参考坐标系,确保响应感知流程的正常进行,保证感知测量的结果准确性。
1.3.1.3实施例三:
不增加新的子字段,仅对方位角字段和仰角字段进行含义修改,方位角字段和仰角字段均为对端方向字段的子字段。
方位角字段:包含由发送该帧的STA测量出的被寻址的STA所在的方位角,以(360/4096)°为单位,取值范围为从0到4095。方位角的坐标系为一个与发送该帧的STA朝向相关的坐标系。
仰角字段:包含由发送该帧的STA测量出的被寻址的STA所在的仰角,以(180/4096)°为单位,取值范围为从-2048到2047。仰角的坐标系为一个与发送该帧的STA朝向相关的坐标系。
本实施例通过对方位角字段和仰角字段进行含义修改,确保响应感知流程的正常进行,保证感知测量的结果准确性。
由于相关技术中现有的帧格式设计中存在尚未解决的问题,例如在并行模式的协作单基感知中,没有对单基PPDU的格式和长度做明确的规定,所以单基PPDU可能与感知测量报告帧发生重叠从而产生干扰,从而导致影响感知流程的正常进行,本申请提供的感知测量方法可以有效解决这个问题。
对毫米波协作单基感知测量实例进行介绍:
毫米波协作单基感知测量实例存在两种模式,一种为顺序模式,另一种为并行模式。示例性的,图26是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图,图27是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图。
如图26和图27所示,顺序模式与并行模式的相同点在于:感知发起者在感知测量实例的初始阶段需要分别发送毫米波感知请求帧至每个感知响应者,而且每个感知响应者需要在短帧间隔(Short Interframe Space,SIFS)时间内回复一个毫米波感知响应帧至感知发起者。DMG感知请求也可称为RQ,DMG感知响应也可称为RSP。
如图26和图27所示,顺序模式与并行模式的不同点在于:顺序模式中,每个感知响应者依次自行发送且接收单基感知测量帧来感知环境,并在SIFS时间内发送感知测量报告帧至感知发起者。并行模式中,每个感知响应者同时发送且接收单基感知测量帧来感知环境,随后依次发送DMG感知测量报告帧(感知测量报告帧)至感知发起者。
需要说明的是,图26和图27中,在感知发起者或感知响应者对应的横线上方的格子,表示设备发送的帧,横线下方的格子(空白格)表示设备接收的帧,并且发送的帧和接收的帧之间是对应的。对于正中压在感知响应者对应的横线上的格子,表示感知响应者自发自收的帧,例如感知响应者自发自收的单基感知测量帧。例如,图26中感知发起者向感知响应者STA A发送了RQ(由感知发起者对应的横线上方的格子表示),相应的,感知响应者STA A会接收到该RQ(由感知响应者STA A对应的横线下方的空白格子表示)。本申请的其它附图中的空白格的含义可参照上述说明,对此不再赘述。
对DMG感知请求帧进行介绍:
图28是相关技术提供的DMG感知请求帧的格式的示意图,感知请求帧包括MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、接收方地址(Receiver Address,RA)字段、发送方地址(Transmitter Address,TA)字段,MAC帧体包括依次排列的:TDD波束赋形控制(TDD Beamforming Control)字段、TDD波束赋形信息(TDD Beamforming Information)字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,接收地址字段占用6个字节,发送地址字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用10个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形(TDD Group Beamforming)子字段、TDD波束测量(TDD Beam Measurement)子字段、TDD波束赋形帧类型(TDD Beamforming Frame Type)子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为0,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括依次排列的:测量设置ID(Measurement Setup ID)子字段、测量突发ID(Measurement Burst ID)、测量实例序号(Measurement Instance Number)子字段、感知类型子字段、STA ID子字段、第一波束下标(First Beam Index)子字段、实例中STA数量(Num of STAs in Instance)子字段、实例中PPDU数量(Num of PPDUs in Instance)子字段、增强型方向性多吉比特令牌环网长度(Enhanced Directional Multi-Gigabit Token Ring Network Length,EDMG TRN Length)子字段、每个TX TRN-Unit的RX TRN-Unit的数量(RX TRN-Units per Each TX TRN-Unit)子字段、EDMG TRN-Unit P子字段、EDMG TRN-Unit M子字段、EDMG TRN-Unit N子字段、TRN子字段序列长度(TRN Subfield Sequence Length)子字段、带宽(Bandwidth)子字段、保留子字段。其中,测量设置ID子字段占用B0-B7共8个比特,测量突发ID子字段占用B8-B15共8个比特,测量实例序号子字段占用B16-B23共8个比特,感知类型子字段占用B24-B26共3个比特,STA ID子字段占用B27-B29共3个比特,第一波束下标子字段占用B30-B37共8个比特,实例中STA数量子字段占用B38-B40共3个比特,实例中PPDU数量子字段占用B41-B42共2个比特,EDMG TRN长度子字段占用B43-B50共8个比特,每个TX TRN-Unit的RX TRN-Unit的数量子字段占用B51-B58共8个比特,EDMG TRN-Unit P子字段占用B59-B60共2个比特,EDMG TRN-Unit M子字段占用B61-B64共4个比特,EDMG TRN-Unit N子字段占用B65-B66共2个比特,TRN子字段序列长度子字段占用B67-B68共2个比特,带宽子字段占用B69-B76共8个比 特,保留子字段占用B77-B79共3个比特。
DMG感知请求帧的TDD波束赋形信息字段中的字段的含义如下:
·测量设置ID:与该帧相关的感知测量设置的标识符。
·测量突发ID:与该帧相关的感知测量突发的标识符。
·测量实例序号:指示一个感知测量实例在一个测量突发中的序号。
·感知类型:指示该帧所请求的感知类型,具体取值及含义可参见表4:
表4
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 多基(Multi static)
3 保留(Reserved)
·STA ID:指示某个STA在一个感知测量实例中参与测量的顺序。
·第一波束下标:指示在一个感知测量实例中第一个使用的发送波束的索引。
·实例中STA数量:指示一个感知测量实例中参与测量的STA的个数。
·实例中PPDU数量:指示一个感知测量实例中出现的PPDU的个数。
·EDMG TRN长度:指示一个PPDU中包含的TRN-单元(Unit)的个数。
·每个TX TRN-Unit的RX TRN-Unit的数量:指示连续向相同方向发送的TRN-Unit的数量。
·EDMG TRN-Unit P:指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段的个数。
·EDMG TRN-Unit M:指示在一个TRN-Unit中波束方向可变的TRN子字段的个数。
·EDMG TRN-Unit N:指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数。
·TRN子字段序列长度:指示每个TRN子字段所使用的格雷序列的长度。
·带宽:指示发送TRN字段所使用的带宽。
由于在并行模式的协作单基感知中,没有对单基PPDU的格式和长度做明确的规定,所以单基PPDU可能与感知测量报告帧发生重叠从而产生干扰,如图29所示。图29是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图。该流程由一个感知发起者(STA)和两个感知响应者(站点A,站点B)参与,包括以下过程(从左至右):
(1)感知发起者发送DMG感知请求帧至站点A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,站点A回复DMG感知响应帧至感知发起者;
(3)SIFS时间后,感知发起者发送DMG感知请求帧至站点B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,站点B回复DMG感知响应帧至感知发起者;
(5)SIFS时间后,站点A和站点B同时分别自发自收1个单基感知测量帧从而感知环境;
(6)SIFS时间后,站点A发送DMG感知测量报告帧至感知发起者,上报感知测量的结果;
(7)SIFS时间后,感知发起者回复确认(Acknowledge,ACK)帧至站点A;
(8)SIFS时间后,感知发起者发送DMG感知上报轮询帧至站点B,触发站点B上报感知测量结果;
(9)SIFS时间后,站点B发送DMG感知测量报告帧至感知发起者,上报感知测量的结果;
(10)SIFS时间后,感知发起者回复ACK帧至站点B。
需要说明的是,上述(7)和(10)为可选步骤。上述示例中仅存在2个感知响应者,对于存在更多感知响应者的情况,可通过上述方法继续触发后续的感知响应者发送DMG感知测量报告帧。
如图29所示,在上述过程中,当站点B自发自收的单基感知测量帧(Monostatic PPDU)的长度大于站点A自发自收的单基感知测量帧的长度时,站点B自发自收的单基感知测量帧与站点A发送的DMG感知测量报告帧存在重叠,从而导致站点A与站点B之间产生干扰。
为了解决站点A与站点B之间产生干扰的问题,提供了一种感知测量方法,图30是本申请一个示例性实施例提供的感知测量方法的流程图,该方法由感知参与设备执行,包括:
步骤3010:在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,该第二字段用于指示单基PPDU的时长相关信息。
为了解决站点A与站点B之间产生干扰的问题,本申请提出了两种解决方案:
方案一:感知响应者主动将其所使用的单基PPDU的时长相关信息告知感知发起者,感知发起者基于这些信息依据一定的规则选择合适的DMG感知轮询帧的发送时刻;示例性的,感知响应者1和感知响应 者2告知感知发起者单基PPDU的时长分别为t1和t2,t1大于t2,那么感知发起者在时长t1后经过SIFS时间发送DMG感知轮询帧。示例性的,方案一中的单基PPDU的时长相关信息是指感知响应者发送单基PPDU的实际时长信息。
在并行模式的协作单基感知过程中,感知响应设备向感知发起设备发送携带有第二字段的帧,该帧为DMG感知测量设置响应帧或DMG感知响应帧;
在并行模式的协作单基感知过程中,感知发起设备接收感知响应设备发送的携带有第二字段的帧,该帧为DMG感知测量设置响应帧或DMG感知响应帧。
在方案一的实施例中,感知发起设备依据以下规则选择合适的DMG感知轮询帧的发送时刻:
在一个协作单基感知实例中,如果实例为并行模式,则感知发起设备必须在时长最长的单基PPDU发送结束之后不超过SIFS时间内发送第一个DMG感知轮询帧来触发感知响应设备上报感知测量结果。
方案二:感知响应者被动接收来自感知发起者的单基PPDU的时长配置信息,依据这些信息来发送合适的单基PPDU。同时,感知发起者也依据这些单基PPDU的时长配置信息来选择合适的DMG感知轮询帧的发送时刻。示例性的,感知发起者的单基PPDU的时长配置信息为t3,那么感知响应者1和感知响应者2发送的单基PPDU时长不能超过t3。示例性的,方案二中的单基PPDU的时长相关信息是指感知发起者要求的单基PPDU的最大发送时长,感知响应者发送的单基PPDU的实际发送时长不能超过感知发起者要求的单基PPDU的最大发送时长。
在并行模式的协作单基感知过程中,感知发起设备向感知响应设备发送携带有第二字段的帧,该帧为DMG感知测量设置请求帧或DMG感知请求帧;
在并行模式的协作单基感知过程中,感知响应设备接收感知发起设备发送的携带有第二字段的帧,该帧为DMG感知测量设置请求帧或DMG感知请求帧。
在方案二的实施例中,感知发起者依据以下规则选择合适的DMG感知轮询帧的发送时刻:
在一个协作单基感知实例中,如果该协作单基感知实例为并行模式,则感知响应者必须按照感知发起者的相关配置信息来发送符合要求的单基PPDU;
在一个协作单基感知实例中,如果该协作单基感知实例为并行模式,则感知发起者必须在时长最长的单基PPDU发送结束之后不超过SIFS时间内发送第一个DMG感知轮询帧来触发感知响应者上报感知测量结果。
2.1针对方案一:
在感知测量设置阶段实现感知响应者上报单基PPDU时长相关信息至感知发起者。在这些实施例中,第二字段携带在DMG感知测量设置元素中,具体来说,第二字段携带在DMG感知测量设置元素的协作单基专有配置可选子元素中。
如图31所示,图31是DMG感知测量设置元素的元素结构示意图。DMG感知测量设置元素包括依次排列的:元素ID字段、长度字段、元素ID扩展字段、测量设置控制字段、上报类型字段、LCI字段、对端位置字段、可选子元素字段。其中,元素ID字段占用1个字节,长度字段占用1个字节,元素ID扩展字段占用1个字节,测量设置控制字段占用1个字节,上报类型字段占用1个字节,LCI字段占用0或16个字节,对端位置字段占用0至5个字节,可选子元素字段占用字节数可变。
示例性的,在DMG感知测量设置元素中的可选子元素字段中定义一种新的子元素类型,新定义的协作单基专有配置可选子元素如表5中所示:
表5
子元素ID 子元素名称 可扩展性
1 TX波束列表
2 RX波束列表
3 DMG感知调度
4 协作单基专有配置
5-255 保留
2.1.1实施例一:
第二字段是协作单基专有配置可选子元素中的去除TRN字段后的单基PPDU的时长字段。协作单基专有配置可选子元素还包括:子元素标识字段和长度字段中的至少一个。
示例性的,在协作单基专有配置可选子元素字段中,具体的帧格式如图32所示,协作单基专有配置可选子元素字段中包括子元素ID(Subelement ID)字段、长度字段以及去除TRN字段的单基PPDU的时长(Duration of Monostatic PPDUs without TRN)字段。其中,子元素ID字段占用1个字节,长度字段占用1个字节,去除TRN字段的单基PPDU的时长字段占用1或2或4或6或8个字节。
其中,子元素ID是取值为4-255之间的任意整数,以取值为4作为示例。
长度指示该元素除了子元素ID和长度字段之外的字节数。
去除TRN字段的单基PPDU的时长指示设备在协作单基感知测量实例中所使用的单基PPDU的时长(去除TRN字段时长,TRN字段的时长是固定的),单位为TSF时间单位。
在一些实施例中,第二字段是协作单基专有配置可选子元素中的单基PPDU的时长字段,协作单基专有配置可选子元素还包括:子元素标识字段和长度字段中的至少一个。
示例性的,在协作单基专有配置可选子元素字段中,协作单基专有配置可选子元素字段中包括子元素ID字段、长度字段以及单基PPDU的时长字段。其余字段与上述相同,此处不再赘述。
单基PPDU的时长指示设备在协作单基感知测量实例中所使用的单基PPDU的时长,单位为TSF时间单位。
2.1.2实施例二:
第二字段是协作单基专有配置可选子元素中的数据长度字段。示例性的,在协作单基专有配置可选子元素字段中,具体的帧格式如图33所示。
协作单基专有配置可选子元素包括依次排列的:子元素ID字段、长度字段、PPDU类型(PPDU Type)字段、数据长度(Data Length)字段、调制与编码策略(Modulation and Coding Scheme,MCS)字段、额外EDMG PPDU(Additional EDMG PPDU)字段、空间流数量(Number of Spatial Stream)字段、用户数量(Number of Users)字段、保护间隔(Guard Interval,GI)类型字段。其中,子元素ID字段占用1个字节,长度字段占用1个字节,PPDU类型字段占用1个字节,数据长度字段占用3个字节,MCS字段占用1个字节,额外EDMG PPDU字段占用1个字节,空间流数量字段占用1个字节,用户数量字段占用1个字节,GI类型占用1个字节。
在一些实施例中,MCS字段包括依次排列的:基础MCS(Base MCS)子字段、扩展SC MCS指示(Extended SC MCS Indication)子字段和保留子字段,其中,基础MCS子字段占用B0-B4共5个比特,扩展SC MCS指示子字段占用B5共1个比特,保留子字段占用B6-B7共2个比特。
其中,子元素ID是取值为4-255之间的任意整数,以取值为4作为示例。
长度指示该元素除了子元素ID和长度字段之外的字节数。
PPDU类型指示设备在协作单基感知测量实例中使用的单基PPDU的类型,取值及其含义见表6:
表6
取值 含义
0 EDMG控制模式PPDU
1 EDMG SC模式PPDU
2 EDMG OFDM模式PPDU
3 Non-EDMG控制模式PPDU
4 Non-EDMG SC模式PPDU
数据长度指示设备在协作单基感知测量实例中使用的单基PPDU中携带的PSDU的长度,单位为字节。
基础MCS和扩展SC MCS指示:取值及含义与单基PPDU中L-Header中的基础MCS和扩展SC MCS指示字段分别相一致。当PPDU Type字段指示“EDMG控制模式PPDU”、“EDMG SC模式PPDU”或“EDMG OFDM模式PPDU”时,扩展SC MCS指示字段保留。
额外EDMG PPDU取值及含义与单基PPDU中L-Header中的额外PPDU字段一致。取值1指示单基PPDU之后立即跟随另外一个PPDU(没有前导码),无需间隔SIF时间。取值0指示没有额外的PPDU跟随这个单基PPDU。
空间流数量:取值及含义与单基PPDU中EDMG-Header-A中的空间流数量字段相同。指示设备在协作单基感知测量实例中发送的单基PPDU所包含的空间流的数量。
用户数量:指示设备在协作单基感知测量实例中发送的单基PPDU所包含的用户的数量。
GI类型:取值及含义与单基PPDU中L-Header中的GI长度字段一致。指示设备在协作单基感知测量实例中发送的单基PPDU所使用的GI的类型,取值及其含义见表7。
表7
取值 含义
0 短GI
1 正常GI
2 长GI
3 保留
在这些实施例中,第二字段携带在DMG感知测量设置元素中,第二字段是协作单基专有配置可选子元素中的单基PPDU的时长字段或去除TRN字段后的单基PPDU的时长字段或数据长度字段,在一个感知测量设置中每个感知响应者仅仅需要传递一次单基PPDU时长相关的信息,信令开销较小。
在感知测量实例阶段实现感知响应者上报单基PPDU时长相关信息至感知发起者。在这些实施例中,第二字段携带在TDD波束赋形字段中,第二字段是TDD波束赋形字段中的单基PPDU的时长字段或去除TRN字段后的单基PPDU的时长字段或数据长度字段。
对时分复用(Time Division Duplexing,TDD)波束赋形帧进行介绍:
图34是相关技术提供的TDD波束赋形帧的格式的示意图,TDD波束赋形帧为控制帧的一种。TDD波束赋形帧包括MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用字节数可变,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为0,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
TDD波束赋形帧的MAC帧头中的字段的含义如下:
·帧控制:指示该MAC帧的类型等信息,其中包括指示该帧为TDD波束赋形帧的信息。
·时长:指示该帧的发送时间长度。
·RA:指示帧接收者的MAC地址。
·TA:指示帧发送者的MAC地址。
·TDD波束赋形帧类型:指示TDD波束赋形帧的类型,具体取值及其含义可参见表8。
表8
取值 含义
0 TDD扇区扫描(Sector Sweep,SSW)
1 TDD SSW反馈(Feedback)
2 TDD SSW确认(Ack)
3 DMG感知(Sensing)
如表8所示,TDD波束赋形帧类型字段取值0、1、2均表示TDD波束赋形帧为波束训练相关的类型,该类型与本申请实施例提供的方法无关,取值3表示TDD波束赋形帧为DMG感知相关的类型。
当TDD波束赋形帧类型字段的取值为3时,TDD群组波束赋形字段和TDD波束测量字段共同指示一个TDD波束赋形帧在DMG感知中的用途,具体取值及其含义可参见表9。
表9
Figure PCTCN2022128424-appb-000003
如表9所示,在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知请求帧;在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为1时,指示该TDD波束赋形帧为DMG感知响应帧;在TDD群组波束赋形字段取值为1且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知轮询帧。
2.1.3实施例三:
在第二字段是TDD波束赋形字段中的单基PPDU的时长字段的情况下,如图35所示,图35是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图,包括:MAC帧头、MAC帧体和帧校验字段, MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用1或2或3个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为1,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括单基PPDU的时长子字段,单基PPDU的时长子字段占用B0-B7或B15或B23共8或16或24个比特。
在TDD波束赋形信息字段中增加一个单基PPDU的时长子字段,当感知测量类型不为协作单基感知时,该子字段保留,指示感知响应者在该帧所在的感知测量实例中将要发送的单基PPDU的时长,单位为TSF时间单位。
2.1.4实施例四:
在第二字段是TDD波束赋形字段中的去除TRN字段后的单基PPDU的时长字段的情况下,如图36所示,图36是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图,包括依次排列的:MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用1或2或3个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为1,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括去除TRN的单基PPDU的时长子字段,去除TRN的单基PPDU的时长子字段占用B0-B7或B15或B23共8或16或24个比特。
在TDD波束赋形信息字段中增加一个去除TRN字段后的单基PPDU的时长子字段,当感知测量类型不为协作单基感知时,该子字段保留,指示感知响应者在该帧所在的感知测量实例中将要发送的单基PPDU的时长(去除TRN字段的时长,TRN字段的时长固定),单位为TSF时间单位。
2.1.5实施例五:
在第二字段是TDD波束赋形字段中的数据长度字段的情况下,如图37所示,图37是本申请一个示例性实施例提供的DMG感知响应帧结构的示意图,包括依次排列的:MAC帧头、MAC帧体和帧校验字段,MAC帧头包括:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用6个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为1,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在TDD波束赋形信息字段中增加若干个子字段,包括以下子字段中的至少一种:PPDU类型子字段、数据长度子字段、基础MCS子字段、扩展SC MCS指示子字段、空间流数量子字段、用户数量子字段、额外EDMG PPDU子字段、GI类型字段、保留子字段。其中,PPDU类型子字段占用B0-B2共3个比特,数据长度子字段占用B3-B26共24个比特,基础MCS子字段占用B27-B31共5个比特,扩展SC MCS指示子字段占用B32共1个比特,空间流数量子字段占用B33-B35共3个比特,用户数量子字段占用B36-B38共3个比特,额外EDMG PPDU子字段占用B39共1个比特,GI类型子字段占用B40-B42共2个比特,保留子字段占用B42-B47共6个比特。
当感知测量类型不为并行协作单基感知时,以上子字段全部保留。
在这些实施例中,第二字段携带在TDD波束赋形字段中,第二字段是TDD波束赋形字段中的单基 PPDU的时长字段或去除TRN字段后的单基PPDU的时长字段或数据长度字段。每一个感知测量实例中都可以传递一次单基PPDU时长相关的信息,所以不同感知测量实例中使用的单基PPDU可以具有不同的时长,灵活度比较高。
2.2针对方案二:
在方案二的一些实施例中,在感知测量设置阶段的实施例与方案一在感知测量设置阶段的实施例相同,此处不再赘述。
在感知测量实例阶段,第二字段携带在TDD波束赋形字段中,第二字段是TDD波束赋形字段中的单基PPDU的时长字段或去除TRN字段后的单基PPDU的时长字段或数据长度字段。
2.2.1实施例一:
在第二字段是TDD波束赋形字段中的单基PPDU的时长字段的情况下,如图38所示,图38是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图,包括:MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用11或12或13个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为0,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括依次排列的:测量设置ID子字段、测量突发ID、感知实例SN子字段、感知类型子字段、STA ID子字段、第一波束下标子字段、实例中STA数量子字段、实例中PPDU数量子字段、EDMG TRN长度子字段、每个TX TRN-Unit的RX TRN-Unit的数量子字段、EDMG TRN-Unit P子字段、EDMG TRN-Unit M子字段、EDMG TRN-Unit N子字段、TRN子字段序列长度子字段、带宽子字段、单基PPDU的时长子字段、保留子字段。其中,测量设置ID子字段占用B0-B7共8个比特,测量突发ID子字段占用B8-B15共8个比特,测量实例序号子字段占用B16-B23共8个比特,感知类型子字段占用B24-B26共3个比特,STA ID子字段占用B27-B29共3个比特,第一波束下标子字段占用B30-B37共8个比特,实例中STA数量子字段占用B38-B40共3个比特,实例中PPDU数量子字段占用B41-B42共2个比特,EDMG TRN长度子字段占用B43-B50共8个比特,每个TX TRN-Unit的RX TRN-Unit的数量子字段占用B51-B58共8个比特,EDMG TRN-Unit P子字段占用B59-B60共2个比特,EDMG TRN-Unit M子字段占用B61-B64共4个比特,EDMG TRN-Unit N子字段占用B65-B66共2个比特,TRN子字段序列长度子字段占用B67-B68共2个比特,带宽子字段占用B69-B76共8个比特,单基PPDU的时长子字段占用B77-B84或B92或B100共8或16或24个比特,保留子字段占用B101-B103共3个比特。
在TDD波束赋形信息字段中增加一个单基PPDU的时长子字段,当感知测量类型不为协作单基感知时,该子字段保留。指示感知响应者在该帧所在的感知测量实例中将要发送的单基PPDU的时长,单位为TSF时间单位。
2.2.2实施例二:
在第二字段是TDD波束赋形字段中的去除TRN字段后的单基PPDU的时长字段的情况下,如图39所示,图39是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图,包括:MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用11或12或13个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为0,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括依次排列的:测量设置ID子字段、测量突发ID、感知实例SN子字段、感知类型子字段、STA ID子字段、第一波束下标子字段、实例中STA数量子字段、实例中PPDU数量子字段、EDMG TRN长度子字段、每个TX TRN-Unit的RX TRN-Unit的数量子字段、EDMG  TRN-Unit P子字段、EDMG TRN-Unit M子字段、EDMG TRN-Unit N子字段、TRN子字段序列长度子字段、带宽子字段、单基PPDU的时长子字段、保留子字段。其中,测量设置ID子字段占用B0-B7共8个比特,测量突发ID子字段占用B8-B15共8个比特,测量实例序号子字段占用B16-B23共8个比特,感知类型子字段占用B24-B26共3个比特,STA ID子字段占用B27-B29共3个比特,第一波束下标子字段占用B30-B37共8个比特,实例中STA数量子字段占用B38-B40共3个比特,实例中PPDU数量子字段占用B41-B42共2个比特,EDMG TRN长度子字段占用B43-B50共8个比特,每个TX TRN-Unit的RX TRN-Unit的数量子字段占用B51-B58共8个比特,EDMG TRN-Unit P子字段占用B59-B60共2个比特,EDMG TRN-Unit M子字段占用B61-B64共4个比特,EDMG TRN-Unit N子字段占用B65-B66共2个比特,TRN子字段序列长度子字段占用B67-B68共2个比特,带宽子字段占用B69-B76共8个比特,去除TRN的单基PPDU的时长子字段占用B77-B84或B92或B100共8或16或24个比特,保留子字段占用B101-B103共3个比特。
在TDD波束赋形信息字段中增加一个去除TRN字段后的单基PPDU的时长子字段,当感知测量类型不为协作单基感知时,该子字段保留。指示感知响应者在该帧所在的感知测量实例中将要发送的单基PPDU的时长(去除TRN字段的时长),单位为TSF时间单位。
2.2.3实施例三:
在第二字段是TDD波束赋形字段中的数据长度字段的情况下,如图40所示,图40是本申请一个示例性实施例提供的DMG感知请求帧结构的示意图,包括:MAC帧头、MAC帧体和帧校验字段,MAC帧头包括依次排列的:帧控制字段、时长字段、RA字段、TA字段,MAC帧体包括依次排列的:TDD波束赋形控制字段、TDD波束赋形信息字段。其中,帧控制字段占用2个字节,时长字段占用2个字节,RA字段占用6个字节,TA字段占用6个字节,TDD波束赋形控制字段占用1个字节,TDD波束赋形信息字段占用11或12或13个字节,帧校验字段占用4个字节。
在一些实施例中,TDD波束赋形控制字段包括依次排列的:TDD群组波束赋形子字段、TDD波束测量子字段、TDD波束赋形帧类型子字段、训练结束子字段、保留子字段。其中,TDD群组波束赋形子字段占用B0共1个比特,取值为0,TDD波束测量子字段占用B1共1个比特,取值为0,TDD波束赋形帧类型子字段占用B2-B3共2个比特,取值为3,训练结束子字段占用B4共1个比特,保留子字段占用B5-B7共3个比特。
在一些实施例中,TDD波束赋形信息字段包括依次排列的:测量设置ID子字段、测量突发ID、感知实例SN子字段、感知类型子字段、STA ID子字段、第一波束下标子字段、实例中STA数量子字段、实例中PPDU数量子字段、EDMG TRN长度子字段、每个TX TRN-Unit的RX TRN-Unit的数量子字段、EDMG TRN-Unit P子字段、EDMG TRN-Unit M子字段、EDMG TRN-Unit N子字段、TRN子字段序列长度子字段、带宽子字段、单基PPDU的时长子字段、保留子字段。其中,测量设置ID子字段占用B0-B7共8个比特,测量突发ID子字段占用B8-B15共8个比特,测量实例序号子字段占用B16-B23共8个比特,感知类型子字段占用B24-B26共3个比特,STA ID子字段占用B27-B29共3个比特,第一波束下标子字段占用B30-B37共8个比特,实例中STA数量子字段占用B38-B40共3个比特,实例中PPDU数量子字段占用B41-B42共2个比特,EDMG TRN长度子字段占用B43-B50共8个比特,每个TX TRN-Unit的RX TRN-Unit的数量子字段占用B51-B58共8个比特,EDMG TRN-Unit P子字段占用B59-B60共2个比特,EDMG TRN-Unit M子字段占用B61-B64共4个比特,EDMG TRN-Unit N子字段占用B65-B66共2个比特,TRN子字段序列长度子字段占用B67-B68共2个比特,带宽子字段占用B69-B76共8个比特,PPDU类型子字段占用B77-B79共3个比特,数据长度子字段占用B80-B103共24个比特,基础MCS子字段占用B104-B108共5个比特,扩展SC MCS指示子字段占用B109共1个比特,空间流数量子字段占用B110-B112共3个比特,用户数量子字段占用B113-B115共3个比特,额外EDMG PPDU子字段占用B116共1个比特,GI类型子字段占用B117-B118共2个比特,保留子字段占用B119共1个比特。
在TDD波束赋形字段中增加若干个子字段,包括以下子字段中的至少一种:PPDU类型子字段、数据长度子字段、基础MCS子字段、扩展SC MCS指示子字段、空间流数量子字段、用户数量子字段、额外EDMG PPDU子字段、GI类型子字段、保留子字段。当感知测量类型不为并行协作单基感知时,以上子字段全部保留。
综上所述,本实施例提供的感知测量方法,通过在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,能够使得感知参与设备之间设置或协商单基PPDU的时长相关信息,从而避免单基感知测量帧与DMG感知测量报告帧发生重叠,确保响应感知流程的正常进行,保证感知测量的结果准确性。
图41是本申请一个示例性实施例提供的感知参与装置4100的框图,感知参与装置4100可以是感知响应装置、感知发起装置、感知发送装置、感知接收装置中的至少一种,感知参与装置4100包括:
收发模块4110,用于在感知测量过程中发送或接收携带有第一字段的帧,该第一字段用于指示坐标系 设置相关的信息。
在一些实施例中,第一字段为坐标字段,该坐标字段用于指示参考坐标系的类型,第一字段是DMG感知测量设置元素中方位角字段和仰角字段中的至少一个,用于指示该参考坐标系是与发送帧的STA朝向相关的坐标系。
参考坐标系的类型包括如下至少之一:
地球坐标系;
任意一个STA的坐标系。
在一些实施例中,坐标字段携带在DMG感知波束描述符元素中:
DMG感知波束描述元素还包括N个波束描述字段,每个波束描述符字段的子字段中包括:波束方位角字段和波束仰角字段,N为正整数。坐标字段与N个波束描述符字段是同层级字段,坐标字段用于指示DMG感知波束描述符元素中所有的波束方位角字段和波束仰角字段的参考坐标系。
或,DMG感知波束描述符元素还包括N个波束描述符字段,每个波束描述符字段的子字段中包括:波束方位角字段、波束仰角字段和坐标字段,N为正整数。坐标字段与波束描述符字段一一对应,坐标字段用于指示所在的波束描述符字段中的波束方位角字段和波束仰角字段的参考坐标系。
在一些实施例中,DMG感知波束描述符元素携带在以下至少一种帧的帧体字段中:
DMG信标帧;
关联请求帧;
关联响应帧;
重关联请求帧;
重关联响应帧;
探测请求帧;
探测响应帧;
宣告帧。
在一些实施例中,坐标字段携带在DMG信标扇区描述符元素中:
DMG信标扇区描述符元素还包括N个扇区描述符字段,每个扇区描述符字段的子字段中包括:扇区方位角字段和扇区仰角字段,N为正整数。坐标字段与N个扇区描述符字段是同层级字段,坐标字段用于指示DMG信标扇区描述符元素中所有的扇区方位角字段和扇区仰角字段的参考坐标系。
或,DMG信标扇区描述符元素还包括N个扇区描述字段,每个扇区描述符字段的子字段中包括:扇区方位角字段、扇区仰角字段和坐标字段,N为正整数。坐标字段与扇区描述符字段一一对应,坐标字段用于指示所在的扇区描述符字段中的扇区方位角字段和扇区仰角字段的参考坐标系。
在一些实施例中,DMG信标扇区描述符元素携带在以下帧的帧体字段中:
信息响应帧。
在一些实施例中,坐标字段携带在DMG消极感知信标信息元素中。
DMG消极感知信标信息元素还包括信标信息控制字段。坐标字段与信标信息控制字段是同层级字段,坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字段的参考坐标系。
或,DMG消极感知信标信息元素还包括信标信息控制字段。信标信息控制字段的子字段中包括:坐标字段。坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字段的参考坐标系。
在一些实施例中,DMG消极感知信标信息元素携带在以下至少一种帧的帧体字段中:
信息请求帧;
信息响应帧。
在一些实施例中,坐标字段携带在DMG感知短能力元素中。
坐标字段是DMG感知短能力元素中的地球坐标子字段,地球坐标子字段的取值为第一取值时用于指示STA仅能发送地球坐标系的方位角和仰角。
在一些实施例中,DMG感知短能力元素携带在以下至少一种帧的帧体字段中:
DMG信标帧;
关联请求帧;
关联响应帧;
重关联请求帧;
重关联响应帧;
探测请求帧;
探测响应帧;
信息请求帧;
信息响应帧。
在一些实施例中,在感知测量过程中发送或接收携带有第一字段的帧,包括:
在感知会话建立阶段,发送或接收携带有坐标字段的帧。
在感知测量设置阶段,发送或接收携带有坐标字段的帧。
在一些实施例中,坐标字段携带在DMG感知测量设置元素中,坐标字段用于指示DMG感知测量设置元素中的方位角字段和仰角字段的参考坐标系。
在一些实施例中,DMG感知测量设置元素包括测量设置控制字段和对端方向字段;
在一些实施例中,坐标字段是测量设置控制字段的子字段,方位角字段和仰角字段是对端方向字段的子字段;
或,坐标字段、方位角字段和仰角字段均为对端方向字段的子字段。
在一些实施例中,在DMG感知短能力元素中的地球坐标字段的取值为第一取值的情况下,坐标字段的取值唯一且用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
或,在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第一取值的情况下,坐标字段用于指示方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
或,在DMG感知短能力元素中的地球坐标字段的取值为第二取值且坐标字段的取值为第二取值的情况下,坐标字段用于指示方位角字段和仰角字段的参考坐标是地球坐标系。
在一些实施例中,DMG感知测量设置元素携带在以下至少一种帧的帧体字段中:
感知测量设置请求帧;
感知测量设置响应帧;
DMG感知测量设置请求帧;
DMG感知测量设置响应帧。
图42是本申请一个示例性实施例提供的感知参与装置4200的框图,感知参与装置4200可以是感知响应装置、感知发起装置、感知发送装置、感知接收装置中的至少一种,感知参与装置4200包括:
收发模块4210,用于在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,该第二字段用于指示单基PPDU的时长相关信息。
在一些实施例中,感知参与装置包括感知响应装置,在并行模式的协作单基感知过程中,向感知发起装置发送携带有第二字段的帧。
在一些实施例中,感知参与装置包括感知发起装置,在并行模式的协作单基感知过程中,接收感知响应装置发送的携带有第二字段的帧。
在一些实施例中,感知参与装置包括感知发起装置,在并行模式的协作单基感知过程中,向感知响应装置发送携带有第二字段的帧。
在一些实施例中,感知参与装置包括感知响应装置,在并行模式的协作单基感知过程中,接收感知发起装置发送的携带有第二字段的帧。
在一些实施例中,第二字段携带在DMG感知测量设置元素中的协作单基专有配置可选子元素中。
在一些实施例中,第二字段是协作单基专有配置可选子元素中的去除TRN字段后的单基PPDU的时长字段,协作单基专有配置可选子元素还包括:子元素标识字段和长度字段中的至少一个。
在一些实施例中,第二字段是协作单基专有配置可选子元素中的数据长度字段,协作单基专有配置可选子元素还包括如下至少之一:子元素标识字段、长度字段、PPDU类型字段、数据长度字段、MCS字段、额外EDMG PPDU字段、空间流数量字段、用户数量字段、GI类型。
在一些实施例中,感知参与装置为感知发起装置的情况下,帧为DMG感知测量设置响应帧;
感知参与装置为感知响应装置的情况下,帧为DMG感知测量设置请求帧。
在一些实施例中,感知参与装置包括感知发起装置,在一个协作单基感知实例中,如果协作单基感知实例为并行模式,则感知发起装置在时长最长的单基PPDU发送结束之后不超过SIFS时间内发送第一个DMG感知轮询帧,来触发感知响应装置上报感知测量结果。
在一些实施例中,第二字段携带在TDD波束赋形字段中。
在一些实施例中,第二字段是TDD波束赋形字段中的单基PPDU的时长字段;
或,第二字段是TDD波束赋形字段中的去除TRN字段后的单基PPDU的时长字段。
在一些实施例中,第二字段是TDD波束赋形字段中的数据长度字段,协作单基专有配置可选子元素还包括如下至少之一:子元素标识字段、长度字段、PPDU类型字段、数据长度字段、MCS字段、额外EDMG PPDU字段、空间流数量字段、用户数量字段、GI类型、保留字段。
在一些实施例中,感知参与装置为感知响应装置的情况下,帧为DMG感知响应帧。
感知参与装置为感知发起装置的情况下,帧为DMG感知请求帧。
在一些实施例中,感知参与装置包括感知响应装置,在一个协作单基感知实例中,如果协作单基感知实例为并行模式,则感知响应装置按照感知发起装置配置的时长相关信息来发送符合要求的单基PPDU。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图43是本申请一个示例性实施例提供的感知参与设备4300的结构示意图,该感知参与设备4300可以是AP、STA、感知发送设备、感知接收设备、感知发起设备、感知响应设备中的至少一种。该感知参与设备4300包括:处理器4301、接收器4302、发射器4303、存储器4304和总线4305。
处理器4301包括一个或者一个以上处理核心,处理器4301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器4302和发射器4303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器4304通过总线4305与处理器4301相连。存储器4304可用于存储至少一个指令,处理器4301用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器4304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,计算机程序用于被感知测量设备执行,以实现上述感知测量设备(感知发起者和/或感知响应者)的协作感知测量方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,安装有芯片的感知测量设备运行时,用于实现上述感知测量设备的感知测量方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序包括计算机指令,计算机指令存储在计算机可读存储介质中,感知测量设备从计算机可读存储介质读取并执行计算机指令,以实现上述感知测量设备的感知测量方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (51)

  1. 一种感知测量方法,其特征在于,所述方法由感知参与设备执行,所述方法包括:
    在感知测量过程中发送或接收携带有第一字段的帧,所述第一字段用于指示坐标系设置相关的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一字段为坐标字段,所述坐标字段用于指示所述参考坐标系的类型。
  3. 根据权利要求2所述的方法,其特征在于,所述参考坐标系的类型包括如下至少之一:
    地球坐标系;
    任意一个站点STA的坐标系。
  4. 根据权利要求2所述的方法,其特征在于,所述坐标字段携带在方向性多吉比特DMG感知波束描述符元素中。
  5. 根据权利要求4所述的方法,其特征在于,所述DMG感知波束描述元素还包括N个波束描述字段,每个所述波束描述符字段的子字段中包括:波束方位角字段和波束仰角字段,N为正整数;
    所述坐标字段与所述N个波束描述符字段是同层级字段,所述坐标字段用于指示所述DMG感知波束描述符元素中所有的所述波束方位角字段和所述波束仰角字段的参考坐标系。
  6. 根据权利要求4所述的方法,其特征在于,所述DMG感知波束描述符元素还包括N个波束描述符字段,每个所述波束描述符字段的子字段中包括:波束方位角字段、波束仰角字段和所述坐标字段,N为正整数;
    所述坐标字段与所述波束描述符字段一一对应,所述坐标字段用于指示所在的波束描述符字段中的所述波束方位角字段和所述波束仰角字段的参考坐标系。
  7. 根据权利要求4至6任一所述的方法,其特征在于,所述DMG感知波束描述符元素携带在以下至少一种帧的帧体字段中:
    DMG信标帧;
    关联请求帧;
    关联响应帧;
    重关联请求帧;
    重关联响应帧;
    探测请求帧;
    探测响应帧;
    宣告帧。
  8. 根据权利要求2所述的方法,其特征在于,所述坐标字段携带在DMG信标扇区描述符元素中。
  9. 根据权利要求7所述的方法,其特征在于,所述DMG信标扇区描述符元素还包括N个扇区描述符字段,每个所述扇区描述符字段的子字段中包括:扇区方位角字段和扇区仰角字段,N为正整数;
    所述坐标字段与所述N个扇区描述符字段是同层级字段,所述坐标字段用于指示所述DMG信标扇区描述符元素中所有的所述扇区方位角字段和所述扇区仰角字段的参考坐标系。
  10. 根据权利要求7所述的方法,其特征在于,所述DMG信标扇区描述符元素还包括N个扇区描述字段,每个所述扇区描述符字段的子字段中包括:扇区方位角字段、扇区仰角字段和所述坐标字段,N为正整数;
    所述坐标字段与所述扇区描述符字段一一对应,所述坐标字段用于指示所在的扇区描述符字段中的所述扇区方位角字段和所述扇区仰角字段的参考坐标系。
  11. 根据权利要求8至10任一所述的方法,其特征在于,所述DMG信标扇区描述符元素携带在以下帧的帧体字段中:
    信息响应帧。
  12. 根据权利要求2所述的方法,其特征在于,所述坐标字段携带在DMG消极感知信标信息元素中。
  13. 根据权利要求12所述的方法,其特征在于,所述DMG消极感知信标信息元素还包括信标信息控制字段;
    所述坐标字段与所述信标信息控制字段是同层级字段,所述坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字段的参考坐标系。
  14. 根据权利要求12所述的方法,其特征在于,所述DMG消极感知信标信息元素还包括信标信息控制字段;所述信标信息控制字段的子字段中包括:所述坐标字段;
    所述坐标字段用于指示所在帧中携带的DMG信标扇区描述符元素中的扇区方位角字段和扇区仰角字 段的参考坐标系。
  15. 根据权利要求12至14任一所述的方法,其特征在于,所述DMG消极感知信标信息元素携带在以下至少一种帧的帧体字段中:
    信息请求帧;
    信息响应帧。
  16. 根据权利要求2所述的方法,其特征在于,所述坐标字段携带在DMG感知短能力元素中。
  17. 根据权利要求16所述的方法,其特征在于,所述坐标字段是所述DMG感知短能力元素中的地球坐标子字段,所述地球坐标子字段的取值为第一取值时用于指示STA仅能发送地球坐标系的方位角和仰角。
  18. 根据权利要求16或17所述的方法,其特征在于,所述DMG感知短能力元素携带在以下至少一种帧的帧体字段中:
    DMG信标帧;
    关联请求帧;
    关联响应帧;
    重关联请求帧;
    重关联响应帧;
    探测请求帧;
    探测响应帧;
    信息响应帧;
    宣告帧。
  19. 根据权利要求3至18任一所述的方法,其特征在于,所述在感知测量过程中发送或接收携带有第一字段的帧,包括:
    在感知会话建立阶段,发送或接收携带有所述坐标字段的帧。
  20. 根据权利要求2所述的方法,其特征在于,所述坐标字段携带在DMG感知测量设置元素中,所述坐标字段用于指示所述DMG感知测量设置元素中的方位角字段和仰角字段的参考坐标系。
  21. 根据权利要求20所述的方法,其特征在于,所述DMG感知测量设置元素包括测量设置控制字段和对端方向字段;
    所述坐标字段是所述测量设置控制字段的子字段,所述方位角字段和所述仰角字段是所述对端方向字段的子字段;
    或,
    所述坐标字段、所述方位角字段和所述仰角字段均为所述对端方向字段的子字段。
  22. 根据权利要求20所述的方法,其特征在于,在DMG感知短能力元素中的地球坐标字段的取值为第一取值的情况下,所述坐标字段的取值唯一且用于指示所述方位角字段和仰角字段的参考坐标是任意一个STA的坐标系。
  23. 根据权利要求20所述的方法,其特征在于,
    在DMG感知短能力元素中的地球坐标字段的取值为第二取值且所述坐标字段的取值为第一取值的情况下,所述坐标字段用于指示所述方位角字段和仰角字段的参考坐标是任意一个STA的坐标系;
    在所述DMG感知短能力元素中的地球坐标字段的取值为第二取值且所述坐标字段的取值为第二取值的情况下,所述坐标字段用于指示所述方位角字段和仰角字段的参考坐标是地球坐标系。
  24. 根据权利要求1所述的方法,其特征在于,所述第一字段是DMG感知测量设置元素中方位角字段和仰角字段中的至少一个;
    所述第一字段用于指示所述参考坐标系是与发送所述帧的STA朝向相关的坐标系。
  25. 根据权利要求20至24任一所述的方法,其特征在于,所述DMG感知测量设置元素携带在以下至少一种帧的帧体字段中:
    感知测量设置请求帧;
    感知测量设置响应帧;
    DMG感知测量设置请求帧;
    DMG感知测量设置响应帧。
  26. 根据权利要求20至24任一所述的方法,其特征在于,所述在感知测量过程中发送或接收携带有第一字段的帧,包括:
    在感知测量设置阶段,发送或接收携带有所述坐标字段的帧。
  27. 一种感知测量方法,其特征在于,所述方法由感知参与设备执行,所述方法包括:
    在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,所述第二字段用于指示单基物理层协议数据单元PPDU的时长相关信息。
  28. 根据权利要求27所述的方法,其特征在于,所述感知参与设备包括感知响应设备;
    所述在并行模式的协作单基感知过程中发送携带有第二字段的帧,包括:
    在并行模式的协作单基感知过程中,向感知发起设备发送携带有所述第二字段的帧。
  29. 根据权利要求27所述的方法,其特征在于,所述感知参与设备包括感知发起设备;
    所述在并行模式的协作单基感知过程中接收携带有第二字段的帧,包括:
    在并行模式的协作单基感知过程中,接收感知响应设备发送的携带有所述第二字段的帧。
  30. 根据权利要求27所述的方法,其特征在于,所述感知参与设备包括感知发起设备;
    所述在并行模式的协作单基感知过程中发送携带有第二字段的帧,包括:
    在并行模式的协作单基感知过程中,向感知响应设备发送携带有所述第二字段的帧。
  31. 根据权利要求27所述的方法,其特征在于,所述感知参与设备包括感知响应设备;
    所述在并行模式的协作单基感知过程中接收携带有第二字段的帧,包括:
    在并行模式的协作单基感知过程中,接收感知发起设备发送的携带有所述第二字段的帧。
  32. 根据权利要求28至31任一所述的方法,其特征在于,所述第二字段携带在DMG感知测量设置元素中。
  33. 根据权利要求32所述的方法,其特征在于,所述第二字段携带在所述DMG感知测量设置元素的协作单基专有配置可选子元素中。
  34. 根据权利要求33所述的方法,其特征在于,所述第二字段是所述协作单基专有配置可选子元素中的去除令牌环网TRN字段后的单基PPDU的时长字段,或,所述协作单基专有配置可选子元素中的单基PPDU的时长字段。
  35. 根据权利要求34所述的方法,其特征在于,所述协作单基专有配置可选子元素还包括:子元素标识字段和长度字段中的至少一个。
  36. 根据权利要求33所述的方法,其特征在于,所述第二字段是所述协作单基专有配置可选子元素中的数据长度字段。
  37. 根据权利要求36所述的方法,其特征在于,所述协作单基专有配置可选子元素还包括如下至少之一:子元素标识字段、长度字段、PPDU类型字段、数据长度字段、调制与编码策略MCS字段、额外增强型方向性多吉比特EDMG PPDU字段、空间流数量字段、用户数量字段、保护间隔GI类型。
  38. 根据权利要求32所述的方法,其特征在于,
    所述感知参与设备为感知发起设备的情况下,所述帧为DMG感知测量设置响应帧;
    所述感知参与设备为感知响应设备的情况下,所述帧为DMG感知测量设置请求帧。
  39. 根据权利要求28至31任一所述的方法,其特征在于,所述感知参与设备包括感知发起设备,所述方法还包括:
    在一个协作单基感知实例中,如果所述协作单基感知实例为并行模式,则所述感知发起设备在时长最长的单基PPDU发送结束之后不超过短帧间隔SIFS时间内发送第一个DMG感知轮询帧,来触发所述感知响应设备上报感知测量结果。
  40. 根据权利要求28至31任一所述的方法,其特征在于,所述第二字段携带在时分复用TDD波束赋形字段中。
  41. 根据权利要求40所述的方法,其特征在于,
    所述第二字段是所述TDD波束赋形字段中的单基PPDU的时长字段;
    或,
    所述第二字段是所述TDD波束赋形字段中的去除TRN字段后的单基PPDU的时长字段。
  42. 根据权利要求40所述的方法,其特征在于,
    所述第二字段是所述TDD波束赋形字段中的数据长度字段。
  43. 根据权利要求42所述的方法,其特征在于,所述协作单基专有配置可选子元素还包括如下至少之一:子元素标识字段、长度字段、PPDU类型字段、数据长度字段、MCS字段、额外EDMG PPDU字段、空间流数量字段、用户数量字段、GI类型、保留字段。
  44. 根据权利要求40所述的方法,其特征在于,
    所述感知参与设备为感知响应设备的情况下,所述帧为DMG感知响应帧;
    所述感知参与设备为感知发起设备的情况下,所述帧为DMG感知请求帧。
  45. 根据权利要求30或31所述的方法,其特征在于,所述感知参与设备包括感知响应设备,所述方法还包括:
    在一个协作单基感知实例中,如果所述协作单基感知实例为并行模式,则所述感知响应设备按照所述感知发起设备配置的所述时长相关信息来发送符合要求的单基PPDU。
  46. 一种感知测量装置,其特征在于,所述装置包括:
    收发模块,用于在感知测量过程中发送或接收携带有第一字段的帧,所述第一字段用于指示坐标系设置相关的信息。
  47. 一种感知测量装置,其特征在于,所述装置包括:
    收发模块,用于在并行模式的协作单基感知过程中发送或接收携带有第二字段的帧,所述第二字段用于指示单基PPDU的时长相关信息。
  48. 一种感知参与设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述感知参与设备实现如权利要求1至45中任一所述的感知测量方法。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现权利要求1至45中任一所述的感知测量方法。
  50. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现权利要求1至45中任一所述的感知测量方法。
  51. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现权利要求1至45中任一所述的感知测量方法。
PCT/CN2022/128424 2022-10-28 2022-10-28 感知测量方法、装置、设备、介质和程序产品 WO2024087224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128424 WO2024087224A1 (zh) 2022-10-28 2022-10-28 感知测量方法、装置、设备、介质和程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128424 WO2024087224A1 (zh) 2022-10-28 2022-10-28 感知测量方法、装置、设备、介质和程序产品

Publications (1)

Publication Number Publication Date
WO2024087224A1 true WO2024087224A1 (zh) 2024-05-02

Family

ID=90829778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128424 WO2024087224A1 (zh) 2022-10-28 2022-10-28 感知测量方法、装置、设备、介质和程序产品

Country Status (1)

Country Link
WO (1) WO2024087224A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547587A (zh) * 2016-06-24 2018-01-05 南京中兴软件有限责任公司 一种定位方法及装置
CN114223221A (zh) * 2019-08-12 2022-03-22 高通股份有限公司 用于定位的角度报告的可配置坐标系
WO2022100499A1 (zh) * 2020-11-11 2022-05-19 华为技术有限公司 感知信号传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547587A (zh) * 2016-06-24 2018-01-05 南京中兴软件有限责任公司 一种定位方法及装置
CN114223221A (zh) * 2019-08-12 2022-03-22 高通股份有限公司 用于定位的角度报告的可配置坐标系
WO2022100499A1 (zh) * 2020-11-11 2022-05-19 华为技术有限公司 感知信号传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NING GAO: "A Timing Problem of Sequential Coordinated Monostatic DMG Sensing", IEEE 802.11-1558R0, 9 September 2022 (2022-09-09), pages 1 - 9, XP093161929 *

Similar Documents

Publication Publication Date Title
US20200322996A1 (en) Symmetric transmit opportunity (txop) truncation
US11131743B2 (en) Unicast and broadcast protocol for wireless local area network ranging and direction finding
US9294883B2 (en) Method, apparatus, and computer program product for probe request and response exchange
CN108700641B (zh) 用于无线局域网测距和测向的单播和广播协议
JP2023538286A (ja) 無線ローカルエリアネットワークセンシングのための通信装置および通信方法
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
CN114342273A (zh) 用于隐藏节点场景的空间重用
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023245664A1 (zh) 无线通信的方法和设备
WO2024040612A1 (zh) 无线通信的方法和设备
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2023039798A1 (zh) 无线通信的方法和设备
WO2024113385A1 (zh) 基于代理的感知方法、装置、设备及存储介质
WO2023130571A1 (zh) 无线通信的方法及设备
WO2023123000A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
CN113273090A (zh) 无线网络中的协作波束成形
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023155148A1 (zh) 无线通信的方法和设备
WO2024016215A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US20240080910A1 (en) Symmetric transmit opportunity (txop) truncation
CN115226143B (zh) 一种无线感知方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963205

Country of ref document: EP

Kind code of ref document: A1