WO2022166662A1 - 射频感知方法及相关装置 - Google Patents

射频感知方法及相关装置 Download PDF

Info

Publication number
WO2022166662A1
WO2022166662A1 PCT/CN2022/073542 CN2022073542W WO2022166662A1 WO 2022166662 A1 WO2022166662 A1 WO 2022166662A1 CN 2022073542 W CN2022073542 W CN 2022073542W WO 2022166662 A1 WO2022166662 A1 WO 2022166662A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
frame
brp
field
ppdu
Prior art date
Application number
PCT/CN2022/073542
Other languages
English (en)
French (fr)
Inventor
张美红
尹瑞
杜瑞
龙彦
闫莉
韩霄
孙滢翔
刘辰辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22748941.6A priority Critical patent/EP4277152A1/en
Publication of WO2022166662A1 publication Critical patent/WO2022166662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a radio frequency sensing method and related devices.
  • the signal sent by the transmitter is usually received through reflection, diffraction and scattering of various obstacles. This phenomenon makes the actual received signal often a superposition of multiple signals. Therefore, the wireless signal can perceive the physical environment it passes through, and by analyzing the wireless signal "modulated" by various obstacles, the surrounding environment can be inferred, which is derived from the wireless local area network (WLAN) perception ( sensing) technology.
  • WLAN wireless local area network
  • WLAN sensing is a technology with broad application prospects. It can use widely deployed WLAN devices to send specific data or communication channel detection frames to sense the surrounding environment, and then receive signal echoes or peer devices in the wireless network. The feedback information, and then extract the corresponding parameters in the received signal through a certain algorithm for analysis, and then the surrounding environment information can be obtained. While commercially available sensors can also provide environmental control feedback, these sensors require specialized installation. WLAN sensing, on the other hand, can use existing networks to generate the same feedback, eliminating the need to build and maintain multiple systems.
  • the 60GHz millimeter-wave band has abundant available spectrum resources, but due to the increased path loss and severe attenuation, the directional communication technology of beamforming (BF) is mainly considered in the 802.11ad/ay standard. Beamforming training (BFT) must be performed first when using beamforming technology.
  • BFT Beamforming training
  • the future 802.11 standard considers the introduction of WLAN sensing in the beamforming training mechanism, but how to combine the traditional beamforming training mechanism with WLAN sensing to perform WLAN sensing without affecting normal communication has become an urgent problem to be solved.
  • the embodiments of the present application provide a radio frequency sensing method and a related device, which can combine the traditional beamforming training mechanism in 802.11ay with WLAN sensing to realize sensing and training beams used for sensing while training the original communication beams, without the need for
  • the relevant process is specially designed for sensing and training the sensing beam, with low overhead and good compatibility.
  • the present application provides a radio frequency sensing method, the method includes a sector-level scanning phase, wherein: a first device sends a plurality of first frames in a sector-scanning manner, and each first frame includes first indication information , the first indication information is used to instruct the second device to evaluate the amount of change in channel state information (CSI) from the first device to the second device; the first device quasi-omnidirectionally receives multiple second frames, each The second frame includes a first measurement result and second indication information, where the first measurement result is used to feed back a transmit beam whose CSI change from the first device to the second device is greater than the CSI change threshold, and the second indication information is used to instruct the first device to evaluate the amount of change in CSI from the second device to the first device; the first device sends a third frame, the third frame includes a second measurement result, and the second measurement result is used to feed back the second device to the first device.
  • the first device may be an initiator (initiator), and the second device may be a responder (responder).
  • the first device scans the sector at least 2 times, that is, the first device uses the same transmit beam to transmit at least twice (one first frame each time).
  • the sector identification (Sector ID) field and the directional multi-gigabit (directional multi-gigabit, DMG) antenna identification (DMG Antenna ID) field are set in each first frame, respectively for indicating the first frame. transmit sector and transmit antenna.
  • the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • this scheme is based on the sector-level scanning phase process of the 802.11ay standard, and perceives the changes in CSI values measured by scanning the same beam multiple times, and starts the sensing operation by modifying the relevant frame structure in the sector-level scanning phase.
  • Feedback perception measurement results, etc. can realize the perception of a single moving target and train the transmission beam for perception while the original communication beam is trained. better compatibility.
  • the method further includes a multi-sector detection process, wherein: the first device quasi-omnidirectionally sends the first beam refinement multiple times protocol, BRP) physical layer protocol data unit (Physical layer protocol data unit, PPDU), the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the variation of the CSI from the first device to the second device; The first device receives the second BRP PPDU multiple times in a sector scanning manner, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the variation of the CSI from the second device to the first device; the first device Send a third BRP frame, where the third BRP frame is used to feed back the number of the first receiving beams trained by the first device in the beam pairing phase, and the first number of receiving beams is the same receiving beam among all the receiving beams of the first device.
  • BRP first beam refinement multiple times protocol
  • PPDU Physical layer protocol data unit
  • each first BRP PPDU includes a first BRP frame and a training unit (training unit, TRN Unit).
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the first device scans the sector for at least two circles, that is, the first device uses the same receive beam to receive at least two times (one first BRP PPDU is received each time).
  • the scheme enables both sender and receiver to train to perceive the optimal receiving beam in the scene.
  • the method further includes a beam pairing process, wherein: the first device directionally sends a fifth BRP PPDU multiple times, the fifth BRP PPDU The included fifth BRP frame is used to instruct the second device to evaluate the amount of change in CSI from the first device to the second device; the first device directionally receives the sixth BRP PPDU multiple times, and the sixth BRP PPDU includes the sixth BRP frame is used to instruct the first device to evaluate the amount of change in CSI from the second device to the first device; the first device sends the seventh BRP frame carrying the first beam information list, and the first beam information list is used for Feedback from the second device to the first device that the variation of CSI is greater than the CSI variation threshold of multiple transmit beams and the receive antennas corresponding to each transmit beam; the first device receives the eighth BRP frame that carries the second beam information list, the The two-beam information list is used to feed back multiple transmit beams whose
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • this scheme is based on the 802.11ay standard's sector-level scanning phase and beam refinement phase process, and perceives the changes in CSI values measured by multiple scans of the same beam, and modifies the sector-level scan phase and beam refinement phase. It can realize the perception of a single moving target and train the best transmit and receive beams for perception while training the original communication beam, without the need for special perception and training perception beams Design related processes with less overhead and better compatibility.
  • the present application provides a radio frequency sensing method, the method includes a sector-level scanning phase, wherein: a second device quasi-omnidirectionally receives a plurality of first frames, each first frame includes first indication information, the The first indication information is used to instruct the second device to evaluate the CSI change from the first device to the second device; the second device sends a plurality of second frames in a sector scanning manner, and each second frame includes the first measurement result and second indication information, the first measurement result is used to feed back a transmit beam whose CSI variation from the first device to the second device is greater than the CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the second device
  • the first device may be an initiator, and the second device may be a responder.
  • the second device scans the sector at least twice, that is, the second device uses the same transmit beam to transmit at least twice (one second frame each time).
  • the Sector ID field and the DMG Antenna ID field are set in each second frame, which are respectively used to indicate the sending sector and the sending antenna of the second frame.
  • the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the method further includes a multi-sector detection process, wherein: the second device receives the first BRP PPDU multiple times in a sector scanning manner, The first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the amount of CSI change from the first device to the second device; the second device quasi-omnidirectionally sends the second BRP PPDU multiple times, the second BRP PPDU The included second BRP frame is used to instruct the first device to evaluate the variation of the CSI from the second device to the first device; the second device receives the third BRP frame, and the third BRP frame is used to feed back the first device in the beam pairing phase The first number of receiving beams for beam training, where the first number of receiving beams is the number of receiving beams whose CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold among all receiving beams of the first device; the second The device sends a fourth
  • each second device quasi-omnidirectionally transmits one second BRP PPDU each time
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the second device scans the sector for at least two circles, that is, the second device uses the same receive beam to receive at least two times (each time a second BRP PPDU is received).
  • the method further includes a beam pairing process, wherein: the second device directionally receives the fifth BRP PPDU multiple times, the fifth BRP PPDU The included fifth BRP frame is used to instruct the second device to evaluate the variation of the CSI from the first device to the second device; the second device directionally sends the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the variation of the CSI from the second device to the first device; the second device receives the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the second device to the first device.
  • the CSI variation of the device is greater than the CSI variation threshold for multiple transmit beams and the receive antennas corresponding to each transmit beam; the second device sends the eighth BRP frame carrying the second beam information list, which is used for feedback A plurality of transmit beams whose CSI variation from the first device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the present application provides a first device or a chip in the first device, such as a Wi-Fi chip.
  • the first device includes: a sending unit, configured to send a plurality of first frames, each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the second The variation of the CSI of the device; the receiving unit is configured to receive multiple second frames quasi-omnidirectionally, and each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the first measurement result.
  • the first device further includes a processing unit configured to generate a plurality of first frames; the processing unit is further configured to generate a third frame.
  • the Sector ID field and the DMG Antenna ID field are set in each first frame, which are respectively used to indicate the sending sector and the sending antenna of the first frame. It should also be understood that the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the above-mentioned sending unit is also configured to quasi-omnidirectionally transmit the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to indicate that the second device evaluates The variation of the CSI from the first device to the second device; the receiving unit is further configured to receive the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the The change amount of the CSI from the second device to the first device; the above-mentioned sending unit is also used to send the third BRP frame, and the third BRP frame is used to feed back the first reception of the beam training of the first device in the beam pairing phase The number of beams, where the first number of receive beams is the number of receive beams where the CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold in all receive beams of the first device; the above receiving unit is also used for Receive a fourth
  • the above processing unit is further configured to generate the first BRP PPDU and the third BRP frame.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit is further configured to send the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the first
  • the variation of the CSI from the device to the second device is also configured to receive the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the second device.
  • the variation of the CSI to the first device; the above-mentioned sending unit is also used to send the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the information from the second device to the first device.
  • the above processing unit is further configured to generate a fifth BRP PPDU and a seventh BRP frame carrying the first beam information list.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the present application provides a second device or a chip in the second device, such as a Wi-Fi chip.
  • the second device includes: a receiving unit configured to quasi-omnidirectionally receive multiple first frames, each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device Variation of CSI to the second device; a sending unit, configured to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the first measurement result.
  • the second device further includes a processing unit configured to generate multiple second frames.
  • the Sector ID field and the DMG Antenna ID field are set in each second frame, which are respectively used to indicate the sending sector and the sending antenna of the second frame. It should also be understood that the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the above-mentioned receiving unit is further configured to receive the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the first BRP PPDU.
  • the above-mentioned sending unit is also used to quasi-omnidirectionally transmit the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the Variation of CSI from the second device to the first device;
  • the receiving unit is further configured to receive a third BRP frame, where the third BRP frame is used to feed back the number of first receiving beams trained by the first device in the beam pairing phase , the number of the first receiving beams is the number of receiving beams in which the CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device;
  • the above-mentioned sending unit is also used for sending the first Four BRP frames, the fourth BRP frame is used to feed back the number of second receiving beams trained by the second device in the beam pairing phase, and the second receiving beam number is that the same receiving beam is used twice in all receiving beams of the second device
  • the above processing unit is further configured to generate the second BRP PPDU and the fourth BRP frame.
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit is further configured to receive the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the first
  • the variation of the CSI from the device to the second device is also used to send the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the second device.
  • the variation of the CSI to the first device; the above-mentioned receiving unit is further configured to receive the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the information from the second device to the first device.
  • the above processing unit is further configured to generate a sixth BRP PPDU and an eighth BRP frame carrying the second beam information list.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned first indication information is located in the strong directional multi-gigabit (enhanced directional multi-gigabit, EDMG) capability field of the beacon frame.
  • the first indication information may include a CSI measurement request field and a CSI difference value calculation field.
  • the CSI measurement request field is used to indicate whether the second device measures CSI. When the CSI measurement request field is set to a first value, it is used to instruct the second device to measure CSI; when the CSI measurement request field is set to a second value, it is used to Instruct the second device not to measure CSI.
  • the CSI measurement request field in the first frame of this solution is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the CSI difference calculation field is set to the first value, it is used to instruct the second device to calculate the CSI; when the CSI difference calculation field is set to the first value A binary value, used to indicate that the second device does not calculate the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the evaluation algorithm of CSI; the CSI change threshold field is used to indicate the CSI change threshold.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • this scheme instructs the second device to evaluate the CSI change from the first device to the second device by carrying the first indication information in the optional subelements (optional subelements) subfield in the EDMG capability field of the beacon frame, that is,
  • the function of the original beacon frame can not be changed (or the function of the original beacon frame is reused), or the beacon frame can be used to realize the sensing function, no need for patents to design the relevant process for the sensing function, the overhead is small, and it has better compatibility sex.
  • the first indication information is carried in a reserved subfield of the SSW feedback field of the SSW frame.
  • the first indication information may include a CSI measurement request field and a CSI difference value calculation field.
  • the CSI measurement request field is used to indicate whether the second device measures CSI.
  • the CSI measurement request field is set to a first value, it is used to instruct the second device to measure CSI; when the CSI measurement request field is set to a second value, it is used to Instruct the second device not to measure CSI.
  • the CSI measurement request field in the first frame of this solution is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field, and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the evaluation algorithm of CSI; the CSI change threshold field is used to indicate the CSI change threshold.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • the frame length of the original SSW frame can be reused without changing the frame length of the original SSW frame, and other fields in the SSW frame can be reused.
  • Training can also realize the training of perceptual beams, with flexible design and good compatibility.
  • the second indication information when the second frame is an SSW frame, the second indication information is located in a reserved subfield of the SSW feedback field of the SSW frame, and the first measurement result is located in the SSW frame.
  • the second indication information includes a CSI difference value calculation field, and the CSI difference value calculation field is used to indicate whether the first device calculates a CSI difference value.
  • the CSI difference value calculation field is set to a first value, it is used to instruct the first device to calculate a CSI difference value.
  • CSI when the CSI difference value calculation field is set to the second value, it is used to indicate that the second device does not calculate the CSI difference value.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • this solution carries the second indication information in the second frame, which is used to instruct the first device to evaluate the change amount of CSI from the second device to the first device, which is beneficial to training the optimal sensing and transmitting beam of the second device, which is used for the follow-up
  • the application of WLAN sensing provides the basis.
  • the second frame further includes third indication information, where the third indication information is used to indicate whether the second frame includes the first measurement result.
  • the third indication information is set as the first value, indicating that the second frame includes the first measurement result.
  • the third indication information is located in a reserved subfield of the SSW feedback field of the SSW frame.
  • this solution indicates whether there is a first measurement result in the second frame by carrying the third indication information in the second frame, and the design is more flexible.
  • the second measurement result is located in the SNR report subfield of the SSW feedback field of the SSW feedback frame.
  • the SNR report subfield in the SSW feedback frame is multiplexed to carry the second measurement result, and the SSW feedback frame has less changes and better compatibility.
  • the third frame further includes fourth indication information, where the fourth indication information is used to indicate whether the third frame includes the second measurement result.
  • the fourth indication information is set to the first value, indicating that the third frame includes the second measurement result.
  • the fourth indication information is located in a reserved subfield of the SSW feedback field of the SSW frame.
  • this solution indicates whether there is a second measurement result in the third frame by carrying the fourth indication information in the third frame, and the design is more flexible.
  • the first measurement result includes a first antenna identifier and a first sector identifier
  • the second measurement result includes a second antenna identifier and a second sector identifier.
  • the beam determined by the first antenna identifier and the first sector identifier is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the first device.
  • the beam determined by the second antenna identifier and the second sector identifier is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the second device.
  • the first measurement result is used to feed back the transmission beam whose CSI variation is greater than the threshold in all transmission beams of the first device, as the best sensing transmission beam of the first device; the second measurement result is used to feed back all transmission beams of the second device.
  • the transmit beam with the CSI variation greater than the threshold is used as the best sensing transmit beam of the second device; in the sector-level scanning process of the communication, the training of the sensing transmit beam is realized.
  • the first BRP frame in the first BRP PPDU and the second BRP frame in the first BRP PPDU both include a CSI measurement request field and a beam scan lap field.
  • the value of the CSI measurement request field is the first value, which is used to indicate the measurement of CSI;
  • the beam scanning circle number field is used to indicate the scanning circle number of the receiving beam.
  • the first BRP frame in the first BRP PPDU and the second BRP frame in the first BRP PPDU also include one or more of the following fields: a sender sensing sector identification field and a sender sensing antenna identification mask.
  • the modulo field is used to jointly indicate the transmit sector and transmit antenna of the BRP frame;
  • the CSI change threshold field is used to indicate the CSI change threshold;
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm.
  • this scheme introduces the sensing operation by modifying the frame format of the BRP PPDU in the multi-sector detection process, and can train to obtain the optimal sensing receiving beams of the first device and the second device respectively, which provides a basis for the application of subsequent WLAN sensing.
  • the above-mentioned first number of receive beams is carried in a directional multi-gigabit (directional multi-gigabit, DMG) beam refinement element of the above-mentioned third BRP frame.
  • the above-mentioned second number of receive beams is carried in the DMG beam refinement element of the fourth BRP frame.
  • the fifth BRP frame in the fifth BRP PPDU and the sixth BRP frame in the sixth BRP PPDU both include a CSI measurement request field and a beam scan lap field.
  • the value of the CSI measurement request field is the first value, which is used to indicate the measurement of CSI; the beam scanning circle number field is used to indicate the scanning circle number of the receiving beam.
  • the fifth BRP frame in the fifth BRP PPDU and the sixth BRP frame in the sixth BRP PPDU also include one or more of the following fields: the transmitting end sensing sector identification field and the transmitting end sensing antenna identification mask.
  • the modulo field is used to jointly indicate the transmit sector and transmit antenna of the BRP frame;
  • the CSI change threshold field is used to indicate the CSI change threshold;
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm.
  • this scheme introduces the sensing operation by modifying the frame format of the BRP PPDU during the beam pairing process, and can pair the best sensing transceiver beams of the first device and the second device, providing a basis for the subsequent application of WLAN sensing.
  • the first beam information list is located in the perceptual measurement feedback element of the seventh BRP frame
  • the second beam information list is located in the perceptual measurement feedback element of the eighth BRP frame.
  • the element identifier of the perceptual measurement feedback element is a reserved value, such as 13.
  • the above-mentioned first beam information list includes the antenna identifier and sector corresponding to the transmitting beam in the plurality of transmitting and receiving beam pairs in which the CSI change from the second device to the first device is greater than the CSI change threshold.
  • the above-mentioned second beam information list includes the antenna identifier and sector identifier corresponding to the transmit beam in multiple transceiver beam pairs whose CSI changes from the first device to the second device are greater than the CSI change threshold, and each transmit beam. Corresponding receiving antenna identification.
  • a transmit-receive beam pair consists of a transmit beam and a receive beam.
  • An antenna ID and a sector ID can be used to uniquely identify a beam.
  • the receiving end is used by the receiving end to receive data, the direction of the receiving beam does not need to be informed to the transmitting end, but only needs to be known by the receiving end. Therefore, the sector identifier of the receiving beam may not be included in the first beam information list.
  • the present application provides a radio frequency sensing method, the method includes: a first device sends a plurality of first frames in a sector scanning manner, and each first frame includes first indication information, and the first indication information is used for It is used to instruct the second device to evaluate the amount of CSI change from the first device to the second device; the first device quasi-omnidirectionally receives multiple second frames, and each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate the amount of change in CSI from the second device to the first device; the first device sends a first perceptual feedback frame, the first perceptual feedback frame includes a second measurement result, and the second measurement result is used for feedback A plurality of transmit beams whose CSI variation from the second device to the first device is greater than the CSI variation threshold; the first device receives a second sensory feedback frame, the second sensory feedback frame includes a first measurement result, and the first measurement result A plurality of transmit beams for feeding back the CSI variation from the first device to the second device is
  • the first device may be an initiator (initiator), and the second device may be a responder (responder).
  • the first device scans the sector for at least two circles, that is, the first device uses the same transmit beam to transmit at least twice (one first frame each time).
  • the Sector ID field and the DMG Antenna ID field are set in each first frame, which are respectively used to indicate the sending sector and the sending antenna of the first frame.
  • the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • this scheme solves the problem that multi-target beam information feedback cannot be achieved due to insufficient reserved bits in the sector-level scanning phase by adding a perception feedback process, thereby realizing the perception of multiple moving targets and training for perceiving each target.
  • the optimal sending and receiving beam for a moving target does not need to design related processes for sensing and training sensing beams, with low overhead and good compatibility.
  • the method further includes a multi-sector detection process, wherein: the first device quasi-omnidirectionally transmits the first BRP PPDU multiple times, The first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the amount of change in CSI from the first device to the second device; the first device receives the second BRP PPDU multiple times in a sector scanning manner, the second device The second BRP frame included in the BRP PPDU is used to instruct the first device to evaluate the CSI change from the second device to the first device; the first device sends the third BRP frame, and the third BRP frame is used to feed back the first device in the beam pairing phase.
  • the number of first receive beams trained by a device beam is the number of receive beams whose CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold among all receive beams of the first device ;
  • the first device receives the fourth BRP frame, and the fourth BRP frame is used to feed back the number of second receiving beams trained by the second device in the beam pairing phase, and the number of the second receiving beams is the same in all receiving beams of the second device.
  • the number of receive beams for which the CSI difference between any two CSI measurements on the receive beam is greater than the CSI change threshold.
  • the first device quasi-omnidirectionally sends a first BRP PPDU each time, and each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the first device scans the sector for at least two circles, that is, the first device uses the same receive beam to receive at least two times (one first BRP PPDU is received each time).
  • both the sender and the receiver can train the optimal receiving beam in the perception scene.
  • the method further includes a beam pairing process, wherein: the first device directionally sends the fifth BRP PPDU multiple times, the fifth BRP PPDU
  • the included fifth BRP frame is used to instruct the second device to evaluate the amount of change in CSI from the first device to the second device;
  • the first device sends the seventh BRP frame carrying the first beam information list, and the first beam information list is used for Feedback from the second device to the first device that the variation of CSI is greater than the CSI variation threshold of multiple transmit beams and the receive antennas corresponding to each transmit beam;
  • the first device receives the eighth BRP frame that carries the second beam information list, the The two-beam information list is used to feed back multiple transmit beams whose CSI
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • this scheme is based on the 802.11ay standard's sector-level scanning phase and beam refinement phase process, and perceives the changes in CSI values measured by multiple scans of the same beam, and modifies the sector-level scan phase and beam refinement phase. It can realize the perception of a single moving target and train the best transmit and receive beams for perception while training the original communication beam, without the need for special perception and training perception beams Design related processes with less overhead and better compatibility.
  • the present application provides a radio frequency sensing method, the method includes: a second device quasi-omnidirectionally receives multiple first frames, and each first frame includes first indication information, where the first indication information is used to indicate The second device evaluates the CSI change from the first device to the second device; the second device sends a plurality of second frames in a sector scanning manner, and each second frame includes second indication information, and the second indication information uses is used to instruct the first device to evaluate the amount of CSI change from the second device to the first device; the second device receives the first perceptual feedback frame, the first perceptual feedback frame includes a second measurement result, and the second measurement result is used for feeding back multiple transmit beams whose CSI variation from the second device to the first device is greater than the CSI variation threshold; the second device sends a second perceptual feedback frame, the second perceptual feedback frame includes the first measurement result, and the first The measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than the CSI
  • the first device may be an initiator, and the second device may be a responder.
  • the second device scans the sector at least twice, that is, the second device uses the same transmit beam to transmit at least twice (one second frame each time).
  • the Sector ID field and the DMG Antenna ID field are set in each second frame, which are respectively used to indicate the sending sector and the sending antenna of the second frame.
  • the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the method further includes a multi-sector detection process, wherein: the second device receives the first BRP multiple times in a sector scanning manner PPDU, the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the CSI change from the first device to the second device; the second device quasi-omnidirectionally sends the second BRP PPDU multiple times, the second device The second BRP frame included in the BRP PPDU is used to instruct the first device to evaluate the change in CSI from the second device to the first device; the second device receives the third BRP frame, and the third BRP frame is used to feedback the first device in the beam pairing phase.
  • the number of first receive beams trained by a device beam is the number of receive beams for which the CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold among all receive beams of the first device;
  • the second device sends a fourth BRP frame, where the fourth BRP frame is used to feed back the number of the second receiving beams trained by the second device in the beam pairing phase, and the second receiving beam number is the same receiving beam among all the receiving beams of the second device.
  • the number of receive beams for which the CSI difference between any two CSI measurements on a beam is greater than the CSI change threshold.
  • each second device quasi-omnidirectionally transmits one second BRP PPDU each time
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the second device scans the sector for at least two circles, that is, the second device uses the same receive beam to receive at least two times (each time a second BRP PPDU is received).
  • the method further includes a beam pairing process, wherein: the second device directionally receives the fifth BRP PPDU multiple times, the fifth BRP PPDU
  • the included fifth BRP frame is used to instruct the second device to evaluate the variation of the CSI from the first device to the second device; the second device directionally sends the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the variation of the CSI from the second device to the first device;
  • the second device receives the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the second device to the first device.
  • the CSI variation of the device is greater than the CSI variation threshold for multiple transmit beams and the receive antennas corresponding to each transmit beam; the second device sends the eighth BRP frame carrying the second beam information list, which is used for feedback A plurality of transmit beams whose CSI variation from the first device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the present application provides a first device or a chip in the first device, such as a Wi-Fi chip.
  • the first device includes: a sending unit, configured to send a plurality of first frames, each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the second The variation of the CSI of the device;
  • the receiving unit is configured to receive a plurality of second frames quasi-omnidirectionally, and each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate the second frame the change amount of CSI from the device to the first device;
  • the sending unit is further configured to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used to feed back the second A plurality of transmit beams whose CSI variation from the device to the first device is greater than a CSI variation threshold;
  • the receiving unit is further configured to receive a second perceptual feedback frame, where the second perceptual feedback frame includes a
  • the first device further includes a processing unit configured to generate a plurality of first frames; the processing unit is further configured to generate a first perceptual feedback frame.
  • the Sector ID field and the DMG Antenna ID field are set in each first frame, which are respectively used to indicate the sending sector and the sending antenna of the first frame. It should also be understood that the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the above-mentioned sending unit is also configured to quasi-omnidirectionally send the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to indicate that the second device evaluates The variation of the CSI from the first device to the second device; the receiving unit is further configured to receive the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the The change amount of the CSI from the second device to the first device; the above-mentioned sending unit is also used to send the third BRP frame, and the third BRP frame is used to feed back the first reception of the beam training of the first device in the beam pairing phase The number of beams, where the first number of receive beams is the number of receive beams where the CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold in all receive beams of the first device; the above receiving unit is also used for Receive a fourth
  • the above processing unit is further configured to generate the first BRP PPDU and the third BRP frame.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit is further configured to send the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the first
  • the variation of the CSI from the device to the second device is also configured to receive the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the second device.
  • the variation of the CSI to the first device; the above-mentioned sending unit is also used to send the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the information from the second device to the first device.
  • the above processing unit is further configured to generate a fifth BRP PPDU and a seventh BRP frame carrying the first beam information list.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the present application provides a second device or a chip in the second device, such as a Wi-Fi chip.
  • the second device includes: a receiving unit configured to quasi-omnidirectionally receive multiple first frames, each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device The variation of the CSI to the second device;
  • the sending unit is configured to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate the The variation of the CSI from the second device to the first device;
  • the receiving unit is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used to feed back the A plurality of transmit beams whose CSI variation from the second device to the first device is greater than the CSI variation threshold;
  • the transmitting unit is further configured to transmit a second sensory feedback frame, where the second sensory feedback frame includes the first measurement result, The first measurement result is used to feed back multiple
  • the second device further includes a processing unit configured to generate a plurality of second frames; the processing unit is further configured to generate a second perceptual feedback frame.
  • the Sector ID field and the DMG Antenna ID field are set in each second frame, which are respectively used to indicate the sending sector and the sending antenna of the second frame. It should also be understood that the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam.
  • the above-mentioned receiving unit is further configured to receive the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the first BRP PPDU.
  • the above-mentioned sending unit is also used to quasi-omnidirectionally transmit the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the Variation of CSI from the second device to the first device;
  • the receiving unit is further configured to receive a third BRP frame, where the third BRP frame is used to feed back the number of first receiving beams trained by the first device in the beam pairing phase , the number of the first receiving beams is the number of receiving beams in which the CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device;
  • the above-mentioned sending unit is also used for sending the first Four BRP frames, the fourth BRP frame is used to feed back the number of second receiving beams trained by the second device in the beam pairing phase, and the second receiving beam number is that the same receiving beam is used twice in all receiving beams of the second device
  • the above processing unit is further configured to generate the second BRP PPDU and the fourth BRP frame.
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • each first BRP PPDU includes a first BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit is further configured to receive the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the first
  • the variation of the CSI from the device to the second device is also used to send the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the second device.
  • the variation of the CSI to the first device; the above-mentioned receiving unit is further configured to receive the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the information from the second device to the first device.
  • the above processing unit is further configured to generate a sixth BRP PPDU and an eighth BRP frame carrying the second beam information list.
  • each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned first indication information is located in the strong directional multi-gigabit (enhanced directional multi-gigabit, EDMG) capability field of the beacon frame.
  • the first indication information may include a CSI measurement request field and a CSI difference value calculation field.
  • the CSI measurement request field is used to indicate whether the second device measures CSI. When the CSI measurement request field is set to a first value, it is used to instruct the second device to measure CSI; when the CSI measurement request field is set to a second value, it is used to Instruct the second device not to measure CSI.
  • the CSI measurement request field in the first frame of this solution is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the CSI difference calculation field is set to the first value, it is used to instruct the second device to calculate the CSI; when the CSI difference calculation field is set to the first value A binary value, used to indicate that the second device does not calculate the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field, and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the evaluation algorithm of CSI; the CSI change threshold field is used to indicate the CSI change threshold.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • this scheme instructs the second device to evaluate the CSI change from the first device to the second device by carrying the first indication information in the optional subelements (optional subelements) subfield in the EDMG capability field of the beacon frame, that is,
  • the function of the original beacon frame can not be changed (or the function of the original beacon frame is reused), or the beacon frame can be used to realize the sensing function, no need for patents to design the relevant process for the sensing function, the overhead is small, and it has better compatibility sex.
  • the first indication information is carried in a reserved subfield of the SSW feedback field of the SSW frame.
  • the first indication information may include a CSI measurement request field and a CSI difference value calculation field.
  • the CSI measurement request field is used to indicate whether the second device measures CSI.
  • the CSI measurement request field is set to a first value, it is used to instruct the second device to measure CSI; when the CSI measurement request field is set to a second value, it is used to Instruct the second device not to measure CSI.
  • the CSI measurement request field in the first frame of this solution is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field, and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the evaluation algorithm of CSI; the CSI change threshold field is used to indicate the CSI change threshold.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • the frame length of the original SSW frame can be reused without changing the frame length of the original SSW frame, and other fields in the SSW frame can be reused.
  • Training can also realize the training of perceptual beams, with flexible design and good compatibility.
  • the second indication information when the second frame is an SSW frame, the second indication information is located in the reserved subfield of the SSW feedback field of the SSW frame, and the first measurement result is located in the SSW frame.
  • the second indication information includes a CSI difference value calculation field, and the CSI difference value calculation field is used to indicate whether the first device calculates a CSI difference value.
  • the CSI difference value calculation field is set to a first value, it is used to instruct the first device to calculate a CSI difference value.
  • CSI when the CSI difference value calculation field is set to the second value, it is used to indicate that the second device does not calculate the CSI difference value.
  • the first value is 1 and the second value is 0; or the first value is 0 and the second value is 1.
  • this solution carries the second indication information in the second frame, which is used to instruct the first device to evaluate the change amount of CSI from the second device to the first device, which is beneficial to training the optimal sensing and transmitting beam of the second device, which is used for the follow-up
  • the application of WLAN sensing provides the basis.
  • the first measurement result includes a first antenna identifier and a first sector identifier
  • the second measurement result includes a second antenna identifier and a second sector identifier.
  • the beam determined by the first antenna identifier and the first sector identifier is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the first device.
  • the beam determined by the second antenna identifier and the second sector identifier is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the second device.
  • the first measurement result is used to feed back the transmission beam whose CSI variation is greater than the threshold in all transmission beams of the first device, as the best sensing transmission beam of the first device; the second measurement result is used to feed back all transmission beams of the second device.
  • the transmit beam with the CSI variation greater than the threshold is used as the best sensing transmit beam of the second device; in the sector-level scanning process of the communication, the training of the sensing transmit beam is realized.
  • the first BRP frame in the first BRP PPDU and the second BRP frame in the first BRP PPDU both include a CSI measurement request field and a beam scan lap field.
  • the value of the CSI measurement request field is the first value, which is used to indicate the measurement of CSI;
  • the beam scanning circle number field is used to indicate the scanning circle number of the receiving beam.
  • the first BRP frame in the first BRP PPDU and the second BRP frame in the first BRP PPDU also include one or more of the following fields: a sender sensing sector identification field and a sender sensing antenna identification mask.
  • the modulo field is used to jointly indicate the transmit sector and transmit antenna of the BRP frame;
  • the CSI change threshold field is used to indicate the CSI change threshold;
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm.
  • this scheme introduces the sensing operation by modifying the frame format of the BRP PPDU in the multi-sector detection process, and can train to obtain the optimal sensing receiving beams of the first device and the second device respectively, which provides a basis for the application of subsequent WLAN sensing.
  • the above-mentioned first number of receive beams is carried in a directional multi-gigabit (directional multi-gigabit, DMG) beam refinement element of the above-mentioned third BRP frame.
  • the above-mentioned second number of receive beams is carried in the DMG beam refinement element of the fourth BRP frame.
  • the fifth BRP frame in the fifth BRP PPDU and the sixth BRP frame in the sixth BRP PPDU both include a CSI measurement request field and a beam scan lap field.
  • the value of the CSI measurement request field is the first value, which is used to indicate the measurement of CSI; the beam scanning circle number field is used to indicate the scanning circle number of the receiving beam.
  • the fifth BRP frame in the fifth BRP PPDU and the sixth BRP frame in the sixth BRP PPDU also include one or more of the following fields: the transmitting end sensing sector identification field and the transmitting end sensing antenna identification mask.
  • the modulo field is used to jointly indicate the transmit sector and transmit antenna of the BRP frame;
  • the CSI change threshold field is used to indicate the CSI change threshold;
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm.
  • this scheme introduces the sensing operation by modifying the frame format of the BRP PPDU during the beam pairing process, and can pair the best sensing transceiver beams of the first device and the second device, providing a basis for the subsequent application of WLAN sensing.
  • the first beam information list is located in the perceptual measurement feedback element of the seventh BRP frame
  • the second beam information list is located in the perceptual measurement feedback element of the eighth BRP frame.
  • the element identifier of the perceptual measurement feedback element is a reserved value, such as 13.
  • the above-mentioned first beam information list includes the antenna identifier and sector corresponding to the transmitting beam in the plurality of transmitting and receiving beam pairs in which the CSI change from the second device to the first device is greater than the CSI change threshold.
  • the above-mentioned second beam information list includes the antenna identifier and sector identifier corresponding to the transmit beam in multiple transceiver beam pairs whose CSI changes from the first device to the second device are greater than the CSI change threshold, and each transmit beam. Corresponding receiving antenna identification.
  • a transmit-receive beam pair consists of a transmit beam and a receive beam.
  • An antenna ID and a sector ID can be used to uniquely identify a beam.
  • the receiving end is used by the receiving end to receive data, the direction of the receiving beam does not need to be informed to the transmitting end, but only needs to be known by the receiving end. Therefore, the sector identifier of the receiving beam may not be included in the first beam information list.
  • the present application provides a first device, including a transceiver and optionally a processor.
  • the transceiver is configured to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct a second device to evaluate the first device to the second device The change amount of the CSI; the transceiver is further configured to receive multiple second frames quasi-omnidirectionally, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the first measurement result.
  • the processor is configured to generate multiple first frames; the processor is further configured to generate the third frame.
  • the transceiver is configured to send a plurality of first frames, and each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device to the second The variation of the CSI of the device; the transceiver is further configured to receive multiple second frames quasi-omnidirectionally, each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate the The change amount of the CSI from the second device to the first device; the transceiver is further configured to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used to feed back the A plurality of transmit beams whose CSI variation from the second device to the first device is greater than the CSI variation threshold; the transceiver is further configured to receive a second perceptual feedback frame, where the second perceptual feedback frame includes the first measurement result, The first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than
  • the processor is configured to generate a plurality of first frames; the processor is further configured to generate a first perceptual feedback frame.
  • the present application provides a second device, including a transceiver and optionally a processor.
  • the transceiver is configured to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to Variation of the CSI of the second device; the transceiver is further configured to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the A transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device; The transceiver is further configured to receive a third frame, where the third frame includes a second measurement result, where the second measurement result is used to feed back a change in CSI from the second device to the first device greater than a CSI change threshold a transmit beam.
  • a processor for generating a plurality of second frames is provided.
  • the transceiver is configured to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device the variation of the CSI to the second device; the transceiver is further configured to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate The change amount of the CSI from the second device to the first device; the transceiver is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used for feedback A plurality of transmit beams whose CSI variation from the second device to the first device is greater than a CSI variation threshold; the transceiver is further configured to transmit a second perceptual feedback frame, where the second perceptual feedback frame includes the first measurement result , and the first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than the CSI
  • the processor is configured to generate a plurality of second frames; the processor is further configured to generate a second perceptual feedback frame.
  • the present application provides a first device, the first device may exist in the form of a chip, and the structure of the first device includes an input and output interface and a processing circuit.
  • the input and output interface is used to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the second device.
  • the change amount of the CSI is also used to quasi-omnidirectionally receive multiple second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the A transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device;
  • the input and output interface is further configured to send a third frame, where the third frame includes a second measurement result, and the second measurement result is used to feed back a change in CSI from the second device to the first device that is greater than a CSI change threshold one of the transmit beams.
  • the processing circuit is configured to generate a plurality of first frames; the processing circuit is further configured to generate a third frame.
  • the input and output interface is used to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the first The variation of the CSI of the second device; the input and output interface is also used to receive multiple second frames quasi-omnidirectionally, and each second frame includes second indication information, and the second indication information is used to indicate the first device.
  • the input and output interface is also used to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used
  • the input and output interface is also used to receive a second sensory feedback frame, and the second sensory feedback frame includes the first A measurement result, where the first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than a CSI variation threshold.
  • the processing circuit is configured to generate a plurality of first frames; the processing circuit is further configured to generate a first perceptual feedback frame.
  • the present application provides a second device, the second device can exist in the form of a chip product, and the structure of the second device includes an input and output interface and a processing circuit.
  • the input and output interface is used to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device.
  • the change amount of CSI to the second device; the input and output interface is also used to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used for Feedback a transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device
  • the input and output interface is also used for receiving a third frame, the third frame includes a second measurement result, and the second measurement result is used to feed back the variation of the CSI from the second device to the first device is greater than the CSI A transmit beam with varying thresholds.
  • a processing circuit for generating a plurality of second frames.
  • the input and output interface is used for quasi-omnidirectionally receiving multiple first frames, each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first frame The change amount of the CSI from the device to the second device; the input and output interface is also used to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to indicate the first The device evaluates the amount of change in CSI from the second device to the first device; the input and output interface is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, the second measurement result A plurality of transmit beams used for feeding back the CSI variation from the second device to the first device that is greater than the CSI variation threshold; the input and output interface is also used for sending a second sensory feedback frame, the second sensory feedback frame includes A first measurement result, where the first measurement result is used to feed back a plurality of transmit beams whose CSI variation from the first device to the second device is greater than a
  • a processing circuit is used to generate a plurality of second frames; the processing circuit is also used to generate a second perceptual feedback frame.
  • the present application provides a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are executed on a computer, the computer is made to execute the above-mentioned first aspect or the above-mentioned second aspect. aspect, or the method of the above fifth aspect, or the above sixth aspect.
  • the present application provides a computer program product comprising program instructions, which, when run on a computer, enables the computer to execute the above-mentioned first aspect, or the above-mentioned second aspect, or the above-mentioned fifth aspect, or the above-mentioned sixth aspect method described in the aspect.
  • the traditional beamforming training mechanism in 802.11ay can be combined with WLAN sensing to realize perception and training of the beams used for perception while training the original communication beams, without the need to specially design the perception beams for perception and training.
  • the related process has less overhead and better compatibility.
  • FIG. 1 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an AP or STA provided by an embodiment of the present application.
  • 3a is a schematic diagram of a beamforming training process provided by an embodiment of the present application.
  • FIG. 3b is a schematic diagram of another beamforming training process provided by an embodiment of the present application.
  • 3c is a schematic diagram of beam directions in beamforming training provided by an embodiment of the present application.
  • FIG. 4a is a schematic time sequence diagram of beamforming training for sending a beacon frame provided by an embodiment of the present application
  • FIG. 4b is a schematic time sequence diagram of beamforming training for sending an SSW frame provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a radio frequency sensing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame format of a beacon frame provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frame format of an SSW frame in an ISS provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frame format of an SSW frame in the RSS provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frame format of an SSW feedback frame provided by an embodiment of the present application.
  • FIG. 10 is a schematic time sequence diagram of an SLS stage provided by an embodiment of the present application.
  • FIG. 11 is another schematic sequence diagram of an SLS stage provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a MID process in a radio frequency sensing method provided by an embodiment of the present application
  • FIG. 13 is a schematic diagram of a frame format of a BRP perception request element provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a frame format of a DMG beam refinement element provided by an embodiment of the present application.
  • FIG. 16 is a schematic time sequence diagram of a BRP stage provided by an embodiment of the present application.
  • FIG. 17 is another schematic flowchart of the radio frequency sensing method provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a frame format of a first perceptual feedback frame provided by an embodiment of the present application.
  • FIG. 19 is a schematic time sequence diagram of a radio frequency sensing method provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a first device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • the following describes the system architecture and/or application scenarios of the radio frequency sensing methods provided by the embodiments of the present application. It is understandable that the scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a radio frequency sensing method, which can modify the relevant frame structure and/or feedback process based on the beamforming training process in the 802.11ay standard, and can combine the traditional beamforming training mechanism in 802.11ay with WLAN sensing , realize the perception of single/multiple targets and train the beam for perception while carrying out the original communication beam training, no need to design related processes for perception and training of the perception beam, the overhead is small, and it has better compatibility .
  • the method can be applied to a wireless communication system, which can be a wireless local area network or a cellular network; the method can be implemented by a communication device in the wireless communication system or a chip or processor in the communication device.
  • the communication device may be an access point (access point, AP) device or a station (station, STA) device.
  • the access point device and the station device can be either single-link devices or multi-link devices.
  • FIG. 1 is a system architecture diagram provided by an embodiment of the present application.
  • the system architecture includes at least two WLAN devices (such as AP and STA in FIG. 1 ), wherein one WLAN device (such as AP) can perform beamforming training with another WLAN device (such as STA).
  • the target shown in FIG. 1 may be a moving object.
  • the WLAN device may support the 802.11 standard, and the 802.11 standard may include 802.11ay or 802.11ad, and may also include 802.11be, 802.11ax, 802.11ac and other standards.
  • the communication protocol may also include the next-generation 802.11 standard and the like.
  • the device implementing the method of the present application may be an AP or a STA in a WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point is a device with wireless communication functions that supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network. Of course, it can also communicate with other devices. Device communication capabilities.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station is a device with a wireless communication function, supports communication using the WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • FIG. 2 is a schematic structural diagram of an AP or a STA provided by an embodiment of the present application. As shown in FIG.
  • an AP or STA may include: an application (application) layer module, a transmission control protocol (transmission control protocol, TCP)/user datagram protocol (user datagram protocol, UDP) processing module, an internet protocol (internet protocol) protocol, IP) processing module, logical link control (logical link control, LLC) module, media access control (media access control, MAC) layer module, physical (physical, PHY) layer baseband module, radio frequency radio and antenna.
  • the AP or STA shown in FIG. 2 may be either a single-antenna structure or a multi-antenna structure, which is not limited in this embodiment of the present application.
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, televisions, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as augmented reality (AR), virtual reality (VR) and other wearable devices), Smart devices in smart office (such as printers, projectors, amplifiers, stereos, etc.), Internet of Vehicles devices in Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, Self-service cashier equipment, self-service ordering machines, etc.), as well as equipment for large-scale sports and music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • the beamforming training process in the 802.11ay standard is mainly divided into two stages: a sector-level sweep (SLS) stage and a beam refinement protocol (BRP) stage.
  • SLS sector-level sweep
  • BRP beam refinement protocol
  • Fig. 3a and Fig. 3b respectively show two procedures of beamforming training.
  • Fig. 3c shows a schematic diagram of beam directions of each frame in the interaction process in the beamforming training process shown in Figs. 3a and 3b.
  • the beamforming training process in the 802.11ay standard includes:
  • SLS phase Sector-level scanning phase
  • the sector-level scan phase includes four parts, namely the sender sector sweep (ISS), the responder sector sweep (RSS), and the sector sweep (SSW) feedback (SSW Feedback). ), and Sector Scan Acknowledgement (SSW ACK).
  • ISS sender sector sweep
  • RSS responder sector sweep
  • SSW sector sweep
  • SSW Feedback sector sweep
  • SSW ACK Sector Scan Acknowledgement
  • the initiator sector scan (ISS) is used to train the directional transmission beam of the initiator.
  • the initiator sends training data directionally with a beam of a certain width, and the responder receives the training data quasi-omnidirectionally.
  • Responder Sector Scanning (RSS), used to train the responder's directional transmit beam, the responder sends training data directionally with a certain width of the beam, and the training data contains the best transmission of the initiator in the previous stage (ie, the ISS stage).
  • Sector information at this time, the initiator receives training data quasi-omnidirectionally.
  • Sector scan feedback (SSW Feedback) is used for the initiator to feed back the best sending sector information of the responder in the previous stage (ie, the RSS stage).
  • the responder is in a quasi-omnidirectional receiving mode.
  • Sector scan acknowledgment (SSW ACK), which does not exist when sector-level scans are performed before the data transfer interval (DTI).
  • Sector-level scanning within the data transmission interval requires a sector scanning acknowledgment (SSW ACK) to confirm receipt of the SSW Feedback frame sent by the initiator.
  • training data in the ISS stage may refer to beacon frames or SSW frames
  • training data in the RSS stage may refer to SSW frames
  • BRP phase Beam refining phase
  • the beam refinement phase includes BRP establishment (also called initial setup), multiple sector ID detection (MID), beam combining (BC), and beam refinement transaction (BRT), etc.
  • BRP establishment also called initial setup
  • MID multiple sector ID detection
  • BC beam combining
  • BRT beam refinement transaction
  • the initialization setting ie, BRP establishment
  • the function of multi-sector detection is to train the optimal receiving beams of the initiator and the responder.
  • the training process is similar to the training process of the optimal transmitting beams (the aforementioned ISS phase and RSS phase), except that the training data is sent in a quasi-omnidirectional mode. , using directional mode to receive training data.
  • the training data in the MID stage refers to a BRP PPDU (Physical layer protocol data unit, physical layer protocol data unit).
  • the BRP PPDU includes a BRP frame and a training unit (training unit, TRN Unit).
  • the function of beam pairing is to pair the transmit and receive beams respectively trained in the sector-level scanning phase and the multi-sector detection phase to obtain the best pair of transmit and receive beams, so as to find the best directional communication link.
  • both sending and receiving training data are in directional mode.
  • After beam pairing at least one round of beam refinement is required to perform further beam refinement, so as to iteratively find more refined transmit and receive beam pairs and improve the quality of the communication link. It should be understood that the present application does not involve the beam thinning process, so the beam thinning process is not shown in FIGS. 3 a to 3 b .
  • the ISS phase of beamforming training can send either beacon (beacon) frames or sector sweep (SSW) frames.
  • the beamforming training process is located in one In different time intervals of the beacon interval (BI).
  • FIG. 4a is a schematic time sequence diagram of beamforming training for sending a beacon frame provided by an embodiment of the present application.
  • beacon transmission interval BTI
  • A-BFT association beamforming training
  • ATI announcement transmission interval
  • FIG. 4b is a schematic time sequence diagram of beamforming training for sending an SSW frame provided by an embodiment of the present application.
  • the beamforming training process sends SSW frames
  • its sector-level scanning process is performed within the data transmission interval, and is no longer performed synchronously with BTI and A-BFT.
  • the sector-level scanning process is started first, and then the beam refining process is performed.
  • the beam refining process at this time includes two stages: multi-sector detection and beam pairing.
  • BRP establishment also referred to as Initialization setting
  • the main purpose of the beamforming training process in the 802.11ay standard is to obtain the optimal communication beam through multiple beam scans.
  • the future 802.11 standard considers the introduction of WLAN sensing in the beamforming training mechanism, but how to combine the traditional beamforming training mechanism with WLAN sensing to perform WLAN sensing without affecting normal communication has become an urgent problem to be solved .
  • WLAN sensing technology can be roughly divided into two types, one is using radar technology, and the wireless device perceives and detects the target by sending radar signals; the other is to obtain channel characteristics at different times by measuring channel state information (CSI). change to perceive the detection target.
  • This application focuses on the way in which the detection target is perceived through CSI.
  • the embodiment of the present application provides a radio frequency sensing method, which performs sensing through changes in CSI values measured by scanning the same beam for multiple times, and modifies the relevant frame structure and feedback process based on the beamforming training process of the 802.11ay standard, so that the 802.11
  • the traditional beamforming training mechanism in ay is combined with WLAN sensing, so as to realize the perception of single/multiple targets and train the beam for perception while performing the original communication beam training, without the need for special perception and training of the perception beam Design related processes with less overhead and better compatibility.
  • Embodiment 1 describes how to design a relevant frame structure based on the beamforming training process of the 802.11ay standard when only a single optimal sensing beam needs to be fed back in the sensing scene to realize communication beam training and radio frequency sensing at the same time.
  • the second embodiment describes how to design the relevant frame structure and feedback process to simultaneously realize communication beam training and radio frequency sensing based on the beamforming training process based on the 802.11ay standard when a single or multiple optimal sensing beams are fed back in the sensing scene.
  • the first device in this application may represent an initiator, and the initiator may be either an AP in FIG. 1 or a STA, that is, the first device may be either an AP or a STA .
  • the second device in this application may represent a responder, and the responder may be either a STA in FIG. 1 or an AP, that is, the second device may be either a STA or an AP.
  • both the first device and the second device in this application support the 802.11 standard, such as the 802.11ay standard, and may also support other 802.11 standards, such as 802.11be, 802.11ax, or the next-generation standard of 802.11be.
  • the first embodiment of this application mainly introduces how to modify the relevant frame format in the beamforming training process based on the beamforming training process based on the 802.11ay standard when only a single optimal sensing beam needs to be fed back, so as to simultaneously Enables communication beam training and RF sensing.
  • the radio frequency sensing method provided in Embodiment 1 of the present application also includes the SLS stage and the BRP stage.
  • the SLS stage includes the ISS process, the RSS process, and the SSW feedback process
  • the BRP stage includes the MID process and the BC process.
  • FIG. 5 is a schematic flowchart of a radio frequency sensing method provided by an embodiment of the present application.
  • the ISS process includes steps S101 and S102, which can be used to train the best sensing transmit beam of the first device (or initiator);
  • the RSS process includes steps S103 and S104, which can be used to train the second device (or the initiator).
  • the best perceptual transmission beam of the responder and can be used to feed back the best perceptual transmission beam of the first device obtained by the ISS process;
  • the SSW feedback process includes steps S105 and S106, and can be used to feed back the best perceptual transmission beam obtained by the RSS process. .
  • the radio frequency sensing method shown in FIG. 5 includes but is not limited to the following steps:
  • the first device sends a plurality of first frames, each of which includes first indication information, where the first indication information is used to instruct the second device to evaluate the change of the channel state information CSI from the first device to the second device quantity.
  • the second device quasi-omnidirectionally receives multiple first frames.
  • the first device sends the first frame in a sector scanning manner
  • the second device receives the first frame quasi-omnidirectionally
  • the second device compares the changes in the CSI value of the same transmit beam of the first device when scanning multiple times to judge. Whether there is a moving target in the beam scanning area.
  • the second device records the transmitted beams scanned for the presence of moving objects in the area.
  • the first device sends the first frame in a sector scanning manner, which can be understood as the first device sends the first frame in a beam direction of a certain width each time, and a sector identifier is set in the first frame.
  • the (Sector ID) field and the directional multi-gigabit (directional multi-gigabit, DMG) antenna identification (DMG Antenna ID) field are respectively used to indicate the sending sector and the sending antenna of the first frame. It should also be understood that the sector identification field and the DMG antenna identification field may be used to uniquely identify a beam. Wherein, the same transmitting sector and the same transmitting antenna transmit (or scan) at least twice. Therefore, the first device sends multiple first frames.
  • the multiple first frames may be sent within one beacon interval (BI), or may be sent within multiple BIs. In other words, the first device can scan multiple laps in one BI; or the first device scans one lap in one BI, and scans multiple laps in multiple BIs.
  • BI beacon interval
  • each first frame includes first indication information, where the first indication information is used to instruct the second device (or the opposite end) to evaluate the amount of change in CSI from the first device to the second device, or to indicate The opposite end (here refers to the second device, or the responder) starts the sensing operation.
  • the first frame is a beacon frame
  • the first frame is a beacon frame
  • a new one can be added to the optional subelements (optional subelements) subfield of the enhanced directional multi-gigabit (EDMG) capability field of the beacon frame.
  • the element field is used to instruct to enable the sensing operation or instruct the second device (or the opposite end) to evaluate the amount of CSI change from the first device to the second device. That is, the above-mentioned first indication information may be located in the newly added element field of the optional sub-element field of the EDMG capability field of the beacon frame.
  • this newly added element is called sensing control elements (sensing control elements). It should be understood that this newly added element may also have other names, which is not limited in this application.
  • the first indication information is specifically carried in the perception control element of the beacon frame, and is used to instruct the peer (here, the second device or the responder) to start the perception operation or to evaluate the CSI of the first device to the second device. amount of change.
  • the subelement ID (subelement ID) of the perception control element is one of reserved values (5 to 255), such as 5.
  • the above-mentioned first indication information (that is, the perception control element) includes a CSI measurement request field and a CSI difference value calculation field.
  • the value of the CSI measurement request field is the first value, it is used to instruct the opposite end (here, the second device or the responder) to measure CSI; when the value of the CSI measurement request field is the second value, it is used to measure the CSI. Instructs the peer (here, the second device or the responder) not to measure CSI.
  • the CSI measurement request field of the beacon frame is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field, and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm
  • the CSI change threshold field is used to indicate the CSI change threshold.
  • the CSI evaluation algorithm is used to evaluate (or calculate) the CSI value
  • the CSI change threshold is used to compare with the change of the CSI value measured when the same beam is scanned to the same position multiple times to determine whether there is motion in the beam scanning area. target.
  • each field included in the foregoing first indication information may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame format of a beacon frame provided by an embodiment of the present application.
  • the frame body of the beacon frame includes an EDMG Capabilities field, and the optional subelements (optional subelements) subfield of the EDMG Capabilities field includes a perception control element.
  • the subelement ID (subelement ID) of the perception control element is one of the reserved values (5 to 255), such as subelement ID 5 in FIG. 6 . That is, when the sub-element of the optional sub-elements (optional subelements) sub-field is identified as a reserved value, it indicates that the optional sub-element is a perception control element.
  • the sensing control element includes a CSI Measurement Request (CSI Measurement Request) field, an Evaluation Algorithm (Evaluation Algorithm) field, a CSI Variation Threshold (CSI Variation Threshold) field, and a CSI Variation Calculation (CSI Variation Calculation) field ) field.
  • the length of the CSI measurement request field is 1 bit, and when the value of the CSI measurement request field is the first value, it is used to indicate that CSI measurement is enabled. It should be understood that the CSI measurement request field in the beacon frame is set to the first value.
  • the evaluation algorithm field has a length of 2 bits and is used to indicate the evaluation algorithm of the CSI.
  • the length of the CSI change threshold field is 2 bits, which is used to indicate the CSI change threshold.
  • the responder that is, the second device
  • the responder will store the transmit antenna ID and transmit sector ID corresponding to the transmit beam; on the contrary, when the change of the CSI value measured by multiple scans of the same transmit beam is less than or equal to the CSI change threshold , it means that there is no moving target in the beam scanning area.
  • the length of the CSI difference calculation field is 1 bit, which is used to indicate whether the opposite end performs CSI difference calculation.
  • the CSI difference calculation field When the CSI difference calculation field takes the value of the first value, it instructs the opposite end to perform CSI difference calculation; When the value of the difference calculation field is the second value, it indicates that the opposite end does not perform CSI difference calculation.
  • the first value may be 1 and the second value may be 0; or the first value may be 0 and the second value may be 1.
  • each field included in the perception control element in FIG. 6 may also have other names, which are not limited in this embodiment of the present application.
  • the CSI difference calculation field in the beacon frame sent for the first time by the same beam should be set to the second value, and the CSI difference calculation field in the beacon frame sent for the Nth time by the same beam may be set to the first value.
  • N is an integer greater than or equal to 2.
  • the CSI evaluation algorithm and/or the CSI change threshold may also be specified in the standard, and there is no need to indicate by carrying a field in the beacon frame.
  • the perceptual control element shown in FIG. 6 may not include the evaluation algorithm field and/or the CSI change threshold field.
  • the first frame is the SSW frame
  • the reserved subfield in the SSW feedback field of the SSW frame may be used to carry the above-mentioned first indication information, where the first indication information is used to indicate the opposite end (here refers to the second device). or responder) to initiate a sensing operation or to evaluate the change in CSI from the first device to the second device.
  • the first indication information includes a CSI measurement request field and a CSI difference calculation field.
  • the value of the CSI measurement request field is the first value, it is used to instruct the opposite end (here, the second device or the responder) to measure CSI; when the value of the CSI measurement request field is the second value, it is used to measure the CSI. Instructs the peer (here, the second device or the responder) not to measure CSI.
  • the CSI measurement request field of the SSW frame is set to the first value.
  • the CSI difference calculation field is used to indicate whether the second device calculates the CSI difference.
  • the first indication information further includes one or more of the following fields: an evaluation algorithm field, and a CSI change threshold field.
  • the evaluation algorithm field is used to indicate the CSI evaluation algorithm
  • the CSI change threshold field is used to indicate the CSI change threshold.
  • the CSI evaluation algorithm is used to calculate the CSI value
  • the CSI change threshold is used to compare with the change of the CSI value measured when the same beam scans the same position multiple times to determine whether there is a moving target (target) in the beam scanning area.
  • each field included in the foregoing first indication information may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frame format of an SSW frame in an ISS provided by an embodiment of the present application.
  • the SSW feedback field of the SSW frame includes three reserved subfields, two of which are 5 bits long (B11 to B15, and B17 to B21), and the other reserved subfields are 5 bits long.
  • the length of the field is 1 bit (B23).
  • the first reserved subfield (such as B17-B21 in FIG. 7 ) includes a 1-bit CSI measurement request field, a 2-bit evaluation algorithm field, and a 2-bit CSI change threshold field, and the second reserved subfield (B23) is a 1-bit CSI difference calculation field.
  • the value of the CSI measurement request field is the first value, it is used to indicate that CSI measurement is enabled. It should be understood that the CSI measurement request field in the SSW frame is set to the first value. Evaluation Algorithm field, used to indicate the evaluation algorithm of the CSI. The CSI change threshold field is used to indicate the CSI change threshold.
  • the change of the CSI value measured by multiple scans of the same transmit beam is greater than the CSI change threshold, it means that there is a moving target (target) in the beam scanning area, and the responder (that is, The second device) will store the transmit antenna ID and transmit sector ID corresponding to the transmit beam; on the contrary, when the change of the CSI value measured by multiple scans of the same transmit beam is less than or equal to the CSI change threshold, it means that the beam There are no moving objects in the scan area.
  • the CSI difference value calculation field is used to indicate whether the opposite end performs CSI difference value calculation.
  • the CSI difference value calculation field When the CSI difference value calculation field takes the value of the first value, it instructs the opposite end to perform CSI difference value calculation; when the CSI difference value calculation field takes When the value is the second value, it indicates that the opposite end does not perform CSI difference calculation.
  • the first value may be 1 and the second value may be 0; or the first value may be 0 and the second value may be 1.
  • the CSI difference calculation field in the SSW frame sent for the first time by the same beam should be set to the second value, and the CSI difference calculation field in the Nth SSW frame sent by the same beam may be set to the first value.
  • N is an integer greater than or equal to 2.
  • the CSI evaluation algorithm and/or the CSI change threshold may also be specified in the standard, and there is no need to indicate by carrying a field in the beacon frame.
  • the first reserved subfield (B17-B21) shown in FIG. 7 may not include the evaluation algorithm field and/or the CSI change threshold field, and the remaining bits still represent reservation.
  • the second device sends a plurality of second frames, each of which includes a first measurement result and second indication information, and the first measurement result is used to feed back a change in CSI from the first device to the second device that is greater than the CSI One transmission beam of the change threshold, and the second indication information is used to instruct the first device to evaluate the change amount of the CSI from the second device to the first device.
  • the first device quasi-omnidirectionally receives multiple second frames.
  • the second device sends the second frame in a sector scanning manner
  • the first device receives the second frame quasi-omnidirectionally
  • the first device compares the change of the CSI value when the same transmit beam of the second device is scanned multiple times to Determine whether there is a moving target in the beam scanning area.
  • the second device records the transmitted beams scanned for the presence of moving objects in the area.
  • the second frame is an SSW frame. It should be understood that, in the embodiment of the present application, the second device sends the second frame in a sector scanning manner, which can be understood as the second device sends the second frame in a beam orientation of a certain width each time, and the Sector ID field is set in the second frame.
  • the second device may send multiple second frames, wherein the multiple second frames may be sent within one beacon interval (BI) or within multiple BIs.
  • the second device can scan multiple laps in one BI; or the second device can scan one lap in one BI, and scan multiple laps in multiple BIs.
  • each second frame includes the first measurement result and the second indication information.
  • the first measurement result is used to feed back a transmit beam whose CSI variation from the first device to the second device is greater than the CSI variation threshold. That is, the first measurement result is used to feed back the result evaluated by the second device, or is used to feed back the perception measurement result in the ISS stage (for example, the antenna identifier and sector identifier corresponding to the moving target).
  • the second indication information is used to instruct the first device (or the peer end) to evaluate the amount of CSI change from the second device to the first device, or to instruct the peer end (here, the first device, or the initiator) to start the sensing operation .
  • the above-mentioned second frame is an SSW frame
  • the above-mentioned second indication information may be located in a reserved subfield of the SSW feedback field of the SSW frame.
  • the second indication information may include a CSI difference calculation field.
  • the CSI difference calculation field is used to indicate whether the first device calculates the CSI difference. When the value of the CSI difference calculation field is the first value, it is used to instruct the opposite end (the first device or the initiator) to calculate the CSI difference. ; When the value of the CSI difference value calculation field is the second value, it is used to indicate that the opposite end (the first device or the initiator) does not calculate the CSI difference value.
  • the first value can be 1 and the second value is 0; or, the first value is 0 and the second value is 1. It should be understood that the second indication information may not include the evaluation algorithm field and the CSI change threshold field, that is, the second device does not need to inform the first device, the CSI evaluation algorithm and the CSI change threshold.
  • the second indication information may further include a CSI measurement request field.
  • the value of the CSI measurement request field is the first value, it is used to instruct the opposite end (here, the first device or the initiator) to measure CSI; when the value of the CSI measurement request field is the second value, it is used to measure the CSI. The opposite end (here, the first device or the initiator) is instructed not to measure CSI.
  • the second indication information includes a CSI measurement request field, the CSI measurement request field of the SSW frame is set to the first value.
  • the length of the CSI measurement request field is 1 bit.
  • the above-mentioned second frame is an SSW frame
  • the above-mentioned first measurement result may be located in a signal-to-noise ratio (signal-to-noise ratio, SNR) report subfield of the SSW feedback field of the SSW frame.
  • the first measurement result includes a first antenna identifier and a first sector identifier, and the beam determined by the first antenna identifier and the first sector identifier is the same transmit beam in all transmit beams of the first device. Transmit beams whose CSI difference between (or two consecutive) CSI measurements is greater than the CSI change threshold.
  • the first antenna identifier and the first sector identifier can also be understood as The transmitting antenna identifier and the transmitting sector identifier of the initiator (ie, the first device) corresponding to the moving target.
  • the first antenna identifier may be a transmit beam with the largest CSI difference, or may be any one of multiple transmit beams with a CSI difference greater than the CSI change threshold, or may be the first CSI difference greater than Transmit beam for CSI change threshold. It should also be understood that the beam determined by the first antenna identifier and the first sector identifier can be used as the best transmit beam of the first device in the perception scenario.
  • the first device sector scans twice, that is, the first frame is sent twice using the same transmit beam at different times.
  • the second device is based on the first frame received twice before and after on the same transmit beam (it is determined by the Sector ID field and the DMG Antenna ID field in the first frame whether the first frames received at different times are sent by the same transmit beam).
  • Two CSI values are obtained by measuring one frame, and the difference (or the absolute value of the difference) between the two CSI values is calculated according to the indication of the first frame sent for the second time on the transmit beam, and the difference is compared with The size between the CSI change thresholds.
  • the second device feeds back to the first device the antenna identifier and sector identifier corresponding to the beam with the largest CSI difference in the SNR report subfield of the SSW feedback field of the SSW frame.
  • the second frame further includes third indication information, which is used to indicate whether the second frame includes the first measurement result, or is used to indicate that the meaning of the SNR report subfield is to indicate the SNR of the optimal beam for communication, Again, the first measurement result is indicated.
  • the second frame is an SSW frame
  • the third indication information is located in a reserved subfield of the SSW feedback field of the SSW frame.
  • FIG. 8 is a schematic diagram of a frame format of an SSW frame in RSS provided by an embodiment of the present application.
  • the SSW feedback field of the SSW frame includes an 8-bit SNR report subfield and a 5-bit (B17-B21) reserved subfield.
  • the reserved subfield includes a 1-bit perceptual extension field, a 1-bit CSI difference calculation field, and the remaining 3 bits still indicate reservation.
  • the CSI difference value calculation field is used to indicate whether the opposite end (the first device or the initiator) performs CSI difference value calculation.
  • the CSI difference value calculation field takes the value of the first value, it indicates whether the opposite end (the first device or the initiator) ) to perform CSI difference calculation; when the value of the CSI difference calculation field is the second value, the opposite end (the first device or the initiator) is instructed not to perform CSI difference calculation.
  • the value of the perceptual extension field (the above-mentioned third indication information) is the first value, it is used to indicate that the SSW frame includes the first measurement result, or it is used to indicate that the meaning of the SNR report subfield in the SSW frame is to indicate that the communication is the best SNR of the beam.
  • the value of the perceptual extension field (the above-mentioned third indication information) is the second value, it is used to indicate that the first measurement result is not included in the SSW frame, or the meaning of the SNR report subfield in the SSW frame is to indicate that the first measurement result is not included in the SSW frame.
  • a measurement result (first antenna ID and first sector ID).
  • the SNR report subfield includes a 2-bit target antenna identification (Target Antenna ID) field and a 6-bit target sector (Target ID) field. Sector ID) identification field.
  • the target antenna identification field is used to indicate the first antenna identification
  • the target sector identification field is used to indicate the first sector identification.
  • the perceptual extension field (third indication information) is set to the first value.
  • the first value may be 1 and the second value may be 0; or the first value may be 0 and the second value may be 1.
  • the CSI difference calculation field in the SSW frame sent for the first time by the same beam should be set to the second value, and the CSI difference calculation field in the Nth SSW frame sent by the same beam may be set to the first value.
  • N is an integer greater than or equal to 2.
  • the fields included in the SNR report subfield and the reserved field in the SSW feedback field of the SSW frame shown in FIG. 8 may also have other names, which are not limited in this embodiment of the present application.
  • the first device sends a third frame, where the third frame includes a second measurement result, where the second measurement result is used to feed back a transmission beam whose CSI variation from the second device to the first device is greater than a CSI variation threshold.
  • the second device receives the third frame.
  • the first device transmits the third frame by using the optimal communication transmission beam obtained by training in the ISS stage, and the second device receives the third frame quasi-omnidirectionally.
  • the second device may reply to the SSW-Ack frame.
  • the third frame is the SSW feedback frame.
  • the third frame includes a second measurement result, which is used to feed back the second device to a transmit beam whose CSI variation is greater than the CSI variation threshold from the second device. That is to say, the second measurement result is used to feed back the result evaluated by the first device, or is used to feed back the perception measurement result in the RSS stage (for example, the antenna identifier and sector identifier corresponding to the moving target).
  • the above-mentioned third frame is an SSW feedback frame
  • the above-mentioned second measurement result may be located in the SNR report subfield of the SSW feedback field of the SSW feedback frame.
  • the second measurement result includes a second antenna identification and a second sector identification, and the beams determined by the second antenna identification and the second sector identification are the same transmission beams of all transmission beams of the second device that have been used twice. Transmit beams whose CSI difference between (or two consecutive) CSI measurements is greater than the CSI change threshold.
  • the second antenna identifier and the second sector identifier can also be understood as The transmitting antenna identifier and the transmitting sector identifier of the responder (that is, the second device) corresponding to the moving target.
  • the second antenna identifier and The beam determined by the second sector identifier may be the one transmit beam with the largest CSI difference, or may be any one of multiple transmit beams with the CSI difference greater than the CSI change threshold, or may be the first CSI difference greater than the CSI Transmit beams with varying thresholds. It should also be understood that the beam determined by the second antenna identifier and the second sector identifier can be used as the best transmit beam of the second device in the perception scenario.
  • the second device sector scans twice, that is, the second frame is sent twice using the same transmit beam at different times.
  • the first device is based on the first and second times received on the same transmit beam (determined by the Sector ID field and the DMG Antenna ID field in the second frame whether the second frames received at different times are sent by the same transmit beam).
  • Two CSI values are obtained by measuring two frames, and the difference (or the absolute value of the difference) between the two CSI values is calculated according to the indication of the second frame sent for the second time on the transmission beam, and the difference is compared with The size between the CSI change thresholds.
  • the first device feeds back to the second device the antenna identifier and sector identifier corresponding to the beam with the largest CSI difference in the SNR report subfield of the SSW feedback field of the SSW feedback frame.
  • the third frame further includes fourth indication information, which is used to indicate whether the third frame includes the second measurement result, or is used to indicate that the meaning of the SNR report subfield is to indicate the SNR of the optimal beam for communication, Again, the second measurement result is indicated.
  • the third frame is an SSW feedback frame, and the fourth indication information is located in a reserved subfield of the SSW feedback field of the SSW feedback frame.
  • the above-mentioned third frame may further include a CSI difference value calculation field, which is used to indicate whether the second device calculates a CSI difference value.
  • the third frame is an SSW feedback frame, and the CSI difference calculation field is located in a reserved field of the SSW feedback field of the SSW feedback frame.
  • the value of the CSI difference value calculation field is the first value, it is used to instruct the opposite end (the second device or the responder) to calculate the CSI difference value; when the value of the CSI difference value calculation field is the second value, it is used to calculate the CSI difference value.
  • the first value can be 1 and the second value is 0; or, the first value is 0 and the second value is 1. It should be understood that, in the embodiment of the present application, the CSI difference value calculation field of the SSW feedback frame is set to the second value.
  • FIG. 9 is a schematic diagram of a frame format of an SSW feedback frame provided by an embodiment of the present application.
  • the SSW feedback field of the SSW feedback frame includes an 8-bit SNR report subfield and a 5-bit (B17-B21) reserved subfield.
  • the reserved subfield includes a 1-bit perceptual extension field, a 1-bit CSI difference calculation field, and the remaining 3 bits still indicate reservation.
  • the CSI difference calculation field is used to indicate whether the opposite end (the second device or the responder) performs CSI difference calculation. ) to perform CSI difference calculation; when the value of the CSI difference calculation field is the second value, the opposite end (the second device or the responder) is instructed not to perform CSI difference calculation.
  • the CSI difference calculation field of the SSW feedback frame is set to the second value.
  • the value of the perceptual extension field (the fourth indication information above) is the first value, it is used to indicate that the SSW feedback frame includes the second measurement result, or it is used to indicate that the meaning of the SNR report subfield in the SSW feedback frame is to indicate that the communication SNR of the best beam.
  • the value of the perceptual extension field (the above fourth indication information) is the second value, it is used to indicate that the first measurement result is not included in the SSW feedback frame, or it is used to indicate that the meaning of the SNR report subfield in the SSW feedback frame is Indicates the second measurement result (second antenna identification and second sector identification).
  • the SNR report subfield includes a 2-bit target antenna identification (Target Antenna ID) field and a 6-bit target sector (Target ID) field. Sector ID) identification field.
  • the target antenna identification field is used to indicate the second antenna identification
  • the target sector identification field is used to indicate the second sector identification.
  • the perceptual extension field is set to the first value.
  • the first value may be 1 and the second value may be 0; or the first value may be 0 and the second value may be 1.
  • the fields included in the SNR report subfield and the reserved field in the SSW feedback field of the SSW feedback frame shown in FIG. 9 may also have other names, which are not limited in this embodiment of the present application.
  • the embodiment of the present application performs sensing through changes in CSI values measured by scanning the same beam multiple times, and modifies the relevant frame structure in the SLS stage to enable sensing operations and feedback sensing measurement results. It can realize the perception of a single moving target and train the beam for perception while the original communication beam is trained. There is no need to design related processes for perception and training of the perception beam, the overhead is small, and it has better compatibility.
  • FIG. 10 is a schematic sequence diagram of the SLS stage provided by the embodiment of the present application.
  • the initiator Initiator
  • the responder Responder
  • the responder evaluates the change in CSI from the Initiator to the Responder
  • the responder Responder quasi-omnidirectional reception, Responder comparison
  • the change of the CSI value when the same beam is scanned multiple times is used to determine whether there is a moving target in the beam scanning area.
  • the Responder sends an SSW frame directionally to instruct the initiator (Initiator) to also perform the corresponding sensing operation (or the Initiator evaluates the change of CSI from the Responder to the Initiator), the Initiator receives omnidirectionally, and sends the initiator to the sector scan (Initiator Transmit Sector
  • the measurement result including the first antenna identifier and the first sector identifier obtained in the Sweep, I-TXSS) process is carried in the SSW frame for feedback.
  • the initiator feeds back the measurement results (including the second antenna identifier and the second sector identifier) obtained during the process of the responder sending a sector scan (Responder Transmit Sector Sweep, R-TXSS) by sending an SSW feedback frame.
  • the frame format of each process in the SLS phase refers to the foregoing description, and is not repeated here.
  • FIG. 11 is another schematic sequence diagram of the SLS stage provided by the embodiment of the present application.
  • the initiator Initiator
  • the responder Responder
  • the responder evaluates the change in CSI from the Initiator to the Responder
  • the responder Responder quasi-omnidirectional reception, Responder comparison
  • the change of the CSI value when the same beam scans the same position multiple times is used to determine whether there is a moving target in the beam scanning area.
  • the Responder directionally sends the SSW frame to instruct the initiator (Initiator) to also perform the corresponding sensing operation (or the Initiator evaluates the change of CSI from the Responder to the Initiator), the Initiator receives omnidirectionally, and uses the measurement results obtained in the I-TXSS process (including The first antenna identifier and the first sector identifier) are carried in the SSW frame for feedback. Similarly, the Initiator feeds back the measurement results (including the second antenna identifier and the second sector identifier) obtained during the R-TXSS process by sending the SSW feedback frame. The Responder receives quasi-omnidirectionally and sends an SSW-Ack frame to confirm that the SSW feedback frame has been received.
  • the frame format of each process in the SLS phase refers to the foregoing description, and is not repeated here.
  • FIG. 10 the main difference between FIG. 10 and FIG. 11 is whether the ISS (or I-TXSS) process initiator sends the beacon frame or the SSW frame.
  • the radio frequency sensing method provided by this embodiment of the present application further includes a BRP stage.
  • the BRP stage in the method shown in FIG. 5 may be the same as the BRP stage of beamforming training in the 802.11ay standard.
  • the radio frequency sensing method provided in the embodiment of the present application is only applied to the SLS stage in the beamforming training process, and the BRP stage in the beamforming training process does not change.
  • the radio frequency sensing method provided by the embodiment of the present application can obtain the optimal transmit beam of the sender and receiver (initiator and responder) in the sensing scene, but cannot obtain the best receive beam of the sender and receiver (initiator and responder) in the sensing scene and optimal transmit and receive beams.
  • the interaction process of the BRP stage in the method shown in FIG. 5 is the same as the interaction process of the BRP stage in the beamforming training of the 802.11ay standard, and the frame formats thereof are different.
  • the BRP stage includes the MID process and the BC process.
  • the BRP stage in FIG. 5 will be described in detail below.
  • FIG. 12 is a schematic flowchart of the MID process in the radio frequency sensing method provided by the embodiment of the present application. As shown in Figure 12, the MID process of the radio frequency sensing method includes but is not limited to the following steps:
  • the first device quasi-omnidirectionally transmits the first beam refinement physical layer protocol data unit BRP PPDU multiple times, where the first BRP PPDU is used to instruct the second device to evaluate the change amount of the channel state information CSI from the first device to the second device .
  • the second device receives the first BRP PPDU multiple times.
  • the first device quasi-omnidirectionally sends the first BRP PPDU multiple times (one first BRP PPDU is sent each time, and each first BRP PPDU includes a first BRP frame and a training unit (TRN Unit)), and the first BRP PPDU is sent.
  • the second device receives the first BRP PPDU in a sector scanning manner, and the second device compares the change of the CSI value when the same receiving beam receives the first BRP PPDU multiple times to determine whether there is a moving target in the beam scanning area.
  • the second device records the received beams scanned to the presence of moving objects in the area.
  • the multiple sending of the first device may be within one BI, or may be within multiple BIs.
  • the second device receives the first BRP PPDU in a sector scanning mode
  • the second device receives the first BRP PPDU in a beam polling mode, wherein the first BRP PPDU is received in a beam orientation with a certain width each time.
  • the same receiving beam of the second device needs to be received (or scanned) at least twice. Therefore, the first device will send the first BRP PPDU multiple times, and the first BRP frame in the first BRP PPDU is used to instruct the second device (or the opposite end) to evaluate the change in CSI from the first device to the second device, or It is used to instruct the peer (here, the second device or the responder) to start the sensing operation.
  • the first BRP PPDU adds an element field to enable the response of the responder (that is, the second device). Sensing receive beam training, this new element is called BRP Sensing Request element in this application. It should be understood that this newly added element may also have other names, which are not limited in this application.
  • the first BRP PPDU includes a BRP-aware request element, where the BRP-aware request element is used to instruct the second device (or the opposite end) to evaluate the amount of change in CSI from the first device to the second device, or to instruct the opposite end (here refers to the second device or the responder) to start the sensing operation.
  • the BRP-aware request element is used to instruct the second device (or the opposite end) to evaluate the amount of change in CSI from the first device to the second device, or to instruct the opposite end (here refers to the second device or the responder) to start the sensing operation.
  • the 802.11ay standard only defines elements whose element IDs are 0 to 11, and element IDs 12 and the following represent reserved values. Therefore, the element identifier (Element ID) of the BRP-aware request element is a reserved value, such as 12.
  • the BRP Sensing Request element includes a CSI measurement request field and a beam scanning lap field.
  • the value of the CSI measurement request field is the first value, it is used to instruct the opposite end (here, the second device or the responder) to measure CSI; when the value of the CSI measurement request field is the second value, it is used to measure the CSI. Instructs the peer (here, the second device or the responder) not to measure CSI.
  • the CSI measurement request field of the first BRP PPDU is set to the first value.
  • the beam scanning circle number field is used to indicate the receiving beam scanning circle number of the opposite end (here, the second device or the responder).
  • the BRP sensing request element further includes one or more of the following fields: a sender sensing sector identification field, a sender sensing antenna identification mask field, a CSI change threshold field, and an evaluation algorithm field.
  • the transmitting end sensing sector identification field and the transmitting end sensing antenna identification mask field are used to jointly indicate the transmit sector and transmit antenna of the current BRP frame.
  • the CSI change threshold field is used to indicate the CSI change threshold.
  • the Evaluation Algorithm field is used to indicate the evaluation algorithm of the CSI.
  • FIG. 13 is a schematic diagram of a frame format of a BRP perception request element provided by an embodiment of the present application.
  • a new BRP Sensing Request element whose element identifier is a reserved value (such as 12) is added.
  • the BRP sensing request element includes the Sensing TX Sector ID field of the sender, the Sensing TX Antenna ID Mask field of the sender, the CSI Measurement Request field, and the number of beam scanning turns. (Number of beam sweep cycles) field, CSI Variation Threshold (CSI Variation Threshold) field, and Evaluation algorithm (Evaluation algorithm) field.
  • TX indicates a transmitting end
  • RX indicates a receiving end
  • the sender refers to the party that sends the radio frame in this interaction
  • the receiver refers to the party that receives the radio frame in this interaction.
  • the sender is not equivalent to the initiator, and the receiver is not equivalent to the responder.
  • the Sensing TX Sector ID field indicates the sector identifier that the sender needs to train in the sensing scene.
  • the Sensing TX Sector ID field is set to quasi-omni.
  • the Sensing TX Antenna ID Mask field indicates the bitmap of the antenna that the sender needs to train in the sensing scene.
  • the Sensing TX Sector ID field and the Sensing TX Antenna ID Mask field are used to jointly indicate the transmit sector and transmit antenna of the currently transmitted BRP frame.
  • the CSI Measurement Request field indicates whether the opposite end (here, the second device or the responder) measures CSI or whether to enable CSI measurement.
  • the opposite end here, the second device or the responder
  • the CSI Measurement Request field indicates whether the opposite end (here, the second device or the responder) measures CSI or whether to enable CSI measurement.
  • the value of the CSI measurement request field is the first value
  • the opposite end here, the second device or the responder
  • TRN Unit Training unit
  • the Evaluation algorithm field is used to indicate the evaluation algorithm of the CSI.
  • the CSI evaluation algorithm is used to evaluate (or calculate) the CSI value.
  • the Number of beam sweep cycles field indicates how many periodic scans the peer (here, the second device or the responder) needs to perform (or the number of scan cycles of the receiving beam of the peer), that is, how many times the same sector of the same antenna needs to be scanned to receive the first BRP PPDU quasi-omnidirectionally sent by the sender, stop scanning and perform CSI difference calculation after reaching this number of times.
  • the value of the Number of beam sweep cycles field is 0, it means 2 cycles or 2 times; when the value of the Number of beam sweep cycles field is 1, it means 3 cycles or 3 times.
  • the receiving beam of the receiving end scans at least two circles, so that there are two different CSI values for comparing and obtaining the beam information corresponding to the moving target.
  • the CSI Variation Threshold field is used to indicate the CSI variation threshold. If the CSI difference between the CSI values measured multiple times on the same receiving beam is greater than the CSI change threshold, it means that there is a moving target in the beam scanning area, and the receiving end will receive the receiving antenna ID and the receiving sector corresponding to the receiving beam. ID is stored. Conversely, if the CSI difference between the CSI values measured multiple times on the same receiving beam is less than or equal to the CSI change threshold, it means that there is no moving object in the beam scanning area. It can be seen that steps S201 and S202 can be used to train the second device (or the responder) for the optimal perception of the receiving beam.
  • the sender involved in the BRP perception request element of the first BRP PPDU is the first device (or initiator), the receiver is the second device (or responder), and the opposite end is also the second device (or responder) .
  • the BRP-aware request element shown in Figure 13 also includes one or more of the following fields:
  • Element ID, Length, and Element ID Extension are general frame formats of the Element frame.
  • the Element ID is set to a reserved value of 12, which is used to represent the BRP Sensing Request element .
  • L-RX used to indicate the number of TRN-Units requested by the STA for beam training at the receiver when beam training is performed as part of the beam refinement process.
  • the number of TRN Units is equal to the L-RX value multiplied by 4.
  • the L-RX field can be used in the BRP setup process, and the value indicated by it can be used in the MID process. But the L-RX field is not mandatory in the MID process.
  • L-TX-RX It is used to indicate the number of consecutive TRN Units in which the transmit antenna weight vector (AWV) maintains the same AWV configuration during the transmit and receive beam refinement process, and is reserved or unused in the MID phase.
  • AVG transmit antenna weight vector
  • Requested TRN-Unit P (Requested TRN-Unit P): used to indicate the number of TRN subfields requesting to use the same AWV at the beginning of one TRN Unit.
  • the AWV is the same as the AWV when the preamble (preamble) and the data (Data) field of a physical protocol data unit (PPDU) are transmitted.
  • the Requested TRN-Unit P field can be used in the BRP setup process, and the value indicated by it can be used in the MID process. However, the Requested TRN-Unit P field is not mandatory in the MID process.
  • Requested EDMG TRN-Unit M (Requested EDMG TRN-Unit M): The value of this field is incremented by 1 to indicate the requested number of TRN subfields (subfields) in a TRN-Unit that can be used for TX (initiator) training. Stage reserved or unused.
  • the Requested EDMG TRN-Unit M field can be used in the BRP setup process, and the value indicated by it can be used in the MID process. However, the Requested EDMG TRN-Unit M field is not mandatory in the MID process.
  • Requested EDMG TRN-Unit N Indicates the requested number of consecutive TRN subfields transmitted using the same AWV within EDMG TRN-Unit M, reserved or unused in the MID phase.
  • the Requested EDMG TRN-Unit N field can be used in the BRP setup process, and the value indicated by it can be used in the MID process. However, the Requested EDMG TRN-Unit N field is not mandatory in the MID process.
  • BRP-TXSS Beam Refinement Transmit Sector Scan
  • Sensing-TXSS-INITIATOR If the BRP-TXSS field is equal to 1, the Sensing-TX-INITIATOR field is set to 1 to indicate that the sender of the BRP frame is the initiator of the BRP TXSS process, Sensing The -TXSS-INITIATOR field is set to 0 to indicate that the sender of the BRP frame is the responder of the BRP TXSS. When the BRP-TXSS field is 0, the Sensing-TXSS-INITIATOR field is a reserved field.
  • TXSS-PACKETS If both the BRP-TXSS field and the Sensing-TXSS-INITIATOR field are equal to 1, the value of the TXSS-PACKETS field plus 1 indicates the number of EDMG BRP-TX PPDUs required by the initiator for sending sector training. If the BRP-TXSS field is equal to 1 and the Sensing-TXSS-INITIATOR field is equal to 0, and the process includes a Responder BRP TXSS, then the value of the TXSS-PACKETS field plus 1 indicates the EDMG BRP-TX required by the Responder for transmit sector training The number of PPDUs. When the BRP-TXSS field is equal to 0, the TXSS-PACKETS field is a reserved field.
  • TXSS-MIMO If the BRP-TXSS field and the Sensing-TXSS-INITIATOR field are both equal to 1, then the TXSS-MIMO field is set to 1 to indicate that the requested BRP TXSS is MIMO BRP TXSS, and the TXSS-MIMO field is set to 0 to indicate the requested BRP TXSS is SISO BRP TXSS. If neither the BRP-TXSS field nor the TXSS-INITIATOR field is equal to 1, the TXSS-MIMO field is reserved.
  • Sensing BRP subtraction counter used to indicate how many BRP frames are still to be sent after the current BRP frame.
  • Comeback Delay Used to indicate that the station may not be ready to give feedback after beam refinement protocol interframe space (BRPIFS). The value in this field indicates when the device is giving feedback.
  • BRPIFS beam refinement protocol interframe space
  • Number of self-beam-sweep cycles (Number of self-beam-sweep cycles), used to indicate the number of scan cycles of the transmit beam at the transmitter, reserved or unused in the MID phase.
  • the second device quasi-omnidirectionally transmits a second BRP PPDU multiple times, where the second BRP PPDU is used to instruct the first device to evaluate the amount of change in CSI from the second device to the first device.
  • the first device receives the second BRP PPDU multiple times.
  • the second device quasi-omnidirectionally sends the second BRP PPDU multiple times (one second BRP PPDU is sent each time, and each second BRP PPDU includes a second BRP frame and a training unit (TRN Unit)), and the first A device receives the second BRP PPDU in a sector scanning manner, and the first device compares the change of the CSI value when the same receiving beam receives the second BRP PPDU multiple times to determine whether there is a moving target in the beam scanning area.
  • the first device records the received beams scanned to the presence of moving objects in the area.
  • the multiple sending of the second device may be within one BI, or may be within multiple BIs.
  • the first device receives the second BRP PPDU in a sector scanning manner
  • the first device receives the second BRP PPDU in a beam polling manner, wherein each time the second BRP PPDU is received with a beam orientation of a certain width.
  • the same receiving beam of the first device needs to be received (or scanned) at least twice. Therefore, the second device will send the second BRP PPDU multiple times, and the second BRP frame in the second BRP PPDU is used to instruct the first device (or the opposite end) to evaluate the amount of CSI change from the second device to the first device, or It is used to instruct the opposite end (here, the first device or the initiator) to start the sensing operation.
  • the second BRP PPDU is also based on the frame format of the original BRP frame (that is, the BRP frame sent by the responder in the MID phase in the 802.11ay standard), and an element field is added to enable the initiator (that is, the first device)
  • This new element is called BRP Sensing Request element (BRP Sensing Request element) in this application. It should be understood that this newly added element may also have other names, which are not limited in this application.
  • the second BRP PPDU includes a BRP-aware request element, where the BRP-aware request element is used to instruct the first device (or the opposite end) to evaluate the amount of CSI change from the second device to the first device, or to indicate the opposite end (here refers to the first device or the initiator) to start the sensing operation.
  • the element identifier (Element ID) of the BRP-aware request element is a reserved value, such as 12.
  • the frame format of the second BRP PPDU is the same as that of the foregoing first BRP PPDU.
  • the difference between the second BRP PPDU and the aforementioned first BRP PPDU is that the sender is different (the second BRP PPDU is sent by the responder (ie, the second device), and the first BRP PPDU is sent by the initiator (ie, the first device));
  • the processes are different (the second BRP PPDU is in the process of training the initiator's receiving beam, and the first BRP PPDU is in the process of training the responder's receiving beam).
  • steps S203 and S204 the sending end is the second device (or the responder), the receiving end is the first device (or the initiator), and the opposite end is also the first device (or the initiator). It should also be understood that steps S203 and S204 are used to train the first device (or the initiator) for an optimal sensing receive beam.
  • the first device sends a third BRP frame, where the third BRP frame is used to feed back the first number of receive beams trained by the first device in the beam pairing phase, where the first number of receive beams is one of all receive beams of the first device The number of receive beams where the CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold.
  • the second device receives the third BRP frame.
  • the first device sends a third BRP frame to the second device, using the directional multi-gigabit carried in the third BRP frame.
  • the (directional multi-gigabit, DMG) beam refining element feeds back the evaluation result of the first device itself.
  • the third BRP frame includes a DMG beam refinement element (DMG Beam Refinement element), which is used to feed back the number of first receive beams that the first device needs for beam training in the beam pairing (BC) phase (ie, the next phase).
  • DMG Beam Refinement element DMG Beam Refinement element
  • the first number of receive beams is the number of receive beams whose CSI difference between any two (or two adjacent) CSI measurements on the same receive beam is greater than the CSI change threshold among all receive beams of the first device.
  • the DMG beam refinement element is used to feed back the number of receive beams that need to be trained in the next stage (ie, the BC stage), which can be indicated by the Number of Sensing Beams field in the DMG beam refinement element.
  • the element identifier of the DMG beam refinement element is 5.
  • the change of the CSI value measured when the same receiving beam is scanned multiple times is greater than the CSI change threshold, it means that there is a moving target (target) in the beam scanning area; so the first number of receiving beams can also be understood as the first How many receive beams the device has to perceive moving objects.
  • FIG. 14 is a schematic diagram of a frame format of a DMG beam refinement element provided by an embodiment of the present application.
  • the DMG beam refinement element includes a Sensing FBCK-TYPE field
  • the Sensing FBCK-TYPE field includes a Number of Sensing Beams field, which is used for feedback from the training in the MID stage.
  • the number of receiving beams of the initiator/responder used for beam training in the BC phase here is the above-mentioned first number of receiving beams).
  • the Sensing FBCK-TYPE field also includes a Target Sector ID Order Present field, a Sensing Link Type field, and a Sensing Antenna Type field, which are described in the following It is used in the MIMO training phase, and reserved bits or not used in the MID phase.
  • the DMG beam refinement element also includes a Sensing Feedback Request (Sensing FBCK-REQ) field, which is also used in the MIMO training phase, and is reserved or not used in the MID phase.
  • each field included in the DMG beam refinement element in FIG. 14 may also have other names, which are not limited in this embodiment of the present application.
  • fields in FIG. 14 that are reserved or unused at the MID stage may not be included in the DMG beam refinement element.
  • the second device sends a fourth BRP frame, where the fourth BRP frame is used to feed back the number of second receive beams trained by the second device in the beam pairing phase, where the number of second receive beams is one of all receive beams of the second device The number of receive beams where the CSI difference between any two CSI measurements on the same receive beam is greater than the CSI change threshold.
  • the first device receives the fourth BRP frame.
  • the second device sends a fourth BRP frame to the first device, and feeds back the evaluation result of the second device by using the DMG beam refinement element carried in the fourth BRP frame.
  • the fourth BRP frame includes a DMG beam refinement element (DMG Beam Refinement element) for feeding back the number of second receive beams that the second device needs for beam training in the beam pairing (BC) phase (ie, the next phase).
  • the second number of receive beams is the number of receive beams whose CSI difference between any two (or two adjacent) CSI measurements on the same receive beam is greater than the CSI change threshold among all receive beams of the second device.
  • the DMG beam refinement element is used to feed back the number of receive beams that need to be trained in the next stage (ie, the BC stage), which can be indicated by the Number of Sensing Beams field in the DMG beam refinement element.
  • the element identifier of the DMG beam refinement element is 5.
  • the change of the CSI value measured when the same receiving beam is scanned multiple times is greater than the CSI change threshold, it means that there is a moving target (target) in the beam scanning area; so the first number of receiving beams can also be understood as the second How many receive beams the device has to perceive moving objects.
  • both the sender and the receiver can train to perceive the optimal receiving beam in the scene.
  • the optimal sending beam and the optimal receiving beam of the initiator and the responder in the communication and sensing scenarios have been trained.
  • the BC phase the combined training of the best transmit beam and the best receive beam of the initiator and the responder will be performed to obtain the optimal uplink and downlink beam directions.
  • FIG. 15 is a schematic flowchart of the BC process in the radio frequency sensing method provided by the embodiment of the present application.
  • the BC process of the radio frequency sensing method includes but is not limited to the following steps:
  • the first device sends a fifth beam refinement physical layer protocol data unit BRP PPDU multiple times, where the fifth BRP PPDU is used to instruct the second device to evaluate the variation of CSI from the first device to the second device.
  • the second device receives the fifth BRP PPDU multiple times.
  • the first device sends the fifth BRP PPDU directed multiple times (one fifth BRP PPDU is sent each time, and each fifth BRP frame includes a fifth BRP frame and a TRN Unit), and the second device directed multiple receptions In the fifth BRP PPDU, the second device compares the change of the CSI value when the same transceiver beam pair transmits and receives the fifth BRP PPDU multiple times to determine whether there is a moving target in the beam scanning area.
  • the first device directionally sends the fifth BRP PPDU multiple times, which can be understood as the first device using a beam of a certain width each time (it can be the best sensing transmission beam obtained by the ISS process training, or it can be other beams)
  • the fifth BRP PPDU is sent.
  • the second device directionally receives the fifth BRP PPDU for multiple times, which can be understood as the second device using a plurality of optimal sensing receiving beams trained in the MID process to receive the fifth BRP PPDU by polling.
  • the number of times that the first device directionally sends the fifth BRP PPDU is greater than or equal to twice the number of the aforementioned second receiving beams, which can ensure that the second device polls the optimal sensing receiving beam at least twice, so that for each receiving beam
  • the two CSI values are used for comparison to obtain beam information corresponding to the moving target.
  • the fifth BRP frame in the fifth BRP PPDU is used to instruct the second device (or the opposite end) to evaluate the amount of CSI change from the first device to the second device, or to indicate the opposite end (here, the second device or the response side) to enable the sensing operation.
  • the fifth BRP PPDU includes a BRP sensing request element (BRP Sensing Request element), and the BRP sensing request element is used to instruct the second device (or the opposite end) to evaluate the variation of the CSI from the first device to the second device, Or it is used to instruct the opposite end (here, the second device or the responder) to start the sensing operation.
  • BRP Sensing Request element BRP Sensing Request element
  • the element identifier of the BRP aware request element is a reserved value, such as 12.
  • the BRP sensing request element includes a CSI Measurement Request (CSI Measurement Request) field and a Beam Sweep Cycles (Number of beam sweep cycles) field.
  • CSI Measurement Request CSI Measurement Request
  • Beam Sweep Cycles Numberer of beam sweep cycles
  • the CSI measurement request field of the first BRP PPDU is set to the first value. If the first value is 0, the second value is 1; if the first value is 1, the second value is 0.
  • the beam scanning circle number field is used to indicate the receiving beam scanning circle number of the opposite end (here, the second device or the responder).
  • the Number of beam sweep cycles field indicates how many periodic scans the peer (here, the second device or the responder) needs to perform, that is, how many times the same sector and the same antenna need to be scanned to receive the sender (here, the initiator).
  • the BRP sensing request element further includes one or more of the following fields: a sending end sensing sector identification (Sensing TX Sector ID) field, a sending end sensing antenna identification mask (Sensing TX Antenna ID Mask) field, a CSI variation threshold (CSI Variation Threshold) field, Evaluation algorithm (Evaluation algorithm) field.
  • the transmitting end sensing sector identification field and the transmitting end sensing antenna identification mask field are used to jointly indicate the transmit sector and transmit antenna of the current BRP frame.
  • the CSI change threshold field is used to indicate the CSI change threshold.
  • the Evaluation Algorithm field is used to indicate the evaluation algorithm of the CSI.
  • the transmitting sector and transmitting antenna of the current BRP are jointly indicated by the Sensing TX Sector ID field and the Sensing Antenna ID Mask field.
  • the Evaluation algorithm field is used to indicate the evaluation algorithm of the CSI.
  • the CSI Variation Threshold field is used to indicate the CSI variation threshold.
  • the receiving end here, the responder or the second device
  • the beam information list consisting of the antenna identifier and sector identifier corresponding to the transmit beam with the CSI difference greater than the CSI change threshold, and the antenna identifier and sector identifier corresponding to the receive beam currently used by the responder/second device (that is, the first The two-beam information list) is fed back to the sender (here, the initiator or the first device).
  • the transmit beam and receive beam with the largest CSI difference are used as the best transmit and receive beam for downlink sensing.
  • each field included in the BRP perception request element may also have other names, which are not limited in this embodiment of the present application.
  • the second device sends a sixth BRP PPDU multiple times, where the sixth BRP PPDU is used to instruct the first device to evaluate the variation of the CSI from the second device to the first device.
  • the first device receives the sixth BRP PPDU multiple times.
  • the second device directionally sends the sixth BRP PPDU multiple times (one sixth BRP PPDU is sent each time, and each sixth BRP frame includes a sixth BRP frame and a TRN Unit), and the first device directionally receives multiple times
  • the first device compares the change of the CSI value when the same transceiver beam pair transmits and receives the sixth BRP PPDU multiple times to determine whether there is a moving target in the beam scanning area.
  • the second device directionally sends the sixth BRP PPDU multiple times, it can be understood that the second device uses a beam of a certain width each time (it can be the best sensing transmission beam obtained by the ISS process training, or it can be other beams)
  • the sixth BRP PPDU is sent.
  • the first device directionally receives the sixth BRP PPDU for multiple times, which can be understood as the first device polling and receiving the sixth BRP PPDU using a plurality of optimal sensing receiving beams trained by the MID process.
  • the number of times that the second device directionally sends the sixth BRP PPDU is greater than or equal to twice the number of the aforementioned first receiving beams, which can ensure that the first device polls the optimal sensing receiving beams at least twice, so that for each receiving beam
  • the two CSI values are used for comparison to obtain beam information corresponding to the moving target.
  • the sixth BRP frame in the sixth BRP PPDU is used to instruct the first device (or the opposite end) to evaluate the CSI change from the second device to the first device, or to indicate the opposite end (here, the first device or the initiating device) side) to enable the sensing operation.
  • the sixth BRP PPDU includes a BRP sensing request element (BRP Sensing Request element), and the BRP sensing request element is used to instruct the first device (or the opposite end) to evaluate the variation of the CSI from the second device to the first device, Or it is used to instruct the opposite end (here, the first device or the initiator) to start the sensing operation.
  • BRP Sensing Request element BRP Sensing Request element
  • the element identifier of the BRP aware request element is a reserved value, such as 12.
  • steps S303 and S304 the sender is the second device (or the responder), the receiver is the first device (or the initiator), and the opposite end is also the first device (or the initiator). It should also be understood that the transmit beam and receive beam with the largest CSI difference calculated by the receiving end are used as the best transmit and receive beams for uplink sensing.
  • the first device sends a seventh BRP frame carrying a first beam information list, where the first beam information list is used to feed back multiple transmit beams and each transmit beam whose CSI variation from the second device to the first device is greater than a CSI variation threshold
  • the second device receives the seventh BRP frame carrying the first beam information list.
  • the first device sends the seventh BRP frame carrying the first beam information list to the second device, and adds an element field to carry the frame format of the original BRP frame.
  • List of first beam information This application refers to this newly added element as a Sensing Measurement feedback element (Sensing Measurement feedback element) field. It should be understood that this newly added element may also have other names, which are not limited in this application.
  • the first beam information list is used to feed back multiple transmit beams whose CSI variation from the second device to the first device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • the above-mentioned first beam information list includes the antenna identifier and sector identifier corresponding to the transmitting beam in multiple transceiver beam pairs in which the variation of CSI from the second device to the first device is greater than the CSI variation threshold, and each transmit beam.
  • the identifier of the receiving antenna corresponding to the beam It should be understood that a transmit-receive beam pair consists of a transmit beam and a receive beam. An antenna ID and a sector ID can be used to uniquely identify a beam. However, because the receiving end is used by the receiving end to receive data, the direction of the receiving beam does not need to be informed to the transmitting end, but only needs to be known by the receiving end.
  • the sector identifier of the receiving beam may not be included in the first beam information list.
  • the CSI difference between the measured CSI values obtained by sending and receiving the sixth BRP PPDU for any two times using any one of the multiple transceiver beam pairs (the second device and the first device) is greater than the CSI change threshold. That is to say, the difference between the CSI values obtained by the two previous measurements of the multiple transceiver beam pairs is greater than the CSI change threshold.
  • the element identifier of the above-mentioned sensing measurement feedback element may be a reserved value, such as 13.
  • the 802.11ay standard defines elements with element IDs from 0 to 11, as shown in Table 1 below.
  • the embodiments of the present application define a BRP-aware request element with an element ID of 12 and an element ID Perceptual measurement feedback element for 13.
  • the frame format of the BRP sensing request element whose element identifier is 12 is as shown in the aforementioned FIG. 13 , and details are not repeated here.
  • the perceptual measurement feedback element whose element identifier is 13 is located in the seventh BRP frame, and its frame format is shown in Table 2 below.
  • the sensing measurement feedback elements shown in Table 2 include a sensing sector identification order (Sensing Sector ID Order) field and a sensing BRP subtraction count (Sensing BRP CDOWN) field.
  • the Sensing Sector ID Order field is used to indicate the transmit antenna ID, transmit sector ID, and receive antenna ID in multiple transmit and receive beam pairs whose CSI difference is greater than the CSI threshold.
  • the above-mentioned first beam information list is located in the Sensing Sector ID Order field of the sensing measurement feedback element of the seventh BRP frame. That is, the Sensing Sector ID Order field includes multiple sets of identifiers, and one set of identifiers is used to determine a transmit beam and a receive antenna.
  • every three rows of the Sensing Sector ID Order field are a group of identifiers, such as sector identifier 1 (Sector ID1)/the first value of the subtraction counter (Down counter, CDOWN) (represented as CDOWN1)/AWV feedback Identification 1 (AWV Feedback ID1), transmitting antenna identification 1 (TX Antenna ID1), and receiving antenna identification 1 (RX Antenna ID1) are a group of identifications; sector identification 2 (Sector ID2)/CDOWN2/AWV feedback identification 2 (AWV Feedback ID2), transmitting antenna identification 2 (TX Antenna ID2), and receiving antenna identification 2 (RX Antenna ID2) are another group of identifications, and so on.
  • the first row of every three rows in the Sensing Sector ID Order field in the perceptual measurement feedback element of this application is the Sector ID.
  • the order of the multiple groups of identifiers in the Sensing Sector ID Order field is determined according to the size of the CSI variation (that is, the CSI difference) (different from communication, which is sorted according to the SNR size in communication).
  • the multiple groups of identifiers are based on the CSI variation. Sorting from large to small, the antenna ID and sector ID with the largest CSI variation are in the first place, and so on.
  • the Sensing BRP CDOWN field is used to indicate the BRP CDOWN value corresponding to the AWV feedback identifier. It should be understood that because the Sector ID and the TX Antenna ID are used to jointly indicate the transmission beam in this embodiment of the present application, there is no AWV Feedback ID, so the Sensing BRP CDOWN field is reserved or not used.
  • the element identification (Element ID), the length (Length), and the element identification extension (Element ID Extension) shown in Table 2 are the general frame format of the Element frame, and the embodiment of the present application sets the Element ID to a reserved value of 13, Used to represent the Sensing Measurement feedback element.
  • the second device sends an eighth BRP frame carrying a second beam information list, where the second beam information list is used to feed back multiple transceiver beam pairs whose CSI changes from the first device to the second device are greater than a CSI change threshold.
  • the first device receives the eighth BRP frame carrying the second beam information list.
  • the second device sends the eighth BRP frame carrying the second beam information list to the first device, and adds an element field to carry the second beam information list based on the frame format of the original BRP frame.
  • This application refers to this newly added element as a Sensing Measurement feedback element (Sensing Measurement feedback element) field. It should be understood that this newly added element may also have other names, which are not limited in this application.
  • the second beam information list is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than the CSI variation threshold and the receive antenna corresponding to each transmit beam.
  • the above-mentioned second beam information list includes the antenna identifier and sector identifier corresponding to the sending beam in the multiple transceiver beam pairs whose CSI changes from the first device to the second device are greater than the CSI change threshold, and each transmit beam.
  • the identifier of the receiving antenna corresponding to the beam It should be understood that a transmit-receive beam pair consists of a transmit beam and a receive beam. An antenna ID and a sector ID can be used to uniquely identify a beam. However, because the receiving end is used by the receiving end to receive data, the direction of the receiving beam does not need to be informed to the transmitting end, but only needs to be known by the receiving end.
  • the sector identifier of the receiving beam may not be included in the second beam information list.
  • the CSI difference between the CSI values measured by sending and receiving the fifth BRP PPDU twice by using any one of the multiple transceiver beam pairs at both ends of the transceiver (the second device and the first device) is greater than the CSI change threshold. That is to say, the difference between the CSI values obtained by the two previous measurements of the multiple transceiver beam pairs is greater than the CSI change threshold.
  • the element identifier of the above-mentioned sensing measurement feedback element may be a reserved value, such as 13.
  • the 802.11ay standard defines elements with element IDs from 0 to 11, as shown in Table 1 above.
  • the embodiments of the present application define a BRP-aware request element with an element ID of 12 and an element ID. Perceptual measurement feedback element for 13.
  • the frame format of the BRP sensing request element whose element identifier is 12 is as shown in the aforementioned FIG. 13 , and details are not repeated here.
  • the perceptual measurement feedback element whose element identifier is 13 is located in the seventh BRP frame, and its frame format is as shown in Table 2 above, which will not be repeated here.
  • the second beam information list is located in the Sensing Sector ID Order field of the sensing measurement feedback element of the eighth BRP frame.
  • the embodiment of the present application is based on the 802.11ay standard beamforming training (including the SLS stage and the BRP stage) process, through the change of the CSI value measured by scanning the same beam for multiple times for perception, and by modifying the SLS stage and the BRP stage.
  • the relevant frame structure in the system can start the sensing operation, feedback the sensing measurement results, etc., which can realize the sensing of a single moving target and train the optimal sending and receiving beam for sensing while training the original communication beam.
  • Beam design-related processes have low overhead and good compatibility.
  • FIG. 16 is a schematic sequence diagram of a BRP stage provided by an embodiment of the present application.
  • the initiator After the SLS phase, the initiator sends a BRP PPDU for the MID process.
  • the initiator Initiator
  • the BRP PPDU includes the BRP frame and the TRN Unit
  • the BRP PPDU instructs the responder (Responder) to start the sensing operation (or the Responder evaluates the CSI from the Initiator to the Responder).
  • the responder receives in a sector scanning manner, and measures the CSI value of the TRN Unit in the received BRP PPDU.
  • the Responder compares the changes of the CSI value when the same receiving beam scans the same location multiple times to determine whether there is a moving target in the beam scanning area. Then, the Responder quasi-omnidirectionally sends the BRP PPDU, and instructs the initiator (Initiator) to perform the corresponding sensing operation through the BRP PPDU (or the Initiator evaluates the change of the CSI from the Responder to the Initiator).
  • the TRN Unit in the received BRP PPDU performs CSI value measurement.
  • the Initiator feeds back its measurement result (the number of the first receive beams) by sending a BRP frame carrying the DMG Beam Refinement element.
  • the Responder carries its own measurement result (the number of the second receiving beam) in the Beam Refinement element of the BRP frame for feedback.
  • the frame format of each BRP frame in the MID process refers to the foregoing description, which is not repeated here.
  • the initiator sends a BRP PPDU directionally, instructs the Responder to evaluate the change of CSI from the Initiator to the Responder through the BRP PPDU, and the responder (Responder) receives it directionally and performs CSI on the TRN Unit in the received BRP PPDU. value measurement.
  • the Responder compares the change of the CSI value when the same beam pair transmits and receives the fifth BRP PPDU multiple times to determine whether there is a moving target in the beam scanning area.
  • the Responder sends the BRP PPDU directionally, and instructs the initiator (Initiator) to also perform the corresponding sensing operation through the BRP frame (or the Initiator evaluates the change of CSI from the Responder to the Initiator), and the Initiator receives it directionally.
  • TRN Unit performs CSI value measurement.
  • the initiator carries its own measurement result (the first beam information list) in the BRP frame for feedback.
  • the Responder carries its own measurement result (the second beam information list) in the BRP frame for feedback.
  • the frame format of each BRP frame in the BC process refers to the foregoing description, which is not repeated here.
  • the main difference between the MID process and the BC process is that the content of feedback in the MID process and the BC process are different, and the transmission and reception methods are different.
  • the second embodiment of this application mainly introduces how to design the relevant frame format and feedback process based on the beamforming training process based on the 802.11ay standard when multiple moving targets are sensed and multiple optimal sensing beams need to be fed back to realize communication at the same time Beam training and RF sensing.
  • the radio frequency sensing method provided in the second embodiment of the present application adds a sensing feedback process between the SLS stage and the BRP stage, which is used to feed back the sensing measurement results of the ISS process and the RSS process.
  • FIG. 17 is another schematic flowchart of the radio frequency sensing method provided by the embodiment of the present application.
  • the ISS process includes steps S401 and S402, which can be used to train the first device (or the initiator) for the optimal sensing transmit beam;
  • the RSS process includes steps S403 and S404, which can be used to train the second device (or the initiator).
  • the perceptual feedback process includes steps S405 to S408, which can be used to feedback the optimal perceptual transmission beam obtained by the ISS process and the RSS process.
  • the radio frequency sensing method includes but is not limited to the following steps:
  • the first device sends a plurality of first frames, each of which includes first indication information, where the first indication information is used to instruct the second device to evaluate the change of the channel state information CSI from the first device to the second device quantity.
  • the second device quasi-omnidirectionally receives multiple first frames.
  • step S401 and step S402 in this embodiment of the present application, reference may be made to the implementation manner of step S101 and step S102 in the embodiment shown in FIG. 5 , which is not repeated here.
  • the second device sends a plurality of second frames, and each second frame includes second indication information, where the second indication information is used to instruct the first device to evaluate the variation of CSI from the second device to the first device.
  • the first device quasi-omnidirectionally receives multiple second frames.
  • step S403 and step S404 in this embodiment of the present application reference may be made to the corresponding descriptions in step S103 and step S104 in the embodiment shown in FIG. 5 , which are not repeated here. It should be understood that since the second frame in the embodiment of the present application does not carry the first measurement result, the SNR report subfield of the second frame in the embodiment of the present application is used to indicate the SNR of the optimal beam for communication.
  • the first device sends a first sensory feedback frame, where the first sensory feedback frame includes a second measurement result, where the second measurement result is used to feed back a change in CSI from the second device to the first device that is greater than a CSI change threshold Multiple transmit beams.
  • the second device receives the first sensory feedback frame.
  • the radio frequency sensing method provided in this embodiment of the present application further includes an SSW feedback process, that is, the first device sends the SSW feedback frame, and the second device receives the SSW feedback frame.
  • the SSW feedback process is the same as the SSW feedback process in the 802.11ay standard. For the specific implementation, refer to the relevant description in the 802.11ay standard, which is not repeated in this embodiment of the present application.
  • the first device sends the first sensory feedback frame
  • the second device receives the first sensory feedback frame.
  • the first perceptual feedback frame includes a second measurement result, which is used to feed back the second device to a plurality of transmit beams whose CSI variation is greater than the CSI variation threshold of the first device. That is to say, the second measurement result is used to feed back the result evaluated by the first device, or used to feed back the perception measurement result in the RSS stage (for example, multiple antenna identifiers and multiple sector identifiers corresponding to the moving target).
  • the above-mentioned second measurement result includes multiple sets of second beam identifiers, and a group of second beam identifiers includes a second antenna identifier and a second sector identifier.
  • the beam determined by the group of second beam identifiers is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the second device.
  • FIG. 18 is a schematic diagram of a frame format of a first perceptual feedback frame provided by an embodiment of the present application.
  • the first sensory feedback frame includes a frame control (frame control) field, a duration (duration) field, a receiving address (Receiver Address, RA) field, a transmitting address (Transmitter Address, TA) field, an ordered The target sector (target sector in order) field, and the frame check sequence (frame check sequence, FCS) field.
  • the target sector in order field includes multiple target antenna identification subfields and multiple target sector identification subfields, one target antenna identification subfield is used to indicate a second antenna identification, a target The sector identification subfield is used to indicate a second sector identification.
  • target antenna ID1 target antenna ID1
  • target sector ID1 target sector ID1
  • each field included in the first perceptual feedback frame in FIG. 18 may also have other names, which are not limited in this embodiment of the present application.
  • the second device sends a second sensory feedback frame, where the second sensory feedback frame includes a first measurement result, where the first measurement result is used to feed back a change in CSI from the first device to the second device that is greater than the CSI change threshold Multiple transmit beams.
  • the first device receives the second sensory feedback frame.
  • the second device sends a second sensory feedback frame
  • the first device receives the second sensory feedback frame.
  • the second perceptual feedback frame includes a first measurement result for feeding back multiple transmit beams whose CSI variation from the first device to the second device is greater than the CSI variation threshold. That is to say, the first measurement result is used to feed back the result evaluated by the second device, or is used to feed back the perception measurement result in the ISS stage (for example, multiple antenna identifiers and multiple sector identifiers corresponding to the moving target).
  • the above-mentioned first measurement result includes multiple sets of first beam identifiers, and a group of first beam identifiers includes a first antenna identifier and a first sector identifier.
  • the beam determined by the set of first beam identifiers is a transmit beam in which the CSI difference between any two CSI measurements on the same transmit beam is greater than the CSI change threshold among all transmit beams of the first device.
  • the frame format of the second perceptual feedback frame is the same as the frame format of the aforementioned first perceptual feedback frame, and reference may be made to the aforementioned FIG. 18 .
  • the embodiments of the present application add a new perception feedback process (the aforementioned steps S405 to S408 ) to solve the problem that the multi-target beam information feedback cannot be realized in the SLS stage due to insufficient reserved bits, thereby realizing the perception of multiple moving targets.
  • a new perception feedback process (the aforementioned steps S405 to S408 ) to solve the problem that the multi-target beam information feedback cannot be realized in the SLS stage due to insufficient reserved bits, thereby realizing the perception of multiple moving targets.
  • the optimal transmit and receive beams for perceiving each moving target there is no need to specially design related processes for perceiving and training perceiving beams, the overhead is small, and it has better compatibility.
  • the radio frequency sensing method provided by this embodiment of the present application further includes a BRP stage.
  • the BRP stage in the method shown in FIG. 17 is the same as the BRP stage of beamforming training in the 802.11ay standard.
  • the specific process and the frame format involved can refer to the description in the 802.11ay standard, which is not repeated here.
  • the MID process included in the BRP stage in the method shown in FIG. 17 may refer to the aforementioned FIG. 12
  • the BC process may refer to the aforementioned FIG. 15 , which will not be further described here.
  • the difference between this embodiment of the present application and the foregoing Embodiment 1 is that in the embodiment of the present application, the SSW frame and the SSW feedback frame no longer feed back the perception measurement results of the RSS process and the ISS process (the antenna identifier and sector corresponding to the moving target). mark), in the newly added perceptual feedback process, the perceptual measurement results of the RSS process and the ISS process are fed back uniformly.
  • FIG. 19 is a schematic time sequence diagram of a radio frequency sensing method provided by an embodiment of the present application. Since the reserved bits of the original feedback field (SSW feedback field) in the SLS phase are not enough, the SSW frame and SSW feedback frame no longer feed back the perceptual measurement results of the RSS process and the ISS process, but are fed back in the newly added perceptual feedback process. As shown in Figure 19, the sensing feedback process is added after the SSW feedback process to feed back the beam information (sector identification and antenna identification) corresponding to multiple targets in the SLS stage.
  • SSW feedback field the reserved bits of the original feedback field
  • the sensing feedback process is added after the SSW feedback process to feed back the beam information (sector identification and antenna identification) corresponding to multiple targets in the SLS stage.
  • the BRP frame can feed back multiple beam information (sector identification and antenna identification), no modification is required, that is, it is consistent with the aforementioned FIG. 16 .
  • the initiator and the responder compare the changes of the CSI value when the same beam is scanned multiple times in the SLS phase, and send a sensing feedback frame to feed back the sector and antenna information corresponding to the peer multi-target.
  • FIG. 19 shows that the initiator sends an SSW frame during the ISS process. In practical applications, the situation that the initiator sends a beacon frame during the ISS process is similar to that of FIG. 19 , and details are not repeated here.
  • the first device and the second device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 20 is a schematic structural diagram of a first device provided by an embodiment of the present application.
  • the first device includes: a sending unit 11 and a receiving unit 12 .
  • the sending unit 11 is configured to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the first frame.
  • the variation of the CSI of the second device; the receiving unit 12 is configured to receive multiple second frames quasi-omnidirectionally, each second frame includes a first measurement result and second indication information, and the first measurement result is used for feedback
  • a transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device
  • This sending unit 11 is also used to send the third frame, and the second measurement result is included in the third frame, and the second measurement result is used to feed back the variation of the CSI of the second equipment to the first equipment is greater than the CSI variation Threshold for a transmit beam.
  • the first device further includes a processing unit 13 configured to generate a plurality of first frames; the processing unit 13 is further configured to generate a third frame.
  • the above-mentioned sending unit 11 is also used to quasi-omnidirectionally transmit the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the first device to the second.
  • the variation of the CSI of the device is also used to receive the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the second device to the first
  • the variation of the CSI of the device is also used to send the third BRP frame, and the third BRP frame is used to feed back the number of the first receiving beams trained by the first device in the beam pairing stage, and the first
  • the number of receiving beams is the number of receiving beams whose CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device;
  • the receiving unit 12 is also used to receive the fourth BRP frame , the fourth BRP frame is used to feed back the number of second receive beams trained by the second device in the beam pairing phase, and the second number of receive beams is the sum of any two CSI measurements on the same receive beam in all receive beams of the second device
  • the above processing unit 13 is further configured to generate the first BRP PPDU and the third BRP frame.
  • each first BRP PPDU includes a first BRP frame and a training unit (training unit, TRN Unit).
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit 11 is further configured to send the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned receiving unit 12 is also used to receive the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the CSI from the second device to the first device.
  • the above-mentioned sending unit 11 is also used to send the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the change of the CSI from the second device to the first device is greater than the CSI Multiple transmit beams with varying thresholds and receive antennas corresponding to each transmit beam; the above-mentioned receiving unit 12 is also used to receive the eighth BRP frame carrying the second beam information list, which is used to feed back the first beam information list.
  • a plurality of transmit beams whose CSI variation from the device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • the above processing unit 13 is further configured to generate a fifth BRP PPDU and a seventh BRP frame carrying the first beam information list.
  • Each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit. The TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit 11 and the above-mentioned receiving unit 12 may be integrated into one module, such as a transceiver module.
  • the first device in this design can correspondingly execute the foregoing method embodiment 1, and the above operations or functions of each unit in the first device are respectively in order to realize the corresponding operations in the foregoing method embodiment 1, and its technical effect is Referring to the technical effects in the foregoing first embodiment, for the sake of brevity, details are not repeated here.
  • the sending unit 11 is configured to send a plurality of first frames, each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the Variation of the CSI of the second device;
  • the receiving unit 12 is configured to receive multiple second frames quasi-omnidirectionally, each second frame includes second indication information, and the second indication information is used to indicate the first device Evaluate the variation of the CSI from the second device to the first device;
  • the sending unit 11 is further configured to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result uses
  • the receiving unit 12 is further configured to receive a second sensory feedback frame, where the second sensory feedback frame includes the first and second sensory feedback frames.
  • a measurement result where the first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than a CSI variation threshold.
  • the first device further includes a processing unit 13 configured to generate a plurality of first frames; the processing unit 13 is further configured to generate a first perceptual feedback frame.
  • the above-mentioned sending unit 11 is also used to quasi-omnidirectionally transmit the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the first device to the second.
  • the variation of the CSI of the device is also used to receive the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the second device to the first
  • the variation of the CSI of the device is also used to send the third BRP frame, and the third BRP frame is used to feed back the number of the first receiving beams trained by the first device in the beam pairing stage, and the first The number of receiving beams is the number of receiving beams whose CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device;
  • the receiving unit 12 is also used to receive the fourth BRP frame , the fourth BRP frame is used to feed back the number of second receiving beams trained by the second device in the beam pairing phase, where the second receiving beam number is the sum of any two CSI measurements on the same receiving beam in all receiving beams of the second device
  • the number of receive beams is the number of receive beams
  • the above processing unit 13 is further configured to generate the first BRP PPDU and the third BRP frame.
  • each first BRP PPDU includes a first BRP frame and a training unit (training unit, TRN Unit).
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit 11 is further configured to send the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned receiving unit 12 is also used to receive the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the CSI from the second device to the first device.
  • the above-mentioned sending unit 11 is also used to send the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the change of the CSI from the second device to the first device is greater than the CSI Multiple transmit beams with varying thresholds and receive antennas corresponding to each transmit beam; the above-mentioned receiving unit 12 is also used to receive the eighth BRP frame carrying the second beam information list, which is used to feed back the first beam information list.
  • a plurality of transmit beams whose CSI variation from the device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • the above processing unit 13 is further configured to generate a fifth BRP PPDU and a seventh BRP frame carrying the first beam information list.
  • Each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit. The TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned sending unit 11 and the above-mentioned receiving unit 12 may be integrated into one module, such as a transceiver module.
  • the first device in this design can correspondingly execute the foregoing method embodiment 2, and the above operations or functions of each unit in the first device are respectively in order to realize the corresponding operations in the foregoing method embodiment 2, and its technical effect is Referring to the technical effects in the foregoing second embodiment, for brevity, details are not repeated here.
  • FIG. 21 is a schematic structural diagram of a second device provided by an embodiment of the present application. As shown in FIG. 21 , the second device includes: a receiving unit 21 and a sending unit 22 .
  • the receiving unit 21 is configured to receive a plurality of first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first frame.
  • the sending unit 22 is configured to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used for Feedback a transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device
  • the receiving unit 21 is further configured to receive a third frame, where the third frame includes a second measurement result, and the second measurement result is used to feed back the variation of the CSI from the second device to the first device that is greater than the CSI A transmit beam with varying thresholds.
  • the second device further includes a processing unit 23 for generating multiple second frames.
  • the above-mentioned receiving unit 21 is also used to receive the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned sending unit 22 is also used to quasi-omnidirectionally transmit the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the second device to the first The variation of the CSI of the device; the receiving unit 21 is further configured to receive a third BRP frame, where the third BRP frame is used to feed back the number of first receiving beams trained by the first device in the beam pairing phase, and the first receiving beam The number is the number of receiving beams whose CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device; the above-mentioned sending unit 22 is also used to send the fourth BRP frame, the The fourth BRP frame is used to feed back the number of the second receiving beams trained by the beam of the second device in the beam pairing phase, where the number of the second receiving beams is the difference between any two CSI measurements on the same receiving beam among all the receiving beams of the second device.
  • the above-mentioned processing unit 23 is further configured to generate the second BRP PPDU and the fourth BRP frame.
  • each first BRP PPDU includes a first BRP frame and a training unit (training unit, TRN Unit).
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit 21 is further configured to receive the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned sending unit 22 is also used to transmit the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the CSI from the second device to the first device.
  • the above-mentioned receiving unit 21 is also used to receive the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the variation of the CSI from the second device to the first device is greater than the CSI Multiple transmit beams with varying thresholds and receive antennas corresponding to each transmit beam; the above-mentioned transmitting unit 22 is also used to transmit the eighth BRP frame carrying the second beam information list, which is used to feed back the first beam information list.
  • a plurality of transmit beams whose CSI variation from the device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • each processing unit 23 is further configured to generate the sixth BRP PPDU and the eighth BRP frame carrying the second beam information list.
  • Each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit. The TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit 21 and the above-mentioned transmitting unit 22 may be integrated into one module, such as a transceiver module.
  • the second device in this design can correspondingly execute the foregoing method embodiment 1, and the above operations or functions of each unit in the second device are respectively in order to realize the corresponding operations in the foregoing method embodiment 1, and its technical effect is Referring to the technical effects in the foregoing first embodiment, for the sake of brevity, details are not repeated here.
  • the receiving unit 21 is configured to receive a plurality of first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first frame.
  • the sending unit 22 is configured to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to indicate the first
  • the receiving unit 21 is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, the second measurement result A plurality of transmission beams used for feeding back the CSI variation from the second device to the first device that is greater than the CSI variation threshold;
  • the sending unit 22 is further configured to send a second perceptual feedback frame, the second perceptual feedback frame includes A first measurement result, where the first measurement result is used to feed back a plurality of transmit beams whose CSI variation from the first device to the second
  • the second device further includes a processing unit 23 configured to generate a plurality of second frames; the processing unit 13 is further configured to generate a second perceptual feedback frame.
  • the above-mentioned receiving unit 21 is also used to receive the first BRP PPDU multiple times, and the first BRP frame included in the first BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned sending unit 22 is also used to quasi-omnidirectionally transmit the second BRP PPDU multiple times, and the second BRP frame included in the second BRP PPDU is used to instruct the first device to evaluate the second device to the first The variation of the CSI of the device; the receiving unit 21 is further configured to receive a third BRP frame, where the third BRP frame is used to feed back the number of first receiving beams trained by the first device in the beam pairing phase, and the first receiving beam The number is the number of receiving beams whose CSI difference between any two CSI measurements on the same receiving beam is greater than the CSI change threshold in all receiving beams of the first device; the above-mentioned sending unit 22 is also used to send the fourth BRP frame, the The fourth BRP frame is used to feed back the number of the second receiving beams trained by the beam of the second device in the beam pairing phase, where the number of the second receiving beams is the difference between any two CSI measurements on the same receiving beam among all the receiving beams of the second device.
  • the above-mentioned processing unit 23 is further configured to generate the second BRP PPDU and the fourth BRP frame.
  • each first BRP PPDU includes a first BRP frame and a training unit (training unit, TRN Unit).
  • each second BRP PPDU includes a second BRP frame and a TRN Unit.
  • the TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit 21 is further configured to receive the fifth BRP PPDU multiple times, and the fifth BRP frame included in the fifth BRP PPDU is used to instruct the second device to evaluate the CSI from the first device to the second device.
  • the above-mentioned sending unit 22 is also used to transmit the sixth BRP PPDU multiple times, and the sixth BRP frame included in the sixth BRP PPDU is used to instruct the first device to evaluate the CSI from the second device to the first device.
  • the above-mentioned receiving unit 21 is also used to receive the seventh BRP frame carrying the first beam information list, and the first beam information list is used to feed back the variation of the CSI from the second device to the first device is greater than the CSI Multiple transmit beams with varying thresholds and receive antennas corresponding to each transmit beam; the above-mentioned transmitting unit 22 is also used to transmit the eighth BRP frame carrying the second beam information list, which is used to feed back the first beam information list.
  • a plurality of transmit beams whose CSI variation from the device to the second device is greater than a CSI variation threshold and a receive antenna corresponding to each transmit beam.
  • each processing unit 23 is further configured to generate the sixth BRP PPDU and the eighth BRP frame carrying the second beam information list.
  • Each fifth BRP PPDU includes a fifth BRP frame and a TRN Unit.
  • each sixth BRP PPDU includes a sixth BRP frame and a TRN Unit. The TRN Unit is used to measure CSI at the peer end.
  • the above-mentioned receiving unit 21 and the above-mentioned transmitting unit 22 may be integrated into one module, such as a transceiver module.
  • the second device in this design can correspondingly execute the foregoing method embodiment 2, and the above operations or functions of each unit in the second device are respectively in order to realize the corresponding operations in the foregoing method embodiment 2, and its technical effect is Referring to the technical effects in the foregoing second embodiment, for brevity, details are not repeated here.
  • the first device and the second device described in the embodiments of the present application may be implemented by a general bus architecture.
  • a first device includes a processor and a transceiver that communicates internally with the processor.
  • the transceiver is configured to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct a second device to evaluate the first device to the second device The change amount of the CSI; the transceiver is further configured to receive multiple second frames quasi-omnidirectionally, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the first measurement result.
  • the processor is configured to generate multiple first frames; the processor is further configured to generate the third frame.
  • the transceiver is configured to send a plurality of first frames, and each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device to the second The variation of the CSI of the device; the transceiver is further configured to receive multiple second frames quasi-omnidirectionally, each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate the The change amount of the CSI from the second device to the first device; the transceiver is further configured to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used to feed back the A plurality of transmit beams whose CSI variation from the second device to the first device is greater than the CSI variation threshold; the transceiver is further configured to receive a second perceptual feedback frame, where the second perceptual feedback frame includes the first measurement result, The first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than
  • the processor is configured to generate a plurality of first frames; the processor is further configured to generate a first perceptual feedback frame.
  • a second device includes a processor and a transceiver in communication with the processor.
  • the transceiver is configured to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to Variation of the CSI of the second device; the transceiver is further configured to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the A transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device; The transceiver is further configured to receive a third frame, where the third frame includes a second measurement result, where the second measurement result is used to feed back a change in CSI from the second device to the first device greater than a CSI change threshold a transmit beam.
  • a processor for generating a plurality of second frames is provided.
  • the transceiver is configured to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, where the first indication information is used to instruct the second device to evaluate the first device the variation of the CSI to the second device; the transceiver is further configured to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to instruct the first device to evaluate The change amount of the CSI from the second device to the first device; the transceiver is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used for feedback A plurality of transmit beams whose CSI variation from the second device to the first device is greater than a CSI variation threshold; the transceiver is further configured to transmit a second perceptual feedback frame, where the second perceptual feedback frame includes the first measurement result , and the first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than the CSI
  • the processor is configured to generate a plurality of second frames; the processor is further configured to generate a second perceptual feedback frame.
  • the first device and the second device described in the embodiments of the present application may be implemented by a general-purpose processor.
  • a general-purpose processor implementing the first device includes a processing circuit and an input-output interface in communication with the internal connection of the processing circuit.
  • the input and output interface is used to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the second device.
  • the change amount of the CSI is also used to quasi-omnidirectionally receive multiple second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used to feed back the A transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device;
  • the input and output interface is further configured to send a third frame, where the third frame includes a second measurement result, and the second measurement result is used to feed back a change in CSI from the second device to the first device that is greater than a CSI change threshold one of the transmit beams.
  • the processing circuit is configured to generate a plurality of first frames; the processing circuit is further configured to generate a third frame.
  • the input and output interface is used to send a plurality of first frames, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device to the first The variation of the CSI of the second device; the input and output interface is also used to receive multiple second frames quasi-omnidirectionally, and each second frame includes second indication information, and the second indication information is used to indicate the first device.
  • the input and output interface is also used to send a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, and the second measurement result is used
  • the input and output interface is also used to receive a second sensory feedback frame, and the second sensory feedback frame includes the first A measurement result, where the first measurement result is used to feed back multiple transmit beams whose CSI variation from the first device to the second device is greater than a CSI variation threshold.
  • the processing circuit is configured to generate a plurality of first frames; the processing circuit is further configured to generate a first perceptual feedback frame.
  • a general purpose processor implementing the second device includes a processing circuit and an input and output interface in communication with the internal connection of the processing circuit.
  • the input and output interface is used to receive multiple first frames quasi-omnidirectionally, and each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first device.
  • the change amount of CSI to the second device; the input and output interface is also used to send a plurality of second frames, each second frame includes a first measurement result and second indication information, and the first measurement result is used for Feedback a transmit beam whose CSI variation from the first device to the second device is greater than a CSI variation threshold, and the second indication information is used to instruct the first device to evaluate the CSI variation from the second device to the first device
  • the input and output interface is also used for receiving a third frame, the third frame includes a second measurement result, and the second measurement result is used to feed back the variation of the CSI from the second device to the first device is greater than the CSI A transmit beam with varying thresholds.
  • a processing circuit for generating a plurality of second frames.
  • the input and output interface is used for quasi-omnidirectionally receiving multiple first frames, each first frame includes first indication information, and the first indication information is used to instruct the second device to evaluate the first frame The change amount of the CSI from the device to the second device; the input and output interface is also used to send a plurality of second frames, each second frame includes second indication information, and the second indication information is used to indicate the first The device evaluates the amount of change in CSI from the second device to the first device; the input and output interface is further configured to receive a first perceptual feedback frame, where the first perceptual feedback frame includes a second measurement result, the second measurement result A plurality of transmit beams used for feeding back the CSI variation from the second device to the first device that is greater than the CSI variation threshold; the input and output interface is also used for sending a second sensory feedback frame, the second sensory feedback frame includes A first measurement result, where the first measurement result is used to feed back a plurality of transmit beams whose CSI variation from the first device to the second device is greater than a
  • a processing circuit is used to generate a plurality of second frames; the processing circuit is also used to generate a second perceptual feedback frame.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the processor executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the above-mentioned The method of any of the embodiments.
  • An embodiment of the present application further provides a wireless communication system, including a first device and a second device, where the first device and the second device can execute the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,尤其涉及一种射频感知方法及相关装置。该方法包括:第一设备发送包括第一指示信息的多个第一帧,用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备准全向接收包括第一测量结果和第二指示信息的多个第二帧,第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量;第一设备发送包括第二测量结果的第三帧,用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。采用本申请实施例,可以将波束赋形训练机制与WLAN感知相结合,在通信波束训练的同时实现感知。

Description

射频感知方法及相关装置
本申请要求于2021年02月08日提交中国国家知识产权局、申请号为202110182123.1、申请名称为“射频感知方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种射频感知方法及相关装置。
背景技术
日常生活中,发射器发出的信号通常会经由各种障碍物的反射、衍射以及散射才被接收,这种现象使得实际接收到的信号往往是多路信号的叠加。因此,无线信号可以感知其所经过的物理环境,通过分析被各种障碍物“调制”过的无线信号,即可推断周围环境,由此衍生出无线局域网(wireless local area network,WLAN)感知(sensing)技术。
WLAN sensing是一项具有广阔应用前景的技术,它可以利用现在已经广泛部署的WLAN设备发送特定的数据或通信信道探测帧对周围环境进行感知,然后接收信号回波或无线网络中对端设备产生的反馈信息,再通过一定的算法提取接收信号中的相应参数进行分析,即可获取周围的环境信息。虽然市面上已有的传感器也能够提供环境控制反馈,但这些传感器需要专门的安装。而WLAN sensing可以使用现有的网络产生相同的反馈,无需构建和维护多个***。
60GHz毫米波频段有着丰富的可用频谱资源,但是由于路径损耗增大,衰减非常严重,所以802.11ad/ay标准中主要考虑采用波束赋形(Beamforming,BF)的定向通信技术。采用波束赋形技术,首先要进行波束赋形训练(Beamforming training,BFT)。未来的802.11标准考虑在波束赋形训练机制中引入WLAN sensing,但如何将传统的波束赋形训练机制与WLAN sensing相结合,在不影响正常通信的基础上进行WLAN sensing成为了亟待解决的问题。
发明内容
本申请实施例提供一种射频感知方法及相关装置,可以将802.11ay中传统的波束赋形训练机制与WLAN sensing相结合,在原有通信波束训练的同时实现感知和训练用于感知的波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种射频感知方法,该方法包括扇区级扫描阶段,其中:第一设备以扇区扫描方式发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的信道状态信息(channel state information,CSI)的变化量;第一设备准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量;第一设备发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
其中,第一设备可以是发起方(initiator),第二设备是应答方(responder)。第一设备至 少扇区扫描2圈,也就是说,第一设备采用同一发送波束至少发送2次(每次发送一个第一帧)。应理解,每个第一帧中设置扇区标识(Sector ID)字段和定向多千兆位(directional multi-gigabit,DMG)天线标识(DMG Antenna ID)字段,分别用于指示该第一帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
可见,本方案基于802.11ay标准的扇区级扫描阶段流程,通过同一波束多次扫描测得的CSI值的变化来进行感知,并通过修改扇区级扫描阶段的相关帧结构来开启sensing操作、反馈感知测量结果等,可以在原有通信波束训练的同时实现对单个运动目标的感知、以及训练用于感知的发送波束,无需专门为感知和训练感知发送波束设计相关流程,开销较小,且具有较好的兼容性。
结合第一方面,在一种可能的设计中,第一设备发送第三帧之后,该方法还包括多扇区探测过程,其中:第一设备准全向多次发送第一波束精炼(beam refinement protocol,BRP)物理层协议数据单元(Physical layer protocol data unit,PPDU),该第一BRP PPDU包括的第一BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备以扇区扫描方式多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第一设备发送第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;第一设备接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
其中,第一设备准全向每次发送一个第一BRP PPDU,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(training unit,TRN Unit)。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。第一设备至少扇区扫描2圈,也就是说,第一设备采用同一接收波束至少接收2次(每次接收一个第一BRP PPDU)。
可见,本方案通过在多扇区探测过程中修改相关的帧格式,使收发双方可以训练感知场景中的最佳接收波束。
结合第一方面,在一种可能的设计中,第一设备接收第四BRP帧之后,该方法还包括波束配对过程,其中:第一设备定向多次发送第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备定向多次接收第六BRP PPDU,所述第六BRP PPDU包括的第六BRP帧用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;第一设备发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;第一设备接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可见,本方案基于802.11ay标准的扇区级扫描阶段和波束精炼阶段流程,通过同一波束多次扫描测得的CSI值的变化来进行感知,并通过修改扇区级扫描阶段和波束精炼阶段中的相关帧结构来开启sensing操作、反馈感知测量结果等,可以在原有通信波束训练的同时实现对单个运动目标的感知、以及训练用于感知的最佳收发波束,无需专门为感知和训练感知波 束设计相关流程,开销较小,且具有较好的兼容性。
第二方面,本申请提供一种射频感知方法,该方法包括扇区级扫描阶段,其中:第二设备准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备以扇区扫描方式发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量;第二设备接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
其中,第一设备可以是initiator,第二设备是responder。第二设备至少扇区扫描2圈,也就是说,第二设备采用同一发送波束至少发送2次(每次发送一个第二帧)。应理解,每个第二帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第二帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第二方面,在一种可能的设计中,第二设备接收第三帧之后,该方法还包括多扇区探测过程,其中:第二设备以扇区扫描方式多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第二设备接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;第二设备发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
其中,第二设备准全向每次发送一个第二BRP PPDU,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。同理,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。第二设备至少扇区扫描2圈,也就是说,第二设备采用同一接收波束至少接收2次(每次接收一个第二BRP PPDU)。
结合第二方面,在一种可能的设计中,第二设备发送第四BRP帧之后,该方法还包括波束配对过程,其中:第二设备定向多次接收第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备定向多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第二设备接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;第二设备发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
第三方面,本申请提供一种第一设备或第一设备中的芯片,比如Wi-Fi芯片。该第一设备包括:发送单元,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;接收单元,用于准全向 接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该发送单元,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,该第一设备还包括处理单元,用于生成多个第一帧;该处理单元,还用于生成第三帧。
应理解,每个第一帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第一帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第三方面,在一种可能的设计中,上述发送单元,还用于准全向多次发送第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元,还用于多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元,还用于发送的第三BRP帧,该第三BRP帧用于反馈波束配对阶段中该第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述接收单元,还用于接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元,还用于生成第一BRP PPDU和第三BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
结合第三方面,在一种可能的设计中,上述发送单元,还用于多次发送第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元,还用于多次接收第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元,还用于发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述接收单元,还用于接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元,还用于生成第五BRP PPDU和携带第一波束信息列表的第七BRP帧。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
第四方面,本申请提供一种第二设备或第二设备中的芯片,比如Wi-Fi芯片。该第二设备包括:接收单元,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;发送单元,用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指 示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该接收单元,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,该第二设备还包括处理单元,用于生成多个第二帧。
应理解,每个第二帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第二帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第四方面,在一种可能的设计中,上述接收单元,还用于多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元,还用于准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元,还用于接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述发送单元,还用于发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元,还用于生成第二BRP PPDU和第四BRP帧。
其中,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。同理,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
结合第四方面,在一种可能的设计中,上述接收单元,还用于多次接收第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元,还用于多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元,还用于接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述发送单元,还用于发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元,还用于生成第六BRP PPDU和携带第二波束信息列表的第八BRP帧。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
上述任一方面的任一种设计中,上述第一帧是信标beacon帧时,上述第一指示信息位于该beacon帧的强定向多千兆位(enhanced directional multi-gigabit,EDMG)能力字段的可选子元素子字段中。该第一指示信息可以包括CSI测量请求字段和CSI差值计算字段。该CSI测量请求字段用于指示第二设备是否测量CSI,当该CSI测量请求字段设置为第一值,用于指示第二设备测量CSI;当该CSI测量请求字段设置为第二值,用于指示第二设备不测量CSI。本方案的第一帧中CSI测量请求字段设置为第一值。该CSI差值计算字段用于指示第二设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第二设备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。可选的,该第一指 示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。该评估算法字段用于指示CSI的评估算法;该CSI变化阈值字段用于指示CSI变化阈值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案通过在beacon帧的EDMG能力字段中的可选子元素(optional subelements)子字段中携带第一指示信息来指示第二设备评估第一设备到第二设备的CSI的变化量,既可以不改变原有beacon帧的功能(或复用原有beacon帧的功能),也可以利用该beacon帧实现感知功能,无需专利为感知功能设计相关流程,开销较小,且具有较好的兼容性。
上述任一方面的任一种设计中,上述第一帧是扇区扫描(sector sweep,SSW)帧时,上述第一指示信息携带于该SSW帧的SSW反馈字段的预留子字段中。该第一指示信息可以包括CSI测量请求字段和CSI差值计算字段。该CSI测量请求字段用于指示第二设备是否测量CSI,当该CSI测量请求字段设置为第一值,用于指示第二设备测量CSI;当该CSI测量请求字段设置为第二值,用于指示第二设备不测量CSI。本方案的第一帧中CSI测量请求字段设置为第一值。该CSI差值计算字段用于指示第二设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第二设备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。可选的,该第一指示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。该评估算法字段用于指示CSI的评估算法;该CSI变化阈值字段用于指示CSI变化阈值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案通过在SSW帧的SSW反馈字段的预留子字段中携带第一指示信息,可以不改变原有SSW帧的帧长,复用SSW帧中的其他字段,既可以实现通信波束的训练,也可以实现感知波束的训练,设计灵活,兼容性好。
上述任一方面的任一种设计中,上述第二帧是SSW帧时,上述第二指示信息位于该SSW帧的SSW反馈字段的预留子字段中,上述第一测量结果位于该SSW帧的SSW反馈字段的信噪比(signal-to-noise ratio,SNR)报告子字段中。该第二指示信息包括CSI差值计算字段,该CSI差值计算字段用于指示第一设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第一备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案在第二帧中携带第二指示信息,用于指示第一设备评估第二设备到第一设备的CSI的变化量,有利于训练第二设备的最佳感知发送波束,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第二帧还包括第三指示信息,该第三指示信息用于指示上述第二帧中是否包括第一测量结果。本方案中第三指示信息设置为第一值,指示第二帧中包括第一测量结果。当上述第二帧是SSW帧时,该第三指示信息位于该SSW帧的SSW反馈字段的预留子字段中。
可见,本方案通过在第二帧中携带第三指示信息来指示这个第二帧中是否有第一测量结果,设计更灵活。
上述任一方面的任一种设计中,上述第三帧是SSW反馈帧时,上述第二测量结果位于该SSW反馈帧的SSW反馈字段的SNR报告子字段中。
可见,本方案复用SSW反馈帧中的SNR报告子字段来携带第二测量结果,SSW反馈帧的改动较小,兼容性更好。
上述任一方面的任一种设计中,上述第三帧中还包括第四指示信息,该第四指示信息用于指示该第三帧中是否包括第二测量结果。本方案中第四指示信息设置为第一值,指示第三帧中包括第二测量结果。当上述第三帧是SSW反馈帧时,该第四指示信息位于该SSW帧的SSW反馈字段的预留子字段中。
可见,本方案通过在第三帧中携带第四指示信息来指示这个第三帧中是否有第二测量结果,设计更灵活。
上述任一方面的任一种设计中,上述第一测量结果包括第一天线标识和第一扇区标识,上述第二测量结果包括第二天线标识和第二扇区标识。该第一天线标识和该第一扇区标识所确定的波束是第一设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束。该第二天线标识和该第二扇区标识所确定的波束是第二设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束。
可见,本方案通过第一测量结果反馈第一设备的所有发送波束中CSI变化量大于阈值的发送波束,作为第一设备的最佳感知发送波束;通过第二测量结果反馈第二设备的所有发送波束中CSI变化量大于阈值的发送波束,作为第二设备的最佳感知发送波束;在通信的扇区级扫描过程中,实现了感知发送波束的训练。
上述任一方面的任一种设计中,上述第一BRP PPDU中的第一BRP帧和上述第一BRP PPDU中的第二BRP帧均包括CSI测量请求字段和波束扫描圈数字段。该CSI测量请求字段的取值为第一值,用于指示测量CSI;该波束扫描圈数字段用于指示接收波束的扫描圈数。
可选的,该第一BRP PPDU中的第一BRP帧和该第一BRP PPDU中的第二BRP帧还包括以下一个或多个字段:发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;CSI变化阈值字段,用于指示CSI变化阈值;评估算法字段,用于指示CSI评估算法。
可见,本方案通过在多扇区探测过程中修改BRP PPDU的帧格式来引入感知操作,可以分别训练得到第一设备和第二设备的最佳感知接收波束,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第一接收波束数量携带于上述第三BRP帧的定向多千兆位(directional multi-gigabit,DMG)波束精炼元素中。上述第二接收波束数量携带于第四BRP帧的DMG波束精炼元素中。
上述任一方面的任一种设计中,上述第五BRP PPDU中的第五BRP帧和上述第六BRP PPDU中的第六BRP帧均包括CSI测量请求字段和波束扫描圈数字段。该CSI测量请求字段的取值为第一值,用于指示测量CSI;该波束扫描圈数字段用于指示接收波束的扫描圈数。
可选的,该第五BRP PPDU中的第五BRP帧和该第六BRP PPDU中的第六BRP帧还包括以下一个或多个字段:发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;CSI变化阈值字段,用于指示CSI变化阈值;评估算法字段,用于指示CSI评估算法。
可见,本方案通过在波束配对过程中修改BRP PPDU的帧格式来引入感知操作,可以将第一设备和第二设备的最佳感知收发波束进行配对,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第一波束信息列表位于上述第七BRP帧的感知测量反馈元素中,上述第二波束信息列表位于上述第八BRP帧的感知测量反馈元素中。其中,该感知测量反馈元素的元素标识为预留值,比如13。
上述任一方面的任一种设计中,上述第一波束信息列表包括第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。同理,上述第二波束信息列表包括第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。应理解,一个收发波束对由一个发送波束和一个接收波束组成。一个天线标识和一个扇区标识可用于唯一确定一个波束。但因为接收波束是接收端用于接收数据的,所以接收波束的方向无需告知发送端、只需要接收端自己知道即可,所以第一波束信息列表中可不包括接收波束的扇区标识。
第五方面,本申请提供一种射频感知方法,该方法包括:第一设备以扇区扫描方式发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量;第一设备发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;第一设备接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
其中,第一设备可以是发起方(initiator),第二设备是应答方(responder)。第一设备至少扇区扫描2圈,也就是说,第一设备采用同一发送波束至少发送2次(每次发送一个第一帧)。应理解,每个第一帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第一帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
可见,本方案通过新增感知反馈过程,来解决扇区级扫描阶段由于预留比特不足而无法实现多目标的波束信息反馈,进而实现了对多个运动目标的感知、以及训练用于感知每个运动目标的最佳收发波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
结合第五方面,在一种可能的设计中,第一设备接收第二感知反馈帧之后,该方法还包括多扇区探测过程,其中:第一设备准全向多次发送第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备以扇区扫描方式多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第一设备发送第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;第一设备接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
其中,第一设备准全向每次发送一个第一BRP PPDU,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。第一设备至少扇区扫描2圈,也就是说,第一设备采用同一接收波束至少接收2次(每次接收一个第一BRP PPDU)。
可见,本方案通过在多扇区探测过程中修改相关的帧格式,使收发双方可以训练感知场 景中的最佳接收波束。
结合第五方面,在一种可能的设计中,第一设备接收第四BRP帧之后,该方法还包括波束配对过程,其中:第一设备定向多次发送第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第一设备定向多次接收第六BRP PPDU,所述第六BRP PPDU包括的第六BRP帧用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;第一设备发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;第一设备接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可见,本方案基于802.11ay标准的扇区级扫描阶段和波束精炼阶段流程,通过同一波束多次扫描测得的CSI值的变化来进行感知,并通过修改扇区级扫描阶段和波束精炼阶段中的相关帧结构来开启sensing操作、反馈感知测量结果等,可以在原有通信波束训练的同时实现对单个运动目标的感知、以及训练用于感知的最佳收发波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
第六方面,本申请提供一种射频感知方法,该方法包括:第二设备准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备以扇区扫描方式发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示第一设备评估第二设备到所述第一设备的CSI的变化量;第二设备接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;第二设备发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
其中,第一设备可以是initiator,第二设备是responder。第二设备至少扇区扫描2圈,也就是说,第二设备采用同一发送波束至少发送2次(每次发送一个第二帧)。应理解,每个第二帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第二帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第六方面,在一种可能的设计中,第二设备发送第二感知反馈帧之后,该方法还包括多扇区探测过程,其中:第二设备以扇区扫描方式多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第二设备接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;第二设备发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
其中,第二设备准全向每次发送一个第二BRP PPDU,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。同理,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。 TRN Unit用于对端进行CSI测量。第二设备至少扇区扫描2圈,也就是说,第二设备采用同一接收波束至少接收2次(每次接收一个第二BRP PPDU)。
结合第六方面,在一种可能的设计中,第一设备接收第四BRP帧之后,该方法还包括波束配对过程,其中:第二设备定向多次接收第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示第二设备评估第一设备到第二设备的CSI的变化量;第二设备定向多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示第一设备评估第二设备到第一设备的CSI的变化量;第二设备接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;第二设备发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
第七方面,本申请提供一种第一设备或第一设备中的芯片,比如Wi-Fi芯片。该第一设备包括:发送单元,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;接收单元,用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该发送单元,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该接收单元,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,该第一设备还包括处理单元,用于生成多个第一帧;该处理单元,还用于生成第一感知反馈帧。
应理解,每个第一帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第一帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第七方面,在一种可能的设计中,上述发送单元,还用于准全向多次发送第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元,还用于多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元,还用于发送的第三BRP帧,该第三BRP帧用于反馈波束配对阶段中该第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述接收单元,还用于接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元,还用于生成第一BRP PPDU和第三BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
结合第七方面,在一种可能的设计中,上述发送单元,还用于多次发送第五BRP PPDU, 该第五BRP PPDU包括的第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元,还用于多次接收第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元,还用于发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述接收单元,还用于接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元,还用于生成第五BRP PPDU和携带第一波束信息列表的第七BRP帧。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
第八方面,本申请提供一种第二设备或第二设备中的芯片,比如Wi-Fi芯片。该第二设备包括:接收单元,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该发送单元,用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该接收单元,还用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该发送单元,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,该第二设备还包括处理单元,用于生成多个第二帧;该处理单元,还用于生成第二感知反馈帧。
应理解,每个第二帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第二帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。
结合第八方面,在一种可能的设计中,上述接收单元,还用于多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元,还用于准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元,还用于接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述发送单元,还用于发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元,还用于生成第二BRP PPDU和第四BRP帧。
其中,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。同理,每个第一BRP PPDU中包括一个第一BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
结合第八方面,在一种可能的设计中,上述接收单元,还用于多次接收第五BRP PPDU,该第五BRP PPDU包括的第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的 CSI的变化量;上述发送单元,还用于多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元,还用于接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述发送单元,还用于发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元,还用于生成第六BRP PPDU和携带第二波束信息列表的第八BRP帧。
其中,每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
上述任一方面的任一种设计中,上述第一帧是信标beacon帧时,上述第一指示信息位于该beacon帧的强定向多千兆位(enhanced directional multi-gigabit,EDMG)能力字段的可选子元素子字段中。该第一指示信息可以包括CSI测量请求字段和CSI差值计算字段。该CSI测量请求字段用于指示第二设备是否测量CSI,当该CSI测量请求字段设置为第一值,用于指示第二设备测量CSI;当该CSI测量请求字段设置为第二值,用于指示第二设备不测量CSI。本方案的第一帧中CSI测量请求字段设置为第一值。该CSI差值计算字段用于指示第二设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第二设备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。可选的,该第一指示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。该评估算法字段用于指示CSI的评估算法;该CSI变化阈值字段用于指示CSI变化阈值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案通过在beacon帧的EDMG能力字段中的可选子元素(optional subelements)子字段中携带第一指示信息来指示第二设备评估第一设备到第二设备的CSI的变化量,既可以不改变原有beacon帧的功能(或复用原有beacon帧的功能),也可以利用该beacon帧实现感知功能,无需专利为感知功能设计相关流程,开销较小,且具有较好的兼容性。
上述任一方面的任一种设计中,上述第一帧是扇区扫描(sector sweep,SSW)帧时,上述第一指示信息携带于该SSW帧的SSW反馈字段的预留子字段中。该第一指示信息可以包括CSI测量请求字段和CSI差值计算字段。该CSI测量请求字段用于指示第二设备是否测量CSI,当该CSI测量请求字段设置为第一值,用于指示第二设备测量CSI;当该CSI测量请求字段设置为第二值,用于指示第二设备不测量CSI。本方案的第一帧中CSI测量请求字段设置为第一值。该CSI差值计算字段用于指示第二设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第二设备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。可选的,该第一指示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。该评估算法字段用于指示CSI的评估算法;该CSI变化阈值字段用于指示CSI变化阈值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案通过在SSW帧的SSW反馈字段的预留子字段中携带第一指示信息,可以不改变原有SSW帧的帧长,复用SSW帧中的其他字段,既可以实现通信波束的训练,也可以实现感知波束的训练,设计灵活,兼容性好。
上述任一方面的任一种设计中,上述第二帧是SSW帧时,上述第二指示信息位于该SSW 帧的SSW反馈字段的预留子字段中,上述第一测量结果位于该SSW帧的SSW反馈字段的信噪比(signal-to-noise ratio,SNR)报告子字段中。该第二指示信息包括CSI差值计算字段,该CSI差值计算字段用于指示第一设备是否计算CSI差值,当该CSI差值计算字段设置为第一值,用于指示第一备计算CSI;当该CSI差值计算字段设置为第二值,用于指示第二设备不计算CSI差值。
其中,第一值是1,第二值是0;或者第一值是0,第二值是1。
可见,本方案在第二帧中携带第二指示信息,用于指示第一设备评估第二设备到第一设备的CSI的变化量,有利于训练第二设备的最佳感知发送波束,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第一测量结果包括第一天线标识和第一扇区标识,上述第二测量结果包括第二天线标识和第二扇区标识。该第一天线标识和该第一扇区标识所确定的波束是第一设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束。该第二天线标识和该第二扇区标识所确定的波束是第二设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束。
可见,本方案通过第一测量结果反馈第一设备的所有发送波束中CSI变化量大于阈值的发送波束,作为第一设备的最佳感知发送波束;通过第二测量结果反馈第二设备的所有发送波束中CSI变化量大于阈值的发送波束,作为第二设备的最佳感知发送波束;在通信的扇区级扫描过程中,实现了感知发送波束的训练。
上述任一方面的任一种设计中,上述第一BRP PPDU中的第一BRP帧和上述第一BRP PPDU中的第二BRP帧均包括CSI测量请求字段和波束扫描圈数字段。该CSI测量请求字段的取值为第一值,用于指示测量CSI;该波束扫描圈数字段用于指示接收波束的扫描圈数。
可选的,该第一BRP PPDU中的第一BRP帧和该第一BRP PPDU中的第二BRP帧还包括以下一个或多个字段:发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;CSI变化阈值字段,用于指示CSI变化阈值;评估算法字段,用于指示CSI评估算法。
可见,本方案通过在多扇区探测过程中修改BRP PPDU的帧格式来引入感知操作,可以分别训练得到第一设备和第二设备的最佳感知接收波束,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第一接收波束数量携带于上述第三BRP帧的定向多千兆位(directional multi-gigabit,DMG)波束精炼元素中。上述第二接收波束数量携带于第四BRP帧的DMG波束精炼元素中。
上述任一方面的任一种设计中,上述第五BRP PPDU中的第五BRP帧和上述第六BRP PPDU中的第六BRP帧均包括CSI测量请求字段和波束扫描圈数字段。该CSI测量请求字段的取值为第一值,用于指示测量CSI;该波束扫描圈数字段用于指示接收波束的扫描圈数。
可选的,该第五BRP PPDU中的第五BRP帧和该第六BRP PPDU中的第六BRP帧还包括以下一个或多个字段:发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;CSI变化阈值字段,用于指示CSI变化阈值;评估算法字段,用于指示CSI评估算法。
可见,本方案通过在波束配对过程中修改BRP PPDU的帧格式来引入感知操作,可以将第一设备和第二设备的最佳感知收发波束进行配对,为后续WLAN sensing的应用提供基础。
上述任一方面的任一种设计中,上述第一波束信息列表位于上述第七BRP帧的感知测量反馈元素中,上述第二波束信息列表位于上述第八BRP帧的感知测量反馈元素中。其中,该感知测量反馈元素的元素标识为预留值,比如13。
上述任一方面的任一种设计中,上述第一波束信息列表包括第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。同理,上述第二波束信息列表包括第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。应理解,一个收发波束对由一个发送波束和一个接收波束组成。一个天线标识和一个扇区标识可用于唯一确定一个波束。但因为接收波束是接收端用于接收数据的,所以接收波束的方向无需告知发送端、只需要接收端自己知道即可,所以第一波束信息列表中可不包括接收波束的扇区标识。
第九方面,本申请提供一种第一设备,包括收发器,可选的还处理器。
一种设计中,收发器,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理器,用于生成多个第一帧;该处理器,还用于生成第三帧。
另一种设计中,收发器,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该收发器,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理器,用于生成多个第一帧;该处理器还用于生成第一感知反馈帧。
第十方面,本申请提供一种第二设备,包括收发器,可选的还处理器。
一种设计中,收发器,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理器,用于生成多个第二帧。
另一种设计中,收发器,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该收发 器,还用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该收发器,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理器,用于生成多个第二帧;该处理器还用于生成第二感知反馈帧。
第十一方面,本申请提供一种第一设备,该第一设备可以以芯片的产品形态存在,该第一设备的结构中包括输入输出接口和处理电路。
一种设计中,输入输出接口用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理电路用于生成多个第一帧;该处理电路,还用于生成第三帧。
另一种设计中,输入输出接口,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该输入输出接口,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理电路用于生成多个第一帧;该处理电路还用于生成第一感知反馈帧。
第十二方面,本申请提供一种第二设备,该第二设备可以以芯片的产品形态存在,该第二设备的结构中包括输入输出接口和处理电路。
一种设计中,输入输出接口,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理电路,用于生成多个第二帧。
另一种设计中,输入输出接口,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还 用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该输入输出接口,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理电路,用于生成多个第二帧;该处理电路还用于生成第二感知反馈帧。
第十三方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面,或上述第五方面、或上述第六方面所述的方法。
第十四方面,本申请提供一种包含程序指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面,或上述第五方面、或上述第六方面所述的方法。
实施本申请实施例,可以将802.11ay中传统的波束赋形训练机制与WLAN sensing相结合,在原有通信波束训练的同时实现感知和训练用于感知的波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种***架构图;
图2是本申请实施例提供的AP或STA的结构示意图;
图3a是本申请实施例提供的一种波束赋形训练流程示意图;
图3b是本申请实施例提供的另一种波束赋形训练流程示意图;
图3c是本申请实施例提供的波束赋形训练中的波束方向示意图;
图4a是本申请实施例提供的发送beacon帧的波束赋形训练的时序示意图;
图4b是本申请实施例提供的发送SSW帧的波束赋形训练的时序示意图;
图5是本申请实施例提供的射频感知方法的一示意流程图;
图6是本申请实施例提供的beacon帧的帧格式示意图;
图7是本申请实施例提供的ISS中SSW帧的帧格式示意图;
图8是本申请实施例提供的RSS中SSW帧的帧格式示意图;
图9是本申请实施例提供的SSW feedback帧的帧格式示意图;
图10是本申请实施例提供的SLS阶段的一时序示意图;
图11是本申请实施例提供的SLS阶段的另一时序示意图;
图12是本申请实施例提供的射频感知方法中MID过程的示意流程图;
图13是本申请实施例提供的BRP感知请求元素的帧格式示意图;
图14是本申请实施例提供的DMG波束精炼元素的帧格式示意图;
图15是本申请实施例提供的射频感知方法中BC过程的示意流程图;
图16是本申请实施例提供的BRP阶段的时序示意图;
图17是本申请实施例提供的射频感知方法的另一示意流程图;
图18是本申请实施例提供的第一感知反馈帧的帧格式示意图;
图19是本申请实施例提供的射频感知方法的一时序示意图;
图20是本申请实施例提供的第一设备的结构示意图;
图21是本申请实施例提供的第二设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的射频感知方法的***架构和/或应用场景进行说明。可理解的,本申请实施例描述的场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种射频感知方法,可以基于802.11ay标准中的波束赋形训练流程修改相关帧结构和/或反馈流程,可以将802.11ay中传统的波束赋形训练机制与WLAN sensing相结合,在进行原有通信波束训练的同时实现对单/多个目标的感知以及训练用于感知的波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。该方法可以应用于无线通信***中,该无线通信***可以为无线局域网或蜂窝网;该方法可以由无线通信***中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点(access point,AP)设备或站点(station,STA)设备。该接入点设备和站点设备既可以是单链路设备,也可以是多链路设备。
参见图1,图1是本申请实施例提供的一种***架构图。如图1所示,该***架构包括至少2个WLAN设备(如图1中的AP和STA),其中一个WLAN设备(如AP)可以与另一个WLAN设备(如STA)进行波束赋形训练。可选的,图1所示的目标可以是运动物体。WLAN设备可以支持802.11标准,该802.11标准可以包括802.11ay或802.11ad,还可以包括802.11be、802.11ax,802.11ac等标准。当然,随着通信技术的不断演进和发展,该通信协议还可以包括更下一代802.11标准等。本申请中,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理***。
接入点(AP)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN***中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理***等,安装这些芯片或处理***的设备可以在芯片或处理***的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理***,从而实现本申请实施例的方法和功能。
站点(STA)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN***中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理***等,安装这些芯片或处理***的设备可以在芯片或处理***的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐设备,游戏设备或***,全球定位***设备等,STA还可以为上述这些终端中的芯片和处理***。
具体地,本申请关注利用802.11ay标准中的波束赋形训练流程来实现WLAN sensing的方法,该方法可以由无线通信网络设备的控制器来实现,即该控制器通过发送或者接收本申请所设计的信令以及交互流程,从而实现本申请所述的WLAN Sensing功能。本申请关注WLAN sensing双方,即AP与STA之间的交互流程和协商,未对AP和STA的内部结构进行改进。下面对AP和STA的结构作简要的说明。参见图2,图2是本申请实施例提供的AP或STA的结构示意图。如图2所示,AP或STA可以包括:应用(application)层模块、传输控制协议(transmission control protocol,TCP)/用户数据报协议(user datagram protocol,UDP)处理模块、网际互连协议(internet protocol,IP)处理模块、逻辑链路控制(logical link control,LLC)模块、媒体接入控制(media access control,MAC)层模块、物理(physical,PHY)层基带模块、射频radio以及天线等。其中,图2所示的AP或STA既可以是单天线结构,也可以是多天线结构,本申请实施例对此不作限定。
WLAN***可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN***将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
上述内容简述了本申请提供的***架构,为更好地理解本申请提供的技术方案,下面对802.11ay标准中的波束赋形训练(Beamforming Training,BFT)过程进行简要说明。
802.11ay标准中的波束赋形训练过程主要分为两个阶段:扇区级扫描(sector-level sweep,SLS)阶段和波束精炼(beam refinement protocol,BRP)阶段。参见图3a和图3b,图3a和图3b分别示出了波束赋形训练的两种流程。另外,图3c示出了图3a和图3b所示波束赋形训练流程中各个帧在交互过程中的波束方向示意图。如图3a和图3b所示,802.11ay标准中的波束赋形训练过程包括:
1、扇区级扫描阶段(SLS phase)
扇区级扫描阶段包括四部分,分别为发送方扇区扫描(initiator sector sweep,ISS)、应答方扇区扫描(responder sector sweep,RSS)、扇区扫描(sector sweep,SSW)反馈(SSW Feedback)、以及扇区扫描确认(SSW ACK)。
其中,发起方扇区扫描(ISS),用于训练发起方的定向发送波束,发起方以一定宽度的波束定向发送训练数据,应答方准全向接收训练数据。应答方扇区扫描(RSS),用于训练应答方的定向发送波束,应答方以一定宽度的波束定向发送训练数据,该训练数据包含了上一阶段(即ISS阶段)发起方的最佳发送扇区信息;此时发起方准全向接收训练数据。扇区扫描反馈(SSW Feedback),用于发起方反馈上一阶段(即RSS阶段)应答方的最佳发送扇区信息,此时应答方处于准全向接收模式。扇区扫描确认(SSW ACK),其在数据传输间隔(data transfer interval,DTI)之前进行扇区级扫描时不存在。在数据传输间隔内进行扇区级扫描则需要扇区扫描确认(SSW ACK),用于确认收到发起方发送的SSW Feedback帧。
应理解,ISS阶段的训练数据可以指信标(beacon)帧或SSW帧,RSS阶段的训练数据可以指SSW帧。
2、波束精炼阶段(BRP phase)
波束精炼阶段包括BRP建立(也称为初始化设置)、多扇区探测(multiple sector ID detection,MID)、波束配对(beam combining,BC)、以及波束细化(beam refinement transaction,BRT)等。
其中,初始化设置(即BRP建立),用于配置后续多扇区探测(MID)和波束配对(BC)阶段的训练信息。多扇区探测的功能是训练发起方和应答方的最佳接收波束,其训练过程与最佳发送波束的训练过程(前述ISS阶段和RSS阶段)类似,区别在于采用准全向模式发送训练数据,采用定向模式接收训练数据。应理解,MID阶段的训练数据指BRP PPDU(Physical layer protocol data unit,物理层协议数据单元)。其中,BRP PPDU中包括BRP帧和训练单元(training unit,TRN Unit)。波束配对的功能是将扇区级扫描阶段与多扇区探测阶段分别训练得到的收发波束进行配对以获得最佳的收发波束配对,从而找到最佳的定向通信链路。此时,发送和接收训练数据都采用定向模式。在波束配对后,还需要至少一轮的波束细化过程,进行进一步的波束细化,从而迭代找到更加精细化的收发波束对,提升通信链路质量。应理解,本申请不涉及波束细化过程,故图3a至图3b中未示出波束细化过程。
如图3a和图3b所示,波束赋形训练的ISS阶段既可以发送信标(beacon)帧,也可以发送扇区扫描(SSW)帧,当发送不同帧时,波束赋形训练过程位于一个信标间隔(beacon interval,BI)的不同时间间隔内。一种实现方式中,参见图4a,图4a是本申请实施例提供的发送beacon帧的波束赋形训练的时序示意图。如图4a所示,在一个信标间隔(BI)内,当波束赋形训练过程发送beacon帧时,其扇区级扫描过程在信标传输间隔(beacon transmission interval,BTI)和关联波束赋形训练(association beamforming training,A-BFT)中进行,再经过一个公告传输间隔(announcement transmission interval,ATI)后,在数据传输间隔内开始进行波束精炼,此时的波束精炼过程需要经历BRP建立(也称为初始化设置)、多扇区探测、以及波束配对这三个阶段,最后进行数据传输。
另一种实现方式中,参见图4b,图4b是本申请实施例提供的发送SSW帧的波束赋形训练的时序示意图。如图4b所示,在一个BI内,当波束赋形训练过程发送SSW帧时,其扇区级扫描过程在数据传输间隔内进行,不再与BTI和A-BFT同步进行。在数据传输间隔内先开始进行扇区级扫描过程,再进行波束精炼过程,此时的波束精炼过程包括多扇区探测和波束配对这两个阶段,可选的还包括BRP建立(也称为初始化设置)阶段,最后开始数据传输。
可见,802.11ay标准中波束赋形训练过程的主要目的是通过多次波束扫描,来得到最佳通信波束。未来的802.11标准考虑在波束赋形训练机制中引入WLAN sensing,但如何将传统的波束赋形训练机制与WLAN sensing相结合,在不影响正常通信的基础上进行WLAN sensing,成为了亟待解决的问题。
WLAN sensing技术可大体分为两种,一种是采用雷达技术,无线设备通过发送雷达信号进而感知探测目标;另一种是通过测量信道状态信息(channel state information,CSI)获取不同时刻下信道特征变化,来感知探测目标。本申请关注通过CSI来感知探测目标的方式。
本申请实施例提供一种射频感知方法,通过同一波束多次扫描测得的CSI值的变化来进行感知,并基于802.11ay标准的波束赋形训练流程修改相关帧结构和反馈流程,以使802.11ay中传统的波束赋形训练机制与WLAN sensing相结合,从而在进行原有通信波束训练的同时实现对单/多个目标的感知以及训练用于感知的波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过两个实施例来详细说明。其中,实施例一阐述感知场景中只需要反馈单个最佳感知波束的情况下,基于802.11ay标准的波束赋形训练流程,如何设计相关的帧结构来同时实现通信波束训练和射频感知。实施例二阐述感知场景中反馈单个或多个最佳感知波束的情况下,基于802.11ay标准的波束赋形训练流程,如何设计相关的帧结构和反馈流程来同时实现通信波束训练和射频感知。
可理解的,本申请中的第一设备可以表示发起方(initiator),发起方既可以是图1中的AP,也可以是STA,也就是说,第一设备既可以是AP也可以是STA。本申请中的第二设备可以表示应答方(responder),应答方既可以是图1中的STA,也可以是AP,也就是说,第二设备既可以是STA也可以是AP。
还可理解的,本申请中的第一设备和第二设备均支持802.11标准,如802.11ay标准,还可以支持其他802.11标准,如802.11be、802.11ax、或者802.11be的下一代标准等。
实施例一
本申请实施例一主要介绍感知单个运动目标且只需要反馈单个最佳感知波束的情况下,基于802.11ay标准的波束赋形训练流程,如何修改波束赋形训练流程中相关的帧格式,来同时实现通信波束训练和射频感知。
由于802.11ay标准中的波束赋形训练过程包括SLS阶段和BRP阶段,所以本申请实施例一提供的射频感知方法也包括SLS阶段和BRP阶段。其中,SLS阶段包括ISS过程、RSS过程、以及SSW反馈过程,BRP阶段包括MID过程和BC过程。
参见图5,图5是本申请实施例提供的射频感知方法的一示意流程图。如图5所示,ISS过程包括步骤S101和步骤S102,可用于训练第一设备(或发起方)的最佳感知发送波束;RSS过程包括步骤S103和步骤S104,可用于训练第二设备(或应答方)的最佳感知发送波束,并可用于反馈ISS过程得到的第一设备的最佳感知发送波束;SSW反馈过程包括步骤S105和步骤S106,可用于反馈RSS过程得到的最佳感知发送波束。
具体地,图5所示射频感知方法包括但不限于以下步骤:
S101,第一设备发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的信道状态信息CSI的变化量。
S102,第二设备准全向接收多个第一帧。
可选的,第一设备以扇区扫描方式发送第一帧,第二设备准全向接收第一帧,第二设备对比第一设备的相同发送波束多次扫描时CSI值的变化,来判断该波束扫描区域内是否有运动目标。第二设备将扫描到区域内存在运动目标的发送波束记录下来。应理解,本申请实施例中,第一设备以扇区扫描方式发送第一帧,可以理解为第一设备每次以一定宽度的波束定向发送第一帧,该第一帧中设置扇区标识(Sector ID)字段和定向多千兆位(directional multi-gigabit,DMG)天线标识(DMG Antenna ID)字段,分别用于指示该第一帧的发送扇区和发送天线。还应理解,扇区标识字段和DMG天线标识字段可用于唯一确定一个波束。其中,同一发送扇区和同一发送天线至少发送(或扫描)2次。因此,第一设备会发送多个第一帧。其中,这多个第一帧可以在一个信标间隔(BI)内发送,也可以在多个BI中发送。换句话说,第一设备可以在一个BI内扫描多圈;或者第一设备在一个BI内扫描一圈,在多个BI内完成扫描多圈。
可选的,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量,或者用于指示对端(这里指第二设备,或应答方)开启sensing操作。
下面将对第一帧的实现方式进行详细说明。
(1)第一帧是beacon帧
可选的,第一帧是beacon帧时,可以在beacon帧的增强定向多千兆位(enhanced directional multi-gigabit,EDMG)能力字段中的可选子元素(optional subelements)子字段中新增一个元素字段,用于指示开启感知操作或指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量。也就是说,上述第一指示信息可以位于beacon帧的EDMG能力字段的可选子元素字段的新增元素字段中。本申请将这个新增的元素称为感知控制元素(sensing control elements),应理解,这个新增的元素还可以有其他名称,本申请不做限定。换句话说,该第一指示信息具体携带于beacon帧的感知控制元素中,用于指示对端(这里指第二设备或应答方)开启感知操作或评估第一设备到第二设备的CSI的变化量。其中,该感知控制元素的子元素标识(subelement ID)为预留值(5至255)中的一个,比如5。
可选的,上述第一指示信息(也就是感知控制元素)包括CSI测量请求字段和CSI差值计算字段。当该CSI测量请求字段的取值为第一值时,用于指示对端(这里指第二设备或应答方)测量CSI;当该CSI测量请求字段的取值为第二值时,用于指示对端(这里指第二设备或应答方)不测量CSI。本申请实施例中beacon帧的CSI测量请求字段设置为第一值。CSI差值计算字段用于指示第二设备是否计算CSI差值。当该CSI差值计算字段的取值为第一值,用于指示第二设备计算CSI差值;当该CSI差值计算字段的取值为第二值,用于指示第二设备不计算CSI差值。第一值可以是1,第二值是0;或者,第一值是0,第二值是1。该第一指示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。其中,评估算法字段用于指示CSI的评估算法,CSI变化阈值字段用于指示CSI变化阈值。应理解,CSI的评估算法用于评估(或计算)CSI值,CSI变化阈值用于与相同波束多次扫描到同一位置时测得的CSI值的变化比较,判断该波束扫描区域内是否有运动目标(target)。
还应理解,上述第一指示信息包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
参见图6,图6是本申请实施例提供的beacon帧的帧格式示意图。如图6所示,该beacon帧的帧体(frame body)中包括EDMG能力(EDMG Capabilities)字段,该EDMG Capabilities 字段的可选子元素(optional subelements)子字段中包括感知控制元素。该感知控制元素的子元素标识(subelement ID)为预留值(5至255)中的一个,如图6中的子元素标识5。也就是说,当该可选子元素(optional subelements)子字段的子元素标识为某个预留值时,表示此可选子元素为感知控制元素。该感知控制元素(或上述第一指示信息)包括CSI测量请求(CSI Measurement Request)字段、评估算法(Evaluation algorithm)字段、CSI变化阈值(CSI Variation Threshold)字段、以及CSI差值计算(CSI Variation Calculation)字段。其中,CSI测量请求字段的长度为1比特,当该CSI测量请求字段的取值为第一值时,用于指示开启CSI测量。应理解,该beacon帧中的CSI测量请求字段设置为第一值。评估算法字段的长度为2比特,用于指示CSI的评估算法。CSI变化阈值字段的长度为2比特,用于指示CSI变化阈值,当相同发送波束多次扫描测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target),应答方(即第二设备)会将该发送波束对应的发送天线ID和发送扇区ID存储下来;反之,当相同发送波束多次扫描测得的CSI值的变化小于或等于该CSI变化阈值时,说明该波束扫描区域内没有运动目标。CSI差值计算字段的长度为1比特,用于指示对端是否进行CSI差值计算,当该CSI差值计算字段取值为第一值时,指示对端进行CSI差值计算;当该CSI差值计算字段取值为第二值时,指示对端不进行CSI差值计算。第一值可以是1,第二值可以是0;或者第一值是0,第二值是1。
应理解,图6中感知控制元素包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
可选的,同一波束第一次发送的beacon帧中CSI差值计算字段应设置为第二值,同一波束第N次发送的beacon帧中CSI差值计算字段可设置为第一值。N是大于或等于2的整数。
可选的,CSI的评估算法和/或CSI变化阈值也可以在标准中规定,无需通过在beacon帧中携带字段来指示。换句话说,图6所示的感知控制元素可以不包括评估算法字段和/或CSI变化阈值字段。
(2)第一帧是SSW帧
可选的,第一帧是SSW帧时,可以利用SSW帧的SSW反馈字段中的预留子字段来携带上述第一指示信息,该第一指示信息用于指示对端(这里指第二设备或应答方)开启感知操作或评估第一设备到第二设备的CSI的变化量。
可选的,该第一指示信息包括CSI测量请求字段和CSI差值计算字段。当该CSI测量请求字段的取值为第一值时,用于指示对端(这里指第二设备或应答方)测量CSI;当该CSI测量请求字段的取值为第二值时,用于指示对端(这里指第二设备或应答方)不测量CSI。本申请实施例中SSW帧的CSI测量请求字段设置为第一值。CSI差值计算字段用于指示第二设备是否计算CSI差值。当该CSI差值计算字段的取值为第一值,用于指示对端(这里指第二设备或应答方)计算CSI差值;当该CSI差值计算字段的取值为第二值,用于指示对端(这里指第二设备或应答方)不计算CSI差值。第一值可以是1,第二值是0;或者,第一值是0,第二值是1。该第一指示信息还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段。其中,评估算法字段用于指示CSI的评估算法,CSI变化阈值字段用于指示CSI变化阈值。应理解,CSI评估算法用于计算CSI值,CSI变化阈值用于与相同波束多次扫描到同一位置时测得的CSI值的变化比较,判断该波束扫描区域内是否有运动目标(target)。
还应理解,上述第一指示信息包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
参见图7,图7是本申请实施例提供的ISS中SSW帧的帧格式示意图。如图7所示,该SSW帧的SSW反馈字段中包括三个预留子字段,其中两个预留子字段的长度为5比特(B11至B15、和B17至B21),另一个预留子字段的长度为1比特(B23)。其中,第一个预留子字段(比如图7中的B17-B21)包括1比特的CSI测量请求字段、2比特的评估算法字段、以及2比特CSI变化阈值字段,第二个预留子字段(B23)为1比特的CSI差值计算字段。CSI测量请求字段的取值为第一值时,用于指示开启CSI测量。应理解,该SSW帧中的CSI测量请求字段设置为第一值。评估算法字段,用于指示CSI的评估算法。CSI变化阈值字段,用于指示CSI变化阈值,当相同发送波束多次扫描测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target),应答方(即第二设备)会将该发送波束对应的发送天线ID和发送扇区ID存储下来;反之,当相同发送波束多次扫描测得的CSI值的变化小于或等于该CSI变化阈值时,说明该波束扫描区域内没有运动目标。CSI差值计算字段,用于指示对端是否进行CSI差值计算,当该CSI差值计算字段取值为第一值时,指示对端进行CSI差值计算;当该CSI差值计算字段取值为第二值时,指示对端不进行CSI差值计算。第一值可以是1,第二值可以是0;或者第一值是0,第二值是1。
可选的,同一波束第一次发送的SSW帧中CSI差值计算字段应设置为第二值,同一波束第N次发送的SSW帧中CSI差值计算字段可设置为第一值。N是大于或等于2的整数。
可选的,CSI的评估算法和/或CSI变化阈值也可以在标准中规定,无需通过在beacon帧中携带字段来指示。换句话说,图7所示的第一个预留子字段(B17-B21)可以不包括评估算法字段和/或CSI变化阈值字段,剩余比特仍然表示预留。
S103,第二设备发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量。
S104,第一设备准全向接收多个第二帧。
可选的,第二设备以扇区扫描方式发送第二帧,第一设备准全向接收该第二帧,第一设备对比第二设备的相同发送波束多次扫描时CSI值的变化,来判断该波束扫描区域内是否有运动目标。第二设备将扫描到区域内存在运动目标的发送波束记录下来。该第二帧是SSW帧。应理解,本申请实施例中,第二设备以扇区扫描方式发送第二帧,可以理解为第二设备每次以一定宽度的波束定向发送第二帧,该第二帧中设置Sector ID字段和DMG Antenna ID字段,分别用于指示该第二帧的发送扇区和发送天线。还应理解,Sector ID字段和DMG Antenna ID字段可用于唯一确定一个波束。其中,同一发送扇区和同一发送天线至少发送(或扫描)2次。因此,第二设备会发送多个第二帧,其中这多个第二帧可以在一个信标间隔(BI)内发送,也可以在多个BI中发送。换句话说,第二设备可以在一个BI内扫描多圈;或者第二设备在一个BI内扫描一圈,在多个BI内完成扫描多圈。
可选的,每个第二帧中包括第一测量结果和第二指示信息。该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的一个发送波束。也就是说,该第一测量结果用于反馈第二设备评估出的结果,或者用于反馈ISS阶段的感知测量结果(比如,运动目标对应的天线标识和扇区标识)。该第二指示信息用于指示第一设备(或者对端)评估第二设备到第一设备的CSI的变化量,或者用于指示对端(这里指第一设备,或发起方)开启sensing操作。
可选的,上述第二帧是SSW帧,上述第二指示信息可以位于SSW帧的SSW反馈字段 的预留子字段中。该第二指示信息可以包括CSI差值计算字段。该CSI差值计算字段用于指示第一设备是否计算CSI差值,当该CSI差值计算字段的取值为第一值,用于指示对端(第一设备或发起方)计算CSI差值;当该CSI差值计算字段的取值为第二值,用于指示对端(第一设备或发起方)不计算CSI差值。第一值可以是1,第二值是0;或者,第一值是0,第二值是1。应理解,该第二指示信息可以不包括评估算法字段和CSI变化阈值字段,也就是说第二设备不需要告知第一设备、CSI的评估算法和CSI变化阈值。
可选的,该第二指示信息还可以包括CSI测量请求字段。当该CSI测量请求字段的取值为第一值时,用于指示对端(这里指第一设备或发起方)测量CSI;当该CSI测量请求字段的取值为第二值时,用于指示对端(这里指第一设备或发起方)不测量CSI。如果该第二指示信息中包括CSI测量请求字段,则SSW帧的CSI测量请求字段设置为第一值。其中,该CSI测量请求字段的长度为1比特。
可选的,上述第二帧是SSW帧,上述第一测量结果可位于SSW帧的SSW反馈字段的信噪比(signal-to-noise ratio,SNR)报告子字段中。其中,该第一测量结果包括第一天线标识和第一扇区标识,该第一天线标识和该第一扇区标识所确定的波束是第一设备的所有发送波束中同一发送波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的发送波束。由于相同发送波束多次扫描时测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target);所以第一天线标识和第一扇区标识也可以理解为运动目标对应的发起方(即第一设备)的发送天线标识和发送扇区标识。
还应理解,如果第一设备的所有发送波束中同一发送波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的发送波束有多个,则第一天线标识和第一扇区标识所确定的波束可以是CSI差值最大的一个发送波束,或者可以是CSI差值大于CSI变化阈值的多个发送波束中任一个,或者可以是第一个CSI差值大于CSI变化阈值的发送波束。还应理解,该第一天线标识和该第一扇区标识所确定的波束可以作为第一设备在感知场景中的最佳发送波束。
例如,假设第一设备扇区扫描两圈,也就是在不同时间采用同一发送波束发送两次第一帧。第二设备基于在同一个发送波束(由第一帧中的Sector ID字段和DMG Antenna ID字段确定不同时间收到的第一帧是否是同一个发送波束发送的)上前后两次接收到的第一帧测量得到两个CSI值,并根据这个发送波束上第二次发送的第一帧的指示计算这两个CSI值之间的差值(或差值的绝对值),比较这个差值与CSI变化阈值之间的大小。将差值大于CSI变化阈值的波束对应的天线标识和扇区标识(即第一帧中Sector ID字段和DMG Antenna ID字段的值)记录下来。第二设备将CSI差值最大的波束对应的天线标识和扇区标识携带在SSW帧的SSW反馈字段的SNR报告子字段中反馈给第一设备。
可选的,上述第二帧中还包括第三指示信息,用于指示该第二帧中是否包括第一测量结果,或者用于指示SNR报告子字段的含义是指示通信最佳波束的SNR,还是指示第一测量结果。其中,该第二帧是SSW帧,该第三指示信息位于该SSW帧的SSW反馈字段的预留子字段中。
参见图8,图8是本申请实施例提供的RSS中SSW帧的帧格式示意图。如图8所示,该SSW帧的SSW反馈字段中包括8比特的SNR报告子字段和5比特(B17-B21)的预留子字段。该预留子字段中包括1比特的感知扩展字段、1比特的CSI差值计算字段、剩余3比特仍然表示预留。CSI差值计算字段用于指示对端(第一设备或发起方)是否进行CSI差值计算,当该CSI差值计算字段取值为第一值时,指示对端(第一设备或发起方)进行CSI差值 计算;当该CSI差值计算字段取值为第二值时,指示对端(第一设备或发起方)不进行CSI差值计算。该感知扩展字段(上述第三指示信息)的取值为第一值时,用于指示SSW帧中包括第一测量结果,或者用于指示SSW帧中SNR报告子字段的含义是指示通信最佳波束的SNR。当该感知扩展字段(上述第三指示信息)的取值为第二值时,用于指示SSW帧中不包括第一测量结果,或者用于指示SSW帧中SNR报告子字段的含义是指示第一测量结果(第一天线标识和第一扇区标识)。换句话说,感知扩展字段(上述第三指示信息)的取值为第二值时,SNR报告子字段包括2比特的目标天线标识(Target Antenna ID)字段、和6比特的目标扇区(Target Sector ID)标识字段。目标天线标识字段用于指示第一天线标识,目标扇区标识字段用于指示第一扇区标识。应理解,本申请实施例中感知扩展字段(第三指示信息)设置为第一值。第一值可以是1,第二值可以是0;或者第一值是0,第二值是1。
可选的,同一波束第一次发送的SSW帧中CSI差值计算字段应设置为第二值,同一波束第N次发送的SSW帧中CSI差值计算字段可设置为第一值。N是大于或等于2的整数。应理解,RSS阶段中,即使SSW帧的CSI差值计算字段设置为第二值,第一设备接收到该SSW帧后,也会基于接收到的SSW帧进行CSI测量。这是因为ISS阶段,第一设备通过CSI测量请求字段指示对端测量CSI,相应地,第一设备自己在RSS阶段也要进行相应的测量操作,所以可以无需CSI测量请求字段来指示第一设备测量CSI。
还应理解,图8所示的SSW帧的SSW反馈字段中SNR报告子字段和预留字段包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
S105,第一设备发送第三帧,该第三帧中包括第二测量结果,第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
S106,第二设备接收第三帧。
可选的,第一设备采用ISS阶段训练得到的通信最佳发送波束发送第三帧,第二设备准全向接收该第三帧。可选的,第二设备接收到该第三帧后,可以回复SSW-Ack帧。该第三帧为SSW反馈帧。该第三帧中包括第二测量结果,用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。也就是说,该第二测量结果用于反馈第一设备评估出的结果,或者用于反馈RSS阶段的感知测量结果(比如,运动目标对应的天线标识和扇区标识)。
可选的,上述第三帧是SSW feedback帧,上述第二测量结果可以位于SSW feedback帧的SSW反馈字段的SNR报告子字段中。其中,该第二测量结果包括第二天线标识和第二扇区标识,该第二天线标识和该第二扇区标识所确定的波束是第二设备的所有发送波束中同一发送波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的发送波束。由于相同发送波束多次扫描时测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target);所以第二天线标识和第二扇区标识也可以理解为运动目标对应的应答方(即第二设备)的发送天线标识和发送扇区标识。
应理解,如果第二设备的所有发送波束中同一发送波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的发送波束有多个,则第二天线标识和第二扇区标识所确定的波束可以是CSI差值最大的一个发送波束,或者可以是CSI差值大于CSI变化阈值的多个发送波束中任一个,或者可以是第一个CSI差值大于CSI变化阈值的发送波束。还应理解,该第二天线标识和该第二扇区标识所确定的波束可以作为第二设备在感知场景中的最佳发送波束。
例如,假设第二设备扇区扫描两圈,也就是在不同时间采用同一发送波束发送两次第二帧。第一设备基于在同一个发送波束(由第二帧中的Sector ID字段和DMG Antenna ID字段确定不同时间收到的第二帧是否是同一个发送波束发送的)上前后两次接收到的第二帧测量得到两个CSI值,并根据这个发送波束上第二次发送的第二帧的指示计算这两个CSI值之间的差值(或差值的绝对值),比较这个差值与CSI变化阈值之间的大小。将差值大于CSI变化阈值的波束对应的天线标识和扇区标识(即第二帧中Sector ID字段和DMG Antenna ID字段的值)记录下来。第一设备将CSI差值最大的波束对应的天线标识和扇区标识携带在SSW反馈帧的SSW反馈字段的SNR报告子字段中反馈给第二设备。
可选的,上述第三帧中还包括第四指示信息,用于指示该第三帧中是否包括第二测量结果,或者用于指示SNR报告子字段的含义是指示通信最佳波束的SNR,还是指示第二测量结果。其中,该第三帧是SSW反馈帧,该第四指示信息位于该SSW反馈帧的SSW反馈字段的预留子字段中。
可选的,上述第三帧还可以包括CSI差值计算字段,用于指示第二设备是否计算CSI差值。该第三帧是SSW反馈帧,该CSI差值计算字段位于SSW反馈帧的SSW反馈字段的预留字段中。当该CSI差值计算字段的取值为第一值,用于指示对端(第二设备或应答方)计算CSI差值;当该CSI差值计算字段的取值为第二值,用于指示对端(第二设备或应答方)不计算CSI差值。第一值可以是1,第二值是0;或者,第一值是0,第二值是1。应理解,本申请实施例中SSW feedback帧的CSI差值计算字段设置为第二值。
参见图9,图9是本申请实施例提供的SSW feedback帧的帧格式示意图。如图9所示,该SSW feedback帧的SSW反馈字段中包括8比特的SNR报告子字段和5比特(B17-B21)的预留子字段。该预留子字段中包括1比特的感知扩展字段、1比特的CSI差值计算字段、剩余3比特仍然表示预留。CSI差值计算字段用于指示对端(第二设备或应答方)是否进行CSI差值计算,当该CSI差值计算字段取值为第一值时,指示对端(第二设备或应答方)进行CSI差值计算;当该CSI差值计算字段取值为第二值时,指示对端(第二设备或应答方)不进行CSI差值计算。本申请实施例中SSW feedback帧的CSI差值计算字段设置为第二值。该感知扩展字段(上述第四指示信息)的取值为第一值时,用于指示SSW反馈帧中包括第二测量结果,或者用于指示SSW反馈帧中SNR报告子字段的含义是指示通信最佳波束的SNR。当该感知扩展字段(上述第四指示信息)的取值为第二值时,用于指示SSW反馈帧中不包括第一测量结果,或者用于指示SSW反馈帧中SNR报告子字段的含义是指示第二测量结果(第二天线标识和第二扇区标识)。换句话说,感知扩展字段(上述第四指示信息)的取值为第二值时,SNR报告子字段包括2比特的目标天线标识(Target Antenna ID)字段、和6比特的目标扇区(Target Sector ID)标识字段。目标天线标识字段用于指示第二天线标识,目标扇区标识字段用于指示第二扇区标识。应理解,本申请实施例中感知扩展字段(第四指示信息)设置为第一值。第一值可以是1,第二值可以是0;或者第一值是0,第二值是1。
还应理解,图9所示的SSW反馈帧的SSW反馈字段中SNR报告子字段和预留字段包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
可见,本申请实施例基于802.11ay标准的SLS阶段流程,通过同一波束多次扫描测得的CSI值的变化来进行感知,并通过修改SLS阶段的相关帧结构来开启sensing操作、反馈感知测量结果等,可以在原有通信波束训练的同时实现对单个运动目标的感知、以及训练用于感知的波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
为更好地理解图5所示方法的SLS阶段流程,下面通过两个示例来说明。
一个示例中,参见图10,图10是本申请实施例提供的SLS阶段的一时序示意图。如图10所示,发起方(Initiator)定向发送beacon帧指示应答方(Responder)开启sensing操作(或Responder评估Initiator到Responder的CSI的变化量),应答方(Responder)准全向接收,Responder对比相同波束多次扫描时CSI值的变化,来判断该波束扫描区域内是否有运动目标。然后,Responder定向发送SSW帧指示发起方(Initiator)也进行相应的感知操作(或Initiator评估Responder到Initiator的CSI的变化量),Initiator全向接收,并将发起方发送扇区扫描(Initiator Transmit Sector Sweep,I-TXSS)过程中得到的测量结果(包括第一天线标识和第一扇区标识)携带在SSW帧中进行反馈。类似的,Initiator通过发送SSW feedback帧反馈应答方发送扇区扫描(Responder Transmit Sector Sweep,R-TXSS)过程中得到的测量结果(包括第二天线标识和第二扇区标识)。其中,SLS阶段中各个过程的帧格式参考前文的描述,此处不赘述。
另一个示例中,参见图11,图11是本申请实施例提供的SLS阶段的另一时序示意图。如图11所示,发起方(Initiator)定向发送SSW帧指示应答方(Responder)开启sensing操作(或Responder评估Initiator到Responder的CSI的变化量),应答方(Responder)准全向接收,Responder对比相同波束多次扫描同一位置时CSI值的变化,来判断该波束扫描区域内是否有运动目标。然后,Responder定向发送SSW帧指示发起方(Initiator)也进行相应感知操作(或Initiator评估Responder到Initiator的CSI的变化量),Initiator全向接收,并将I-TXSS过程中得到的测量结果(包括第一天线标识和第一扇区标识)携带在SSW帧中进行反馈。类似的,Initiator通过发送SSW feedback帧反馈R-TXSS过程中得到的测量结果(包括第二天线标识和第二扇区标识)。Responder准全向接收,并发送SSW-Ack帧,用于确认已收到SSW feedback帧。其中,SLS阶段中各个过程的帧格式参考前文的描述,此处不赘述。
应理解,图10和图11的主要区别在于ISS(或I-TXSS)过程发起方(initiator)发送beacon帧还是SSW帧。
上述步骤S106之后,本申请实施例提供的射频感知方法还包括BRP阶段。下面对本申请实施例提供的射频感知方法的BRP阶段进行详细说明。
一种实现方式中,图5所示方法中BRP阶段可以与802.11ay标准中波束赋形训练的BRP阶段相同,具体过程和其中涉及的帧格式可参考802.11ay标准中的描述,此处不赘述。换句话说,本申请实施例提供的射频感知方法仅应用于波束赋形训练流程中的SLS阶段,波束赋形训练流程中的BRP阶段不改变。也就是说,本申请实施例提供的射频感知方法可以得到收发双方(initiator和Responder)在感知场景中的最佳发送波束,不能得到收发双方(initiator和Responder)在感知场景中的最佳接收波束和最佳收发波束。
另一种实现方式中,图5所示方法中BRP阶段的交互流程与802.11ay标准的波束赋形训练中BRP阶段交互流程相同,其中的帧格式不相同。BRP阶段包括MID过程和BC过程。下面对图5中的BRP阶段进行详细说明。
1、BRP阶段的MID过程
参见图12,图12是本申请实施例提供的射频感知方法中MID过程的示意流程图。如图12所示,该射频感知方法的MID过程包括但不限于以下步骤:
S201,第一设备准全向多次发送第一波束精炼物理层协议数据单元BRP PPDU,该第一BRP PPDU用于指示第二设备评估第一设备到第二设备的信道状态信息CSI的变化量。
S202,第二设备多次接收第一BRP PPDU。
可选的,第一设备准全向多次发送第一BRP PPDU(每次发送一个第一BRP PPDU,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(TRN Unit)),第二设备以扇区扫描方式接收第一BRP PPDU,第二设备对比相同接收波束多次接收第一BRP PPDU时CSI值的变化,来判断该波束扫描区域内是否有运动目标。第二设备记录扫描到区域内存在运动目标的接收波束。其中第一设备的多次发送可以在一个BI内,也可以在多个BI内。应理解,第二设备以扇区扫描方式接收第一BRP PPDU,可以理解为第二设备以波束轮询方式接收第一BRP PPDU,其中每次都以一定宽度的波束定向接收第一BRP PPDU。其中,第二设备的同一接收波束至少需要接收(或扫描)2次。因此,第一设备会多次发送第一BRP PPDU,第一BRP PPDU中的第一BRP帧用于指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量,或者用于指示对端(这里指第二设备或应答方)开启sensing操作。
可选的,第一BRP PPDU在原有BRP帧(也就是802.11ay标准中MID过程发起方发送的BRP帧)的帧格式基础上,新增一个元素字段来开启应答方(即第二设备)的感知接收波束训练,本申请将这个新增的元素称为BRP感知请求元素(BRP Sensing Request element)。应理解,这个新增的元素还可以有其他名称,本申请不做限定。换句话说,第一BRP PPDU包括BRP感知请求元素,该BRP感知请求元素用于指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量,或者用于指示对端(这里指第二设备或应答方)开启sensing操作。应理解,802.11ay标准只定义了元素标识(element ID)为0到11的元素,元素标识12及其后表示预留值。故,该BRP感知请求元素的元素标识(Element ID)为预留值,比如12。
可选的,该BRP感知请求元素(BRP Sensing Request element)包括CSI测量请求字段和波束扫描圈数字段。当该CSI测量请求字段的取值为第一值时,用于指示对端(这里指第二设备或应答方)测量CSI;当该CSI测量请求字段的取值为第二值时,用于指示对端(这里指第二设备或应答方)不测量CSI。本申请实施例中第一BRP PPDU的CSI测量请求字段设置为第一值。该波束扫描圈数字段用于指示对端(这里指第二设备或应答方)的接收波束扫描圈数。该BRP感知请求元素还包括以下一个或多个字段:发送端感知扇区标识字段、发送端感知天线标识掩模字段、CSI变化阈值字段、评估算法字段。其中,发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示当前BRP帧的发射扇区和发射天线。CSI变化阈值字段用于指示CSI变化阈值。评估算法字段用于指示CSI的评估算法。
应理解,上述BRP感知请求元素包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
参见图13,图13是本申请实施例提供的BRP感知请求元素的帧格式示意图。如图13所示,在原有BRP帧的帧格式基础上,新增一个元素标识为预留值(如12)的BRP Sensing Request element。该BRP感知请求元素包括发送端感知扇区标识(Sensing TX Sector ID)字段、发送端感知天线标识掩模(Sensing TX Antenna ID Mask)字段、CSI测量请求(CSI Measurement Request)字段、波束扫描圈数(Number of beam sweep cycles)字段、CSI变化阈值(CSI Variation Threshold)字段、以及评估算法(Evaluation algorithm)字段。应理解,本申请实施例中“TX”表示发送端,“RX”表示接收端。发送端是指本次交互中发送无线帧的一方,接收端是指本次交互中接收无线帧的一方。发送端不等同于发起方,接收端不等同于应答方。
其中,Sensing TX Sector ID字段,表示感知场景中发送端需要进行训练的扇区标识,在 MID阶段,Sensing TX Sector ID字段设置为准全向(quasi-omni)。Sensing TX Antenna ID Mask字段,表示感知场景中发送端需要进行训练的天线比特位图。Sensing TX Sector ID字段和Sensing TX Antenna ID Mask字段用于联合指示当前发送的BRP帧的发射扇区和发射天线。
CSI Measurement Request字段,表示对端(这里是第二设备或应答方)是否测量CSI或是否开启CSI测量。当CSI测量请求字段的取值为第一值时,指示对端(这里是第二设备或应答方)对接收到的第一BRP PPDU中包括的训练单元(Training unit,TRN Unit)进行CSI测量。当CSI测量请求字段的取值为第二值时,指示对端(这里是第二设备或应答方)不对接收到的第一BRP PPDU中包括的训练单元(TRN Unit)进行CSI测量。
Evaluation algorithm字段用于指示CSI的评估算法。CSI的评估算法用于评估(或计算)CSI值。
Number of beam sweep cycles字段,表示对端(这里是第二设备或应答方)需要进行多少次周期性扫描(或者,对端的接收波束扫描圈数),即同一天线的同一扇区需要扫描多少次来接收发送端准全向发送的第一BRP PPDU,达到该次数后停止扫描并进行CSI差值计算。比如,Number of beam sweep cycles字段取值为0时,表示2圈或2次;Number of beam sweep cycles字段取值为1时,表示3圈或3次。应理解,本申请实施例中接收端的接收波束至少扫描2圈,这样才会有2个不同的CSI值用于对比得到运动目标所对应的波束信息。
CSI Variation Threshold字段,用于指示CSI变化阈值。若相同接收波束多次测得的CSI值之间的CSI差值大于该CSI变化阈值,则说明该波束扫描区域内存在运动目标,接收端会将该接收波束对应的接收天线ID和接收扇区ID存储下来。反之,若相同接收波束多次测得的CSI值之间的CSI差值小于或等于该CSI变化阈值,则说明该波束扫描区域内不存在运动目标。可见,步骤S201和步骤S202可用于训练第二设备(或应答方)的最佳感知接收波束。
应理解,第一BRP PPDU的BRP感知请求元素中涉及的发送端是第一设备(或发起方),接收端是第二设备(或应答方),对端也是第二设备(或应答方)。
如图13所示的BRP感知请求元素还包括以下一个或多个字段:
元素标识(Element ID)、长度(Length)、以及元素标识扩展(Element ID Extension)是Element帧的通用帧格式,本申请实施例将Element ID设置为预留值12,用于表示BRP Sensing Request element。
L-RX:用于指示当接收端波束训练作为波束细化过程的一部分时,发送STA请求的用于接收端波束训练的TRN-Units数量。TRN Unit的个数等于L-RX值乘以4。L-RX字段可在BRP setup过程中使用,其指示的数值可在MID过程使用。但L-RX字段在MID过程不强制使用。
L-TX-RX:用于指示在发送和接收波束细化过程中,发送天线权重向量(Antenna Weight Vector,AWV)保持相同AWV配置的连续TRN Unit的数量,在MID阶段保留或未使用。
请求训练单元P(Requested TRN-Unit P):用于指示在一个TRN Unit开始处请求使用相同AWV的TRN子字段的个数。该AWV与物理层协议数据单元(physical protocol data unit,PPDU)的前导码(preamble)和数据(Data)字段传输时的AWV相同。Requested TRN-Unit P字段可在BRP setup过程中使用,其指示的数值可在MID过程使用。但Requested TRN-Unit P字段在MID过程不强制使用。
请求EDMG训练单元M(Requested EDMG TRN-Unit M):该字段的值加1,用于指示一个TRN-Unit中可用于TX(发起方)训练的TRN子字段(subfields)的请求数目,在MID阶段保留或未使用。Requested EDMG TRN-Unit M字段可在BRP setup过程中使用,其指示 的数值可在MID过程使用。但Requested EDMG TRN-Unit M字段在MID过程不强制使用。
请求EDMG训练单元N(Requested EDMG TRN-Unit N):指示在EDMG TRN-Unit M内使用相同AWV传输的连续TRN子字段的请求数,在MID阶段保留或未使用。Requested EDMG TRN-Unit N字段可在BRP setup过程中使用,其指示的数值可在MID过程使用。但Requested EDMG TRN-Unit N字段在MID过程不强制使用。
波束精炼发送扇区扫描(BRP-TXSS):指示请求执行BRP TXSS或确认请求执行BRP TXSS流程。在MID阶段,该字段置为0。
感知-发送扇区扫描-发起方(Sensing-TXSS-INITIATOR):如果BRP-TXSS字段等于1,则Sensing-TX-INITIATOR字段设置为1表示BRP帧的发送方是BRP TXSS流程的发起方,Sensing-TXSS-INITIATOR字段设置为0表示BRP帧的发送方是BRP TXSS的响应方。当BRP-TXSS字段为0时,Sensing-TXSS-INITIATOR字段为保留字段。
TXSS-PACKETS:如果BRP-TXSS字段和Sensing-TXSS-INITIATOR字段都等于1,则TXSS-PACKETS字段的值加1表示发起方进行发送扇区训练所需的EDMG BRP-TX PPDU个数。如果BRP-TXSS字段等于1且Sensing-TXSS-INITIATOR字段等于0,且所述过程包括Responder BRP TXSS,则TXSS-PACKETS字段的值加1表示响应方进行发送扇区训练所需的EDMG BRP-TX PPDU个数。当BRP-TXSS字段等于0时,TXSS-PACKETS字段为保留字段。
TXSS-REPEAT:如果BRP-TXSS字段和Sensing-TXSS-INITIATOR字段都等于1,则TXSS-REPEAT字段的值加1表示,如果BRP TXSS中包含Responder BRP TXSS,则在Responder BRP TXSS中传输的EDMG BRP-TX PPDU被重复的次数。如果BRP-TXSS=1且Sensing-TXSS-INITIATOR=0,则TXSS-REPEAT字段的值加1表示在Initiator BRP TXSS中传输的EDMG BRP-TX PPDU被重复的次数。当BRP-TXSS=0时,TXSS-REPEAT字段为保留字段。
TXSS-MIMO:如果BRP-TXSS字段和Sensing-TXSS-INITIATOR字段都等于1,则TXSS-MIMO字段设置为1表示请求的BRP TXSS为MIMO BRP TXSS,TXSS-MIMO字段设置为0表示请求的BRP TXSS为SISO BRP TXSS。如果BRP-TXSS字段和TXSS-INITIATOR字段都不等于1,则TXSS-MIMO字段保留。
感知BRP减法计数器(Sensing BRP CDOWN):用于指示当前BRP帧后还有多少个BRP帧待发送。
复出延迟(Comeback Delay):用于指示站点可能尚未准备好在波束细化协议帧间隔(beam refinement protocol interframe space,BRPIFS)后进行反馈。该字段中的值指示设备何时进行反馈。
自波束扫描圈数(Number of self-beam-sweep cycles),用于指示发送端的发送波束扫描圈数,在MID阶段保留或未使用。
应理解,图13中在MID阶段保留或未使用的字段可以不包括在BRP感知请求元素中。
S203,第二设备准全向多次发送第二BRP PPDU,该第二BRP PPDU用于指示第一设备评估第二设备到第一设备的CSI的变化量。
S204,第一设备多次接收第二BRP PPDU。
可选的,第二设备准全向多次发送第二BRP PPDU(每次发送一个第二BRP PPDU,每个第二BRP PPDU中包括一个第二BRP帧和训练单元(TRN Unit)),第一设备以扇区扫描方 式接收第二BRP PPDU,第一设备对比相同接收波束多次接收第二BRP PPDU时CSI值的变化,来判断该波束扫描区域内是否有运动目标。第一设备记录扫描到区域内存在运动目标的接收波束。其中第二设备的多次发送可以在一个BI内,也可以在多个BI内。应理解,第一设备以扇区扫描方式接收第二BRP PPDU,可以理解为第一设备以波束轮询方式接收第二BRP PPDU,其中每次都以一定宽度的波束定向接收第二BRP PPDU。其中,第一设备的同一接收波束至少需要接收(或扫描)2次。因此,第二设备会多次发送第二BRP PPDU,第二BRP PPDU中的第二BRP帧用于指示第一设备(或者对端)评估第二设备到第一设备的CSI的变化量,或者用于指示对端(这里指第一设备或发起方)开启sensing操作。
可选的,第二BRP PPDU也是在原有BRP帧(也就是802.11ay标准中MID阶段应答方发送的BRP帧)的帧格式基础上,新增一个元素字段来开启发起方(即第一设备)的感知接收波束训练,本申请将这个新增的元素称为BRP感知请求元素(BRP Sensing Request element)。应理解,这个新增的元素还可以有其他名称,本申请不做限定。换句话说,第二BRP PPDU包括BRP感知请求元素,该BRP感知请求元素用于指示第一设备(或者对端)评估第二设备到第一设备的CSI的变化量,或者用于指示对端(这里指第一设备或发起方)开启sensing操作。其中,该BRP感知请求元素的元素标识(Element ID)为预留值,比如12。
应理解,该第二BRP PPDU与前述第一BRP PPDU的帧格式相同。该第二BRP PPDU与前述第一BRP PPDU的区别在于:发送端不同(第二BRP PPDU由应答方(即第二设备)发送,第一BRP PPDU由发起方(即第一设备)发送);所处过程不同(第二BRP PPDU处于训练发起方接收波束过程,第一BRP PPDU处于训练应答方接收波束过程)。
可选的,该BRP感知请求元素包括的各个字段和该BRP感知请求元素的帧格式可参考前述步骤S201和步骤S202中相关的描述,此处不再赘述。应理解,步骤S203和步骤S204中发送端是第二设备(或应答方),接收端是第一设备(或发起方),对端也是第一设备(或发起方)。还应理解,步骤S203和步骤S204用于训练第一设备(或发起方)的最佳感知接收波束。
S205,第一设备发送第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
S206,第二设备接收第三BRP帧。
可选的,MID阶段发起方和应答方的接收端(或接收波束)训练完成后,第一设备向第二设备发送第三BRP帧,利用该第三BRP帧中携带的定向多千兆位(directional multi-gigabit,DMG)波束精炼元素反馈第一设备自己的评估结果。该第三BRP帧中包括DMG波束精炼元素(DMG Beam Refinement element),用于反馈波束配对(BC)阶段(即下一阶段)中第一设备需要波束训练的第一接收波束数量。该第一接收波束数量是第一设备的所有接收波束中同一接收波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。换句话说,DMG波束精炼元素用于反馈下一阶段(即BC阶段)中需要训练的接收波束数量,该数量可以由DMG波束精炼元素中的感知波束数量(Number of Sensing Beams)字段进行指示。其中,DMG波束精炼元素的元素标识为5。
应理解,因为相同接收波束多次扫描时测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target);所以第一接收波束数量也可以理解为第一设备有 多少个接收波束可以感知到运动目标。
参见图14,图14是本申请实施例提供的DMG波束精炼元素的帧格式示意图。如图14所示,该DMG波束精炼元素中包括感知反馈类型(Sensing FBCK-TYPE)字段,该Sensing FBCK-TYPE字段中包括感知波束数量(Number of Sensing Beams)字段,用于反馈MID阶段训练得到的,用于BC阶段波束训练的发起方/应答方的接收波束数量(这里是上述第一接收波束数量)。该Sensing FBCK-TYPE字段中还包括存在目标扇区标识顺序(Target Sector ID Order Present)字段、感知链路类型(Sensing Link Type)字段、以及感知天线类型(Sensing Antenna Type)字段,这些字段在后续的MIMO训练阶段使用,在MID阶段均为保留位或均不使用。该DMG波束精炼元素中还包括感知反馈请求(Sensing FBCK-REQ)字段,该Sensing FBCK-REQ字段也是在MIMO训练阶段是使用,在MID阶段均为保留位或均不使用。
应理解,图14中DMG波束精炼元素包括的各个字段还可以有其他名称,本申请实施例对此不做限定。
还应理解,图14中在MID阶段保留或未使用的字段可以不包括在DMG波束精炼元素中。
S207,第二设备发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
S208,第一设备接收第四BRP帧。
可选的,第二设备向第一设备发送第四BRP帧,利用第四BRP帧中携带的DMG波束精炼元素反馈第二设备自己的评估结果。该第四BRP帧中包括DMG波束精炼元素(DMG Beam Refinement element),用于反馈波束配对(BC)阶段(即下一阶段)中第二设备需要波束训练的第二接收波束数量。该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次(或者相邻两次)CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。换句话说,DMG波束精炼元素用于反馈下一阶段(即BC阶段)中需要训练的接收波束数量,该数量可以由DMG波束精炼元素中的感知波束数量(Number of Sensing Beams)字段进行指示。其中,DMG波束精炼元素的元素标识为5。
应理解,因为相同接收波束多次扫描时测得的CSI值的变化大于该CSI变化阈值时,说明该波束扫描区域内有运动目标(target);所以第一接收波束数量也可以理解为第二设备有多少个接收波束可以感知到运动目标。
还应理解,DMG波束精炼元素的帧格式如前述图14所示,此处不再赘述。
可见,本申请实施例通过修改MID过程中的相关帧格式,使收发双方可以训练感知场景中的最佳接收波束。
2、BC过程
经过SLS阶段和MID过程,发起方和应答方在通信和感知场景中的最佳发送波束和最佳接收波束均已训练完成。在BC阶段,将进行发起方和应答方的最佳发送波束和最佳接收波束的组合训练,得到最优的上行和下行波束方向。
参见图15,图15是本申请实施例提供的射频感知方法中BC过程的示意流程图。如图15所示,该射频感知方法的BC过程包括但不限于以下步骤:
S301,第一设备多次发送第五波束精炼物理层协议数据单元BRP PPDU,该第五BRP  PPDU用于指示第二设备评估第一设备到第二设备的CSI的变化量。
S302,第二设备多次接收第五BRP PPDU。
可选的,第一设备定向多次发送第五BRP PPDU(每次发送一个第五BRP PPDU,每个第五BRP帧中包括一个第五BRP帧和TRN Unit),第二设备定向多次接收该第五BRP PPDU,第二设备对比同一个收发波束对多次收发第五BRP PPDU时CSI值的变化,来判断该波束扫描区域内是否有运动目标。应理解,第一设备定向多次发送第五BRP PPDU,可以理解为第一设备每次都采用一定宽度的波束(既可以是ISS过程训练得到的最佳感知发送波束,也可以是其他波束)发送第五BRP PPDU。第二设备定向多次接收第五BRP PPDU,可以理解为第二设备采用MID过程训练得到的多个最佳感知接收波束轮询接收第五BRP PPDU。其中,第一设备定向发送第五BRP PPDU的次数大于或等于前述第二接收波束数量的两倍,这样可以保证第二设备轮询最佳感知接收波束至少两遍,从而针对每个接收波束产生两个CSI值用于对比得到运动目标所对应的波束信息。该第五BRP PPDU中的第五BRP帧用于指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量,或者用于指示对端(这里指第二设备或应答方)开启sensing操作。
可选的,第五BRP PPDU包括BRP感知请求元素(BRP Sensing Request element),该BRP感知请求元素用于指示第二设备(或者对端)评估第一设备到第二设备的CSI的变化量,或者用于指示对端(这里指第二设备或应答方)开启sensing操作。该BRP感知请求元素的元素标识为预留值,比如12。
可选的,该BRP感知请求元素包括CSI测量请求(CSI Measurement Request)字段和波束扫描圈数(Number of beam sweep cycles)字段。当该CSI测量请求字段置为第一值时,用于指示对端(这里指第二设备或应答方)测量CSI;当该CSI测量请求字段置为第二值时,用于指示对端(这里指第二设备或应答方)不测量CSI。本申请实施例中第一BRP PPDU的CSI测量请求字段设置为第一值。若第一值是0,则第二值是1;若第一值是1,则第二值是0。该波束扫描圈数字段用于指示对端(这里指第二设备或应答方)的接收波束扫描圈数。换句话说,Number of beam sweep cycles字段指示对端(这里是第二设备或应答方)需要进行多少次周期性扫描,即同一扇区、同一天线需要扫描多少次来接收发送端(这里是发起方或第一设备)定向发送的第五BRP PPDU,达到该次数后停止扫描并进行CSI差值计算。
该BRP感知请求元素还包括以下一个或多个字段:发送端感知扇区标识(Sensing TX Sector ID)字段、发送端感知天线标识掩模(Sensing TX Antenna ID Mask)字段、CSI变化阈值(CSI Variation Threshold)字段、评估算法(Evaluation algorithm)字段。其中,发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示当前BRP帧的发射扇区和发射天线。CSI变化阈值字段用于指示CSI变化阈值。评估算法字段用于指示CSI的评估算法。其中,通过Sensing TX Sector ID字段和Sensing Antenna ID Mask字段来联合指示当前BRP的发射扇区和发射天线。Evaluation algorithm字段用于指示CSI的评估算法。CSI Variation Threshold字段用于指示CSI变化阈值。若相同接收波束多次测得的CSI值之间的CSI差值大于该CSI变化阈值,则说明该波束扫描区域内存在运动目标,则接收端(这里指应答方或第二设备)会在反馈阶段将CSI差值大于CSI变化阈值的发送波束对应的天线标识和扇区标识、以及应答方/第二设备当前所采用的接收波束对应的天线标识和扇区标识组成的波束信息列表(即第二波束信息列表)反馈给发送端(这里指发起方或第一设备)。CSI差值最大的发送波束和接收波束作为下行感知的最佳收发波束。
应理解,该BRP感知请求元素包括的各个字段还可以有其他名称,本申请实施例对此不 做限定。
还应理解,该BRP感知请求元素的帧格式如前述图13所示,此处不再赘述。
S303,第二设备多次发送第六BRP PPDU,该第六BRP PPDU用于指示第一设备评估第二设备到第一设备的CSI的变化量。
S304,第一设备多次接收第六BRP PPDU。
可选的,第二设备定向多次发送第六BRP PPDU(每次发送一个第六BRP PPDU,每个第六BRP帧中包括一个第六BRP帧和TRN Unit),第一设备定向多次接收该第六BRP PPDU,第一设备对比同一个收发波束对多次收发第六BRP PPDU时CSI值的变化,来判断该波束扫描区域内是否有运动目标。应理解,第二设备定向多次发送第六BRP PPDU,可以理解为第二设备每次都采用一定宽度的波束(既可以是ISS过程训练得到的最佳感知发送波束,也可以是其他波束)发送第六BRP PPDU。第一设备定向多次接收第六BRP PPDU,可以理解为第一设备采用MID过程训练得到的多个最佳感知接收波束轮询接收第六BRP PPDU。其中,第二设备定向发送第六BRP PPDU的次数大于或等于前述第一接收波束数量的两倍,这样可以保证第一设备轮询最佳感知接收波束至少两遍,从而针对每个接收波束产生两个CSI值用于对比得到运动目标所对应的波束信息。该第六BRP PPDU中的第六BRP帧用于指示第一设备(或者对端)评估第二设备到第一设备的CSI的变化量,或者用于指示对端(这里指第一设备或发起方)开启sensing操作。
可选的,第六BRP PPDU包括BRP感知请求元素(BRP Sensing Request element),该BRP感知请求元素用于指示第一设备(或者对端)评估第二设备到第一设备的CSI的变化量,或者用于指示对端(这里指第一设备或发起方)开启sensing操作。该BRP感知请求元素的元素标识为预留值,比如12。
可选的,该BRP感知请求元素包括的各个字段和该BRP感知请求元素的帧格式可参考前述步骤S301和步骤S302中相关的描述,此处不再赘述。应理解,步骤S303和步骤S304中发送端是第二设备(或应答方),接收端是第一设备(或发起方),对端也是第一设备(或发起方)。还应理解,接收端计算得到的CSI差值最大的发送波束和接收波束作为上行感知的最佳收发波束。
S305,第一设备发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
S306,第二设备接收携带第一波束信息列表的第七BRP帧。
可选的,在BC过程的反馈流程中,第一设备向第二设备发送携带第一波束信息列表的第七BRP帧,通过在原有BRP帧的帧格式基础上,新增一个元素字段来携带第一波束信息列表。本申请将这个新增的元素称为感知测量反馈元素(Sensing Measurement feedback element)字段。应理解,这个新增的元素还可以有其他名称,本申请不做限定。其中,该第一波束信息列表用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述第一波束信息列表包括第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。应理解,一个收发波束对由一个发送波束和一个接收波束组成。一个天线标 识和一个扇区标识可用于唯一确定一个波束。但因为接收波束是接收端用于接收数据的,所以接收波束的方向无需告知发送端、只需要接收端自己知道即可,所以第一波束信息列表中可不包括接收波束的扇区标识。换句话说,收发两端(第二设备和第一设备)采用这多个收发波束对中任一个收发波束对任两次收发第六BRP PPDU测得到的CSI值之间的CSI差值大于CSI变化阈值。也就是说,这多个收发波束对上任两次测量得到的CSI值之间的差值大于CSI变化阈值。
可选的,上述感知测量反馈元素(Sensing Measurement feedback element)的元素标识可以为预留值,比如13。应理解,802.11ay标准定义了元素标识(element ID)为0到11的元素,如下述表1所示,本申请实施例在此基础上定义了元素标识为12的BRP感知请求元素和元素标识为13的感知测量反馈元素。其中,元素标识为12的BRP感知请求元素的帧格式如前述图13所示,此处不再赘述。元素标识为13的感知测量反馈元素位于第七BRP帧中,其帧格式如下述表2所示。
表2所示的感知测量反馈元素包括感知扇区标识顺序(Sensing Sector ID Order)字段和感知BRP减法计数(Sensing BRP CDOWN)字段。Sensing Sector ID Order字段用于指示CSI差值大于CSI阈值的多个收发波束对中的发送天线ID、发送扇区ID、以及接收天线ID。换句话说,上述第一波束信息列表位于第七BRP帧的感知测量反馈元素的Sensing Sector ID Order字段中。也就是说,Sensing Sector ID Order字段包括多组标识,一组标识用于确定一个发送波束和一个接收天线。如表2所示,Sensing Sector ID Order字段的每三行为一组标识,比如扇区标识1(Sector ID1)/减法计数器(Down counter,CDOWN)的第1个数值(表示为CDOWN1)/AWV反馈标识1(AWV Feedback ID1)、发送天线标识1(TX Antenna ID1)、以及接收天线标识1(RX Antenna ID1)为一组标识;扇区标识2(Sector ID2)/CDOWN2/AWV反馈标识2(AWV Feedback ID2)、发送天线标识2(TX Antenna ID2)、以及接收天线标识2(RX Antenna ID2)为另一组标识,以此类推。应理解,本申请的感知测量反馈元素中Sensing Sector ID Order字段的每三行的第一行是Sector ID。该Sensing Sector ID Order字段中多组标识的顺序是根据CSI变化量(也就是CSI差值)的大小确定的(与通信不同,通信中按照SNR大小进行排序),这多组标识按照CSI变化量从大到小进行排序,CSI变化量最大的天线ID和扇区ID在第一位,以此类推。
Sensing BRP CDOWN字段用于指示与AWV反馈标识对应的BRP CDOWN值。应理解,本申请实施例因为采用Sector ID和TX Antenna ID来联合指示发送波束,所以不存在AWV Feedback ID,故而Sensing BRP CDOWN字段为保留或不使用。此外,表2所示的元素标识(Element ID)、长度(Length)、以及元素标识扩展(Element ID Extension)是Element帧的通用帧格式,本申请实施例将Element ID设置为预留值13,用于表示Sensing Measurement feedback element。
表1
Figure PCTCN2022073542-appb-000001
Figure PCTCN2022073542-appb-000002
表2
Figure PCTCN2022073542-appb-000003
Figure PCTCN2022073542-appb-000004
S307,第二设备发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个收发波束对。
S308,第一设备接收携带第二波束信息列表的第八BRP帧。
可选的,第二设备向第一设备发送携带第二波束信息列表的第八BRP帧,通过在原有BRP帧的帧格式基础上,新增一个元素字段来携带第二波束信息列表。本申请将这个新增的元素称为感知测量反馈元素(Sensing Measurement feedback element)字段。应理解,这个新增的元素还可以有其他名称,本申请不做限定。其中,该第二波束信息列表用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述第二波束信息列表包括第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个收发波束对中发送波束所对应的天线标识和扇区标识、以及每个发送波束对应的接收天线标识。应理解,一个收发波束对由一个发送波束和一个接收波束组成。一个天线标识和一个扇区标识可用于唯一确定一个波束。但因为接收波束是接收端用于接收数据的,所以接收波束的方向无需告知发送端、只需要接收端自己知道即可,所以第二波束信息列表中可不包括接收波束的扇区标识。换句话说,收发两端(第二设备和第一设备)采用这多个收发波束对中任一个收发波束对任两次收发第五BRP PPDU测得到的CSI值之间的CSI差值大于CSI变化阈值。也就是说,这多个收发波束对上任两次测量得到的CSI值之间的差值大于CSI变化阈值。
可选的,上述感知测量反馈元素(Sensing Measurement feedback element)的元素标识可以为预留值,比如13。应理解,802.11ay标准定义了元素标识(element ID)为0到11的元素,如上述表1所示,本申请实施例在此基础上定义了元素标识为12的BRP感知请求元素 和元素标识为13的感知测量反馈元素。其中,元素标识为12的BRP感知请求元素的帧格式如前述图13所示,此处不再赘述。元素标识为13的感知测量反馈元素位于第七BRP帧中,其帧格式如上述表2所示,此处不再赘述。该第二波束信息列表位于第八BRP帧的感知测量反馈元素的Sensing Sector ID Order字段中。
可见,本申请实施例基于802.11ay标准的波束赋形训练(包括SLS阶段和BRP阶段)流程,通过同一波束多次扫描测得的CSI值的变化来进行感知,并通过修改SLS阶段和BRP阶段中的相关帧结构来开启sensing操作、反馈感知测量结果等,可以在原有通信波束训练的同时实现对单个运动目标的感知、以及训练用于感知的最佳收发波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
为更好地理解图12所示的MID过程和图15所示的BC过程,下面通过一个示例来说明。
参见图16,图16是本申请实施例提供的BRP阶段的时序示意图。在SLS阶段后,发起方发送BRP PPDU进行MID过程。如图16所示,发起方(Initiator)准全向发送BRP PPDU(BRP PPDU中包括BRP帧和TRN Unit),通过BRP PPDU指示应答方(Responder)开启sensing操作(或Responder评估Initiator到Responder的CSI的变化量),应答方(Responder)以扇区扫描方式定向接收,并对接收到的BRP PPDU中的TRN Unit进行CSI值测量。Responder对比相同接收波束多次扫描同一位置时CSI值的变化,来判断该波束扫描区域内是否有运动目标。然后,Responder准全向发送BRP PPDU,通过BRP PPDU指示发起方(Initiator)也进行相应的感知操作(或Initiator评估Responder到Initiator的CSI的变化量),Initiator以扇区扫描方式定向接收,并对接收到的BRP PPDU中的TRN Unit进行CSI值测量。Initiator通过发送携带DMG Beam Refinement element的BRP帧反馈自己的测量结果(第一接收波束数量)。类似的,Responder将自己的测量结果(第二接收波束数量)携带在BRP帧的Beam Refinement element中进行反馈。其中,MID过程中各个BRP帧的帧格式参考前文的描述,此处不赘述。
经过MID过程,发起方(Initiator)定向发送BRP PPDU,通过BRP PPDU指示Responder评估Initiator到Responder的CSI的变化量,应答方(Responder)定向接收,并对接收到的BRP PPDU中的TRN Unit进行CSI值测量。Responder对比同一收发波束对多次收发第五BRP PPDU时CSI值的变化,来判断该波束扫描区域内是否有运动目标。然后,Responder定向发送BRP PPDU,通过BRP帧指示发起方(Initiator)也进行相应的感知操作(或Initiator评估Responder到Initiator的CSI的变化量),Initiator定向接收,并对接收到的BRP PPDU中的TRN Unit进行CSI值测量。Initiator将自己的测量结果(第一波束信息列表)携带在BRP帧中进行反馈。类似的,Responder将自己的测量结果(第二波束信息列表)携带在BRP帧中进行反馈。其中,BC过程中各个BRP帧的帧格式参考前文的描述,此处不赘述。
应理解,MID过程和BC过程的主要区别在于:MID过程和BC过程反馈的内容不同,以及收发方式不同。
实施例二
本申请实施例二主要介绍感知多个运动目标且需要反馈多个最佳感知波束的情况下,基于802.11ay标准的波束赋形训练流程,如何设计相关的帧格式和反馈流程,来同时实现通信波束训练和射频感知。
应理解,当感知场景中包含多个运动目标时,也可能只需反馈一个最佳感知波束。当只 需要反馈一个最佳感知波束时,则既可采用实施例一提供的技术方案,也可以采用实施例二提供的技术方案,本申请实施例对此不作限定。
考虑到扫描单个运动目标和扫描多个运动目标带来的数据量区别,由于多个运动目标需要对多个扇区标识和天线标识进行反馈,而BRP阶段中各个帧的预留比特足够,可以适配多个运动目标的情况,但SLS阶段中SSW帧和SSW feedback帧的预留比特有限,无法同时反馈多个扇区标识和天线标识。所以,本申请实施例二提供的射频感知方法在SLS阶段和BRP阶段之间新增一个感知反馈流程,用于反馈ISS过程和RSS过程的感知测量结果。
具体地,参见图17,图17是本申请实施例提供的射频感知方法的另一示意流程图。如图17所示,ISS过程包括步骤S401和步骤S402,可用于训练第一设备(或发起方)的最佳感知发送波束;RSS过程包括步骤S403和步骤S404,可用于训练第二设备(或应答方)的最佳感知发送波束;感知反馈过程包括步骤S405至步骤S408,可用于反馈ISS过程和RSS过程得到的最佳感知发送波束。
如图17所示,该射频感知方法包括但不限于以下步骤:
S401,第一设备发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估第一设备到第二设备的信道状态信息CSI的变化量。
S402,第二设备准全向接收多个第一帧。
可选的,本申请实施例中步骤S401和步骤S402的实现方式可参考前述图5所示实施例的步骤S101和步骤S102的实现方式,此处不再赘述。
S403,第二设备发送多个第二帧,每个第二帧中包括第二指示信息,第二指示信息用于指示第一设备评估第二设备到第一设备的CSI的变化量。
S404,第一设备准全向接收多个第二帧。
可选的,本申请实施例中步骤S403和步骤S404的实现方式可参考前述图5所示实施例的步骤S103和步骤S104中相应的描述,此处不再赘述。应理解,由于本申请实施例中第二帧不携带第一测量结果,所以本申请实施例中第二帧的SNR报告子字段用于指示通信最佳波束的SNR。
S405,第一设备发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束。
S406,第二设备接收第一感知反馈帧。
可选的,在步骤S405之前,本申请实施例提供的射频感知方法还包括SSW反馈过程,即第一设备发送SSW feedback帧,第二设备接收SSW feedback帧。该SSW反馈过程与802.11ay标准中的SSW反馈过程相同,具体实现方式参考802.11ay标准中的相关描述,本申请实施例不再赘述。
可选的,经过SSW反馈过程后,第一设备发送第一感知反馈帧,第二设备接收该第一感知反馈帧。该第一感知反馈帧中包括第二测量结果,用于反馈第二设备到第一设备的CSI的变化量大于CSI变化阈值的多个发送波束。也就是说,该第二测量结果用于反馈第一设备评估出的结果,或者用于反馈RSS阶段的感知测量结果(比如,运动目标对应的多个天线标识和多个扇区标识)。
可选的,上述第二测量结果包括多组第二波束标识,一组第二波束标识包括一个第二天线标识和一个第二扇区标识。一组第二波束标识所确定的波束是第二设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的一个发送波束。
参见图18,图18是本申请实施例提供的第一感知反馈帧的帧格式示意图。如图18所示, 该第一感知反馈帧包括帧控制(frame control)字段、持续时间(duration)字段、接收地址(Receiver Address,RA)字段、发送地址(Transmitter Address,TA)字段、有序的目标扇区(target sector in order)字段、以及帧校验序列(frame check sequence,FCS)字段。其中,有序的目标扇区(target sector in order)字段包括多个目标天线标识子字段和多个目标扇区标识子字段,一个目标天线标识子字段用于指示一个第二天线标识,一个目标扇区标识子字段用于指示一个第二扇区标识。换句话说,上述第二测量结果携带于第一感知反馈帧的target sector in order字段中。图18中目标天线标识1(target antenna ID1)和目标扇区标识1(target sector ID1)表示一组第二波束标识。
应理解,图18中第一感知反馈帧包括的各个字段还可有其他名称,本申请实施例对此不做限定。
S407,第二设备发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
S408,第一设备接收第二感知反馈帧。
可选的,与前述步骤S405和步骤S406同理,第二设备发送第二感知反馈帧,第一设备接收该第二感知反馈帧。该第二感知反馈帧中包括第一测量结果,用于反馈第一设备到第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。也就是说,该第一测量结果用于反馈第二设备评估出的结果,或者用于反馈ISS阶段的感知测量结果(比如,运动目标对应的多个天线标识和多个扇区标识)。
可选的,上述第一测量结果包括多组第一波束标识,一组第一波束标识包括一个第一天线标识和一个第一扇区标识。一组第一波束标识所确定的波束是第一设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的一个发送波束。
可选的,该第二感知反馈帧的帧格式与前述第一感知反馈帧的帧格式相同,可参考前述图18所示。
可见,本申请实施例通过新增感知反馈过程(前述步骤S405至步骤S408),来解决SLS阶段由于预留比特不足而无法实现多目标的波束信息反馈,进而实现了对多个运动目标的感知、以及训练用于感知每个运动目标的最佳收发波束,无需专门为感知和训练感知波束设计相关流程,开销较小,且具有较好的兼容性。
上述步骤S408之后,本申请实施例提供的射频感知方法还包括BRP阶段。
一种实现方式中,图17所示方法中BRP阶段与802.11ay标准中波束赋形训练的BRP阶段相同,具体过程和其中涉及的帧格式可参考802.11ay标准中的描述,此处不赘述。
另一种实现方式中,图17所示方法中BRP阶段包括的MID过程可参考前述图12所示,BC过程可参考前述图15所示,此处不再展开说明。换句话说,本申请实施例与前述实施例一的区别在于:本申请实施例中SSW帧和SSW feedback帧不再反馈RSS过程和ISS过程的感知测量结果(运动目标对应的天线标识和扇区标识),统一在新增的感知反馈过程中反馈RSS过程和ISS过程的感知测量结果。
为更好地理解图17所示方法的流程,下面通过一个示例来说明。
一个示例中,参见图19,图19是本申请实施例提供的射频感知方法的一时序示意图。由于SLS阶段中原有反馈字段(SSW feedback字段)的预留比特不够,所以SSW帧和SSW feedback帧不再反馈RSS过程和ISS过程的感知测量结果,统一在新增的感知反馈过程中反 馈。如图19所示,在SSW feedback过程后加上sensing feedback过程,对SLS阶段中多目标对应的波束信息(扇区标识和天线标识)进行反馈。后续BRP阶段由于BRP帧可以反馈多个波束信息(扇区标识和天线标识),故无需修改,即与前述图16保持一致。在sensing feedback过程中,发起方和应答方通过对比SLS阶段同一波束多次扫描时CSI值的变化,发送sensing feedback帧反馈给对端多目标所对应的扇区和天线信息。应理解,图19示出ISS过程中发起方发送SSW帧,实际应用中ISS过程中发起方发送beacon帧的情况与图19类似,此处不再赘述。
上述内容详细阐述了本申请提供的方法,为便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对第一设备和第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,参见图20,图20是本申请实施例提供的第一设备的结构示意图。如图20所示,该第一设备包括:发送单元11和接收单元12。
一种设计中,该发送单元11,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该接收单元12,用于准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该发送单元11,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,该第一设备还包括处理单元13,用于生成多个第一帧;该处理单元13,还用于生成第三帧。
可选的,上述发送单元11,还用于准全向多次发送第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元12,还用于多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元11,还用于发送的第三BRP帧,该第三BRP帧用于反馈波束配对阶段中该第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述接收单元12,还用于接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元13,还用于生成第一BRP PPDU和第三BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(training unit,TRN Unit)。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可选的,上述发送单元11,还用于多次发送第五BRP PPDU,该第五BRP PPDU包括的 第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元12,还用于多次接收第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元11,还用于发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述接收单元12,还用于接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元13,还用于生成第五BRP PPDU和携带第一波束信息列表的第七BRP帧。每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
其中,上述发送单元11和上述接收单元12可以集成为一个模块,如收发模块。
应理解,该种设计中的第一设备可对应执行前述方法实施例一,并且该第一设备中的各个单元的上述操作或功能分别为了实现前述方法实施例一中的相应操作,其技术效果参见前述实施例一中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该发送单元11,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该接收单元12,用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该发送单元11,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该接收单元12,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,该第一设备还包括处理单元13,用于生成多个第一帧;该处理单元13,还用于生成第一感知反馈帧。
可选的,上述发送单元11,还用于准全向多次发送第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元12,还用于多次接收第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元11,还用于发送的第三BRP帧,该第三BRP帧用于反馈波束配对阶段中该第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述接收单元12,还用于接收第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元13,还用于生成第一BRP PPDU和第三BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(training unit,TRN Unit)。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可选的,上述发送单元11,还用于多次发送第五BRP PPDU,该第五BRP PPDU包括的 第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述接收单元12,还用于多次接收第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述发送单元11,还用于发送携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述接收单元12,还用于接收携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元13,还用于生成第五BRP PPDU和携带第一波束信息列表的第七BRP帧。每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
其中,上述发送单元11和上述接收单元12可以集成为一个模块,如收发模块。
应理解,该种设计中的第一设备可对应执行前述方法实施例二,并且该第一设备中的各个单元的上述操作或功能分别为了实现前述方法实施例二中的相应操作,其技术效果参见前述实施例二中的技术效果,为了简洁,在此不再赘述。
参见图21,图21是本申请实施例提供的第二设备的结构示意图。如图21所示,该第二设备包括:接收单元21和发送单元22。
一种设计中,该接收单元21,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该发送单元22,用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该接收单元21,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,该第二设备还包括处理单元23,用于生成多个第二帧。
可选的,上述接收单元21,还用于多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元22,还用于准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元21,还用于接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述发送单元22,还用于发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元23,还用于生成第二BRP PPDU和第四BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(training unit,TRN Unit)。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可选的,上述接收单元21,还用于多次接收第五BRP PPDU,该第五BRP PPDU包括的 第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元22,还用于多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元21,还用于接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述发送单元22,还用于发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元23,还用于生成第六BRP PPDU和携带第二波束信息列表的第八BRP帧。每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
其中,上述接收单元21和上述发送单元22可以集成为一个模块,如收发模块。
应理解,该种设计中的第二设备可对应执行前述方法实施例一,并且该第二设备中的各个单元的上述操作或功能分别为了实现前述方法实施例一中的相应操作,其技术效果参见前述实施例一中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该接收单元21,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该发送单元22,用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该接收单元21,还用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该发送单元22,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,该第二设备还包括处理单元23,用于生成多个第二帧;该处理单元13,还用于生成第二感知反馈帧。
可选的,上述接收单元21,还用于多次接收第一BRP PPDU,该第一BRP PPDU包括的第一BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元22,还用于准全向多次发送第二BRP PPDU,该第二BRP PPDU包括的第二BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元21,还用于接收第三BRP帧,该第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,该第一接收波束数量是该第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;上述发送单元22,还用于发送第四BRP帧,该第四BRP帧用于反馈波束配对阶段中该第二设备波束训练的第二接收波束数量,该第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
可选的,上述处理单元23,还用于生成第二BRP PPDU和第四BRP帧。
其中,每个第一BRP PPDU中包括一个第一BRP帧和训练单元(training unit,TRN Unit)。同理,每个第二BRP PPDU中包括一个第二BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
可选的,上述接收单元21,还用于多次接收第五BRP PPDU,该第五BRP PPDU包括的 第五BRP帧用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;上述发送单元22,还用于多次发送第六BRP PPDU,该第六BRP PPDU包括的第六BRP帧用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;上述接收单元21,还用于接收携带第一波束信息列表的第七BRP帧,该第一波束信息列表用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;上述发送单元22,还用于发送携带第二波束信息列表的第八BRP帧,该第二波束信息列表用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
可选的,上述处理单元23,还用于生成第六BRP PPDU和携带第二波束信息列表的第八BRP帧。每个第五BRP PPDU中包括一个第五BRP帧和TRN Unit。同理,每个第六BRP PPDU中包括一个第六BRP帧和TRN Unit。TRN Unit用于对端进行CSI测量。
其中,上述接收单元21和上述发送单元22可以集成为一个模块,如收发模块。
应理解,该种设计中的第二设备可对应执行前述方法实施例二,并且该第二设备中的各个单元的上述操作或功能分别为了实现前述方法实施例二中的相应操作,其技术效果参见前述实施例二中的技术效果,为了简洁,在此不再赘述。
以上介绍了本申请实施例的第一设备和第二设备,以下介绍所述第一设备和第二设备可能的产品形态。应理解,但凡具备上述图20所述的第一设备的功能的任何形态的产品,但凡具备上述图21所述的第二设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一设备和第二设备的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由一般性的总线体系结构来实现。
第一设备,包括处理器和与该处理器内部连接通信的收发器。
一种设计中,收发器,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理器,用于生成多个第一帧;该处理器,还用于生成第三帧。
另一种设计中,收发器,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该收发器,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理器,用于生成多个第一帧;该处理器还用于生成第一感知反馈帧。
第二设备,包括处理器和与该处理器内部连接通信的收发器。
一种设计中,收发器,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理器,用于生成多个第二帧。
另一种设计中,收发器,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该收发器,还用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该收发器,还用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该收发器,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理器,用于生成多个第二帧;该处理器还用于生成第二感知反馈帧。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由通用处理器来实现。
实现第一设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,输入输出接口用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于发送第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理电路用于生成多个第一帧;该处理电路,还用于生成第三帧。
另一种设计中,输入输出接口,用于发送多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于准全向接收多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于发送第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该输入输出接口,还用于接收第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理电路用于生成多个第一帧;该处理电路还用于生成第一感知反馈帧。
实现第二设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接 口。
一种设计中,输入输出接口,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于接收第三帧,该第三帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
可选的,处理电路,用于生成多个第二帧。
另一种设计中,输入输出接口,用于准全向接收多个第一帧,每个第一帧中包括第一指示信息,该第一指示信息用于指示该第二设备评估该第一设备到该第二设备的CSI的变化量;该输入输出接口,还用于发送多个第二帧,每个第二帧中包括第二指示信息,该第二指示信息用于指示该第一设备评估该第二设备到该第一设备的CSI的变化量;该输入输出接口,还用于接收第一感知反馈帧,该第一感知反馈帧中包括第二测量结果,该第二测量结果用于反馈该第二设备到该第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;该输入输出接口,还用于发送第二感知反馈帧,该第二感知反馈帧中包括第一测量结果,该第一测量结果用于反馈该第一设备到该第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
可选的,处理电路,用于生成多个第二帧;该处理电路还用于生成第二感知反馈帧。
应理解,上述各种产品形态的装置或设备,具有上述方法实施例中第一设备或第二设备的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信***,包括第一设备和第二设备,该第一设备和第二设备可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在 计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (35)

  1. 一种射频感知方法,其特征在于,包括:
    第一设备发送多个第一帧,每个第一帧中包括第一指示信息,所述第一指示信息用于指示第二设备评估所述第一设备到所述第二设备的信道状态信息(channel state information,CSI)的变化量;
    所述第一设备准全向接收多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,所述第一测量结果用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,所述第二指示信息用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送第三帧,所述第三帧中包括第二测量结果,所述第二测量结果用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
  2. 一种射频感知方法,其特征在于,包括:
    第二设备准全向接收多个第一帧,每个第一帧中包括第一指示信息,所述第一指示信息用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备发送多个第二帧,每个第二帧中包括第一测量结果和第二指示信息,所述第一测量结果用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的一个发送波束,所述第二指示信息用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收第三帧,所述第三帧中包括第二测量结果,所述第二测量结果用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的一个发送波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一帧是信标beacon帧,所述第一指示信息位于所述beacon帧的增强定向多千兆位(enhanced directional multi-gigabit,EDMG)能力字段的可选子元素子字段中;
    所述第一指示信息包括CSI测量请求字段和CSI差值计算字段,还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段;
    其中,所述CSI测量请求字段的取值为第一值,用于指示所述第二设备测量CSI;所述评估算法字段用于指示CSI的评估算法;所述CSI变化阈值字段用于指示CSI变化阈值;所述CSI差值计算字段用于指示所述第二设备是否计算CSI差值。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一帧是扇区扫描(sector sweep,SSW)帧,所述第一指示信息携带于所述SSW帧的SSW反馈字段的预留子字段中;
    所述第一指示信息包括CSI测量请求字段和CSI差值计算字段,还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段;
    其中,所述CSI测量请求字段的取值为第一值,用于指示所述第二设备测量CSI;所述评估算法字段用于指示CSI的评估算法,所述CSI变化阈值字段用于指示CSI变化阈值,所述CSI差值计算字段用于指示所述第二设备是否计算CSI差值。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第二帧为SSW帧,所述第二指示信息位于该SSW帧的SSW反馈字段的预留子字段中;
    所述第一测量结果位于所述SSW帧的SSW反馈字段的信噪比(signal-to-noise ratio,SNR)报告子字段中;
    其中,所述第二指示信息包括CSI差值计算字段,所述CSI差值计算字段用于指示所述第一设备是否计算CSI差值。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二帧中还包括第三指示信息,所述第三指示信息用于指示所述第二帧中是否包括所述第一测量结果。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第三帧为SSW反馈帧,所述第二测量结果位于所述SSW反馈帧的SSW反馈字段的SNR报告子字段中。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第三帧中还包括第四指示信息,所述第四指示信息用于指示所述第三帧中是否包括第二测量结果。
  9. 根据权利要求1-8中任一种所述的方法,其特征在于,所述第一测量结果包括第一天线标识和第一扇区标识,所述第二测量结果包括第二天线标识和第二扇区标识;
    所述第一天线标识和所述第一扇区标识所确定的波束是所述第一设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束;
    所述第二天线标识和所述第二扇区标识所确定的波束是所述第二设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的发送波束。
  10. 根据权利要求1所述的方法,其特征在于,所述第一设备发送第三帧之后,所述方法还包括:
    所述第一设备准全向多次发送第一波束精炼(beam refinement protocol,BRP)物理层协议数据单元(Physical layer protocol data unit,PPDU),所述第一BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第一设备多次接收第二BRP PPDU,所述第二BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送的第三BRP帧,所述第三BRP帧用于反馈波束配对阶段中所述第一设备波束训练的第一接收波束数量,所述第一接收波束数量是所述第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;
    所述第一设备接收第四BRP帧,所述第四BRP帧用于反馈波束配对阶段中所述第二设备波束训练的第二接收波束数量,所述第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
  11. 根据权利要求2所述的方法,其特征在于,所述第二设备接收第三帧之后,所述方法还包括:
    所述第二设备多次接收第一BRP PPDU,所述第一BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备准全向多次发送第二BRP PPDU,所述第二BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收第三BRP帧,所述第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,所述第一接收波束数量是所述第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;
    所述第二设备发送第四BRP帧,所述第四BRP帧用于反馈波束配对阶段中所述第二设备波束训练的第二接收波束数量,所述第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
  12. 根据权利要求10所述的方法,其特征在于,所述第一设备接收第四BRP帧之后,所述方法还包括:
    所述第一设备多次发送第五BRP PPDU,所述第五BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第一设备多次接收第六BRP PPDU,所述第六BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送携带第一波束信息列表的第七BRP帧,所述第一波束信息列表用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;
    所述第一设备接收携带第二波束信息列表的第八BRP帧,所述第二波束信息列表用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
  13. 根据权利要求11所述的方法,其特征在于,所述第二设备发送第四BRP帧之后,所述方法还包括:
    所述第二设备多次接收第五BRP PPDU,所述第五BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备多次发送第六BRP PPDU,所述第六BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收携带第一波束信息列表的第七BRP帧,所述第一波束信息列表用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;
    所述第二设备发送携带第二波束信息列表的第八BRP帧,所述第二波束信息列表用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述第一BRP PPDU和所述第二BRP PPDU均包括CSI测量请求字段和波束扫描圈数字段,所述CSI测量请求字段的取值为第一值,用于指示测量CSI,所述波束扫描圈数字段用于指示接收波束的扫描圈数;
    所述第一BRP PPDU和所述第二BRP PPDU还包括以下一个或多个字段:
    发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;
    CSI变化阈值字段,用于指示CSI变化阈值;
    评估算法字段,用于指示CSI的评估算法。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,所述第一接收波束数量携带于所述第三BRP帧的定向多千兆位(directional multi-gigabit,DMG)波束精炼元素中;
    所述第二接收波束数量携带于所述第四BRP帧的DMG波束精炼元素中。
  16. 根据权利要求12或13所述的方法,其特征在于,所述第五BRP PPDU和所述第六BRP PPDU均包括CSI测量请求字段和波束扫描圈数字段,所述CSI测量请求字段的取值为第一值,用于指示测量CSI,所述波束扫描圈数字段用于指示接收波束的扫描圈数;
    所述第五BRP PPDU和所述第六BRP PPDU还包括以下一个或多个字段:
    发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;
    CSI变化阈值字段,用于指示CSI变化阈值;
    评估算法字段,用于指示CSI的评估算法。
  17. 根据权利要求12或13所述的方法,其特征在于,所述第一波束信息列表位于所述第七BRP帧的感知测量反馈元素中;
    所述第二波束信息列表位于所述第八BRP帧的感知测量反馈元素中。
  18. 一种射频感知方法,其特征在于,包括:
    第一设备发送多个第一帧,每个第一帧中包括第一指示信息,所述第一指示信息用于指示第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第一设备准全向接收多个第二帧,每个第二帧中包括第二指示信息,所述第二指示信息用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送第一感知反馈帧,所述第一感知反馈帧中包括第二测量结果,所述第二测量结果用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;
    所述第一设备接收第二感知反馈帧,所述第二感知反馈帧中包括第一测量结果,所述第一测量结果用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
  19. 一种射频感知方法,其特征在于,包括:
    第二设备准全向接收多个第一帧,每个第一帧中包括第一指示信息,所述第一指示信息用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备发送多个第二帧,每个第二帧中包括第二指示信息,所述第二指示信息用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收第一感知反馈帧,所述第一感知反馈帧中包括第二测量结果,所述第二测量结果用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束;
    所述第二设备发送第二感知反馈帧,所述第二感知反馈帧中包括第一测量结果,所述第 一测量结果用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一帧是信标beacon帧,所述第一指示信息位于所述beacon帧的EDMG能力字段的可选子元素子字段中;
    所述第一指示信息包括CSI测量请求字段和CSI差值计算字段,还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段;
    其中,所述CSI测量请求字段的取值为第一值,用于指示所述第二设备测量CSI;所述评估算法字段用于指示CSI的评估算法;所述CSI变化阈值字段用于指示CSI变化阈值;所述CSI差值计算字段用于指示所述第二设备是否计算CSI差值。
  21. 根据权利要求18或19所述的方法,其特征在于,所述第一帧是SSW帧,所述第一指示信息携带于所述SSW帧的SSW反馈字段的预留子字段中;
    所述第一指示信息包括CSI测量请求字段和CSI差值计算字段,还包括以下一个或多个字段:评估算法字段、CSI变化阈值字段;
    其中,所述CSI测量请求字段的取值为第一值,用于指示所述第二设备测量CSI;所述评估算法字段用于指示CSI的评估算法,所述CSI变化阈值字段用于指示CSI变化阈值,所述CSI差值计算字段用于指示所述第二设备是否计算CSI差值。
  22. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第二帧为SSW帧,所述第二指示信息位于该SSW帧的SSW反馈字段的预留子字段中;
    所述第二指示信息包括CSI差值计算字段,所述CSI差值计算字段用于指示所述第一设备是否进行CSI计算。
  23. 根据权利要求18-22中任一项所述的方法,其特征在于,所述第一测量结果包括多组第一波束标识,一组第一波束标识包括一个第一天线标识和一个第一扇区标识;
    所述第二测量结果包括多组第二波束标识,一组第二波束标识包括一个第二天线标识和一个第二扇区标识;
    一组第一波束标识所确定的波束是所述第一设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的一个发送波束;
    一组第二波束标识所确定的波束是所述第二设备的所有发送波束中同一发送波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的一个发送波束。
  24. 根据权利要求18所述的方法,其特征在于,所述第一设备接收第二感知反馈帧之后,所述方法还包括:
    所述第一设备准全向多次发送第一BRP PPDU,所述第一BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第一设备多次接收第二BRP PPDU,所述第二BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送第三BRP帧,所述第三BRP帧用于反馈波束配对阶段中所述第一设备波束训练的第一接收波束数量,所述第一接收波束数量是所述第一设备的所有接收波束中 同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;
    所述第一设备接收第四BRP帧,所述第四BRP帧用于反馈波束配对阶段中所述第二设备波束训练的第二接收波束数量,所述第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
  25. 根据权利要求19所述的方法,其特征在于,所述第二设备发送第二感知反馈帧之后,所述方法还包括:
    所述第二设备多次接收第一BRP PPDU,所述第一BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备准全向多次发送第二BRP PPDU,所述第二BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收第三BRP帧,所述第三BRP帧用于反馈波束配对阶段中第一设备波束训练的第一接收波束数量,所述第一接收波束数量是所述第一设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量;
    所述第二设备发送第四BRP帧,所述第四BRP帧用于反馈波束配对阶段中所述第二设备波束训练的第二接收波束数量,所述第二接收波束数量是第二设备的所有接收波束中同一接收波束上任两次CSI测量之间的CSI差值大于CSI变化阈值的接收波束的数量。
  26. 根据权利要求24所述的方法,其特征在于,所述第一设备接收第四BRP帧之后,所述方法还包括:
    所述第一设备多次发送第五BRP PPDU,所述第五BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第一设备多次接收第六BRP PPDU,所述第六BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第一设备发送携带第一波束信息列表的第七BRP帧,所述第一波束信息列表用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;
    所述第一设备接收携带第二波束信息列表的第八BRP帧,所述第二波束信息列表用于反馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
  27. 根据权利要求25所述的方法,其特征在于,所述第二设备发送第四BRP帧之后,所述方法还包括:
    所述第二设备多次接收第五BRP PPDU,所述第五BRP PPDU用于指示所述第二设备评估所述第一设备到所述第二设备的CSI的变化量;
    所述第二设备多次发送第六BRP PPDU,所述第六BRP PPDU用于指示所述第一设备评估所述第二设备到所述第一设备的CSI的变化量;
    所述第二设备接收携带第一波束信息列表的第七BRP帧,所述第一波束信息列表用于反馈所述第二设备到所述第一设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线;
    所述第二设备发送携带第二波束信息列表的第八BRP帧,所述第二波束信息列表用于反 馈所述第一设备到所述第二设备的CSI的变化量大于CSI变化阈值的多个发送波束和每个发送波束对应的接收天线。
  28. 根据权利要求24-27中任一项所述的方法,其特征在于,所述第一BRP PPDU和所述第二BRP PPDU均包括CSI测量请求字段和波束扫描圈数字段,所述CSI测量请求字段的取值为第一值,用于指示测量CSI,所述波束扫描圈数字段用于指示接收波束的扫描圈数;
    所述第一BRP PPDU和所述第二BRP PPDU还包括以下一个或多个字段:
    发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;
    CSI变化阈值字段,用于指示CSI变化阈值;
    评估算法字段,用于指示CSI的评估算法。
  29. 根据权利要求24-28中任一项所述的方法,其特征在于,所述第一接收波束数量携带于所述第三BRP帧的DMG波束精炼元素中;
    所述第二接收波束数量携带于所述第四BRP帧的DMG波束精炼元素中。
  30. 根据权利要求26或27所述的方法,其特征在于,所述第五BRP PPDU和所述第六BRP PPDU均包括CSI测量请求字段和波束扫描圈数字段,所述CSI测量请求字段的取值为第一值,用于指示测量CSI,所述波束扫描圈数字段用于指示接收波束的扫描圈数;
    所述第五BRP PPDU和所述第六BRP PPDU还包括以下一个或多个字段:
    发送端感知扇区标识字段和发送端感知天线标识掩模字段,用于联合指示BRP帧的发射扇区和发射天线;
    CSI变化阈值字段,用于指示CSI变化阈值;
    评估算法字段,用于指示CSI的评估算法。
  31. 根据权利要求26或27所述的方法,其特征在于,所述第一波束信息列表位于所述第七BRP帧的感知测量反馈元素中;
    所述第二波束信息列表位于所述第八BRP帧的感知测量反馈元素中。
  32. 一种第一设备,其特征在于,包括用于执行如权利要求1、3-10、12、14-17、18、20-24、26、28-31中任一项所述方法的单元或模块。
  33. 一种第二设备,其特征在于,包括用于执行如权利要求2-9、11、13、14-17、19、20-23、25、27-31中任一项所述方法的单元或模块。
  34. 一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-31任一项所述的方法。
  35. 一种包含程序指令的计算机程序产品,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-31任一项所述的方法。
PCT/CN2022/073542 2021-02-08 2022-01-24 射频感知方法及相关装置 WO2022166662A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22748941.6A EP4277152A1 (en) 2021-02-08 2022-01-24 Radiofrequency sensing method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182123.1 2021-02-08
CN202110182123.1A CN114915326A (zh) 2021-02-08 2021-02-08 射频感知方法及相关装置

Publications (1)

Publication Number Publication Date
WO2022166662A1 true WO2022166662A1 (zh) 2022-08-11

Family

ID=82740899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073542 WO2022166662A1 (zh) 2021-02-08 2022-01-24 射频感知方法及相关装置

Country Status (3)

Country Link
EP (1) EP4277152A1 (zh)
CN (1) CN114915326A (zh)
WO (1) WO2022166662A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055951A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081926A1 (zh) * 2016-11-01 2018-05-11 华为技术有限公司 训练波束的方法、发起设备和响应设备
US20190190630A1 (en) * 2016-08-11 2019-06-20 Huawei Technologies Co., Ltd. Method for measuring and feeding back channel state information and device
US20190253184A1 (en) * 2016-10-25 2019-08-15 Huawei Technologies Co., Ltd. Channel State Information Measurement Method And Apparatus
CN110740457A (zh) * 2018-07-20 2020-01-31 华为技术有限公司 信息传输方法、发起节点及响应节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190630A1 (en) * 2016-08-11 2019-06-20 Huawei Technologies Co., Ltd. Method for measuring and feeding back channel state information and device
US20190253184A1 (en) * 2016-10-25 2019-08-15 Huawei Technologies Co., Ltd. Channel State Information Measurement Method And Apparatus
WO2018081926A1 (zh) * 2016-11-01 2018-05-11 华为技术有限公司 训练波束的方法、发起设备和响应设备
CN110740457A (zh) * 2018-07-20 2020-01-31 华为技术有限公司 信息传输方法、发起节点及响应节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEI ZHOU; KAIJUN CHENG; XIAO HAN; XUMING FANG; YUGUANG FANG; RONG HE; YAN LONG; YANPING LIU: "IEEE 802.11ay based mmWave WLANs: Design Challenges and Solutions", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 21 March 2018 (2018-03-21), pages 1654 - 1681, XP080861500, DOI: 10.1109/COMST.2018.2816920 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055951A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
EP4277152A1 (en) 2023-11-15
CN114915326A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
EP4002929B1 (en) Location reporting for extremely high frequency (ehf) devices
US9838107B2 (en) Multiple beamforming training
US10142005B2 (en) Beamforming training
JP2020080574A (ja) レスポンダ及び通信方法
KR101825852B1 (ko) 무선 통신 빔포밍 장치, 시스템 및 방법
US10015800B2 (en) Beamforming training using polarization
US9979457B2 (en) Multi-beamforming training
WO2006031499A2 (en) Measurement support for a smart antenna in a wireless communication system
US10645605B2 (en) Method and device for reporting channel quality for spatial sharing
KR20140057908A (ko) 무선 통신 시스템에서 섹터 스위핑을 수행하는 방법 및 장치
CN111934736B (zh) 一种发送波束优化协议包的方法及设备
WO2017020172A1 (zh) 一种多用户场景下波束训练方法及装置
WO2022166662A1 (zh) 射频感知方法及相关装置
US20230379012A1 (en) Mimo beamforming based sensing method and related apparatus
US20210152219A1 (en) Method and apparatus for millimeter-wave mimo mode selection
KR20220073853A (ko) 리스폰더 장치, 통신 방법 및 집적회로
US10985817B2 (en) Beamforming training
CN107529174B (zh) 用于无线通信***中的非集中式空间重用的方法和装置
WO2023093747A1 (zh) 一种通信方法及装置
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023241638A1 (zh) 一种信息传输方法和装置
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2023179437A1 (zh) 自发自收感知方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022748941

Country of ref document: EP

Effective date: 20230809

NENP Non-entry into the national phase

Ref country code: DE