WO2023130384A1 - 感知上报方法和设备 - Google Patents

感知上报方法和设备 Download PDF

Info

Publication number
WO2023130384A1
WO2023130384A1 PCT/CN2022/070826 CN2022070826W WO2023130384A1 WO 2023130384 A1 WO2023130384 A1 WO 2023130384A1 CN 2022070826 W CN2022070826 W CN 2022070826W WO 2023130384 A1 WO2023130384 A1 WO 2023130384A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
instance
sensing
frame
field
Prior art date
Application number
PCT/CN2022/070826
Other languages
English (en)
French (fr)
Inventor
罗朝明
黄磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/070826 priority Critical patent/WO2023130384A1/zh
Priority to PCT/CN2022/076899 priority patent/WO2023130534A1/zh
Publication of WO2023130384A1 publication Critical patent/WO2023130384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a method and device for sensing report.
  • Sensing is a functional enhancement of the 802.11 protocol proposed by the 802.11bf standard. It measures and perceives the surrounding environment through wireless signals, so that it can complete the detection of indoor intrusion, movement, fall, etc., gesture recognition and Spatial 3D image creation and many other functions.
  • agent sensing Sensing by Proxy
  • a device such as a station device
  • another device access point device
  • the proxy device perform perception measurement Reporting of results is an urgent issue.
  • the present application provides a sensing reporting method and device.
  • the sensing proxy device can report the measurement result of the measurement instance corresponding to the measurement setting established by the proxy to the sensing proxy requesting device, so as to realize the sensing reporting of the proxy.
  • a perception reporting method including: a first device sends a first report frame to a second device, and the first report frame includes a measurement result of at least one measurement instance, wherein the measurement of each measurement instance
  • the result includes a measurement result of at least one sensing signal receiving device, the at least one measurement instance corresponds to at least one measurement setting, and the at least one measurement setting is established by the first device on behalf of the second device.
  • a perception reporting method including: a second device receives a first report frame sent by a first device, and the first report frame includes a measurement result of at least one measurement instance, wherein each measurement instance The measurement results include measurement results of at least one sensing signal receiving device, the at least one measurement instance corresponds to at least one measurement setting, and the at least one measurement setting is established by the first device on behalf of the second device.
  • a sensing device configured to execute the method in the above first aspect or various implementations thereof.
  • the sensing device includes a functional module for executing the method in the above first aspect or each implementation manner thereof.
  • a sensing device configured to execute the method in the above-mentioned second aspect or various implementation manners thereof.
  • the sensing device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a perception device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the sensing device executes the method in the above first aspect or its various implementations.
  • a perception device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the sensing device executes the method in the above second aspect or its implementations.
  • a chip for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the sensing proxy device sends the measurement result of the measurement instance corresponding to the measurement setting established by the proxy to the sensing proxy requesting device through the first report frame, thereby realizing the sensing reporting of the proxy.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a Wi-Fi sensing process.
  • Fig. 3 is a schematic interaction diagram of a perception measurement setting stage according to an embodiment of the present application.
  • Fig. 4 is a schematic interaction diagram of a perception measurement phase according to an embodiment of the present application.
  • Fig. 5 is a schematic interaction diagram of a sensing reporting stage according to an embodiment of the present application.
  • Fig. 6 is a schematic interaction diagram of a perception measurement phase and a perception reporting phase according to an embodiment of the present application.
  • Fig. 7 is a schematic interaction diagram of another perception measurement stage according to an embodiment of the present application.
  • Fig. 8 is a schematic interaction diagram of a perception reporting method provided by an embodiment of the present application.
  • Fig. 9 is a schematic interaction diagram of an agent perception process provided by an embodiment of the present application.
  • FIG. 10 to FIG. 20 are schematic interaction diagrams of the perception reporting method according to the first reporting manner.
  • FIG. 21 to FIG. 22 are schematic interaction diagrams of the perception reporting method according to the second reporting manner.
  • FIG. 23 to FIG. 24 are schematic interaction diagrams of the perception reporting method according to the second reporting manner.
  • Fig. 25 is a schematic diagram of a trigger report according to an embodiment of the present application.
  • FIG. 26 is a schematic diagram of a frame format of a first report frame provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of a frame format of another first report frame provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of a frame format of another first report frame provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of a frame format of another first report frame provided by an embodiment of the present application.
  • Fig. 30 is a schematic block diagram of a sensing device provided according to an embodiment of the present application.
  • Fig. 31 is a schematic block diagram of another sensing device provided according to an embodiment of the present application.
  • Fig. 32 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 33 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 34 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • Wireless Local Area Networks Wireless Local Area Networks, WLAN
  • Wireless Fidelity Wireless Fidelity, WiFi
  • other communication systems for example: Wireless Local Area Networks (Wireless Local Area Networks, WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 accessing a network through the access point 110.
  • Access Point Access Point
  • STA station
  • an AP is also called an AP STA, that is, in a sense, an AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • the communication in the communication system 100 may be the communication between the AP and the non-AP STA, or the communication between the non-AP STA and the non-AP STA, or the communication between the STA and the peer STA, wherein, the peer STA It can refer to a device that communicates peer-to-peer with an STA.
  • a peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router) with a WiFi chip.
  • the role of the STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA, and when the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be applied to the equipment in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, etc. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the non-AP STA can support the 802.11be standard.
  • the non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • WLAN wireless local area networks
  • the AP may be a device supporting the 802.11be standard.
  • the AP may also be a device supporting various current and future WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device, Wireless devices in industrial control, set-top boxes, wireless devices in self driving, vehicle communication devices, wireless devices in remote medical, wireless devices in smart grid , wireless devices in transportation safety, wireless devices in smart city or wireless devices in smart home, wireless communication chips/ASIC/SOC/etc.
  • the frequency bands supported by the WLAN technology may include but not limited to: low frequency bands (eg 2.4GHz, 5GHz, 6GHz) and high frequency bands (eg 60GHz).
  • low frequency bands eg 2.4GHz, 5GHz, 6GHz
  • high frequency bands eg 60GHz
  • FIG. 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This embodiment of the present application does not include Do limited.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include an access point 110 and a station 120 with a communication function, and the access point 110 and the station 120 may be the specific equipment described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including access points and stations).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • Association Identifier (Association Identifier, AID), used to identify the terminal after establishing association with the access point.
  • MAC Media Access Control
  • Transmission Opportunity refers to a period of time, during which a terminal with the transmission opportunity can actively initiate one or more transmissions.
  • a burst signal generally refers to a short period of time during which one or more signals are sent.
  • Burst Group refers to a combination of one or more burst signals.
  • the burst signals in the same burst signal group generally have some common characteristics.
  • Sensing measurement is to perceive people or objects in the environment by measuring the changes of signals scattered and/or reflected by people or objects. That is to say, Sensing measurement is to measure and perceive the surrounding environment through wireless signals, so that it can complete many functions such as detection of intrusion, movement, fall, etc. in the room, gesture recognition, and spatial three-dimensional image establishment.
  • Devices participating in perception measurement may include the following roles:
  • Sensing Initiator a device that initiates a sensing session and wants to know the sensing results
  • Sensing Responder Non-Sensing Initiator device participating in the sensing session
  • Sensing Transmitter the device that initiates the sensing illumination signal, or sensing signal sending device
  • Sensing Receiver a device that receives sensing illumination signal, or sensing signal receiving device
  • Sensing processor a device that processes sensing measurement results
  • Sensing Participant including Sensing Initiating Device, Sensing Sending Device and Sensing Receiving Device.
  • a device may have one or more roles in a perception measurement.
  • a perception initiating device can be only a perception initiating device, a sensing sending device, a sensing receiving device, or both a sensing sending device and a sensing receiving device. .
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing receiving device (Sensing Receiver), or a sensing processing device (Sensing processor); STA2 can be a sensing sending device (Sensing Transmitter).
  • STA1 can be a sensing initiator or a sensing transmitter; STA2 can be a sensing receiver or a sensing processor.
  • Device Sensing processor
  • STA1 can be a sensing initiator or a sensing processor
  • STA2 can be a sensing receiver
  • STA3 can be a sensing transmitter.
  • Device Sensing Transmitter
  • STA1 can be a sensing initiator, a sensing receiver, or a sensing processor
  • STA2 can be a sensing sender.
  • Device Sensing Transmitter
  • STA3 may be a sensing transmitter (Sensing Transmitter).
  • STA1 can be a sensing initiator, a sensing transmitter, or a sensing processor
  • STA2 can be a sensing receiver Device (Sensing Receiver)
  • STA3 may be a sensing receiver device (Sensing Receiver).
  • STA1 may be a sensing initiator (Sensing Initiator); STA2 may be a sensing receiving device (Sensing Receiver), or a sensing processing device (Sensing processor); STA3 may be a sensing sending device. Device (Sensing Transmitter); STA4 may be a sensing transmitter device (Sensing Transmitter).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing transmitter (Sensing Transmitter), a sensing receiving device (Sensing Receiver), or a sensing processing Device (Sensing processor).
  • STA1 may be a sensing initiator (Sensing Initiator); STA2 may be a sensing transmitter (Sensing Transmitter), or a sensing receiving device (Sensing Receiver), or a sensing processing Device (Sensing processor).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing sending device (Sensing Transmitter), a sensing receiving device (Sensing Receiver), or a sensing processing Device (Sensing processor); STA2 can be a sensing transmitter (Sensing Transmitter) or a sensing receiver (Sensing Receiver).
  • STA1 can be a sensing initiator or a sensing processor
  • STA2 can be a sensing transmitter or a sensing receiver.
  • Device Sensing Receiver
  • STA3 can be a sensing transmitter (Sensing Transmitter) or a sensing receiver (Sensing Receiver).
  • FIG. 2 is only an example of the present application, and should not be construed as a limitation to the present application.
  • STA1, STA2, and STA3 in Figure 2 only represent the roles of STAs, and are not used to limit the number of STAs in Figure 2 and subsequent steps such as sensing sessions and measurements.
  • the roles represented by STA1, STA2, and STA3 can be Implemented as one or more STAs.
  • sensing Type there may be multiple sensing types (Sensing Type).
  • the sensing type based on channel state information that is, CSI-based Sensing
  • the sensing type obtains the sensing measurement result by processing the CSI of the received sensing measurement signal.
  • the sensing type based on the reflection signal that is, Radar-based Sensing. This sensing type obtains the sensing measurement result by processing the reflection signal of the received sensing measurement signal.
  • the perception initiating device is also called an initiating device
  • the perception session initiation device is called
  • the perception response device is also called a response device, or a perception session response device.
  • the WLAN sensing session includes one or more of the following stages: session establishment, sensing measurement setting establishment, sensing measurement, sensing reporting, sensing measurement setting termination, and session termination.
  • Session establishment phase Establish a perception session, exchange the perception capabilities of both parties and/or determine the operating parameters related to sensing measurements, or the terminal declares its own role and operating parameters (for example, through beacon frames or other special frames)
  • Perception measurement setting establishment stage determine the perception participating devices and their roles (including the sensing signal sending device and the sensing signal receiving device), determine the operating parameters related to the sensing measurement, and optionally exchange the parameters between terminals.
  • Perception measurement stage implement perception measurement, and the perception signal sending device sends the perception signal to the perception signal receiver.
  • Sensing reporting stage Reporting measurement results, depending on the application scenario, the sensing signal receiving device may need to report the measurement results to the sensing session initiating device.
  • Aware measurement setup termination phase Terminate one or more measurement setups, stop the corresponding measurements, and release related storage and computing resources.
  • the data volume of sensing measurement results is usually relatively large.
  • the Channel State Information (CSI) data of a measurement may reach 4K to 40K bits.
  • the measurement threshold can be set. When this When the variation between the second sensing measurement result and the previous sensing measurement result is less than the measurement threshold, the sensing signal receiving device reports the sensing measurement result, otherwise, it does not report the sensing measurement result.
  • the perception initiating device can set multiple sets of measurement parameters, and a set of measurement parameters (identified by the measurement setup ID (Measurment Setup ID), which can be equivalent to the burst signal group (Burst Group)) can be applied to multiple measurements (each measurement It is identified by the measurement instance ID (Measurement Instance ID), which can be equivalent to the burst signal (Burst).
  • the measurement setup ID (Measurment Setup ID)
  • the measurement instance ID Measurement Instance ID
  • the sensing session initiating device can set multiple sets of measurement parameters through a measurement setup procedure (Measurement Setup procedure).
  • a measurement setup (Measurement Setup, or measurement configuration, Measurement Configuration) generally includes a set of measurement parameters, It can be identified by a Measurement Setup ID.
  • a measurement setting can be applied to multiple measurements, and a measurement (which can be equivalent to a burst signal (Burst)) can be considered as a measurement instance (Measurement Instance), and a measurement instance can be identified by a measurement instance ID (Measurement Instance ID).
  • a trigger frame (Trigger Based, TB) measurement process can be performed, including the sensory measurement setting phase, the sensory measurement phase and the sensory measurement report phase three Among them, the perception measurement setting stage mainly interacts or negotiates the operating parameters for implementing the perception measurement, that is, the measurement setting, the perception measurement stage mainly implements perception measurement based on the measurement settings, and the perception measurement equipment stage mainly reports the measurement results.
  • Trigger Based, TB Trigger Based, TB
  • Figure 3 is a schematic interaction diagram of the perception measurement setup phase, as shown in Figure 3, in the perception measurement setup phase, the perception initiating device (such as an AP device) and at least one perception response device set the request frame and perception measurement through the perception measurement
  • the SET response frame determines the operational parameters for performing the measurement, ie the measurement settings.
  • FIG 4 is a schematic interaction diagram of the perception measurement phase, as shown in Figure 4, in the perception measurement phase, the perception initiating device (such as an AP device) determines the perception response device that performs the measurement through the perception measurement polling trigger frame, and further passes The sensory measurement trigger frame triggers the sensory response device that performs the measurement to send a measurement frame (for example, Null Data PPDU, NDP) for uplink measurement, and notifies the sensory response device to receive the measurement through an NDP announcement (NDP Announcement, NDPA) frame for downlink measurement.
  • a measurement frame for example, Null Data PPDU, NDP
  • NDP NDP announcement
  • Fig. 5 is a schematic interaction diagram of the sensing report phase.
  • the sensing initiating device for example, an AP device determines the sensing responding device performing measurement reporting through the sensing feedback polling trigger frame, and responds Based on the sensory feedback polling trigger frame, the sensory response device can send a sensory feedback frame to the access point device, and further the sensory response device that the access point device performs measurement reporting through the sensory measurement report trigger frame sends a sensory measurement report frame, wherein, the The sensory feedback frame can be carried by a TB physical layer protocol data unit (Physical Protocol Data Unit, PPDU).
  • PPDU Physical Protocol Data Unit
  • the sensing initiating device is a sensing signal sending device
  • the sensing signal sending device can send an NDPA frame to announce the start of measurement, and send an NDP after a short interframe space (SIFS) time frame
  • the sensing signal receiving device receives the NDP frame to generate a measurement result
  • the SIFS time the sensing signal receiving device reports the measurement result to the sensing initiating device.
  • SIFS short interframe space
  • the sensing initiating device is a sensing signal receiving device.
  • the sensing signal sending device can send an NDPA frame to announce the start of measurement, and send an NDP frame after the SIFS time, and the sensing signal receiving device receives the NDP frame Generate measurement results without reporting the measurement results.
  • the sensing signal receiving device may report the measurement result immediately (immediate report) or delayed report (delayed report).
  • the delayed reporting may be explicitly requested by the sensing initiating device.
  • agent sensing Sensing by Proxy
  • a device such as STA
  • AP device
  • the proxy device reports the sensing measurement results is A problem that needs to be solved urgently.
  • FIG. 8 is a schematic interaction diagram of a perception reporting method 200 according to an embodiment of the present application. As shown in FIG. 8, the method 200 includes the following content:
  • the first device sends a first report frame to the second device, where the first report frame includes a measurement result of at least one sensing signal receiving device of at least one measurement instance (Measurement Instance).
  • the first device is called a sensing proxy device, or a sensing proxy response device (Sensing by Proxy, SBP responder, or SBP responding STA), that is, the first device is a sensing proxy (Sensing Proxy) , or in other words, a sensing initiator that supports proxy functions, SBP capable Sensing Initiator.
  • the second device is called a sensing agent requesting device (SBP requester, or called SBP requesting STA). That is, the sensing proxy requesting device may request the sensing proxy device to proxy establish measurement settings, or in other words, proxy to establish a sensing process.
  • SBP requester SBP requesting STA
  • the first report frame is also called a sensing proxy report frame (SBP Report), or a proxy report frame, etc.
  • SBP Report sensing proxy report frame
  • the present application does not limit the name of the frame.
  • the first device and the second device may be different Non-AP STAs.
  • the measurement result of each measurement instance may be all measurement results of the measurement instance, or may also be part of the measurement results of the measurement instance.
  • the method 200 further includes:
  • the method 200 further includes:
  • the first request frame includes requirement information (or perception requirement information) of the perception process established by the second device request agent.
  • the perceived demand information includes at least one of the following:
  • the sensing requirement information may include scheduling information of measurement settings, which is used for scheduling among multiple sensing proxy devices when the sensing proxy requests the device to establish the same measurement setting through multiple sensing proxy devices.
  • the measurement start time information may refer to the start time of the first measurement instance of the measurement setup.
  • it may be a partial timing synchronization function (partial timing synchronization function, partial TSF) value of the target time, or an offset value between the target time and the current time.
  • partial TSF may represent the truncated data of the synchronization time value, for example, the most significant 38 bits and the least significant 10 bits are removed from the 64 bits of the TSF timer.
  • the time interval information of the measurement instance may refer to the time interval between two measurement instances that are temporally adjacent to the measurement setting.
  • the first reporting method is used to instruct to report the measurement result when the measurement result reported by the sensing signal receiving device is received;
  • the second reporting method is used to instruct to report the measurement results received in the measurement instance or before the next measurement instance after the measurement instance ends;
  • N is indicated by the second device, for example, the second device may indicate N in the first request frame.
  • a measurement instance may correspond to a measurement setting, where the measurement instance may be a measurement performed based on the measurement setting.
  • the number of measurement instances corresponding to one measurement setting may be one or multiple, that is, one measurement instance may be implemented based on one measurement setting, or multiple measurement instances may be implemented, in other words, one measurement setting may Corresponds to one measurement instance, or may correspond to multiple measurement instances.
  • one measurement instance can also correspond to multiple measurement settings, that is, one measurement instance can be implemented based on multiple measurement settings. In this case, it can be considered that the multiple measurement settings share one measurement instance.
  • This application The corresponding relationship between the measurement instance and the measurement setting is not limited.
  • the at least one measurement instance may correspond to one measurement setting, or may also correspond to multiple measurement settings. That is, the sensing proxy device may report the measurement results of the measurement instance corresponding to one measurement setting at a time, or may report the measurement results of the measurement instances corresponding to multiple measurement settings.
  • the at least one measurement instance may be a trigger-based (TB) measurement instance, or may also be a non-trigger-based (non-TB) measurement instance.
  • TB trigger-based
  • non-TB non-trigger-based
  • the method 200 further includes:
  • the embodiment of the present application does not limit the specific number of sensing signal receiving devices that report the measurement results and the specific manner in which the sensing signal receiving devices report the measurement results to the first device.
  • the reporting of the measurement result by the sensing signal receiving device may be triggered based on the first device, or may also be non-triggered reporting.
  • the reporting of the measurement result by the sensing signal receiving device may be immediate reporting, or delayed reporting, and the like.
  • the sensing proxy responding device sends a sensing proxy response to the sensing proxy requesting device, where the sensing proxy response corresponds to the aforementioned first response frame, and is used to indicate whether the sensing proxy responding device accepts the sensing proxy request of the sensing proxy requesting device.
  • the sensing proxy responding device accepts the sensing proxy request of the sensing proxy requesting device.
  • the sensing proxy response device generates measurement setting information based on the sensing requirement information carried in the sensing proxy request.
  • the sensing proxy responding device may send a sensing measurement setting request to at least one sensing responding device, where the sensing measurement setting request includes the measurement setting requested to be established.
  • the sensing proxy responding device sends a sensing proxy reporting frame to the sensing proxy requesting device, which is used to indicate the establishment result of the measurement setting established by the proxy, such as whether the establishment is successful, the reason for the establishment failure, and the like.
  • subsequent measurement and reporting processes may be performed between the sensing agent responding device and the sensing responding device agreeing to the measurement setting based on the successfully established measurement setting.
  • the measurement setting identifier carried in the perception measurement setting request frame may belong to the first measurement setting identifier value space.
  • the above measurement setting identification value space, and the division of the first measurement setting identification value space and the second measurement setting identification value space are only examples, and the measurement setting identification value space can also be other value ranges.
  • the first measurement setting The identification value space and the second measurement setting identification value space may also be divided in other ways, as long as the first measurement setting identification value space and the second measurement setting identification value space do not overlap, which is not limited in this application.
  • the sensing agent device can divide the measurement setting information to be established (including but not limited to the information in the table) into two tables for recording according to whether the measurement setting is established due to the request of the sensing agent, as shown in Table 1 and Table 1. 2.
  • Table 1 is used to record the information of the measurement settings established due to the proxy request.
  • Table 2 is used to record information for measurement setups not established by proxy request.
  • device 0 and device 2 are both the sensing signal sending device and the sensing signal receiving device, device 3 is only the sensing signal sending device, and device 5 is only the sensing signal receiving device,
  • device 0 is only the sensing signal sending device and device 5 is only the sensing signal receiving device.
  • device 100 is both a sensing signal sending device and a sensing signal receiving device
  • device 3 is only a sensing signal sending device
  • device 5 is only a sensing signal receiving device
  • device 0 and device 7 are both sensing signal sending and sensing signal receiving devices.
  • the present application does not limit the manner and/or frequency of reporting the measurement result by the sensing proxy device to the sensing proxy requesting device.
  • the reporting methods may include but are not limited to immediate reporting (for example, reporting immediately after receiving the measurement result, that is, the time interval between receiving the measurement result and reporting the measurement result is SIFS), delayed reporting (for example, receiving the measurement result and reporting the measurement result The time interval of the results is greater than SIFS).
  • the measurement result may be reported in units of measurement instances, or the measurement result may be reported with a specific time node (for example, after the measurement instance ends, or before the measurement instance begins) as a reference, or it may also be reported every time a measurement instance is received
  • the measurement result sent by the sensing signal receiving device is to report the measurement result, etc.
  • the reporting method of the measurement result includes at least one of the following:
  • the first reporting method is used to instruct to report the measurement result when the measurement result reported by the sensing signal receiving device is received;
  • the second reporting method is used to instruct to report the measurement results received in the measurement instance or before the next measurement instance after the measurement instance ends;
  • the third reporting method is used to instruct to report all the measurement results of each of the N measurement instances after obtaining all the measurement results of each of the N measurement instances, where N is a positive integer .
  • the manner in which the sensing proxy device reports the measurement result to the sensing proxy requesting device may be indicated by the sensing proxy requesting device.
  • the sensing proxy requesting device may carry first indication information in the first request frame, where the first indication information is used to indicate a target reporting manner for the sensing proxy device to report the measurement result.
  • S210 may include:
  • the sensing proxy device can refresh the cache in time, which can save the cache to the greatest extent.
  • the first device reports the received measurement result to the second device, which may include:
  • the first device After receiving the SIFS time of the measurement result of the sensing signal receiving device, the first device reports the received measurement result to the second device. That is, the time interval between receiving the measurement result and reporting the measurement result may be SIFS.
  • the measurement results of the at least one sensing signal receiving device may include partial measurement results of one measurement instance, or may also include all measurement results of one measurement instance.
  • the measurement result of the at least one sensing signal receiving device may be received during the measurement instance, or may also be received after the measurement instance. That is, the sensing signal receiving device may report the measurement result in the measurement instance, or may report the measurement result after the measurement instance.
  • the first measurement instance being the previous measurement instance of the second measurement instance may refer to:
  • the first measurement instance and the second measurement instance correspond to the same measurement setup.
  • the first device may send the first report frame in a first TXOP or a second TXOP, wherein the second TXOP is a TXOP obtained after the first TXOP.
  • the first device may send the first report frame during or after the measurement instance.
  • the measurement result of the at least one sensing signal receiving device includes a partial measurement result of a measurement instance (denoted as measurement instance 1), that is, the measurement result of a measurement instance can be triggered and reported multiple times.
  • measurement instance 1 is a trigger-based measurement instance, and the at least one sensing signal receiving device supports immediate reporting.
  • the sensing proxy requesting device is STA1
  • the sensing signal receiving devices include STA2 to STA5, all of which support immediate reporting.
  • the sensing proxy device can trigger the sensing signal receiving device to report measurement results.
  • the sensing proxy device once triggers some sensing signal receiving devices to report measurement results. For example, due to insufficient Orthogonal Frequency Division Multiple Access Resource Unit (OFDMA RU) for reporting measurement results, or some sensing signal receiving devices require a long processing time to generate measurement results .
  • OFDMA RU Orthogonal Frequency Division Multiple Access Resource Unit
  • the sensing proxy device first triggers STA2, STA3 and STA4 to report the measurement results, and STA2, STA3 and STA4 support immediate reporting, then after receiving the sensing reporting trigger frame of the sensing proxy device, STA2, STA3 and STA4
  • the sensing report frame is sent to the sensing proxy device immediately, for example, the sensing reporting frame is sent after the SIFS time of receiving the sensing reporting trigger frame.
  • STA2 sends a sensory report frame R1_2
  • STA3 sends a sensory report frame R1_3
  • STA4 sends a sensory report frame R1_4, the sensory report frame R1_2, the sensory report frame R1_3 and the sensory report frame R1_4 respectively include STA2, STA3 and STA4
  • the measurement results in Example 1 were measured.
  • the sensing proxy device can send a proxy reporting frame to the sensing proxy device.
  • the proxy reporting frame includes the sensing reporting frame R1_2, the sensing reporting frame R1_3 and the sensing reporting frame R1_4. measurement results.
  • the sensing proxy device triggers STA5 to report the measurement results, and STA5 supports immediate reporting, then after receiving the sensing reporting trigger frame of the sensing proxy device, STA5 immediately sends the sensing reporting frame to the sensing proxy device, that is, upon receiving the sensing reporting trigger frame
  • the perception report frame R1_5 is sent after the SIFS time of the frame, where the perception report frame 1_5 includes the measurement result of the STA5 in the measurement instance 1.
  • the sensing proxy device sends a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement results included in the sensing reporting frame R1_5.
  • the measurement result of the at least one sensing signal receiving device includes a partial measurement result of a measurement instance (denoted as measurement instance 1), and the measurement instance 1 is a trigger-based measurement instance, and the at least one sensing signal There is a sensing signal receiving device that does not support immediate reporting (or in other words, supports delayed reporting) among the receiving devices.
  • the sensing signal receiving device that does not support immediate reporting can report the measurement result of the previous measurement instance.
  • the sensing signal receiving device that does not support immediate reporting may not be triggered, or the sensing report frame sent by the sensing signal receiving device does not include the measurement result, or includes an invalid result data.
  • measurement instance 1 and measurement instance 2 are taken as examples to illustrate the specific reporting method, wherein measurement instance 1 is the first measurement instance.
  • the sensing agent requesting device is STA1
  • the sensing signal receiving devices include STA2-STA5, wherein STA2, STA3 and STA5 support immediate reporting, and STA4 does not support immediate reporting.
  • the sensing proxy device triggers STA5 to report the measurement result, and STA5 supports immediate reporting, so STA5 sends the sensing report frame R1_5, wherein the sensing reporting frame 1_5 includes the measurement result of STA5 in the measurement instance 1.
  • the sensing proxy device may send a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement results included in the sensing reporting frame R1_5.
  • the perception proxy device triggers STA5 to report the measurement result, and STA5 supports immediate reporting, so STA5 sends the perception report frame R2_5, wherein the perception report frame 2_5 includes the measurement result of STA5 in the measurement instance 2.
  • the sensing proxy device may send a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement result included in the sensing reporting frame R2_5.
  • the measurement results of the at least one sensing signal receiving device include partial measurement results of a measurement instance (denoted as measurement instance 1), and measurement instance 1 is a trigger-based measurement instance, and the at least one sensing signal receiving device There is a sensing signal receiving device that does not support immediate reporting (or, in other words, supports delayed reporting) in the device.
  • the sensing proxy device triggers the sensing signal receiving device to report the measurement result after the measurement instance.
  • the sensing proxy device After measurement example 1, the sensing proxy device re-competes for the channel to obtain TXOP, sends a sensing report trigger frame to trigger STA5 to report the measurement result, and STA5 sends a sensing report frame R1_5, where the sensing reporting frame 1_5 includes the The measurement results in Example 1 were measured.
  • the sensing proxy device may send a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement results included in the sensing reporting frame R1_5.
  • the measurement results of the at least one sensing signal receiving device include all measurement results of the measurement instance (denoted as measurement instance 1), and the measurement instance 1 is a trigger-based measurement instance.
  • Example 1 The difference from Example 1 is that the sensing proxy device once triggers all sensing signal receiving devices to report measurement results.
  • the sensing proxy requesting device is STA1
  • the sensing signal receiving devices include STA2-STA5, all of which support immediate reporting.
  • the sensing proxy device After the sensing proxy device triggers STA2 to STA5 to report the measurement results, STA2 sends the sensing report frame R1_2, STA3 sends the sensing reporting frame R1_3, STA4 sends the sensing reporting frame R1_4, and STA5 sends the sensing reporting frame R1_5, all including the measurement results of measurement instance 1.
  • the sensing proxy device After receiving the sensing report frame, the sensing proxy device sends a proxy reporting frame to the sensing proxy device.
  • the proxy reporting frame includes the measurement results included in the sensing reporting frame R1_2, the sensing reporting frame R1_3, the sensing reporting frame R1_4, and the sensing reporting frame R1_5.
  • the sensing signal receiving device that does not support immediate reporting can report the measurement result of the previous measurement instance.
  • the sensing signal receiving device that does not support immediate reporting may not be triggered, or the sensing report frame sent by the sensing signal receiving device does not include the measurement result, Or include invalid result data.
  • the sensing agent requesting device is STA1
  • the sensing signal receiving devices include STA2-STA5, neither of which supports immediate reporting.
  • the measurement result of the measurement instance 1 may be reported through the TXOP corresponding to the measurement instance 2 (ie, TXOP2).
  • the measurement results of the at least one sensing signal receiving device include all measurement results of the measurement instance, and the measurement instance is a trigger-based measurement instance, and none of the at least one sensing signal receiving device supports immediate reporting.
  • the sensing proxy device triggers the sensing signal receiving device to report the measurement result after the measurement instance.
  • the sensing proxy requesting device is STA1
  • the sensing signal receiving devices include STA2-STA5, neither of which supports immediate reporting.
  • the measurement instance is a non-trigger-based measurement instance, and the sensing signal receiving device supports immediate reporting.
  • the sensing agent requesting device is STA1
  • the sensing participating devices include the sensing proxy device and the sensing signal receiving device STA2, and STA2 supports immediate reporting.
  • the sensing signal receiving device STA2 immediately sends a sensing report frame R1_2 after the measurement process is completed, and the sensing device frame R1_2 includes the measurement result of this measurement instance.
  • the sensing proxy device may send a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement result included in the sensing reporting frame R1_2.
  • the measurement instance is a non-trigger-based measurement instance, and the sensing signal receiving device does not support immediate reporting.
  • measurement instance 1 is the first measurement instance.
  • the sensing signal receiving device STA2 sends a sensing report frame R1_2 after the measurement process is completed, and the sensing device frame R1_2 does not include the measurement result, or includes invalid result data.
  • the sensing proxy device After receiving the sensing report frame R1_2, the sensing proxy device does not send the proxy reporting frame to the sensing proxy device.
  • the sensing signal receiving device STA2 sends the sensing report frame R2_2 after the measurement process is completed, and the sensing device frame R2_2 includes the measurement result of the measurement instance 1.
  • the sensing proxy device After receiving the sensing report frame R2_2, the sensing proxy device sends a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement results included in the sensing reporting frame R2_2.
  • the measurement instance is a non-trigger-based measurement instance, and the sensing signal receiving device does not support immediate reporting.
  • the sensing signal receiving device since the sensing signal receiving device that does not support immediate reporting needs a long processing time to generate the measurement result, the sensing signal receiving device reports the measurement result after the measurement instance.
  • the sensing proxy requesting device is STA1
  • the sensing participating devices include the sensing proxy device and the sensing signal receiving device STA2, and STA2 does not support immediate reporting.
  • the sensing signal receiving device STA2 re-competes for the channel to obtain TXOP2, and then uses the TXOP2 to send a sensing report frame R1_2, which includes the measurement results of this measurement instance.
  • the sensing proxy device After receiving the sensing report frame R1_2, the sensing proxy device sends a proxy reporting frame to the sensing proxy device, where the proxy reporting frame includes the measurement results included in the sensing reporting frame R1_2.
  • Embodiment 2 The second reporting method (or claiming, reporting after the measurement instance, i.e. forwarding after each instance)
  • S210 may include:
  • the first device After each measurement instance, the first device sends a first report frame to the second device, wherein the first report frame includes the information received in each measurement instance or before the next measurement instance measurement results.
  • the measurement result received by the sensing agent device in a measurement instance may include the measurement result of the measurement instance and/or the measurement result of the previous measurement instance.
  • the measurement result received by the sensing proxy device in a measurement instance may include the measurement result of the measurement instance.
  • the measurement result received by the sensing proxy device in one measurement instance may include the measurement result of the previous measurement instance.
  • the measurement result received by the sensing agent device before the next measurement instance may include the measurement result of the current measurement instance and/or the measurement result of the previous measurement instance.
  • the measurement result received by the sensing proxy device in a measurement instance may include the measurement result of the previous measurement instance, or may also include the measurement result of the current measurement instance.
  • the at least one measurement instance includes a fourth measurement instance, the measurement instance next to the fourth measurement instance is a fifth measurement instance, the measurement instance preceding the fourth measurement instance is a third measurement instance, wherein, the measurement results received in the fourth measurement instance include the measurement results of the fourth measurement instance and/or the measurement results of the third measurement instance, and the measurement results received before the fifth measurement instance The measurement results of the fourth measurement instance and/or the measurement results of the third measurement instance are included.
  • the first device sends a first report frame to the second device, including:
  • the at least one measurement instance includes a fourth measurement instance, and the fourth measurement instance is based on TXOP4 measurement, then the measurement result received in the fourth measurement instance may be reported through TXOP4, or may be It is reported through TXOP5, where TXOP5 is a TXOP obtained by re-competing for a channel after TXOP4.
  • the sensing agent requesting device is STA1
  • the sensing signal receiving devices include STA2-STA5.
  • the sensing proxy device can trigger the sensing signal receiving devices to report measurement results in batches.
  • the sensing proxy device first triggers STA2, STA3 and STA4 to report the measurement results, and after receiving the sensing reporting trigger frame of the sensing proxy device, STA2, STA3 and STA4 send the sensing reporting frame to the sensing proxy device.
  • STA2 sends the sensing report frame R1_2
  • STA3 sends the sensing reporting frame R1_3
  • STA4 sends the sensing reporting frame R1_4, the sensing reporting frame R1_2, the sensing reporting frame R1_3 and the sensing reporting frame R1_4 respectively include STA2, STA3 and STA4 in this
  • the measurement result in the measurement instance or it can also include the measurement result of the previous measurement instance.
  • the sensing proxy device triggers STA5 to report the measurement result.
  • STA5 After receiving the sensing reporting trigger frame of the sensing proxy device, STA5 sends the sensing reporting frame R1_5 to the sensing proxy device, wherein the sensing reporting frame 1_5 includes STA5 in this measurement example , or, alternatively, the measurement results of the previous measurement instance.
  • the sensing proxy device After receiving the aforementioned sensing report frame, the sensing proxy device sends a proxy reporting frame to the sensing proxy device.
  • the proxy reporting frame includes the sensing reporting frame R1_2, the sensing reporting frame R1_3, the sensing reporting frame R1_4, and the sensing reporting frame R1_5. measurement results.
  • the measurement instance is a trigger-based measurement instance
  • the sensing proxy device uses the TXOP obtained after the measurement instance to report the measurement result.
  • the sensing agent requesting device is STA1
  • the sensing signal receiving devices include STA2 to STA5.
  • the sensing proxy device can trigger the sensing signal receiving devices to report measurement results in batches.
  • the sensing proxy device starts measurement reporting after measuring an instance.
  • the sensing proxy device first triggers STA2, STA3 and STA4 to report the measurement results, and after receiving the sensing reporting trigger frame of the sensing proxy device, STA2, STA3 and STA4 send the sensing reporting frame to the sensing proxy device.
  • STA2 sends the sensing report frame R1_2
  • STA3 sends the sensing reporting frame R1_3
  • STA4 sends the sensing reporting frame R1_4, the sensing reporting frame R1_2, the sensing reporting frame R1_3 and the sensing reporting frame R1_4 respectively include STA2, STA3 and STA4 in this
  • the measurement result in the measurement instance or it can also include the measurement result of the previous measurement instance.
  • the sensing proxy device re-competes for the channel to obtain TXOP2, and based on TXOP2 sends a sensing report trigger frame to trigger STA5 to report the measurement result.
  • STA5 After receiving the sensing proxy device’s sensing reporting trigger frame, STA5 sends a sensing A report frame R1_5, wherein the perception report frame 1_5 includes the measurement result of STA5 in this measurement example.
  • the sensing proxy device After receiving the aforementioned sensing report frame, the sensing proxy device sends a proxy reporting frame to the sensing proxy device.
  • the proxy reporting frame includes the sensing reporting frame R1_2, the sensing reporting frame R1_3, the sensing reporting frame R1_4, and the sensing reporting frame R1_5. measurement results.
  • Example 11 has one less sending of a perception report frame.
  • Embodiment 3 The third reporting method (reporting in units of a specific number of measurement instances, i.e. instance specific forwarding)
  • the S210 includes:
  • the sensing proxy device may report the measurement result in units of one or more measurement instances.
  • the sensing proxy device may report all measurement results of one measurement instance at a time, or may report all measurement results of multiple measurement instances at a time.
  • the sensing proxy device may report all the measurement results of this measurement instance, or may also report all the measurement results of the previous measurement instance.
  • the N is predefined, or indicated by the second device.
  • measurement instance 1 is the first measurement instance.
  • the sensing agent requesting device is STA1
  • the sensing signal receiving devices include STA2 ⁇ STA5, among which, STA4 does not support immediate reporting, and other STAs support immediate reporting.
  • the sensing agent device can trigger the sensing signal receiving device to report the measurement results in batches.
  • the sensing proxy device first triggers STA2, STA3 and STA4 to report the measurement results. After receiving the sensing proxy device’s sensing reporting trigger frame, STA2, STA3 and STA4 send the sensing Report frame.
  • the sensing proxy device triggers STA5 to report the measurement result, and STA5 sends a sensing report frame R1_5 including the measurement result of measurement instance 1 to the sensing proxy device.
  • the sensing proxy device first triggers STA2, STA3 and STA4 to report the measurement results. Report frame.
  • STA2 sends a sensory report frame R2_2
  • STA3 sends a sensory report frame R2_3
  • STA4 sends a sensory report frame R2_4
  • the sensory report frame R2_2 and the sensory report frame R1_3 include the measurement results of measurement instance 2
  • the sensory report frame R2_4 includes the measurement instance 1 measurement result.
  • the sensing proxy device triggers STA5 to report the measurement result, and STA5 sends a sensing report frame R2_5 including the measurement result of measurement instance 2 to the sensing proxy device.
  • the sensing proxy device has obtained all the measurement results of measurement instance 1, and can send a proxy report frame to the sensing proxy requesting device.
  • the proxy reporting frame includes the sensing reporting frame R1_2, the sensing reporting frame R1_3, the sensing reporting frame R2_4 and the sensing Report the measurement results included in frame R1_5, that is, all the measurement results of measurement instance 1.
  • the proxy report frame may further include second indication information, where the second indication information is used to indicate whether the proxy report frame is the last report frame of the measurement instance.
  • the first proxy report frame sent by the proxy device includes the measurement results of STA2, STA3, and STA4, that is, all the measurement results of measurement instance A are not included, and the proxy report frame indicates that the proxy report frame is not the last one of measurement instance A.
  • An agent reports a frame.
  • the measurement result of STA5 is included in the second proxy report frame sent by the sensing proxy device. In this case, it may be indicated that the proxy report frame is the last proxy report frame of measurement instance A.
  • the sensing proxy requesting device (such as STA1) requires the sensing proxy device (such as AP) to establish the measurement setting M2 corresponding to the trigger-based measurement instance B.
  • the sensing proxy device (such as AP) to establish the measurement setting M2 corresponding to the trigger-based measurement instance B.
  • There are two sensing signal receiving devices (STA2 and STA3), and the sensing proxy device sends the first A proxy report frame includes the measurement results of STA2 and STA3.
  • the proxy device frame is the last proxy report frame of measurement instance B.
  • the proxy report frame is not the last proxy report frame of measurement instance C.
  • the second proxy report frame sent by the sensing proxy device includes the measurement result of STA5. In this case, it can be indicated that the proxy report frame is measurement instance C The last proxy report frame.
  • the number of sensing signal receiving devices actually participating in the measurement is inconsistent with the number required or suggested by the sensing agent requesting devices.
  • the sensing agent requesting device such as STA1 requires two sensing signal receiving devices, and there are four sensing signal receiving devices (STA2, STA3 , STA4 and STA5)
  • the first proxy report frame sent by the sensing agent device includes the measurement results of STA2 and STA3, in this case, it indicates that the proxy report frame is not the last proxy report frame of measurement instance D
  • the sensing The second proxy report frame sent by the proxy device includes the measurement results of STA4 and STA5. In this case, it can be indicated that the proxy report frame is the last proxy report frame of measurement instance D.
  • the sensing proxy device may not be in the proxy report frame and may indicate whether the proxy report frame is the last proxy report frame of the measurement instance.
  • sensing proxy requesting device there are always two sensing signal receiving devices (STA2 and STA3) in the trigger-based measurement instance E corresponding to the measurement setting M4 established by the sensing agent requesting device (such as STA1) for the sensing proxy device (such as AP), and the sensing proxy device After reporting the measurement results of the measurement instance E of STA2 and STA3 to the sensing proxy requesting device, the sensing proxy requesting device can determine that all the measurement results of the measurement instance E have been received.
  • the sensing proxy requesting device can determine that all the measurement results of the measurement instance E have been received.
  • the sensing agent requesting device (such as STA1) requires the sensing proxy device (such as AP) to establish the measurement setting M5 corresponding to the non-trigger-based measurement instance F.
  • the sensing proxy device There is only one sensing signal receiving device (STA2), and the sensing proxy device sends the sensing proxy device After the requesting device reports and sends the measurement result of STA2, the sensing agent requesting device can confirm that all the measurement results of the measurement instance F have been received.
  • the method 200 further includes:
  • the first device determines whether to trigger the second measurement instance according to whether the first measurement instance is shared by other measurement settings other than the first measurement setting. The device reports the measurement results.
  • the second device may not be triggered to report the measurement result.
  • the measurement result of the second device is only used by the second device, it is determined not to trigger the The second device reports the measurement result.
  • the sensing proxy requesting device simultaneously acts as a sensing signal receiving device to participate in one or more measurement setups established due to the sensing proxy request sent by the sensing proxy requesting device, and the measurement results of the sensing proxy requesting device are not reported by one of the or any measurement setting other than multiple perception measurement settings, then the perception agent device does not request the perception agent to request the device to report the corresponding measurement instance during or after the measurement reporting phase of the measurement instance of the one or more measurement settings measurement results.
  • the sensing agent requesting device (such as STA1) requests the sensing proxy device (such as AP) to establish a measurement setting M6, and the trigger-based measurement instance G is independent, non-shared, and only used by the measurement setting M6.
  • STA1 also participates in the downlink measurement as a sensing signal receiving device.
  • the sensing proxy device may not request the STA1 to report the measurement result of the measurement instance G. For example, in The sensing report trigger frame does not indicate to trigger STA1.
  • the sensing initiating device (such as AP) establishes the measurement setting M7
  • the sensing agent requesting device (such as STA1) requests the sensing proxy device (such as AP) to establish the measurement setting M8, wherein, for the measurement setting M7, STA2 and STA3 need to report Measurement results.
  • STA1, STA2, and STA3 need to report the measurement results.
  • the trigger-based measurement instance H is shared and used by measurement setup M7 and measurement setup M8. In this measurement instance H, STA1 also participates in downlink measurement as a sensing signal receiving device.
  • the sensing proxy device may not request the STA1 to report the measurement result of the measurement instance H, for example, triggering STA1 is not indicated in the sensing report trigger frame .
  • the first reporting frame may be an Action frame or an Action No Ack frame. That is, the function of reporting the information reported by the sensing agent (including the aforementioned measurement result information) can be realized through the action frame.
  • existing action frame types can be used to bear the information reported by sensing agents
  • new action frame types for example, protected sensing action frame types (Protected Sensing Action Frames) can also be added.
  • a perception action frame may be defined, and the perception action frame is used to carry information reported by the perception agent.
  • FIG. 26 shows a schematic format diagram of a first report frame implemented through a public action frame provided by the present application. It should be understood that the position and size of each field in the frame format shown in FIG. 26 is just an example, which can be flexibly adjusted according to actual requirements or carried content, and the present application is not limited thereto.
  • Action field (Action field) field of the first report frame includes the following fields:
  • Action type (Category) field for example, a value of 4 indicates that the action frame is a public action frame (Public Action Frames);
  • the Public Action Field (Public Action Field) field for example, is a reserved value (any value from 46 to 255, 55 is used as an example) to indicate that the public action frame is a sensory agent report frame (SBP Report frame ).
  • the first report frame includes at least one measurement result field, wherein each measurement result field is used to carry a measurement result of a sensing signal receiving device.
  • the measurement result field includes at least one of the following fields:
  • Measurement Setup ID field (Measurement Setup ID), used to indicate the identification of the measurement setup corresponding to the measurement result;
  • the measurement instance identification field (Measurement Instance ID) is used to indicate the identification of the measurement instance corresponding to the measurement result;
  • the sensing signal sending device identification field is used to indicate the identification of the sensing signal sending device corresponding to the measurement result
  • the sensing signal receiving device identification field is used to indicate the identification of the sensing signal receiving device corresponding to the measurement result
  • the measurement time stamp field is used to indicate the measurement time information corresponding to the measurement result
  • the result data length field is used to indicate the length of the measurement result data, for example, the unit is byte;
  • the result data field is used to indicate the measurement result data of the inductive signal receiving device in a measurement instance.
  • the measurement setting identifier indicated by the measurement setting identifier field belongs to the first measurement setting identifier value space.
  • the measurement result data may include at least one of the following, for example:
  • CSI data generally refers to the channel frequency response (Channel Frequency Response, CFR);
  • Beam SNR data Beam SNR
  • the measurement result field may include a measurement result description information field and a result data field, and the measurement result description information field may include the above-mentioned fields.
  • the measurement result description information field may be an element field,
  • the reserved value of the element identifier extension field for example, any value from 111 to 255, taking 111 as an example
  • the element field is not limited in this application.
  • the measurement result field further includes a control domain field
  • the control domain field includes at least one of the following fields:
  • Whether there is a measurement instance identification field which is used to indicate whether the measurement result field has a measurement instance identification field
  • Whether there is a measurement setting identification field which is used to indicate whether there is a measurement setting identification field in the measurement result field
  • a sensing signal sending device identifier exists field which is used to indicate whether the sensing signal sending device identifier exists in the measurement result field
  • Whether the sensing signal receiving device identifier exists field is used to indicate whether the sensing signal receiving device identifier exists in the measurement result field;
  • Whether the measurement time stamp exists field is used to indicate whether there is a measurement time stamp field in the measurement result field.
  • control domain field is also called the description information control domain field.
  • the first report frame can also be used to report the establishment result of the measurement setup phase, therefore, the first report frame can also include measurement setup report information, such as whether the measurement setup is successfully established, and whether the setup fails reason etc.
  • the first report frame further includes a measurement setting report field for carrying measurement setting report information.
  • a measurement setting report field for carrying measurement setting report information. For example, some or all information of the measurement settings established by the agent is used to assist the sensing agent to request the device to process the measurement result data.
  • the action field field of the first report frame may also include a control field field, which is used to indicate whether one or more subsequent fields exist, such as the measurement setting report field and/or Whether the measurement result field exists.
  • the control domain fields may include:
  • Whether there is a measurement setting report field which is used to indicate whether the first report frame includes a measurement setting report field
  • Whether the measurement result exists field is used to indicate whether the first report frame includes the measurement result field.
  • the field of whether the measurement setting report exists is set to 1 to indicate yes, otherwise it is set to 0.
  • the existence field of the measurement setting report is set to 0 to indicate yes, otherwise it is set to 1.
  • the field of whether the measurement result exists is set to 1 to indicate yes, otherwise it is set to 0.
  • the field of whether the measurement result exists is set to 0 to indicate yes, otherwise it is set to 1.
  • the first report frame further includes: a status code (Status Code) field, which is used to indicate the establishment result of the measurement setting established by the agent and/or the cause of the establishment failure.
  • a status code Status Code
  • a setting of 0 indicates success (i.e., no error occurred)
  • a setting of 131 indicates that the establishment of the measurement setup failed due to insufficient number of sensing participating devices
  • a setting of 132 indicates that the establishment of the measurement setup failed because the sensing results could not be reported immediately Failed
  • setting it to 133 means that the total number of stations participating in the measurement decreases during the measurement process, which cannot meet the minimum number of sensory response devices
  • setting it to 134 means that the operating mode (Operating Mode, OM) of the sensory response device changes during the measurement process. Maintain the established measurement settings, and set it to 135 to indicate that the load of the Basic Service Set (BSS) is high and the sensing measurement needs to be stopped.
  • BSS Basic Service Set
  • the STA when the STA has insufficient power but wants to extend the work, it will change the operating mode (reduce the bandwidth and/or reduce the number of sending airspace streams that can be supported and/or reduce the number of receiving airspace streams that can be supported) to achieve extended work
  • the effect of duration Changes in the operating mode may have an impact on the sensing process. For example, the smaller the bandwidth, the greater the quantization error of the measurement results, and the smaller the number of airspace streams, the lower the dimension of the CSI matrix of the measurement results, resulting in a decrease in the accuracy of perception.
  • the sensing response device When the sensing response device (such as non-AP STA) changes its own operating mode, it will send an operating mode notification (Operating Mode Notification, OMN) to the sensing initiating device (such as AP) (it can be an OMN frame, or it can carry an OMN Other frames of the element) or operating mode indication (Operating Mode Indication, OMI) (can be the operating mode control subfield (OM Control subfield) and/or the EHT operating mode control subfield (EHT OM Control subfield).
  • OMI Operating Mode Indication
  • Fig. 27 is a schematic format diagram of a first report frame implemented through a newly defined perception action frame provided by an embodiment of the present application. It should be understood that the position and size of each field in the frame format shown in FIG. 27 is only an example, which can be flexibly adjusted according to actual requirements or carried content, and the present application is not limited thereto.
  • the Action field (Action field) field of the first report frame includes the following fields:
  • the action type (Category) field indicates that the action frame is a newly defined protected sensing action frame (Protected Sensing Action Frames), where the third value is a reserved value, such as 38;
  • Sensing Action Field field, for example, the fourth value (any value from 0 to 255, take 5 as an example) is used to indicate that the sensing action frame is a sensing agent reporting frame (SBP Report frame ).
  • each measurement result description information field includes the aforementioned description information fields, that is, the corresponding bits in the description information control field all indicate existence.
  • the description information of the measurement result may be determined according to the description information indicated in each measurement result description information field.
  • an element inheritance method may be used to determine the description information of the measurement result. For example, if all description information fields in the first measurement result description information element exist, in the subsequent measurement result description information element, if a certain description field does not exist, the value of the description information field can use the previous one. The value of the corresponding field of the element, if the description information field exists, use the measurement result to describe the value of the description information field in the information element.
  • the measurement setting ID is 1, the measurement instance ID is 5, the sensing signal sending device ID is 3, the sensing signal receiving device ID is 9, and the measurement time stamp is 3000, If the measurement result description information element in the second measurement result field does not contain the measurement setting identification field, its measurement setting identification is also 1, if the measurement result description information element in the third measurement result field contains the measurement setting identification 4, the measurement setting identifier is 4, and if the measurement result description information element in the fourth measurement result field does not contain the measurement setting identifier, then the measurement setting identifier is also 4.
  • the first report frame may also indicate whether it is the last proxy report frame of the measurement instance, that is, the first report frame may include the second indication information.
  • the first report frame carrying the second indication information can be implemented through an existing action frame type (for example, a public action frame type), or a newly added action frame type (for example, a protection awareness action frame type (Protected Sensing Action Frames)) implementation.
  • FIG. 28 and FIG. 29 are schematic format diagrams of the first report frame carrying the second indication information realized through the public action frame and the newly defined perception action frame respectively. It should be understood that the position and size of each field in the frame format shown in FIG. 28 and FIG. 29 is just an example, which can be flexibly adjusted according to actual needs or carried content, and the present application is not limited thereto.
  • the measurement result field also includes a measurement instance last report (Last Report) field, which is used to indicate whether the measurement result is the last measurement result of the corresponding measurement instance, that is, whether the frame is the last measurement result of the measurement instance.
  • the last proxy report frame for the measurement instance In one embodiment, this field is set to 1 to indicate yes, otherwise to 0. In another embodiment, this field is set to 0 to indicate yes, otherwise to 1. It should be understood that the meanings of the other fields in the frame formats shown in FIG. 28 and FIG. 29 and the related descriptions of the corresponding fields in the frame formats shown in FIG. 26 and FIG. 27 will not be repeated here.
  • the embodiment of the present application provides multiple reporting methods of measurement results, for example, reporting the measurement results immediately after receiving the measurement results, or reporting the measurement results after the measurement instance, or, with a certain
  • the number of measurement instances is used as a unit to report the measurement results, etc., which improves and optimizes the process of reporting the measurement results by the agent, and reports the measurement results based on the reporting method of the embodiment of the application, which is beneficial to reduce network load, reduce processing complexity, and reduce energy consumption.
  • Fig. 30 is a schematic block diagram of a sensing device according to an embodiment of the present application.
  • the sensing device 1000 of FIG. 30 includes:
  • a communication unit 1010 configured to send a first report frame to a second device, where the first report frame includes a measurement result of at least one measurement instance, where the measurement result of each measurement instance includes a measurement result of at least one sensing signal receiving device , the at least one measurement instance corresponds to at least one measurement setting, and the at least one measurement setting is established by the sensing device on behalf of the second device.
  • the communication unit 1010 is also used for:
  • the communication unit 1010 is also used for:
  • the first TXOP is used for the measurement of the second measurement instance
  • the measurement result of the at least one sensing signal receiving device includes the measurement result of the second measurement instance and/or the measurement of the first measurement instance
  • the first measurement instance is a previous measurement instance of the second measurement instance.
  • the communication unit 1010 is also used for:
  • a first report frame is sent to the second device, where the first report frame includes the measurement result received in each measurement instance or before the next measurement instance.
  • the communication unit 1010 is also used for:
  • said at least one measurement instance comprises a fourth measurement instance, the next measurement instance of said fourth measurement instance is a fifth measurement instance, wherein the measurement result received in said fourth measurement instance Or the measurement results received before the fifth measurement instance include the measurement results of the fourth measurement instance and/or the measurement results of the third measurement instance, wherein the third measurement instance is the measurement result of the fourth measurement instance The previous measurement instance.
  • the communication unit 1010 is also used for:
  • the N is predefined, or indicated by the second device.
  • the N is indicated by the second device through a first request frame for requesting the sensing device agent to establish the at least one measurement setting.
  • the last measurement instance among the N measurement instances is the sixth measurement instance
  • the measurement result of the sixth measurement instance is received based on the third TXOP
  • the first report frame is based on the reported by the third TXOP or the fourth TXOP, wherein the fourth TXOP is a TXOP obtained after the third TXOP.
  • the communication unit 1010 is also used for:
  • the manner of reporting the measurement results includes at least one of the following:
  • the first reporting method is used to instruct to report the measurement result when the measurement result reported by the sensing signal receiving device is received;
  • the second reporting method is used to instruct to report the measurement results received in the measurement instance or before the next measurement instance after the measurement instance ends;
  • the third reporting method is used to instruct to report all the measurement results of each of the N measurement instances after obtaining all the measurement results of each of the N measurement instances, where N is a positive integer .
  • the first indication information is sent through a first request frame, and the first request frame is used to request the sensing device agent to establish the at least one measurement setting.
  • the first report frame includes the measurement result of the target measurement instance, and the first report frame further includes second indication information, and the second indication information is used to indicate whether the first report frame is The last report frame carrying the measurement result of the target measurement instance.
  • the first report frame is an action frame.
  • the first report frame is a public action frame.
  • the first report frame includes an action type field and a public action subclass field
  • the action type field is used to indicate that the action frame is a public action frame
  • the value of the public action subclass field is preset The reserved value is used to indicate that the public action frame is used for the agent to report the perception measurement result.
  • the first reporting frame is a sensory action frame.
  • the first report frame includes an action type field and a perception action subclass field
  • the value of the action type field is a reserved value used to indicate that the action frame is a perception action frame
  • the perception action subclass The class field is used to indicate that the perception action frame is used for the agent to report the perception measurement result.
  • the first report frame includes at least one measurement result field, wherein each measurement result field is used to carry a measurement result of a sensing signal receiving device.
  • the measurement result field includes at least one of the following fields:
  • the measurement instance identification field is used to indicate the identification of the measurement instance
  • a measurement setting identification field used to indicate the identification of the measurement setting
  • the sensing signal sending device identification field is used to indicate the identification of the sensing signal sending device
  • the sensing signal receiving device identification field is used to indicate the identification of the sensing signal receiving device
  • a measurement timestamp field used to indicate the time information at which the measurement was performed
  • the result data length field is used to indicate the length of the measurement result data
  • Result data field to indicate measurement result data.
  • the measurement result field further includes a control domain field
  • the control domain field includes at least one of the following fields:
  • Whether there is a measurement instance identification field which is used to indicate whether the measurement result field has a measurement instance identification field
  • Whether there is a measurement setting identification field which is used to indicate whether there is a measurement setting identification field in the measurement result field
  • a sensing signal sending device identifier exists field which is used to indicate whether the sensing signal sending device identifier exists in the measurement result field
  • Whether the sensing signal receiving device identifier exists field is used to indicate whether the sensing signal receiving device identifier exists in the measurement result field;
  • Whether the measurement time stamp exists field is used to indicate whether there is a measurement time stamp field in the measurement result field.
  • the sensing device is an access point device
  • the second device is a station device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the sensing device 1000 may correspond to the first device or the sensing agent device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the sensing device 1000 are respectively for realizing
  • the corresponding processes of the first device or the sensing proxy device in the method 200 shown in FIGS. 8 to 29 will not be repeated here.
  • Fig. 31 is a schematic block diagram of a sensing device according to an embodiment of the present application.
  • the sensing device 1100 of FIG. 31 includes:
  • a communication unit 1110 configured to receive a first report frame sent by a first device, where the first report frame includes a measurement result of at least one measurement instance, where the measurement result of each measurement instance includes a measurement of at least one sensing signal receiving device As a result, said at least one measurement instance corresponds to at least one measurement setting, said at least one measurement setting being established by said first device on behalf of said sensing device.
  • the communication unit 1110 is also used for:
  • the first report frame is sent based on a first transmission opportunity TXOP or a second TXOP, wherein the measurement result of the at least one sensing signal receiving device is received based on the first TXOP, so
  • the second TXOP is a TXOP obtained after the first TXOP.
  • the first TXOP is used for the measurement of the second measurement instance
  • the measurement result of the at least one sensing signal receiving device includes the measurement result of the second measurement instance and/or the measurement of the first measurement instance
  • the first measurement instance is a previous measurement instance of the second measurement instance.
  • the communication unit 1110 is also used for:
  • the first report frame is sent based on the TXOP corresponding to each measurement instance; or
  • the first report frame is sent based on the TXOP obtained after each measurement instance.
  • said at least one measurement instance comprises a fourth measurement instance, the next measurement instance of said fourth measurement instance is a fifth measurement instance, wherein the measurement result received in said fourth measurement instance Or the measurement results received before the fifth measurement instance include the measurement results of the fourth measurement instance and/or the measurement results of the third measurement instance, wherein the third measurement instance is the measurement result of the fourth measurement instance The previous measurement instance.
  • the communication unit 1110 is also used for:
  • the first report frame includes All measurement results of the measurement instances, wherein the N is a positive integer.
  • the N is predefined, or indicated by the sensing device.
  • the N is indicated by the sensing device through a first request frame, and the first request frame is used to request the first device agent to establish the at least one measurement setting.
  • the last measurement instance among the N measurement instances is the sixth measurement instance
  • the measurement result of the sixth measurement instance is received based on the third TXOP
  • the first report frame is based on the reported by the third TXOP or the fourth TXOP, wherein the fourth TXOP is a TXOP obtained after the third TXOP.
  • the communication unit 1110 is also used for:
  • the manner of reporting the measurement results includes at least one of the following:
  • the first reporting method is used to instruct to report the measurement result when the measurement result reported by the sensing signal receiving device is received;
  • the second reporting method is used to instruct to report the measurement results received in the measurement instance or before the next measurement instance after the measurement instance ends;
  • the third reporting method is used to instruct to report all the measurement results of each of the N measurement instances after obtaining all the measurement results of each of the N measurement instances, where N is a positive integer .
  • the first indication information is sent through a first request frame, and the first request frame is used to request the first device agent to establish the at least one measurement setting.
  • the first report frame includes the measurement result of the target measurement instance, and the first report frame further includes second indication information, and the second indication information is used to indicate whether the first report frame is The last report frame carrying the measurement result of the target measurement instance.
  • the first report frame is an action frame.
  • the first report frame is a public action frame.
  • the first report frame includes an action type field and a public action subclass field
  • the action type field is used to indicate that the action frame is a public action frame
  • the value of the public action subclass field is preset The reserved value is used to indicate that the public action frame is used for the agent to report the perception measurement result.
  • the first reporting frame is a sensory action frame.
  • the first report frame includes an action type field and a perception action subclass field
  • the value of the action type field is a reserved value used to indicate that the action frame is a perception action frame
  • the perception action subclass The class field is used to indicate that the perception action frame is used for the agent to report the perception measurement result.
  • the first report frame includes at least one measurement result field, wherein each measurement result field is used to carry a measurement result of a sensing signal receiving device.
  • the measurement result field includes at least one of the following fields:
  • the measurement instance identification field is used to indicate the identification of the measurement instance
  • a measurement setting identification field used to indicate the identification of the measurement setting
  • the sensing signal sending device identification field is used to indicate the identification of the sensing signal sending device
  • the sensing signal receiving device identification field is used to indicate the identification of the sensing signal receiving device
  • a measurement timestamp field used to indicate the time information at which the measurement was performed
  • the result data length field is used to indicate the length of the measurement result data
  • Result data field to indicate measurement result data.
  • the measurement result field further includes a control domain field
  • the control domain field includes at least one of the following fields:
  • Whether there is a measurement instance identification field which is used to indicate whether the measurement result field has a measurement instance identification field
  • Whether there is a measurement setting identification field which is used to indicate whether there is a measurement setting identification field in the measurement result field
  • a sensing signal sending device identifier exists field which is used to indicate whether the sensing signal sending device identifier exists in the measurement result field
  • Whether the sensing signal receiving device identifier exists field is used to indicate whether the sensing signal receiving device identifier exists in the measurement result field;
  • Whether the measurement time stamp exists field is used to indicate whether there is a measurement time stamp field in the measurement result field.
  • the first device is an access point device
  • the sensing device is a station device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the sensing device 1100 may correspond to the second device or the sensing agent requesting device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the sensing device 1100 are respectively for The corresponding processes of the second device or the sensing proxy requesting device in the method 200 shown in FIGS. 8 to 29 are implemented, and for the sake of brevity, details are not repeated here.
  • Fig. 32 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 32 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may invoke and run a computer program from the memory 620, so that the communication device 600 implements the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device or the sensing proxy device in the embodiment of the present application, and the communication device 600 may implement the corresponding functions implemented by the first device or the sensing proxy device in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the communication device 600 may specifically be the second device or the perception proxy requesting device in the embodiment of the present application, and the communication device 600 may be implemented by the second device or the perception proxy requesting device in each method of the embodiment of the application For the sake of brevity, the corresponding process will not be repeated here.
  • FIG. 33 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 33 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first device or the sensing proxy device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the first device or the sensing proxy device in the various methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the chip can be applied to the second device or the sensing proxy requesting device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the second device or the sensing proxy requesting device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 34 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 34 , the communication system 900 includes a sensing proxy device 910 and a sensing proxy requesting device 920 .
  • the sensing proxy device 910 can be used to implement the corresponding functions implemented by the first device or the sensing proxy device in the above method
  • the sensing proxy requesting device 920 can be used to implement the request by the second device or the sensing proxy device in the above method.
  • the corresponding functions implemented by the device will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device or the sensing proxy device in the embodiments of the present application, and the computer program enables the computer to execute the various methods in the embodiments of the present application by the first device or the sensing proxy device
  • the corresponding process of implementation is not repeated here.
  • the computer-readable storage medium can be applied to the second device or the sensing agent requesting device in the embodiments of the present application, and the computer program enables the computer to execute the various methods in the embodiments of the present application by the second device or the sensing agent
  • the corresponding process implemented by the requesting device is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device or the perception proxy device in the embodiment of the present application, and the computer program instructions enable the computer to execute each method in the embodiment of the present application to be implemented by the first device or the perception proxy device
  • the corresponding process will not be repeated here.
  • the computer program product can be applied to the second device or the sensing agent requesting device in the embodiments of the present application, and the computer program instructions cause the computer to execute the requesting device by the second device or the sensing agent in the various methods of the embodiments of the present application.
  • the corresponding processes implemented by the device are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to the first device or the sensing agent device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes each method in the embodiment of the present application by the first device or
  • the corresponding processes implemented by the perception proxy device are not described here again.
  • the computer program can be applied to the second device or the sensing agent requesting device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes each method in the embodiment of the present application by the second device Or the corresponding process that the perception agent requests the device to implement, for the sake of brevity, details are not described here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种感知上报方法和设备,该方法包括:第一设备向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述第二设备建立的。

Description

感知上报方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种感知上报方法和设备。
背景技术
感知(Sensing)是由802.11bf标准提出的一种802.11协议的功能增强,其通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,手势识别以及空间三维图像建立等诸多功能。在一些场景中,考虑引入代理的感知(Sensing by Proxy),即一个设备(例如站点设备)可以通过另一设备(接入点设备)代理建立感知过程,此情况下,代理设备如何进行感知测量结果的上报是一项亟需解决的问题。
发明内容
本申请提供了一种感知上报方法和设备,感知代理设备可以向感知代理请求设备上报代理建立的测量设置对应的测量实例的测量结果,从而能够实现代理的感知上报。
第一方面,提供了一种感知上报方法,包括:第一设备向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述第二设备建立的。
第二方面,提供了一种感知上报方法,包括:第二设备接收第一设备发送的第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述第二设备建立的。
第三方面,提供了一种感知设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该感知设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种感知设备,用于执行上述第二方面或其各实现方式中的方法。具体地,该感知设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种感知设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该感知设备执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种感知设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该感知设备执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,感知代理设备通过第一上报帧向感知代理请求设备发送代理建立的测量设置对应的测量实例的测量结果,从而实现了代理的感知上报。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是一种Wi-Fi sensing过程的示意性图。
图3是根据本申请实施例的一种感知测量设置阶段的示意***互图。
图4是根据本申请实施例的一种感知测量阶段的示意***互图。
图5是根据本申请实施例的一种感知上报阶段的示意***互图。
图6是根据本申请实施例的一种感知测量阶段和感知上报阶段的示意***互图。
图7是根据本申请实施例的另一种感知测量阶段的示意***互图。
图8是本申请实施例提供的一种感知上报方法的示意***互图。
图9是本申请实施例提供的一种代理感知过程的示意***互图。
图10至图20是根据第一上报方式的感知上报方法的示意***互图。
图21至图22是根据第二上报方式的感知上报方法的示意***互图。
图23至图24是根据第二上报方式的感知上报方法的示意***互图。
图25是根据本申请实施例的一种触发上报的示意性图。
图26是本申请实施例提供的一种第一上报帧的帧格式示意图。
图27是本申请实施例提供的另一种第一上报帧的帧格式示意图。
图28是本申请实施例提供的又一种第一上报帧的帧格式示意图。
图29是本申请实施例提供的又一种第一上报帧的帧格式示意图。
图30是根据本申请实施例提供的一种感知设备的示意性框图。
图31是根据本申请实施例提供的又一种感知设备的示意性框图。
图32是根据本申请实施例提供的一种通信设备的示意性框图。
图33是根据本申请实施例提供的一种芯片的示意性框图。
图34是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信***100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对等通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信***中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN或WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信***100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的接入点110和站点120,接入点110和站点120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括接入点和站点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
为便于理解本申请实施例的技术方案,以下对本申请相关术语进行说明。
关联标识符(Association Identifier,AID),用于标识跟接入点建立关联后的终端。
媒体访问控制(Medium Access Control,MAC)。即媒体访问控制地址的简称。
传输机会(Transmission Opportunity,TXOP),指的是一段时间,在该时间段内,拥有该传输机会的终端可以主动发起一次或多次传输。
突发信号(Burst),一般指一小段时间,在该时间段内发送一个或多个信号。
突发信号组(Burst Group),指一个或多个突发信号的组合。同一个突发信号组中的突发信号一般具有一些共同的特征。
感知(Sensing)测量是通过测量信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,Sensing测量是通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,姿势识别以及空间三维图像建立等诸多功能。
参与感知测量的设备可能包括如下角色(role):
感知发起设备(Sensing Initiator),发起感知会话(sensing session)并想要获知感知结果的设备;
感知响应设备(Sensing Responder),参与sensing session的非Sensing Initiator的设备;
感知发送设备(Sensing Transmitter),发起感知测量信号(sensing illumination signal)的设备,或称感知信号发送设备;
感知接收设备(Sensing Receiver),接收感知测量信号(sensing illumination signal)的设备,或称感知信号接收设备;
感知处理设备(Sensing processor),处理感知测量结果的设备;
感知参与设备(Sensing Participant),包括感知发起设备,感知发送设备和感知接收设备。
设备在一个感知测量中可能有一个或多个角色,例如感知发起设备可以仅仅是感知发起设备,也可以成为感知发送设备,也可以成为感知接收设备,还可以同时是感知发送设备和感知接收设备。
例如,如图2中的A所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的B所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter);STA2可以是感知接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor)。
又例如,如图2中的C所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知接收设备(Sensing Receiver);STA3可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的D所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter);STA3可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的E所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知处理设备(Sensing processor);STA2可以是感知接收 设备(Sensing Receiver);STA3可以是感知接收设备(Sensing Receiver)。
又例如,如图2中的F所示,STA1可以是感知发起设备(Sensing Initiator);STA2可以是感知接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor);STA3可以是感知发送设备(Sensing Transmitter);STA4可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的G所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的H所示,STA1可以是感知发起设备(Sensing Initiator);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的I所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver)。
又例如,如图2中的J所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver);STA3可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver)。
需要说明的是,图2仅为本申请的示例,不应理解为对本申请的限制。例如图2中的STA1,STA2,STA3仅仅表示STA的角色,在图2以及后续的感知会话、测量等步骤中,并不用于限制STA的数量,例如,STA1,STA2,STA3所代表的角色可以实现为一个或多个STA。
在一些实施例中,可以具有多种感知类型(Sensing Type)。例如,基于信道状态信息(Channel State Information,CSI)的感知类型,即CSI-based Sensing,该感知类型是通过处理接收到的感知测量信号的CSI获得sensing测量结果。又例如,基于反射信号的感知类型,即Radar-based Sensing,该感知类型是通过处理接收到的感知测量信号的反射信号获得sensing测量结果。
在本申请实施例中,感知发起设备或称发起设备,感知会话发起设备,感知响应设备或称响应设备,或者感知会话响应设备。
WLAN感知会话包括以下一个或多个阶段:会话建立、感知测量设置建立、感知测量、感知上报、感知测量设置终止、会话终止。
会话建立阶段:建立感知会话,交换双方的感知能力和/或确定感知测量相关的操作参数,或者终端声明自身的角色和操作参数(例如,通过信标帧或者其他特殊帧)
感知测量设置建立阶段:确定感知参与设备及其角色(包括感知信号发送设备和感知信号接收设备),决定感知测量相关的操作参数,并且可选的在终端之间交互该参数。
感知测量阶段:实施感知测量,感知信号发送设备发送感知信号给感知信号接收者。
感知上报阶段:上报测量结果,由应用场景决定,感知信号接收设备可能需要给感知会话发起设备上报测量结果。
感知测量设置终止阶段:终止一个或多个测量设置,停止相应的测量,并释放相关存储和计算资源。
会话终止阶段:终止所有测量设置,停止测量,终止感知会话。
感知测量结果的数据量通常比较大,例如一次测量的信道状态信息(Channel State Information,CSI)数据可能达到4K~40K比特,为了降低上报感知测量结果导致的网络负载,可以设置测量阈值,当本次感知测量结果与上次的感知测量结果的变化量小于该测量阈值时,感知信号接收设备上报感知测量结果,否则不上报感知测量结果。
感知发起设备可以设置多组测量参数,一组测量参数(用测量设置标识(Measurment Setup ID)来标识,可以等价于突发信号组(Burst Group))可以应用于多次测量(每次测量用测量实例标识(Measurement Instance ID)来标识,可以等价于突发信号(Burst))。
在一些实施例中,感知会话发起设备可以通过测量设置流程(Measurement Setup procedure)来设置多组测量参数,一个测量设置(Measurement Setup,或称测量配置,Measurement Configuration),一般包括一组测量参数,其可以用测量设置标识(Measurement Setup ID)来标识。一个测量设置可以应用于多次测量,一次测量(可以等价于突发信号(Burst))可以认为是一个测量实例(Measurement Instance),测量实例可以用测量实例标识(Measurement Instance ID)来标识。
在一些实施例中,为了降低感知测量上报的开销以及对其他设备的干扰,可以执行基于触发帧 (Trigger Based,TB)的测量流程,包括感知测量设置阶段、感知测量阶段和感知测量上报阶段三个阶段,其中,感知测量设置阶段主要交互或协商实施感知测量的操作参数,即测量设置,感知测量阶段主要基于测量设置实施感知测量,感知测量设备阶段主要进行测量结果的上报。
图3是感知测量设置阶段的一种示意***互图,如图3所示,在感知测量设置阶段,感知发起设备(例如AP设备)和至少一个感知响应设备通过感知测量设置请求帧和感知测量设置响应帧确定实施测量的操作参数,即测量设置。
图4是感知测量阶段的一种示意***互图,如图4所示,在感知测量阶段,感知发起设备(例如AP设备)通过感知测量轮询触发帧确定执行测量的感知响应设备,进一步通过感知测量触发帧触发执行测量的感知响应设备发送测量帧(例如,空数据物理层协议数据单元(Null Data PPDU,NDP))上行测量,通过NDP通知(NDP Announcement,NDPA)通知感知响应设备接收测量帧进行下行测量。
图5是感知上报阶段的一种示意***互图,如图5所示,在感知上报阶段,感知发起设备(例如AP设备)通过感知反馈轮询触发帧确定执行测量上报的感知响应设备,响应于该感知反馈轮询触发帧,感知响应设备可以向接入点设备发送感知反馈帧,进一步接入点设备通过感知测量上报触发帧进行测量上报的感知响应设备发送感知测量上报帧,其中,该感知反馈帧可以通过TB物理层协议数据单元(Physical Protocol Data Unit,PPDU)携带。
在一些情况中,只有一对设备进行感知测量,可以采用非触发(non-TB)的测量流程。
在一些场景中,如图6所示,感知发起设备是感知信号发送设备,则感知信号发送设备可以发送NDPA帧来宣告测量开始,在短帧间间隔(short interframe space,SIFS)时间后发送NDP帧,感知信号接收设备接收该NDP帧产生测量结果,在SIFS时间后,感知信号接收设备给感知发起设备上报测量结果。
在另一些场景中,感知发起设备是感知信号接收设备,如图7所示,感知信号发送设备可以发送NDPA帧来宣告测量开始,在SIFS时间后发送NDP帧,感知信号接收设备接收该NDP帧产生测量结果,无需上报测量结果。
感知信号接收设备上报测量结果可以是立即上报(immediate report)或者延迟上报(delayed report)。可选地,延迟上报可以是由感知发起设备显式请求的。
在一些场景中,考虑引入代理的感知(Sensing by Proxy),即一个设备(例如STA)可以通过另一设备(AP)代理建立感知过程,此情况下,代理设备如何进行感知测量结果的上报是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图8是根据本申请实施例的感知上报方法200的示意***互图,如图8所示,该方法200包括如下内容:
S210,第一设备向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例(Measurement Instance)的至少一个感知信号接收设备的测量结果。
在本申请实施例中,所述第一设备或称感知代理设备,或者,感知代理响应设备(Sensing by Proxy,SBP responder,或称SBP responding STA),即第一设备为感知代理(Sensing Proxy),或者说,支持代理功能的感知发起设备,SBP capable Sensing Initiator。
在本申请实施例中,所述第二设备或称感知代理请求设备(SBP requester,或称SBP requesting STA)。即,感知代理请求设备可以请求感知代理设备代理建立测量设置,或者说,代理建立感知过程。
在本申请实施例中,所述第一上报帧或称感知代理上报帧(SBP Report),或者代理上报帧等,本申请对于帧的命名不作限定。
在一些实施例中,所述第一设备可以是AP,所述第二设备可以是Non-AP STA。
在另一些实施例中,所述第一设备和所述第二设备可以是不同的Non-AP STA。
在又一些实施例中,所述第一设备和所述第二设备可以是不同的AP。
在一些实施例中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果。
在一些实施例中,所述每个测量实例的测量结果可以是该测量实例的全部测量结果,或者,也可以是该测量实例的部分测量结果。
在一些实施例中,所述至少一个测量实例对应至少一个测量设置(measurement setup),所述至少一个测量设置是所述第一设备代理所述第二设备建立的。即第一设备是该至少一个测量设置的感知发起设备。
在本申请一些实施例中,所述方法200还包括:
S201,第一设备接收所述第二设备发送的第一请求帧,所述第一请求帧用于请求所述第一设备代理建立测量设置,或者说,代理建立感知过程。
在本申请一些实施例中,所述方法200还包括:
S202,所述第一设备可以向所述第二设备发送第一响应帧,所述第一响应帧用于指示所述第一设备是否同意代理所述第二设备建立测量设置(或者感知过程),或者说,所述第一设备是否接受所述第二设备的感知代理请求。
在一些实施例中,所述第一请求帧或称感知代理请求帧(SBP request),或代理请求帧,所述第一响应帧或称感知代理响应帧(SBP response),或代理响应帧等,本申请对于帧的命名不作限定。
在一些实施例中,所述第一请求帧包括所述第二设备请求代理建立的感知过程的需求信息(或称感知需求信息)。
作为示例而非限定,所述感知需求信息包括以下中的至少一项:
感知响应设备的数量要求,感知测量的频次要求,感知测量的带宽要求,感知测量的类型(例如基于触发的感知测量或非基于触发的感知测量),感知代理设备向感知代理请求设备上报测量结果(或称,感知结果,感知测量结果)的方式。
在一些实施例中,感知测量的频次信息可以指单位时间内感知测量的执行次数,该单位时间可以是1秒,或者100毫秒等,本申请对此不作限定。
在一些实施例中,所述感知需求信息可以包括测量设置的调度信息,用于在感知代理请求设备通过多个感知代理设备代理建立同一测量设置时,该多个感知代理设备之间的调度。
在一些实施例中,所述测量设置的调度信息包括测量开始时间信息和测量实例的时间间隔信息。
在一些实施例中,测量开始时间信息可以指测量设置的第一个测量实例的开始时间。例如可以为为目标时间的部分时间同步功能(partial timing synchronization function,partial TSF)值,或目标时间与当前时间的偏移值。其中,部分TSF可以表示同步时间值的截断数据,例如从TSF定时器的64比特中,去除最高有效的38比特和最低有效的10比特。
在一些实施例中,测量实例的时间间隔信息可以指测量设置的时序上相邻的两个测量实例之间的时间间隔。
在一些实施例中,感知代理设备向感知代理请求设备上报测量结果的方式包括但不限于以下至少一种:
第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
在一些实施例中,N是预定义的,例如N为1,或者2等。
在另一些实施例中,N是第二设备指示的,例如第二设备可以在第一请求帧中指示N。
在本申请一些实施例中,一个测量实例可以对应一个测量设置,其中,该测量实例可以是基于该测量设置实施的测量。可选地,对应一个测量设置的测量实例的数量可以是一个或者也可以是多个,即基于一个测量设置可以实施一个测量实例,或者,也可以实施多个测量实例,换言之,一个测量设置可以对应一个测量实例,或者,也可以对应多个测量实例。
在本申请另一些实施例中,一个测量实例也可以对应多个测量设置,即可以基于多个测量设置实施一个测量实例,此情况下,可以认为该多个测量设置共享一个测量实例,本申请对于测量实例和测量设置的对应关系不作限定。
应理解,在本申请实施例中,所述至少一个测量实例可以对应一个测量设置,或者,也可以对应多个测量设置。即感知代理设备可以一次上报一个测量设置对应的测量实例的测量结果,或者,也可以上报多个测量设置对应的测量实例的测量结果。
在本申请一些实施例中,所述至少一个测量实例可以是基于触发(TB)的测量实例,或者,也可以是非基于触发(non-TB)的测量实例。
在本申请一些实施例中,所述方法200还包括:
所述第一设备接收感知信号接收设备发送的所述至少一个测量实例的测量结果。
应理解,本申请实施例并不限定上报测量结果的感知信号接收设备的具体数量以及感知信号接收设备向第一设备上报测量结果的具体方式。例如,感知信号接收设备上报测量结果可以是基于所述第 一设备的触发,或者,也可以是非触发的上报。又例如,感知信号接收设备上报测量结果可以是立即上报,或者,也可以是延迟上报等。
结合图9,从感知代理请求设备,感知代理响应设备和感知响应设备交互的角度,说明本申请实施例提供的一种成功的代理感知的整体流程图。如图9所示,可以包括如下至少部分步骤:
S231,感知代理请求设备向感知代理响应设备发送感知代理请求,该感知代理请求对应于前述的第一请求帧,用于请求感知代理响应设备代理建立感知过程,或者说,代理建立测量设置。
可选地,该感知代理请求中包括该感知代理请求设备的感知需求信息,具体内容参考前述实施例的相关描述,这里不再赘述。
S232,感知代理响应设备向感知代理请求设备发送感知代理响应,该感知代理响应对应于前述的第一响应帧,用于指示感知代理响应设备是否接受感知代理请求设备的感知代理请求。在该示例中,感知代理响应设备接受感知代理请求设备的感知代理请求。
可选地,该感知代理响应设备基于感知代理请求中携带的感知需求信息生成测量设置信息。
在一些实施例中,所述测量设置信息包括以下中的至少一项:
测量设置标识,感知测量的频次信息,感知响应设备的数量信息,感知响应设备的ID,感知信号接收设备向感知代理设备上报测量结果的方式,感知响应设备在感知测量中的角色信息。
进一步地,该感知代理响应设备可以向至少一个感知响应设备发送感知测量设置请求,该感知测量设置请求包括请求建立的测量设置。
应理解,本申请并不限定感知响应设备的具体数量,例如可以是一个,或者,也可以是多个。
作为示例,在S2331~S233N中,该感知代理响应设备可以向N个感知响应设备发送感知测量设置请求。
进一步地,该感知代理响应设备接收至少一个感知响应设备发送的感知测量设置响应,用于指示感知响应设备是否接受感知测量设置请求所请求建立的测量设置。
作为示例,在S2341~S234N中,该N个感知响应设备向感知代理响应设备发送感知测量设置响应,用于指示感知响应设备接受感知测量设置请求建立的测量设置。
S235,感知代理响应设备向感知代理请求设备发送感知代理上报帧,用于指示代理建立的测量设置的建立结果,例如是否建立成功,建立失败的原因等。
进一步地,在测量设置建立成功的情况下,感知代理响应设备和同意该测量设置的感知响应设备之间可以基于建立成功的测量设置执行后续的测量以及上报过程。
例如,感知代理设备可以接收感知响应设备发送的至少一个测量实例的至少一个感知信号接收设备的测量结果,进一步地,在S236中,感知代理设备向感知代理请求设备发送感知代理上报帧以上报该至少一个测量实例的至少一个感知信号接收设备的测量结果。
在本申请一些实施例中,可以将测量设置标识值空间(Measurement Setup ID space)分为第一测量设置标识值空间和第二测量设置标识值空间,分别用于标识因代理请求建立的测量设置对应的测量设置和非因代理请求建立的测量设置对应的测量设置,其中,所述第一测量设置标识值空间和所述第二测量设置标识值空间不同,有利于简化实现和快速查找。
例如,感知测量设置请求帧中携带的测量设置标识可以属于第一测量设置标识值空间。
作为示例而非限定,测量设置标识值空间包括0到31的整数值,第一测量设置标识值空间包括从16到31的整数值,第二测量设置标识值空间包括从0到15的整数值。
应理解,上述测量设置标识值空间,以及第一测量设置标识值空间和第二测量设置标识值空间的划分方式仅为示例,测量设置标识值空间也可以为其他取值范围,第一测量设置标识值空间和第二测量设置标识值空间也可以采用其他划分方式,只要保证第一测量设置标识值空间和第二测量设置标识值空间不重叠即可,本申请对此不作限定。
在一些实施例中,感知代理设备可以根据测量设置是否因感知代理请求建立,将待建立的测量设置信息(包括但不限于表中的信息)分为两个表进行记录,如下表1和表2所示。其中,表1用于记录因代理请求而建立的测量设置的信息。表2用于记录非因代理请求而建立的测量设置的信息。
表1
Figure PCTCN2022070826-appb-000001
表2
Figure PCTCN2022070826-appb-000002
如表1所示,感知代理请求设备1(一个关联的设备,例如设备ID为AID,其值为1)请求感知代理设备0(AID值为0)建立了两个测量设置,其中一个测量设置ID值为16,另一个的测量设置ID值为17,均为基于触发的测量流程(例如,感知流程类型值为0)。感知代理请求设备4(AID值为4)请求感知代理设备0(AID值为0)建立了一个测量设置,测量设置ID值为18,为非基于触发的测量流程(例如感知流程类型值为1)。三个测量设置的感知结果类型均为CSI(用类型值0表示)。
在测量设置16中,设备0和设备2既是感知信号发送设备又时感知信号接收设备,设备3仅为感知信号发送设备,设备5仅为感知信号接收设备,
在测量设置17中,设备0仅为感知信号发送设备,设备6仅为感知信号接收设备。
在测量设置18中,设备0仅为感知信号发送设备,设备5仅为感知信号接收设备。
如表2所示,感知代理设备0建立了两个非代理的测量设置,其中一个测量设置ID值为0,另一个的测量设置ID值为1,分别为基于触发的测量流程(例如,感知流程类型值为0)和非基于触发的测量流程(例如感知流程类型值为1)。两个测量设置的感知结果类型均为CSI(用类型值0表示)。
在测量设置0中,设备100既是感知信号发送设备又是感知信号接收设备,设备3仅为感知信号发送设备,设备5仅为感知信号接收设备,
在测量设置1中,设备0和设备7既是感知信号发送设备又是感知信号接收设备。
需要说明的是,本申请并不限定感知代理设备向感知代理请求设备上报测量结果的方式和/或频次。例如,上报方式可以包括但不限于立即上报(例如,在接收到测量结果的情况下立即上报,即接收测量结果和上报测量结果的时间间隔为SIFS)、延迟上报(例如接收测量结果和上报测量结果的时间间隔大于SIFS)。又例如,可以以测量实例为单位进行测量结果的上报,或者,以特定时间节点(例如,测量实例结束后,或者,测量实例开始前)为参考进行测量结果的上报,或者,也可以每接收到感知信号接收设备发送的测量结果即进行测量结果的上报等。
在本申请实施例中,所述测量结果的上报方式包括以下中的至少一种:
第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
在一些实施例中,感知代理设备向感知代理请求设备上报测量结果的方式可以是预定义的,例如预定义采用第一上报方式,或者,第二上报方式,或者第三上报方式进行测量结果的上报。
在另一些实施例中,感知代理设备向感知代理请求设备上报测量结果的方式可以是感知代理请求设备指示的。
例如,感知代理请求设备可以在第一请求帧中携带第一指示信息,第一指示信息用于指示感知代理设备上报测量结果的目标上报方式。
以下,结合具体实施例,说明感知代理设备向感知代理请求设备上报测量结果的方式,但本申请并不限于此。
实施例1:第一上报方式(或称,立即上报,immediate forwarding)
在本申请一些实施例中,S210可以包括:
在接收到至少一个感知信号接收设备的测量结果的情况下,所述第一设备向所述第二设备发送所述第一上报帧,所述第一上报帧包括所述至少一个感知信号接收设备的测量结果。
即,在每接收到感知信号接收设备的测量结果,第一设备即向第二设备上报接收到的测量结果。采用此方式进行测量结果的上报,感知代理设备可以及时刷新缓存,能够最大程度上节约缓存。
可选的,在每接收到感知信号接收设备的测量结果,第一设备即向第二设备上报接收到的测量结果,可以包括:
在接收到感知信号接收设备的测量结果的SIFS时间之后,第一设备向所述第二设备上报接收到的测量结果。即,接收测量结果和上报测量结果的时间间隔可以为SIFS。
在一些实施例中,所述至少一个感知信号接收设备的测量结果可以包括一个测量实例的部分测量结果,或者,也可以包括一个测量实例的全部测量结果。
在一些实施例中,所述至少一个感知信号接收设备的测量结果可以是在测量实例中接收到的,或者,也可以是在测量实例后接收到的。即,感知信号接收设备可以在测量实例中上报测量结果,或者,也可以在测量实例后上报测量结果。
在一些实施例中,所述至少一个感知信号接收设备的测量结果是在第一TXOP中接收到的,第一TXOP用于实施第二测量实例,所述至少一个感知信号接收设备的测量结果包括所述第二测量实例的测量结果和/或第一测量实例的测量结果,其中,所述第一测量实例是所述第二测量实例的上一个测量实例。即,在第二测量实例中接收到的测量结果可以包括该第二测量实例的测量结果(例如对于立即上报场景),或者,也可以包括上一个测量实例的测量结果(例如,对于延迟上报场景)。
在一些实施例中,第一测量实例是第二测量实例的上一个测量实例可以指:
所述第一测量实例和所述第二测量实例在时序上相邻,并且所述第一测量实例早于所述第二测量实例。
在一些实施例中,所述第一测量实例和所述第二测量实例对应同一测量设置。或者,也可以对应不同的测量设置。即时序上相邻的两个测量实例可以是基于同一测量设置实施的,或者,也可以是基于不同的测量设置实施的。
在一些实施例中,所述第一设备可以在第一TXOP或第二TXOP中发送所述第一上报帧,其中,所述第二TXOP是在所述第一TXOP后获得的TXOP。
换言之,所述第一设备可以在测量实例中或者测量实例后,发送所述第一上报帧。
以下,结合具体示例,说明该第一上报方式。
示例一:
在该示例一中,所述至少一个感知信号接收设备的测量结果包括一个测量实例(记为测量实例1)的部分测量结果,即一个测量实例的测量结果可以分多次触发上报。并且该测量实例1是基于触发的测量实例,该至少一个感知信号接收设备均支持立即上报。
如图10所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,STA2~STA5均支持立即上报,在经过轮询流程和测量流程之后,感知代理设备可以触发感知信号接收设备上报测量结果。
在该示例一中,感知代理设备一次触发部分感知信号接收设备上报测量结果。例如,由于用于上报测量结果的正交频分多址时频资源单元(Orthogonal Frequency Division Multiple Access Resource Unit,OFDMA RU)不足,或者,部分感知信号接收设备需要较长的处理时间才能生成测量结果。
例如,如图10所示,感知代理设备首先触发STA2,STA3和STA4上报测量结果,STA2,STA3和STA4支持立即上报,则在接收到感知代理设备的感知上报触发帧后,STA2,STA3和STA4立即向感知代理设备发送感知上报帧,例如,在接收到该感知上报触发帧的SIFS时间之后发送感知上报帧。
具体地,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,该感知上报帧R1_2、该感知上报帧R1_3和该感知上报帧R1_4分别包括STA2,STA3和STA4在该测量实例1中的测量结果。
感知代理设备接收到STA2,STA3和STA4发送的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、该感知上报帧R1_3和该感知上报帧R1_4所包括的测量结果。
进一步地,感知代理设备触发STA5上报测量结果,STA5支持立即上报,则在接收到感知代理设备的感知上报触发帧后,STA5立即向感知代理设备发送感知上报帧,即在接收到该感知上报触发帧的SIFS时间之后发送感知上报帧R1_5,其中,该感知上报帧1_5包括STA5在该测量实例1中的测量结果。感知代理设备接收到STA5的感知上报帧后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_5所包括的测量结果。
在该示例一中,代理上报帧是在测量实例1中上报的。即,感知代理设备是通过该测量实例1对应的TXOP发送的。
示例二:
在该示例二中,所述至少一个感知信号接收设备的测量结果包括一个测量实例(记为测量实例1)的部分测量结果,并且测量实例1是基于触发的测量实例,所述至少一个感知信号接收设备中存在不支持立即上报(或者说,支持延迟上报)的感知信号接收设备。
与示例一不同的是,在该测量实例1中,不支持立即上报的感知信号接收设备可以上报上一个测 量实例的测量结果。特别地,若测量实例1是第一个测量实例,不支持立即上报的感知信号接收设备可以不被触发,或者,该感知信号接收设备发送的感知上报帧中不包括测量结果,或者包括无效的结果数据。
结合图11和图12,以时序上相邻的两个测量实例,即测量实例1和测量实例2为例,说明具体的上报方式,其中,测量实例1是第一个测量实例。
如图11和图12所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,其中,STA2、STA3和STA5支持立即上报,STA4不支持立即上报。
如图11所示,在测量实例1中,感知代理设备触发STA2,STA3和STA4上报测量结果后,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,该感知上报帧R1_2、该感知上报帧R1_3包括测量实例1的测量结果。该感知上报帧R1_4不包括测量结果,或者,包括无效的结果数据。感知代理设备接收到STA2,STA3和STA4的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2和该感知上报帧R1_3所包括的测量结果。
进一步地,感知代理设备触发STA5上报测量结果,STA5支持立即上报,则STA5发送感知上报帧R1_5,其中,该感知上报帧1_5包括STA5在该测量实例1中的测量结果。感知代理设备接收到STA5的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_5所包括的测量结果。
如图12所示,在测量实例2(即测量实例1的下一个测量实例)中,感知代理设备首先触发STA2,STA3和STA4上报测量结果,进一步地,STA2发送感知上报帧R2_2,STA3发送感知上报帧R2_3,STA4发送感知上报帧R2_4,该感知上报帧R2_2、该感知上报帧R2_3包括测量实例2的测量结果。该感知上报帧R2_4包括测量实例1的测量结果。感知代理设备接收到STA2,STA3和STA4的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R2_2、该感知上报帧R2_3和感知上报帧2_4所包括的测量结果。
然后,感知代理设备触发STA5上报测量结果,STA5支持立即上报,则STA5发送感知上报帧R2_5,其中,该感知上报帧2_5包括STA5在该测量实例2中的测量结果。感知代理设备接收到STA5的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R2_5所包括的测量结果。
示例三:
在该示例三中,所述至少一个感知信号接收设备的测量结果包括测量实例(记为测量实例1)的部分测量结果,并且测量实例1是基于触发的测量实例,所述至少一个感知信号接收设备中存在不支持立即上报(或者说,支持延迟上报)的感知信号接收设备。
与示例二不同的是,由于不支持立即上报的感知信号接收设备需要较长的处理时间生成测量结果,因此,感知代理设备在测量实例后触发该感知信号接收设备上报测量结果。
如图13所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,其中,STA2、STA3和STA4支持立即上报,STA5不支持立即上报。
如图13所示,在测量实例1后,感知代理设备重新竞争信道获得TXOP,发送感知上报触发帧触发STA5上报测量结果,STA5发送感知上报帧R1_5,其中,该感知上报帧1_5包括STA5在该测量实例1中的测量结果。感知代理设备接收到STA5的感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_5所包括的测量结果。
示例四:
在该示例四中,所述至少一个感知信号接收设备的测量结果包括测量实例(记为测量实例1)的全部测量结果,并且测量实例1是基于触发的测量实例。
与示例一不同的是,感知代理设备一次触发所有感知信号接收设备上报测量结果。
如图14所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,均支持立即上报。
感知代理设备触发STA2~STA5上报测量结果后,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,STA5发送感知上报帧R1_5,均包括测量实例1的测量结果。感知代理设备接收到上述感知上报帧后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、感知上报帧R1_3、感知上报帧R1_4和感知上报帧R1_5所包括的测量结果。
示例五:
在该示例五中,所述至少一个感知信号接收设备的测量结果包括一个测量实例的全部测量结果,并且测量实例是基于触发的测量实例,所述至少一个感知信号接收设备中均不支持立即上报。
在该示例五中,在一个测量实例中,不支持立即上报的感知信号接收设备可以上报上一个测量实 例的测量结果。特别地,在第一个测量实例(记为测量实例1)中,不支持立即上报的感知信号接收设备可以不被触发,或者,该感知信号接收设备发送的感知上报帧中不包括测量结果,或者包括无效的结果数据。
结合图15和图16,以时序上相邻的两个测量实例,即测量实例1和测量实例2为例,说明具体的上报方式,其中,测量实例1是第一个测量实例。
如图15和图16所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,均不支持立即上报。
如图15所示,在测量实例1中,感知代理设备触发STA2~STA5上报测量结果,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,STA5发送感知上报帧R1_5,上述感知上报帧均不包括测量结果,或者,包括无效的结果数据。感知代理设备接收到上述感知上报帧后,可以不向感知代理设备发送代理上报帧。
如图16所示,在测量实例2(即测量实例1的下一个测量实例)中,感知代理设备触发STA2~STA5上报测量结果,进一步地,STA2发送感知上报帧R2_2,STA3发送感知上报帧R2_3,STA4发送感知上报帧R2_4,STA5发送感知上报帧R2_5。上述感知上报帧均包括测量实例1的测量结果。感知代理设备接收到上述感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R2_2、该感知上报帧R2_3、感知上报帧2_4和感知上报帧2_5所包括的测量结果。
在该示例五中,测量实例1的测量结果可以是通过测量实例2对应的TXOP(即TXOP2)上报的。
示例六:
在该示例六中,所述至少一个感知信号接收设备的测量结果包括测量实例的全部测量结果,并且测量实例是基于触发的测量实例,所述至少一个感知信号接收设备中均不支持立即上报。
与示例五不同的是,由于对于不支持立即上报的感知信号接收设备需要较长的处理时间生成测量结果,因此,感知代理设备在测量实例后触发该感知信号接收设备上报测量结果。
如图17所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,均不支持立即上报。
如图17所示,在测量实例1后,感知代理设备重新竞争信道获得TXOP,发送感知上报触发帧触发STA2~STA5上报测量结果,进一步地,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,STA5发送感知上报帧R1_5。上述感知上报帧均包括测量实例1的测量结果。感知代理设备接收到上述感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、该感知上报帧R1_3、感知上报帧1_4和感知上报帧1_5所包括的测量结果。
示例七:
在该示例七中,测量实例是基于非触发的测量实例,并且感知信号接收设备支持立即上报。
如图18所示,在非基于触发的测量实例中,感知代理请求设备是STA1,感知参与设备包括感知代理设备和感知信号接收设备STA2,STA2支持立即上报。感知信号接收设备STA2在测量流程完成后立即发送感知上报帧R1_2,该感知设备帧R1_2包括本测量实例的测量结果。感知代理设备接收到该感知上报帧后,可以向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2所包括的测量结果。
示例八:
在该示例八中,测量实例是基于非触发的测量实例,并且感知信号接收设备不支持立即上报。
在非基于触发的测量实例中,感知代理请求设备是STA1,感知参与设备包括感知代理设备和感知信号接收设备STA2,STA2不支持立即上报。
以时序上相邻的两个测量实例,即测量实例1和测量实例2为例,说明具体的上报方式,其中,测量实例1是第一个测量实例。
如图19所示,在测量实例1中,感知信号接收设备STA2在测量流程完成后发送感知上报帧R1_2,该感知设备帧R1_2不包括测量结果,或者包括无效的结果数据。感知代理设备接收到该感知上报帧R1_2后,不向感知代理设备发送代理上报帧。
在测量实例2中,感知信号接收设备STA2在测量流程完成后发送感知上报帧R2_2,该感知设备帧R2_2包括测量实例1的测量结果。感知代理设备接收到该感知上报帧R2_2后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R2_2所包括的测量结果。
示例九:
在该示例九中,测量实例是基于非触发的测量实例,并且感知信号接收设备不支持立即上报。
与示例八不同的是,由于不支持立即上报的感知信号接收设备需要较长的处理时间生成测量结果,因此,感知信号接收设备在测量实例后上报测量结果。
在非基于触发的测量实例中,感知代理请求设备是STA1,感知参与设备包括感知代理设备和感知信号接收设备STA2,STA2不支持立即上报。
如图20所示,感知信号接收设备STA2在测量流程完成后,重新竞争信道获得TXOP2,然后使用该TXOP2发送感知上报帧R1_2,该感知设备帧R1_包括本测量实例的测量结果。感知代理设备接收到该感知上报帧R1_2后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2所包括的测量结果。
实施例2:第二上报方式(或称,测量实例后上报,即forwarding after each instance)
在本申请另一些实施例中,S210可以包括:
在每个测量实例后,所述第一设备向所述第二设备发送第一上报帧,其中,所述第一上报帧包括在所述每个测量实例中或下一个测量实例前所接收到的测量结果。
也就是说,在本申请实施例中,感知代理设备可以以测量实例的结束或测量实例的开始作为节点,进行测量结果的上报。采用此上报方式能够一定程度上节省感知代理设备的缓存,又能使感知代理请求设备更多地处于空闲或休眠状态以降低设备的功耗。
在该第二上报方式中,感知代理设备可以一次上报在一个测量实例中接收到的测量结果(或者说,在一个测量实例结束前所接收到的测量结果),或者,下一个测量实例开始前所接收到的测量结果。
在一些实施例中,所述感知代理设备在一个测量实例中接收到的测量结果可以包括该测量实例的测量结果和/或上一个测量实例的测量结果。
例如,对于立即上报场景,感知代理设备在一个测量实例中接收到的测量结果可以包括该测量实例的测量结果。
又例如,对于延迟上报场景,感知代理设备在一个测量实例中接收到的测量结果可以包括上一个测量实例的测量结果。
在一些实施例中,所述感知代理设备在下一个测量实例前接收到的测量结果可以包括本测量实例的测量结果和/或上一个测量实例的测量结果。
例如,对于立即上报场景,感知代理设备在下一个测量实例前接收到的测量结果可以包括该测量实例的测量结果。
又例如,对于延迟上报场景,感知代理设备在一个测量实例中接收到的测量结果可以包括上一个测量实例的测量结果,或者,也可以包括本测量实例的测量结果。
应理解,在本申请实施例中,上一个测量实例和下一个测量实例是相对于本测量实例(或者说,当前测量实例)而言的,上一个测量实例、本测量实例和下一个测量实例可以指时序上相邻的三个测量实例,其可以对应相同的测量设置,或者,也可以对应不同的测量设置。
在一些实施例中,所述至少一个测量实例包括第四测量实例,所述第四测量实例的下一个测量实例是第五测量实例,第四测量实例的上一个测量实例是第三测量实例,其中,在所述第四测量实例中接收到的测量结果包括第四测量实例的测量结果和/或所述第三测量实例的测量结果,在所述第五测量实例前所接收到的测量结果包括第四测量实例的测量结果和/或第三测量实例的测量结果。
在一些实施例中,所述在每个测量实例后,所述第一设备向所述第二设备发送第一上报帧,包括:
基于所述每个测量实例对应的TXOP,向所述第二设备发送所述第一上报帧;或者
基于在所述每个测量实例后获得的TXOP,向所述第二设备发送所述第一上报帧。
例如,所述至少一个测量实例包括第四测量实例,所述第四测量实例是基于TXOP4测量的,则在第四测量实例中接收到的测量结果可以是通过TXOP4上报的,或者,也可以是通过TXOP5上报的,其中,TXOP5是在TXOP4之后重新竞争信道获得的TXOP。
以下,结合具体示例,说明该第二上报方式。
示例十:
在该示例十中,该测量实例是基于触发的测量实例,感知代理设备使用测量实例的TXOP上报测量结果。
如图21所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,在经过轮询流程和测量流程之后,感知代理设备可以分批触发感知信号接收设备上报测量结果。
在该示例十中,感知代理设备一次触发部分感知信号接收设备上报测量结果。例如,由于用于上报测量结果的OFDMA RU不足,或者,部分感知信号接收设备需要较长的处理时间才能生成测量结果。
例如,如图21所示,感知代理设备首先触发STA2,STA3和STA4上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA2,STA3和STA4向感知代理设备发送感知上报帧。
具体地,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4, 该感知上报帧R1_2、该感知上报帧R1_3和该感知上报帧R1_4分别包括STA2,STA3和STA4在本测量实例中的测量结果,或者,也可以包括上一个测量实例的测量结果。
进一步地,感知代理设备触发STA5上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA5向感知代理设备发送感知上报帧R1_5,其中,该感知上报帧1_5包括STA5在本测量实例中的测量结果,或者,也可以包括上一个测量实例的测量结果。
感知代理设备接收到上述感知上报帧后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、该感知上报帧R1_3、该感知上报帧R1_4、和感知上报帧R1_5所包括的测量结果。
从上述上报过程可以看出,与示例一相比,示例十少了一次感知上报帧的发送。
示例十一:
在该示例十一中,该测量实例是基于触发的测量实例,感知代理设备使用在测量实例后获得的TXOP上报测量结果。
如图22所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,在经过轮询流程和测量流程之后,感知代理设备可以分批触发感知信号接收设备上报测量结果。
在该示例十一中,对于不支持立即上报的感知信号接收设备,感知代理设备在测量实例后再出发其进行测量上报。
例如,如图22所示,感知代理设备首先触发STA2,STA3和STA4上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA2,STA3和STA4向感知代理设备发送感知上报帧。
具体地,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,该感知上报帧R1_2、该感知上报帧R1_3和该感知上报帧R1_4分别包括STA2,STA3和STA4在本测量实例中的测量结果,或者,也可以包括上一个测量实例的测量结果。
进一步地,在测量实例后,感知代理设备重新竞争信道获得TXOP2,基于TXOP2发送感知上报触发帧触发STA5上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA5向感知代理设备发送感知上报帧R1_5,其中,该感知上报帧1_5包括STA5在本测量实例中的测量结果。
感知代理设备接收到上述感知上报帧后,向感知代理设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、该感知上报帧R1_3、该感知上报帧R1_4、和感知上报帧R1_5所包括的测量结果。
从上述上报过程可以看出,与示例三相比,示例十一少了一次感知上报帧的发送。
实施例3:第三上报方式(以特定数量的测量实例为单位的上报,即instance specific forwarding)
在本申请又一些实施例中,所述S210包括:
在接收到N个测量实例中的每个测量实例的全部测量结果的情况下,所述第一设备向所述第二设备发送第一上报帧,所述第一上报帧包括所述N个测量实例中的每个测量实例的全部测量结果,其中,所述N是正整数。
即,感知代理设备可以以一个或多个测量实例为单位进行测量结果的上报。
具体地,在该实施例3中,感知代理设备在接收到感知信号接收设备的测量结果后,可以缓存测量结果,在收集到N个测量实例的全部测量结果后,再进行测量结果的上报。由于感知代理请求设备对于测量结果的处理是以测量实例为单位的,采用此上报方式,有利于降低感知代理请求设备的处理复杂度。
在一些实施例中,所述N个可以是一个,或者,也可以是多个。
即感知代理设备可以一次上报一个测量实例的全部测量结果,或者,也可以是一次上报多个测量实例的全部测量结果。
可选地,当N为1时,感知代理设备可以上报本测量实例的全部测量结果,或者,也可以上报上一个测量实例的全部测量结果。
在一些实施例中,所述N是预定义的,或者是所述第二设备指示的。
例如,所述N是所述第二设备通过第一请求帧指示的,所述第一请求帧用于请求所述第一设备代理建立测量设置。
在一些实施例中,所述N个测量实例中的最后一个测量实例为第六测量实例,所述第六测量实例的测量结果是基于第三TXOP接收的,所述第一上报帧是基于所述第三TXOP或第四TXOP上报的,其中,所述第四TXOP是在所述第三TXOP之后获得的TXOP。
示例十二:
在该示例十二中,该测量实例是基于触发的测量实例,N=1。
结合图23和图24,以时序上相邻的两个测量实例,即测量实例1和测量实例2为例,说明具体的上报方式,其中,测量实例1是第一个测量实例。
如图23和图24所示,感知代理请求设备是STA1,感知信号接收设备包括STA2~STA5,其中, STA4不支持立即上报,其他STA均支持立即上报,在经过轮询流程和测量流程之后,感知代理设备可以分批触发感知信号接收设备上报测量结果。
如图23所示,在测量实例1中,感知代理设备首先触发STA2,STA3和STA4上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA2,STA3和STA4向感知代理设备发送感知上报帧。
具体地,STA2发送感知上报帧R1_2,STA3发送感知上报帧R1_3,STA4发送感知上报帧R1_4,该感知上报帧R1_2和该感知上报帧R1_3包括测量实例1的测量结果,感知上报帧R1_4不包括测量结果,或者包括无效的测量结果。
然后,感知代理设备触发STA5上报测量结果,STA5向感知代理设备发送感知上报帧R1_5包括测量实例1的测量结果。
如图24所示,在测量实例2中,感知代理设备首先触发STA2,STA3和STA4上报测量结果,在接收到感知代理设备的感知上报触发帧后,STA2,STA3和STA4向感知代理设备发送感知上报帧。
具体地,STA2发送感知上报帧R2_2,STA3发送感知上报帧R2_3,STA4发送感知上报帧R2_4,该感知上报帧R2_2和该感知上报帧R1_3包括测量实例2的测量结果,感知上报帧R2_4包括测量实例1的测量结果。
然后,感知代理设备触发STA5上报测量结果,STA5向感知代理设备发送感知上报帧R2_5包括测量实例2的测量结果。
至此,感知代理设备获取到测量实例1的全部测量结果,则可以向感知代理请求设备发送代理上报帧,该代理上报帧包括感知上报帧R1_2、该感知上报帧R1_3、该感知上报帧R2_4和感知上报帧R1_5所包括的测量结果,即测量实例1的全部测量结果。
在本申请一些实施例中,代理上报帧中还可以包括第二指示信息,所述第二指示信息用于指示该代理上报帧是否为测量实例的最后一个上报帧。
在一些实施例中,对于前述第一上报方式和第二上报方式,一个测量实例的测量结果可能是通过多个代理上报帧发送的。此情况下,需要指示该代理上报帧是否为该测量实例的最后一个代理上报帧。
例如,感知代理请求设备(例如STA1)要求感知代理设备(例如AP)建立的测量设置M1对应的基于触发的测量实例A中有四个感知信号接收设备(STA2、STA3、STA4和STA5),感知代理设备发送的第一个代理上报帧中包括STA2、STA3和STA4的测量结果,即不包括测量实例A的全部测量结果,则在该代理上报帧中指示该代理上报帧不是测量实例A的最后一个代理上报帧。进一步地,在感知代理设备发送的第二个代理上报帧中包括STA5的测量结果,此情况下,可以指示该代理上报帧是测量实例A的最后一个代理上报帧。
又例如,测量实例中的感知信号接收设备数量有变化。感知代理请求设备(例如STA1)要求感知代理设备(例如AP)建立的测量设置M2对应的基于触发的测量实例B中有两个感知信号接收设备(STA2和STA3),感知代理设备发送的第一个代理上报帧中包括STA2和STA3的测量结果,此情况下,可以指示该代理设备帧是测量实例B的最后一个代理上报帧。测量设置M2对应的测量实例C中有三个感知信号接收设备(STA3、STA4和STA5),则感知代理设备发送的第一个代理上报帧中包括STA3和STA4的测量结果,此情况下,需要指示该代理上报帧不是测量实例C的最后一个代理上报帧,进一步地,感知代理设备发送的第二个代理上报帧中包括STA5的测量结果,此情况下,可以指示该代理上报帧是测量实例C的最后一个代理上报帧。
再例如,实际参与测量的感知信号接收设备数量与感知代理请求设备要求或建议的数量不一致。比如,感知代理请求设备(例如STA1)要求两个感知信号接收设备,感知代理设备(例如AP)建立的测量设置M3对应的基于触发的测量实例D中有四个感知信号接收设备(STA2、STA3、STA4和STA5),感知代理设备发送的第一个代理上报帧中包括STA2和STA3的测量结果,此情况下,指示该代理上报帧不是测量实例D的最后一个代理上报帧,进一步地,感知代理设备发送的第二个代理上报帧中包括STA4和STA5的测量结果,此情况下,可以指示该代理上报帧是测量实例D的最后一个代理上报帧。
可选地,在一些实施例中,对于所述第一上报方式或所述第二上报方式,若感知代理请求设备知道每个测量实例的测量结果数量且每个测量实例的测量结果数量不变,则感知代理设备可以不在代理上报帧中可以指示该代理上报帧是否是测量实例的最后一个代理上报帧。
例如,感知代理请求设备(例如STA1)要求感知代理设备(例如AP)建立的测量设置M4对应的基于触发的测量实例E中总是有两个感知信号接收设备(STA2和STA3),感知代理设备向感知代理请求设备上报的STA2和STA3的测量实例E的测量结果后,感知代理请求设备即可确定接收到测量实例E的全部测量结果。
又例如,感知代理请求设备(例如STA1)要求感知代理设备(例如AP)建立的测量设置M5对 应的非基于触发的测量实例F中只有一个感知信号接收设备(STA2),感知代理设备向感知代理请求设备上报发送STA2的测量结果后,感知代理请求设备即可确定接收到测量实例F的全部测量结果。
在本申请一些实施例中,所述方法200还包括:
若所述第二设备为第一测量设置的感知信号接收设备,所述第一设备根据第一测量实例是否被所述第一测量设置之外的其他测量设置共享,确定是否触发所述第二设备上报测量结果。
例如,若所述第一测量实例不被所述第一测量设置之外的其他测量设置共享,确定不触发所述第二设备上报测量结果,即第一测量实例的测量结果不需要上报给其他感知代理请求设备,因此,可以不触发第二设备上报测量结果。
又例如,若所述第一测量实例被所述第一测量设置之外的其他测量设置共享,但是所述第二设备的测量结果仅被所述第二设备使用的情况下,确定不触发所述第二设备上报测量结果。
换言之,若感知代理请求设备同时作为感知信号接收设备参与由于该感知代理请求设备发送的感知代理请求所建立的一个或多个测量设置,且该感知代理请求设备的测量结果不被所述的一个或多个感知测量设置以外的任一测量设置所使用,则在所述的一个或多个测量设置的测量实例的测量上报阶段或之后,感知代理设备不请求该感知代理请求设备上报相应测量实例的测量结果。
结合图25所示的具体示例说明。
如图25所示,感知代理请求设备(例如STA1)请求感知代理设备(例如AP)建立了测量设置M6,基于触发的测量实例G是独立的,非共享的,仅被测量设置M6所使用。在该测量实例G中,STA1也作为感知信号接收设备参与下行测量,此情况下,在上报阶段,为了减少网络负载,感知代理设备可以不请求该STA1上报测量实例G的测量结果,例如,在感知上报触发帧中不指示触发STA1。
又例如,感知发起设备(例如AP)建立了测量设置M7,感知代理请求设备(例如STA1)请求感知代理设备(例如AP)建立了测量设置M8,其中,对于测量设置M7,需要STA2和STA3上报测量结果,对于测量设置M8,需要STA1和STA2和STA3上报测量结果。基于触发的测量实例H是共享的,被测量设置M7和测量设置M8所使用。在该测量实例H中,STA1也作为感知信号接收设备参与下行测量。因为仅测量设置M8需要STA1的测量结果,因此,在上报阶段,为了减少网络负载,感知代理设备可以不请求该STA1上报测量实例H的测量结果,例如,在感知上报触发帧中不指示触发STA1。
以下,结合具体实施例,说明第一上报帧的帧结构设计。
在本申请一些实施例中,第一上报帧可以为行动(Action)帧或无确认行动帧(Action No Ack)。即可以通过行动帧实现上报感知代理上报信息(包括前述的测量结果信息)的功能。
在一些实施例中,可以利用已有的行动帧类型(例如,公共行动帧类型)承载感知代理上报信息,或者,也可以新增行动帧类型(例如保护感知行动帧类型(Protected Sensing Action Frames))用于承载感知代理上报信息。例如可以定义一种感知行动帧,该感知行动帧用于携带感知代理上报信息。
图26示出了本申请提供的一种通过公共行动帧实现的第一上报帧的示意性格式图。应理解,图26所示帧格式中的每个字段的位置和大小仅为示例,其可以根据实际需求或承载的内容灵活调整,本申请并不限于此。
如图26所示,第一上报帧的动作域(Action field)字段包括如下字段:
动作类型(Category)字段,例如取值为4指示该行动帧为公共行动帧(Public Action Frames);
公共行动子类(Public Action Field)字段,例如,取值为预留值(46~255中的任意值,以55为例说明)用于指示该公共行动帧为感知代理上报帧(SBP Report frame)。
在一些实施例中,所述第一上报帧包括至少一个测量结果字段,其中,每个测量结果字段用于承载一个感知信号接收设备的测量结果。
作为示例而非限定,如图26所示,所述测量结果字段包括以下至少一个字段:
测量设置标识字段(Measurement Setup ID),用于指示测量结果对应的测量设置的标识;
测量实例标识字段(Measurement Instance ID),用于指示测量结果对应的测量实例的标识;
感知信号发送设备标识字段,用于指示测量结果对应的感知信号发送设备的标识;
感知信号接收设备标识字段,用于指示测量结果对应的感知信号接收设备的标识;
测量时间戳字段,用于指示测量结果对应的的测量时间信息;
结果数据长度字段,用于指示测量结果数据的长度,例如单位为字节;
结果数据字段,用于指示感性信号接收设备在一个测量实例中的测量结果数据。
在一些实施例中,测量设置标识字段所指示的测量设置标识属于第一测量设置标识值空间。
在一些实施例中,所述测量结果数据例如可以包括以下中的至少一种:
CSI数据,一般指信道频率响应(Channel Frequency Response,CFR);
波束信噪比数据(Beam SNR);
截断的的信道冲激响应(Truncated Channel Impulse Response,TCIR)数据;
仅信道状态信息中的幅度信息(CSI Amplitude only);
仅信道状态信息中的相位信息(CSI Phase only);
信号到达角度信息(Angle of Arrival,AoA);
信号出发角度信息(Angle of Departure,AoD)。
在一些实施例中,所述测量结果字段可以包括测量结果描述信息字段和结果数据字段,该测量结果描述信息字段可以包括上述各个字段,可选地,该测量结果描述信息字段可以是元素字段,例如,可以采用元素标识扩展字段的预留值(例如111~255中的任意值,以111为例)指示该元素是新的扩展元素,用于指示测量结果的描述信息,或者,也可以是非元素字段,本申请对此不作限定。
在一些实施例中,所述测量结果字段还包括控制域字段,所述控制域字段包括以下至少一个字段:
测量实例标识是否存在字段,用于指示所述测量结果字段是否存在测量实例标识字段;
测量设置标识是否存在字段,用于指示所述测量结果字段是否存在测量设置标识字段;
感知信号发送设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号发送设备标识;
感知信号接收设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号接收设备标识;
测量时间戳是否存在字段,用于指示所述测量结果字段是否存在测量时间戳字段。
可选地,该控制域字段或称描述信息控制域字段。
在一些实施例中,所述第一上报帧也可以用于测量设置阶段的建立结果的上报,因此,该第一上报帧还可以包括测量设置上报信息,例如测量设置是否建立成功,建立失败的原因等。
在一些实施例中,如图26所示,第一上报帧还包括测量设置上报字段,用于承载测量设置上报信息。例如代理建立的测量设置的部分或全部信息,用于辅助感知代理请求设备处理测量结果数据。
在一些实施例中,如图26所示,所述第一上报帧的动作域字段还可以包控制域字段,用于指示后续的一个或多个字段是否存在,例如测量设置上报字段和/或测量结果字段是否存在。例如,该控制域字段可以包括:
测量设置上报是否存在字段,用于指示该第一上报帧是否包括测量设置上报字段;
测量结果是否存在字段,用于指示该第一上报帧是否包括测量结果字段。
在一种实施例中,测量设置上报是否存在字段设置为1表示是,否则设置为0。
在另一种实施例中,测量设置上报是否存在字段设置为0表示是,否则设置为1。
在一种实施例中,测量结果是否存在字段设置为1表示是,否则设置为0。
在另一种实施例中,测量结果是否存在字段设置为0表示是,否则设置为1。
在一些实施例中,第一上报帧还包括:状态码(Status Code)字段,用于指示代理建立的测量设置的建立结果和/或建立失败的原因。
作为示例而非限定,设置为0表示成功(即未发生错误),设置为131表示因无足够数量的感知参与设备导致建立测量设置失败,设置为132表示因不能立即上报感知结果导致建立测量设置失败,设置为133表示测量过程中参与测量的总站点数目变少导致不能满足最小的感知响应设备数量要求,设置为134表示测量过程中感知响应设备操作模式(Operating Mode,OM)变化导致不能再维持所建立的测量设置,设置为135表示基础服务集(Basic Service Set,BSS)负载较高需要停止感知测量。
在一些场景中,STA出现电量不足但想延长工作时,会进行操作模式变化(降低带宽和/或减少能支持的发送空域流数目和/或减少能支持的接收空域流数目)来达到延长工作时长的效果。操作模式变化后可能会对感知过程产生影响,例如带宽越小测量结果的量化误差越大,空域流数目越小测量结果的CSI矩阵维度降低,导致感知的准确性降低。感知响应设备(例如non-AP STA)在其自身操作模式发生变化时,会给感知发起设备(例如AP)发送操作模式通知(Operating Mode Notification,OMN)(可以是OMN帧,也可以是携带OMN元素的其他帧)或者操作模式指示(Operating Mode Indication,OMI)(可以是操作模式控制子字段(OM Control subfield)和/或EHT操作模式控制子字段(EHT OM Control subfield)。
应理解,状态码字段的取值和含义的对应关系仅为示例,只要保证每一种含义对应唯一的状态码即可。
图27是本申请实施例提供的一种通过新定义的感知行动帧实现的第一上报帧的示意性格式图。应理解,图27所示帧格式中的每个字段的位置和大小仅为示例,其可以根据实际需求或承载的内容灵活调整,本申请并不限于此。
如图27所示,第一上报帧的动作域(Action field)字段包括如下字段:
动作类型(Category)字段,例如取值为第三值指示该行动帧为新定义的保护感知行动帧(Protected Sensing Action Frames),其中,第三值为预留值,例如38;
感知动作子类(Sensing Action Field)字段,例如,取值为第四值(0~255中的任意值,以5为例说明)用于指示该感知行动帧为感知代理上报帧(SBP Report frame)。
应理解,图27所示帧格式中的各个字段的含义和图26所示帧格式中的对应字段的含义相同,详细描述参考图26的相关说明,这里不再赘述。
在一些实施例中,在每个测量结果描述信息字段中都包含前述的各个描述信息字段,即描述信息控制域中的相应比特都指示存在。此情况下,可以根据每个测量结果描述信息字段中所指示的描述信息确定测量结果的描述信息。
作为另一种实施例,可以采用元素继承方法确定测量结果的描述信息。例如,若第一个测量结果描述信息元素中的各个描述信息字段均存在,在后续的测量结果描述信息元素中,若某个描述字段不存在,则该描述信息字段的取值可以使用前一个元素的相应字段的取值,若该描述信息字段存在,则使用本测量结果描述信息元素中的该描述信息字段的取值。
例如,第一个测量结果字段中的测量结果描述信息元素中测量设置标识为1,测量实例标识为5,感知信号发送设备标识为3,感知信号接收设备标识为9,测量时间戳为3000,若第二个测量结果字段中的测量结果描述信息元素中不包含测量设置标识字段,则其测量设置标识也为1,若第三个测量结果字段中的测量结果描述信息元素中包含测量设置标识4,则其测量设置标识为4,若第四个测量结果字段中的测量结果描述信息元素中不包含测量设置标识,则其测量设置标识也为4。
在本申请实施例中,第一上报帧还可以指示是否为测量实例的最后一个代理上报帧,即该第一上报帧可以包括第二指示信息。在一些实施例中,携带第二指示信息的第一上报帧可以通过已有的行动帧类型(例如,公共行动帧类型)实现,或者,也可以新增行动帧类型(例如保护感知行动帧类型(Protected Sensing Action Frames))实现。
图28和图29分别是通过公共行动帧和新定义的感知行动帧实现的携带第二指示信息的第一上报帧的示意性格式图。应理解,图28和图29所示帧格式中的每个字段的位置和大小仅为示例,其可以根据实际需求或承载的内容灵活调整,本申请并不限于此。
例如,如图28和图29所示,测量结果字段还包括测量实例最后一个上报(Last Report)字段,用于指示该测量结果是否是相应测量实例的最后一个测量结果,即该帧是否是该测量实例的最后一个代理上报帧。在一种实施例中,该字段设置为1表示是,否则设置为0。在另一种实施例中,该字段设置为0表示是,否则设置为1。应理解,图28和图29所示帧格式中的其他各个字段的含义和图26和图27所示帧格式中的对应字段的相关说明,这里不再赘述。
综上所述,本申请实施例提供了多种测量结果的上报方式,例如,在接收到测量结果的情况下立即上报测量结果,或者,在测量实例后进行测量结果的上报,或者,以一定数量的测量实例为单位进行测量结果的上报等,完善了和优化了代理上报测量结果的流程,并且基于本申请实施例的上报方式上报测量结果,有利于减少网络负载,降低处理复杂度,减少能耗。
上文结合图8至图29,详细描述了本申请的方法实施例,下文结合图30至图34,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图30是根据本申请实施例的感知设备的示意性框图。图30的感知设备1000包括:
通信单元1010,用于向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述感知设备代理所述第二设备建立的。
在一些实施例中,所述通信单元1010还用于:
在接收到至少一个感知信号接收设备的测量结果的情况下,向所述第二设备发送所述第一上报帧,所述第一上报帧包括所述至少一个感知信号接收设备的测量结果。
在一些实施例中,所述通信单元1010还用于:
基于第一传输机会TXOP或第二TXOP,发送所述第一上报帧,其中,所述至少一个感知信号接收设备的测量结果是基于所述第一TXOP接收的,所述第二TXOP是在所述第一TXOP后获得的TXOP。
在一些实施例中,所述第一TXOP用于第二测量实例的测量,所述至少一个感知信号接收设备的测量结果包括所述第二测量实例的测量结果和/或第一测量实例的测量结果,其中,所述第一测量实例是所述第二测量实例的上一个测量实例。
在一些实施例中,所述通信单元1010还用于:
在每个测量实例后,向所述第二设备发送第一上报帧,其中,所述第一上报帧包括在所述每个测量实例中或下一个测量实例前所接收到的测量结果。
在一些实施例中,所述通信单元1010还用于:
基于所述每个测量实例对应的TXOP,向所述第二设备发送所述第一上报帧;或者
基于在所述每个测量实例后获得的TXOP,向所述第二设备发送所述第一上报帧。
在一些实施例中,所述至少一个测量实例包括第四测量实例,所述第四测量实例的下一个测量实例是第五测量实例,其中,在所述第四测量实例中接收到的测量结果或在所述第五测量实例前所接收到的测量结果包括第四测量实例的测量结果和/或第三测量实例的测量结果,其中,所述第三测量实例是所述第四测量实例的上一个测量实例。
在一些实施例中,所述通信单元1010还用于:
在接收到N个测量实例中的每个测量实例的全部测量结果的情况下,向所述第二设备发送第一上报帧,所述第一上报帧包括所述N个测量实例中的每个测量实例的全部测量结果,其中,所述N是正整数。
在一些实施例中,所述N是预定义的,或者是所述第二设备指示的。
在一些实施例中,所述N是所述第二设备通过第一请求帧指示的,所述第一请求帧用于请求所述感知设备代理建立所述至少一个测量设置。
在一些实施例中,所述N个测量实例中的最后一个测量实例为第六测量实例,所述第六测量实例的测量结果是基于第三TXOP接收的,所述第一上报帧是基于所述第三TXOP或第四TXOP上报的,其中,所述第四TXOP是在所述第三TXOP之后获得的TXOP。
在一些实施例中,所述通信单元1010还用于:
接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示测量结果的上报方式。
在一些实施例中,所述测量结果的上报方式包括以下中的至少一种:
第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
在一些实施例中,所述第一指示信息通过第一请求帧发送,所述第一请求帧用于请求所述感知设备代理建立所述至少一个测量设置。
在一些实施例中,所述第一上报帧包括目标测量实例的测量结果,所述第一上报帧还包括第二指示信息,所述第二指示信息用于指示所述第一上报帧是否为携带所述目标测量实例的测量结果的最后一个上报帧。
在一些实施例中,所述第一上报帧为行动帧。
在一些实施例中,所述第一上报帧为公共行动帧。
在一些实施例中,所述第一上报帧包括动作类型字段和公共动作子类字段,所述动作类型字段用于指示行动帧为公共行动帧,所述公共动作子类字段的取值为预留值用于指示所述公共行动帧用于代理上报感知测量结果。
在一些实施例中,所述第一上报帧为感知行动帧。
在一些实施例中,所述第一上报帧包括动作类型字段和感知行动子类字段,所述动作类型字段的取值为预留值用于指示行动帧为感知行动帧,所述感知行动子类字段用于指示所述感知行动帧用于代理上报感知测量结果。
在一些实施例中,所述第一上报帧包括至少一个测量结果字段,其中,每个测量结果字段用于承载一个感知信号接收设备的测量结果。
在一些实施例中,所述测量结果字段包括以下至少一个字段:
测量实例标识字段,用于指示测量实例的标识;
测量设置标识字段,用于指示测量设置的标识;
感知信号发送设备标识字段,用于指示感知信号发送设备的标识;
感知信号接收设备标识字段,用于指示感知信号接收设备的标识;
测量时间戳字段,用于指示执行测量的时间信息;
结果数据长度字段,用于指示测量结果数据的长度;
结果数据字段,用于指示测量结果数据。
在一些实施例中,所述测量结果字段还包括控制域字段,所述控制域字段包括以下至少一个字段:
测量实例标识是否存在字段,用于指示所述测量结果字段是否存在测量实例标识字段;
测量设置标识是否存在字段,用于指示所述测量结果字段是否存在测量设置标识字段;
感知信号发送设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号发送设备标识;
感知信号接收设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号接收设备标识;
测量时间戳是否存在字段,用于指示所述测量结果字段是否存在测量时间戳字段。
在一些实施例中,所述感知设备为接入点设备,所述第二设备为站点设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的感知设备1000可对应于本申请方法实施例中的第一设备或感知代理设备,并且感知设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图8至图29所示方法200中第一设备或感知代理设备的相应流程,为了简洁,在此不再赘述。
图31是根据本申请实施例的感知设备的示意性框图。图31的感知设备1100包括:
通信单元1110,用于接收第一设备发送的第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述感知设备建立的。
在一些实施例中,所述通信单元1110还用于:
接收所述第一设备在接收到至少一个感知信号接收设备的测量结果的情况下,发送的所述第一上报帧,所述第一上报帧包括所述至少一个感知信号接收设备的测量结果。
在一些实施例中,所述第一上报帧是基于第一传输机会TXOP或第二TXOP发送的,其中,所述至少一个感知信号接收设备的测量结果是基于所述第一TXOP接收的,所述第二TXOP是在所述第一TXOP后获得的TXOP。
在一些实施例中,所述第一TXOP用于第二测量实例的测量,所述至少一个感知信号接收设备的测量结果包括所述第二测量实例的测量结果和/或第一测量实例的测量结果,其中,所述第一测量实例是所述第二测量实例的上一个测量实例。
在一些实施例中,所述通信单元1110还用于:
接收所述第一设备在每个测量实例后,发送的第一上报帧,其中,所述第一上报帧包括在所述每个测量实例中或下一个测量实例前所接收到的测量结果。
在一些实施例中,所述第一上报帧是基于所述每个测量实例对应的TXOP发送的;或者
所述第一上报帧是基于在所述每个测量实例后获得的TXOP发送的。
在一些实施例中,所述至少一个测量实例包括第四测量实例,所述第四测量实例的下一个测量实例是第五测量实例,其中,在所述第四测量实例中接收到的测量结果或在所述第五测量实例前所接收到的测量结果包括第四测量实例的测量结果和/或第三测量实例的测量结果,其中,所述第三测量实例是所述第四测量实例的上一个测量实例。
在一些实施例中,所述通信单元1110还用于:
接收所述第一设备在接收到N个测量实例中的每个测量实例的全部测量结果的情况下,发送的第一上报帧,所述第一上报帧包括所述N个测量实例中的每个测量实例的全部测量结果,其中,所述N是正整数。
在一些实施例中,所述N是预定义的,或者是所述感知设备指示的。
在一些实施例中,所述N是所述感知设备通过第一请求帧指示的,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
在一些实施例中,所述N个测量实例中的最后一个测量实例为第六测量实例,所述第六测量实例的测量结果是基于第三TXOP接收的,所述第一上报帧是基于所述第三TXOP或第四TXOP上报的,其中,所述第四TXOP是在所述第三TXOP之后获得的TXOP。
在一些实施例中,所述通信单元1110还用于:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示测量结果的上报方式。
在一些实施例中,所述测量结果的上报方式包括以下中的至少一种:
第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
在一些实施例中,所述第一指示信息通过第一请求帧发送,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
在一些实施例中,所述第一上报帧包括目标测量实例的测量结果,所述第一上报帧还包括第二指示信息,所述第二指示信息用于指示所述第一上报帧是否为携带所述目标测量实例的测量结果的最后一个上报帧。
在一些实施例中,所述第一上报帧为行动帧。
在一些实施例中,所述第一上报帧为公共行动帧。
在一些实施例中,所述第一上报帧包括动作类型字段和公共动作子类字段,所述动作类型字段用于指示行动帧为公共行动帧,所述公共动作子类字段的取值为预留值用于指示所述公共行动帧用于代理上报感知测量结果。
在一些实施例中,所述第一上报帧为感知行动帧。
在一些实施例中,所述第一上报帧包括动作类型字段和感知行动子类字段,所述动作类型字段的取值为预留值用于指示行动帧为感知行动帧,所述感知行动子类字段用于指示所述感知行动帧用于代理上报感知测量结果。
在一些实施例中,所述第一上报帧包括至少一个测量结果字段,其中,每个测量结果字段用于承载一个感知信号接收设备的测量结果。
在一些实施例中,所述测量结果字段包括以下至少一个字段:
测量实例标识字段,用于指示测量实例的标识;
测量设置标识字段,用于指示测量设置的标识;
感知信号发送设备标识字段,用于指示感知信号发送设备的标识;
感知信号接收设备标识字段,用于指示感知信号接收设备的标识;
测量时间戳字段,用于指示执行测量的时间信息;
结果数据长度字段,用于指示测量结果数据的长度;
结果数据字段,用于指示测量结果数据。
在一些实施例中,所述测量结果字段还包括控制域字段,所述控制域字段包括以下至少一个字段:
测量实例标识是否存在字段,用于指示所述测量结果字段是否存在测量实例标识字段;
测量设置标识是否存在字段,用于指示所述测量结果字段是否存在测量设置标识字段;
感知信号发送设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号发送设备标识;
感知信号接收设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号接收设备标识;
测量时间戳是否存在字段,用于指示所述测量结果字段是否存在测量时间戳字段。
在一些实施例中,所述第一设备为接入点设备,所述感知设备为站点设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的感知设备1100可对应于本申请方法实施例中的第二设备或感知代理请求设备,并且感知设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图8至图29所示方法200中第二设备或感知代理请求设备的相应流程,为了简洁,在此不再赘述。
图32是本申请实施例提供的一种通信设备600示意性结构图。图32所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图32所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以使得所述通信设备600实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图32所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备或感知代理设备,并且该通信设备 600可以实现本申请实施例的各个方法中由第一设备或感知代理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备或感知代理请求设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备或感知代理请求设备实现的相应流程,为了简洁,在此不再赘述。
图33是本申请实施例的芯片的示意性结构图。图33所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图33所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备或感知代理设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备或感知代理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备或感知代理请求设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备或感知代理请求设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图34是本申请实施例提供的一种通信***900的示意性框图。如图34所示,该通信***900包括感知代理设备910和感知代理请求设备920。
其中,该感知代理设备910可以用于实现上述方法中由第一设备或感知代理设备实现的相应的功能,以及该感知代理请求设备920可以用于实现上述方法中由第二设备或感知代理请求设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器 (Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备或感知代理设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备或感知代理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备或感知代理请求设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备或感知代理请求设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备或感知代理设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备或感知代理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二设备或感知代理请求设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备或感知代理请求设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备或感知代理设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备或感知代理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二设备或感知代理请求设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备或感知代理请求设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (55)

  1. 一种感知上报方法,其特征在于,包括:
    第一设备向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述第二设备建立的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备向第二设备上报第一上报帧,包括:
    在接收到至少一个感知信号接收设备的测量结果的情况下,所述第一设备向所述第二设备发送所述第一上报帧,所述第一上报帧包括所述至少一个感知信号接收设备的测量结果。
  3. 根据权利要求2所述的方法,其特征在于,所述在接收到至少一个感知信号接收设备的测量结果的情况下,所述第一设备向所述第二设备发送所述第一上报帧,包括:
    基于第一传输机会TXOP或第二TXOP,发送所述第一上报帧,其中,所述至少一个感知信号接收设备的测量结果是基于所述第一TXOP接收的,所述第二TXOP是在所述第一TXOP后获得的TXOP。
  4. 根据权利要求3所述的方法,其特征在于,所述第一TXOP用于第二测量实例的测量,所述至少一个感知信号接收设备的测量结果包括所述第二测量实例的测量结果和/或第一测量实例的测量结果,其中,所述第一测量实例是所述第二测量实例的上一个测量实例。
  5. 根据权利要求1所述的方法,其特征在于,所述第一设备向第二设备发送第一上报帧,包括:
    在每个测量实例后,所述第一设备向所述第二设备发送第一上报帧,其中,所述第一上报帧包括在所述每个测量实例中或下一个测量实例前所接收到的测量结果。
  6. 根据权利要求5所述的方法,其特征在于,所述在每个测量实例后,所述第一设备向所述第二设备发送第一上报帧,包括:
    基于所述每个测量实例对应的TXOP,向所述第二设备发送所述第一上报帧;或者
    基于在所述每个测量实例后获得的TXOP,向所述第二设备发送所述第一上报帧。
  7. 根据权利要求5或6所述的方法,其特征在于,所述至少一个测量实例包括第四测量实例,所述第四测量实例的下一个测量实例是第五测量实例,其中,在所述第四测量实例中接收到的测量结果或在所述第五测量实例前所接收到的测量结果包括第四测量实例的测量结果和/或第三测量实例的测量结果,其中,所述第三测量实例是所述第四测量实例的上一个测量实例。
  8. 根据权利要求1所述的方法,其特征在于,所述第一设备向第二设备发送第一上报帧,包括:
    在接收到N个测量实例中的每个测量实例的全部测量结果的情况下,所述第一设备向所述第二设备发送第一上报帧,所述第一上报帧包括所述N个测量实例中的每个测量实例的全部测量结果,其中,所述N是正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述N是预定义的,或者是所述第二设备指示的。
  10. 根据权利要求9所述的方法,其特征在于,所述N是所述第二设备通过第一请求帧指示的,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述N个测量实例中的最后一个测量实例为第六测量实例,所述第六测量实例的测量结果是基于第三TXOP接收的,所述第一上报帧是基于所述第三TXOP或第四TXOP上报的,其中,所述第四TXOP是在所述第三TXOP之后获得的TXOP。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示测量结果的上报方式。
  13. 根据权利要求12所述的方法,其特征在于,所述测量结果的上报方式包括以下中的至少一种:
    第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
    第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
    第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一指示信息通过第一请求帧发送,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述第一上报帧包括目标测量实例 的测量结果,所述第一上报帧还包括第二指示信息,所述第二指示信息用于指示所述第一上报帧是否为携带所述目标测量实例的测量结果的最后一个上报帧。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一上报帧为行动帧。
  17. 根据权利要求16所述的方法,其特征在于,所述第一上报帧为公共行动帧。
  18. 根据权利要求17所述的方法,其特征在于,所述第一上报帧包括动作类型字段和公共动作子类字段,所述动作类型字段用于指示行动帧为公共行动帧,所述公共动作子类字段的取值为预留值用于指示所述公共行动帧用于代理上报感知测量结果。
  19. 根据权利要求16所述的方法,其特征在于,所述第一上报帧为感知行动帧。
  20. 根据权利要求19所述的方法,其特征在于,所述第一上报帧包括动作类型字段和感知行动子类字段,所述动作类型字段的取值为预留值用于指示行动帧为感知行动帧,所述感知行动子类字段用于指示所述感知行动帧用于代理上报感知测量结果。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述第一上报帧包括至少一个测量结果字段,其中,每个测量结果字段用于承载一个感知信号接收设备的测量结果。
  22. 根据权利要求21所述的方法,其特征在于,所述测量结果字段包括以下至少一个字段:
    测量实例标识字段,用于指示测量实例的标识;
    测量设置标识字段,用于指示测量设置的标识;
    感知信号发送设备标识字段,用于指示感知信号发送设备的标识;
    感知信号接收设备标识字段,用于指示感知信号接收设备的标识;
    测量时间戳字段,用于指示执行测量的时间信息;
    结果数据长度字段,用于指示测量结果数据的长度;
    结果数据字段,用于指示测量结果数据。
  23. 根据权利要求22所述的方法,其特征在于,所述测量结果字段还包括控制域字段,所述控制域字段包括以下至少一个字段:
    测量实例标识是否存在字段,用于指示所述测量结果字段是否存在测量实例标识字段;
    测量设置标识是否存在字段,用于指示所述测量结果字段是否存在测量设置标识字段;
    感知信号发送设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号发送设备标识;
    感知信号接收设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号接收设备标识;
    测量时间戳是否存在字段,用于指示所述测量结果字段是否存在测量时间戳字段。
  24. 根据权利要求1-23中任一项所述的方法,其特征在于,所述第一设备为接入点设备,所述第二设备为站点设备。
  25. 一种感知上报方法,其特征在于,包括:
    第二设备接收第一设备发送的第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述第二设备建立的。
  26. 根据权利要求25所述的方法,其特征在于,所述第二设备接收第一设备发送的第一上报帧,包括:
    所述第二设备接收所述第一设备在接收到至少一个感知信号接收设备的测量结果的情况下,发送的所述第一上报帧,所述第一上报帧包括所述至少一个感知信号接收设备的测量结果。
  27. 根据权利要求26所述的方法,其特征在于,所述所述第一上报帧是基于第一传输机会TXOP或第二TXOP发送的,其中,所述至少一个感知信号接收设备的测量结果是基于所述第一TXOP接收的,所述第二TXOP是在所述第一TXOP后获得的TXOP。
  28. 根据权利要求27所述的方法,其特征在于,所述第一TXOP用于第二测量实例的测量,所述至少一个感知信号接收设备的测量结果包括所述第二测量实例的测量结果和/或第一测量实例的测量结果,其中,所述第一测量实例是所述第二测量实例的上一个测量实例。
  29. 根据权利要求25所述的方法,其特征在于,所述第二设备接收第一设备发送的第一上报帧,包括:
    所述第二设备接收所述第一设备在每个测量实例后,发送的第一上报帧,其中,所述第一上报帧包括在所述每个测量实例中或下一个测量实例前所接收到的测量结果。
  30. 根据权利要求29所述的方法,其特征在于,所述第一上报帧是基于所述每个测量实例对应的TXOP发送的;或者
    所述第一上报帧是基于在所述每个测量实例后获得的TXOP发送的。
  31. 根据权利要求29或30所述的方法,其特征在于,所述至少一个测量实例包括第四测量实例,所述第四测量实例的下一个测量实例是第五测量实例,其中,在所述第四测量实例中接收到的测量结果或在所述第五测量实例前所接收到的测量结果包括第四测量实例的测量结果和/或第三测量实例的测量结果,其中,所述第三测量实例是所述第四测量实例的上一个测量实例。
  32. 根据权利要求25所述的方法,其特征在于,所述第二设备接收第一设备发送的第一上报帧,包括:
    所述第二设备接收所述第一设备在接收到N个测量实例中的每个测量实例的全部测量结果的情况下,发送的第一上报帧,所述第一上报帧包括所述N个测量实例中的每个测量实例的全部测量结果,其中,所述N是正整数。
  33. 根据权利要求32所述的方法,其特征在于,所述N是预定义的,或者是所述第二设备指示的。
  34. 根据权利要求33所述的方法,其特征在于,所述N是所述第二设备通过第一请求帧指示的,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
  35. 根据权利要求32-34中任一项所述的方法,其特征在于,所述N个测量实例中的最后一个测量实例为第六测量实例,所述第六测量实例的测量结果是基于第三TXOP接收的,所述第一上报帧是基于所述第三TXOP或第四TXOP上报的,其中,所述第四TXOP是在所述第三TXOP之后获得的TXOP。
  36. 根据权利要求25-35中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示测量结果的上报方式。
  37. 根据权利要求36所述的方法,其特征在于,所述测量结果的上报方式包括以下中的至少一种:
    第一上报方式,用于指示在接收到感知信号接收设备上报的测量结果的情况下,进行测量结果的上报;
    第二上报方式,用于指示在测量实例结束后,上报在所述测量实例中或下一个测量实例前接收到的测量结果;
    第三上报方式,用于指示在获得N个测量实例中的每个测量实例的全部测量结果后,上报所述N个测量实例中的每个测量实例的全部测量结果,其中,N为正整数。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一指示信息通过第一请求帧发送,所述第一请求帧用于请求所述第一设备代理建立所述至少一个测量设置。
  39. 根据权利要求26-38中任一项所述的方法,其特征在于,所述第一上报帧包括目标测量实例的测量结果,所述第一上报帧还包括第二指示信息,所述第二指示信息用于指示所述第一上报帧是否为携带所述目标测量实例的测量结果的最后一个上报帧。
  40. 根据权利要求25-39中任一项所述的方法,其特征在于,所述第一上报帧为行动帧。
  41. 根据权利要求40所述的方法,其特征在于,所述第一上报帧为公共行动帧。
  42. 根据权利要求41所述的方法,其特征在于,所述第一上报帧包括动作类型字段和公共动作子类字段,所述动作类型字段用于指示行动帧为公共行动帧,所述公共动作子类字段的取值为预留值用于指示所述公共行动帧用于代理上报感知测量结果。
  43. 根据权利要求40所述的方法,其特征在于,所述第一上报帧为感知行动帧。
  44. 根据权利要求43所述的方法,其特征在于,所述第一上报帧包括动作类型字段和感知行动子类字段,所述动作类型字段的取值为预留值用于指示行动帧为感知行动帧,所述感知行动子类字段用于指示所述感知行动帧用于代理上报感知测量结果。
  45. 根据权利要求25-44中任一项所述的方法,其特征在于,所述第一上报帧包括至少一个测量结果字段,其中,每个测量结果字段用于承载一个感知信号接收设备的测量结果。
  46. 根据权利要求45所述的方法,其特征在于,所述测量结果字段包括以下至少一个字段:
    测量实例标识字段,用于指示测量实例的标识;
    测量设置标识字段,用于指示测量设置的标识;
    感知信号发送设备标识字段,用于指示感知信号发送设备的标识;
    感知信号接收设备标识字段,用于指示感知信号接收设备的标识;
    测量时间戳字段,用于指示执行测量的时间信息;
    结果数据长度字段,用于指示测量结果数据的长度;
    结果数据字段,用于指示测量结果数据。
  47. 根据权利要求46所述的方法,其特征在于,所述测量结果字段还包括控制域字段,所述控制域字段包括以下至少一个字段:
    测量实例标识是否存在字段,用于指示所述测量结果字段是否存在测量实例标识字段;
    测量设置标识是否存在字段,用于指示所述测量结果字段是否存在测量设置标识字段;
    感知信号发送设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号发送设备标识;
    感知信号接收设备标识是否存在字段,用于指示所述测量结果字段是否存在感知信号接收设备标识;
    测量时间戳是否存在字段,用于指示所述测量结果字段是否存在测量时间戳字段。
  48. 根据权利要求25-47中任一项所述的方法,其特征在于,所述第一设备为接入点设备,所述第二设备为站点设备。
  49. 一种感知设备,其特征在于,包括:
    通信单元,用于向第二设备发送第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述感知设备代理所述第二设备建立的。
  50. 一种感知设备,其特征在于,包括:
    通信单元,用于接收第一设备发送的第一上报帧,所述第一上报帧包括至少一个测量实例的测量结果,其中,每个测量实例的测量结果包括至少一个感知信号接收设备的测量结果,所述至少一个测量实例对应至少一个测量设置,所述至少一个测量设置是所述第一设备代理所述感知设备建立的。
  51. 一种感知设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述感知设备执行如权利要求1至24中任一项所述的方法,或者如权利要求25至48中任一项所述的方法。
  52. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法,或者如权利要求25至48中任一项所述的方法。
  53. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法,或者如权利要求25至48中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法,或者如权利要求25至48中任一项所述的方法。
  55. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法,或者如权利要求25至48中任一项所述的方法。
PCT/CN2022/070826 2022-01-07 2022-01-07 感知上报方法和设备 WO2023130384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/070826 WO2023130384A1 (zh) 2022-01-07 2022-01-07 感知上报方法和设备
PCT/CN2022/076899 WO2023130534A1 (zh) 2022-01-07 2022-02-18 感知上报方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070826 WO2023130384A1 (zh) 2022-01-07 2022-01-07 感知上报方法和设备

Publications (1)

Publication Number Publication Date
WO2023130384A1 true WO2023130384A1 (zh) 2023-07-13

Family

ID=87072711

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/070826 WO2023130384A1 (zh) 2022-01-07 2022-01-07 感知上报方法和设备
PCT/CN2022/076899 WO2023130534A1 (zh) 2022-01-07 2022-02-18 感知上报方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076899 WO2023130534A1 (zh) 2022-01-07 2022-02-18 感知上报方法和设备

Country Status (1)

Country Link
WO (2) WO2023130384A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475282A (zh) * 2018-05-09 2019-11-19 华为技术有限公司 一种干扰信息上报方法及装置
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN113453268A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 空间复用的方法、装置、计算机可读存储介质和芯片
CN113870528A (zh) * 2021-09-17 2021-12-31 四川华能宝兴河水电有限责任公司 一种通过智能安全帽对危险事件进行快速感知的方法
WO2022001713A1 (zh) * 2020-07-01 2022-01-06 华为技术有限公司 感知测量信息交互装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601836B2 (en) * 2019-06-21 2023-03-07 Intel Corporation WLAN sensing frame exchange protocol
US20210298073A1 (en) * 2020-03-17 2021-09-23 Qualcomm Incorporated Proxy sensing-based channel access for shared spectrum
WO2021251540A1 (ko) * 2020-06-11 2021-12-16 엘지전자 주식회사 무선랜 시스템에서 wifi 센싱을 수행하기 위한 ppdu를 생성하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475282A (zh) * 2018-05-09 2019-11-19 华为技术有限公司 一种干扰信息上报方法及装置
CN113453268A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 空间复用的方法、装置、计算机可读存储介质和芯片
WO2022001713A1 (zh) * 2020-07-01 2022-01-06 华为技术有限公司 感知测量信息交互装置
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN113870528A (zh) * 2021-09-17 2021-12-31 四川华能宝兴河水电有限责任公司 一种通过智能安全帽对危险事件进行快速感知的方法

Also Published As

Publication number Publication date
WO2023130534A1 (zh) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2021129401A1 (zh) 信道探测方法及装置
WO2021175124A1 (zh) 信道探测方法和装置
WO2023071250A1 (zh) 无线感知方法、装置、设备及存储介质
WO2023130384A1 (zh) 感知上报方法和设备
WO2023016441A1 (zh) 通信方法以及装置
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023130383A1 (zh) 感知方法和设备
WO2023130388A1 (zh) 无线通信的方法及设备
WO2023108371A1 (zh) 感知方法和设备
WO2023039798A1 (zh) 无线通信的方法和设备
WO2024040612A1 (zh) 无线通信的方法和设备
WO2023123000A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2024060098A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023284544A1 (zh) 一种感知会话建立方法及通信装置
WO2023092364A1 (zh) 无线通信方法和设备
WO2024055951A1 (zh) 通信方法及装置
WO2023019716A1 (zh) 无线通信的方法和设备
WO2023097704A1 (zh) 通信方法和设备
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024036643A1 (zh) 自定义标识符的获取和使用方法、装置、设备及存储介质
WO2023185342A1 (zh) 测量方法及测量装置
WO2023141996A1 (zh) 通信方法和设备
WO2023231707A1 (zh) 一种用于感知的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917856

Country of ref document: EP

Kind code of ref document: A1