WO2023245664A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023245664A1
WO2023245664A1 PCT/CN2022/101282 CN2022101282W WO2023245664A1 WO 2023245664 A1 WO2023245664 A1 WO 2023245664A1 CN 2022101282 W CN2022101282 W CN 2022101282W WO 2023245664 A1 WO2023245664 A1 WO 2023245664A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
information
shortest path
path
perception
Prior art date
Application number
PCT/CN2022/101282
Other languages
English (en)
French (fr)
Inventor
何世文
高宁
黄磊
黄世悦
蔡康利
罗朝明
周培
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/101282 priority Critical patent/WO2023245664A1/zh
Publication of WO2023245664A1 publication Critical patent/WO2023245664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a sensing method and device.
  • ranging the sensing target requires knowing the line-of-sight distance between the sensing sending device and the sensing receiving device. Scenarios such as the line-of-sight path between the sensing receiving device and the sensing sending device are blocked, signal fading, etc. , the line-of-sight distance between the sensing sending device and the sensing receiving device cannot be obtained. In this case, how to range the sensing target is an urgent problem that needs to be solved.
  • This application provides a wireless communication method and device, which can realize ranging of sensing targets.
  • a first aspect provides a wireless communication method, including: a sensing receiving device determines a target sensing distance according to target information, wherein the target sensing distance includes distance information from a sensing sending device to a sensing target and/or the sensing distance Distance information from the target to the perception receiving device; wherein the target information includes at least one of the following: first information used to determine whether the shortest path between the perception sending device and the perception receiving device is Line-of-sight path; antenna plane information of the sensing device, wherein the sensing device includes the sensing receiving device and/or the sensing transmitting device; second information, including angle information and/or distance information of the shortest path; The third information includes angle information of the sensing beam, where the sensing beam includes a sensing transmitting beam and/or a sensing receiving beam.
  • a wireless communication method including: a sensing sending device sending target information to a sensing receiving device, the target information being used to determine a target sensing distance, the target sensing distance including the sensing sending device to the sensing receiving device.
  • the target information includes at least one of the following: first information, used to determine the sensing sending device and the sensing receiving device Whether the shortest path between devices is a line-of-sight path; antenna plane information of the sensing device, where the sensing device includes the sensing receiving device and/or the sensing sending device; second information, including the shortest path Angle information and/or distance information; the third information includes angle information of sensing beams, wherein the sensing beams include sensing transmitting beams and/or sensing receiving beams.
  • a third aspect provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a fourth aspect provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, and execute the method in the above second aspect or its respective implementations.
  • a seventh aspect provides a chip for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or implementations thereof. method.
  • An eighth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the sensing receiving device can use at least one of the angle information of the sensing beam according to the type of path between the sensing transmitting device and the sensing receiving device, the antenna plane information, the angle information of the shortest path, the distance information of the shortest path, and the angle information of the sensing beam. , determine the perceived distance, which is beneficial to achieve accurate ranging.
  • the sensing receiving device can combine the angle of the shortest path, the distance information and the angle of the sensing path based on the transmitting antenna plane information and the receiving antenna plane information. Convert to the same coordinate system to achieve accurate distance measurement.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a Wi-Fi sensing process.
  • Figure 3 is a schematic diagram of the principle of radar ranging.
  • Figure 4 is a schematic diagram of a scenario applicable to the embodiment of the present application.
  • Figure 5 is a schematic interaction diagram of a wireless communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart for determining whether the shortest path is a LOS path.
  • Figure 7 is a schematic flow chart for determining target sensing distance.
  • Figure 8 is a schematic format diagram of a DMG Sensing Measurement Setup element provided by the embodiment of the present application.
  • Figure 9 is a schematic format diagram of a Measurement Setup Control field provided by the embodiment of the present application.
  • Figure 10 is a schematic format diagram of an Antenna Information field provided by an embodiment of the present application.
  • Figure 11 is a schematic format diagram of the DMG Sensing Beam Description element.
  • Figure 12 is a schematic format diagram of the Beam Descriptor field.
  • Figure 13 is a schematic diagram of the interaction between a measurement setting request frame and a measurement setting response frame provided by an embodiment of the present application.
  • Figure 14 is an interaction diagram of another measurement setting request frame and measurement setting response frame provided by an embodiment of the present application.
  • Figures 15 to 19 are schematic diagrams of the positional relationship between the perception transmitting device, the perception receiving device, the projection of the perception target and the reflecting object on the same plane.
  • Figure 20 is a schematic diagram of an implementation scenario of the embodiment of the present application.
  • Figure 21 is a schematic block diagram of a perception receiving device provided according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a sensing sending device provided according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 25 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • other communication systems such as: Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in Figure 1 .
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 that accesses the network through the access point 110.
  • Access Point Access Point
  • STA station
  • AP is also called AP STA, that is, in a certain sense, AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • Communication in the communication system 100 may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA It can refer to the device that communicates peer-to-peer with the STA.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device with a WiFi chip (such as a mobile phone) or a network device (such as a router).
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes. and sensors in smart cities, etc.
  • IoT Internet of Things
  • non-AP STAs may support the 802.11be standard.
  • Non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other current and future 802.11 family wireless LAN (wireless local area networks, WLAN) standards.
  • the AP may be a device supporting the 802.11be standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device that supports WLAN or WiFi technology, Wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, and wireless equipment in smart grid , wireless equipment in transportation safety, wireless equipment in smart city (smart city) or wireless equipment in smart home (smart home), wireless communication chips/ASIC/SOC/, etc.
  • the frequency bands that WLAN technology can support may include, but are not limited to: low frequency bands (such as 2.4GHz, 5GHz, 6GHz) and high frequency bands (such as 60GHz).
  • Figure 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This is not the case in the embodiment of the present application. Make limitations.
  • the communication device may include an access point 110 and a station 120 with communication functions.
  • the access point 110 and the station 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including access points and sites).
  • This application is specific to its The implementation method is not limited.
  • predefined can refer to what is defined in the protocol.
  • AID Association Identifier
  • MAC Media Access Control
  • Transmission Opportunity refers to a period of time during which a terminal with the transmission opportunity can actively initiate one or more transmissions.
  • Burst generally refers to a short period of time in which one or more signals are sent.
  • Burst Group refers to a combination of one or more burst signals. Burst signals in the same burst signal group generally have some common characteristics.
  • Sensing measurement is to perceive people or objects in the environment by measuring changes in signals scattered and/or reflected by people or objects. That is to say, Sensing measurement uses wireless signals to measure and perceive the surrounding environment, so that it can complete many functions such as detection of indoor intrusion, movement, and falls, gesture recognition, and creation of three-dimensional spatial images.
  • Devices participating in perceptual measurement may include the following roles:
  • Sensing Initiator a device that initiates a sensing session and wants to know the sensing results
  • Sensing Responder a non-Sensing Initiator device that participates in the sensing session
  • Sensing Transmitter a device that initiates sensing illumination signal
  • Sensing Receiver a device that receives sensing illumination signals
  • Sensing processor a device that processes sensory measurement results
  • Sensing Participant includes sensing initiating device, sensing sending device and sensing receiving device.
  • a device may have one or more roles in a sensing measurement.
  • a sensing initiating device can be a sensing initiating device, a sensing sending device, a sensing receiving device, or a sensing sending device and a sensing receiving device at the same time. .
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing receiving device (Sensing Receiver), or a sensing processing device (Sensing processor); STA2 can be a sensing sending device (Sensing Transmitter).
  • STA1 can be a Sensing Initiator or a Sensing Transmitter
  • STA2 can be a Sensing Receiver or a Sensing Processor.
  • Equipment (Sensing processor) For another example, as shown in B in Figure 2, STA1 can be a Sensing Initiator or a Sensing Transmitter; STA2 can be a Sensing Receiver or a Sensing Processor. Equipment (Sensing processor).
  • STA1 can be a Sensing Initiator or a Sensing processor
  • STA2 can be a Sensing Receiver
  • STA3 can be a Sensing Transmitter. Equipment (Sensing Transmitter).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing receiving device (Sensing Receiver), or a sensing processing device (Sensing processor);
  • STA2 can be a sensing transmitter Device (Sensing Transmitter);
  • STA3 can be a sensing transmitting device (Sensing Transmitter).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing transmitter (Sensing Transmitter), or a sensing processing device (Sensing processor);
  • STA2 can be a sensing receiver.
  • Device Sensing Receiver;
  • STA3 can be a sensing receiving device (Sensing Receiver).
  • STA1 can be a sensing initiator (Sensing Initiator); STA2 can be a sensing receiving device (Sensing Receiver) or a sensing processing device (Sensing processor); STA3 can be a sensing transmitter Device (Sensing Transmitter); STA4 can be a sensing transmitting device (Sensing Transmitter).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing transmitter (Sensing Transmitter), a sensing receiving device (Sensing Receiver), or a sensing processing device. Equipment (Sensing processor).
  • STA1 can be a sensing initiator (Sensing Initiator); STA2 can be a sensing transmitter (Sensing Transmitter), a sensing receiving device (Sensing Receiver), or a sensing processing device. Equipment (Sensing processor).
  • STA1 can be a sensing initiator (Sensing Initiator), a sensing transmitter (Sensing Transmitter), a sensing receiving device (Sensing Receiver), or a sensing processing device.
  • Device Sensing processor
  • STA2 can be a sensing transmitter device (Sensing Transmitter) or a sensing receiving device (Sensing Receiver).
  • STA1 can be a Sensing Initiator or a Sensing processor
  • STA2 can be a Sensing Transmitter or a Sensing Receiver.
  • Device Sensing Receiver
  • STA3 can be a sensing transmitter device (Sensing Transmitter) or a sensing receiving device (Sensing Receiver).
  • Figure 2 is only an example of the present application and should not be understood as a limitation of the present application.
  • STA1, STA2, and STA3 in Figure 2 only represent the roles of STA. In Figure 2 and subsequent sensing sessions, measurements, and other steps, they are not used to limit the number of STAs.
  • the roles represented by STA1, STA2, and STA3 can Implemented as one or more STAs.
  • sensing Type there may be multiple sensing types (Sensing Type).
  • the sensing type based on Channel State Information (CSI) that is, CSI-based Sensing, obtains sensing measurement results by processing the CSI of the received sensing measurement signal.
  • CSI-based Sensing Channel State Information
  • the sensing type based on reflected signals namely Radar-based Sensing. This sensing type obtains sensing measurement results by processing the reflected signal of the received sensing measurement signal.
  • the perception initiating device is also called a perception initiator, an initiating device, and a perception session initiating device.
  • the sensing response device is also called a sensing responder, a response device, and a sensing session response device.
  • the sensing receiving device senses the receiver.
  • the sensing sending device or the sensing signal sending device, senses the sender.
  • a WLAN awareness session includes one or more of the following stages: session establishment, awareness measurement setting, awareness measurement, awareness reporting, awareness measurement setting termination, and session termination.
  • Session establishment phase Establish a sensing session, exchange the sensing capabilities of both parties and/or determine the operating parameters related to sensing measurement, or the terminal declares its own role and operating parameters (for example, through beacon frames or other special frames)
  • Perception measurement setting phase Determine the perception participating devices and their roles (including perception sending devices and perception receiving devices), determine the operating parameters related to perception measurement, and optionally exchange the parameters between terminals.
  • Perception measurement stage Implement perception measurement, and the sensing signal device sends sensing signals to the sensing receiving device.
  • Sensing reporting stage reporting of measurement results, determined by the application scenario.
  • the sensing receiving device may need to report the measurement results to the sensing initiating device.
  • Perceptual measurement setup termination phase Terminate one or more measurement setups, stop corresponding measurements, and release related storage and computing resources.
  • Session termination phase Terminate all measurement settings, stop measurements, and terminate the sensing session.
  • ranging the sensing target requires knowing the distance between the sensing sending device and the sensing receiving device, or knowing the orientation information of the sensing sending device and the sensing receiving device to calculate the distance between them.
  • the perception of the target can include single-based sensing, dual-based or multi-based sensing, single-based collaborative sensing, and dual-based collaborative sensing.
  • the following describes the principle of radar ranging in dual-base sensing with reference to Figure 3.
  • radar ranging needs to be measured based on the distance between the sensing transmitting device and the sensing receiving device. This requires that the distance between the two is known or can be calculated based on the position information between the two. distance.
  • the sensing sending device and the sensing receiving device can exchange their location information to obtain the distance L between them. If there are not enough APs to provide positioning services but Line of Sight (LOS) exists, the distance between the sensing sending device and the sensing receiving device can be determined through relevant positioning protocols (such as 802.11az protocol) or traditional device positioning methods. Distance L. In some cases, the sensing transmitting device and the sensing receiving device may also interact with the sending beam list and the receiving beam list to determine the beam information when the sensing device senses the target.
  • relevant positioning protocols such as 802.11az protocol
  • the sensing transmitting device and the sensing receiving device may also interact with the sending beam list and the receiving beam list to determine the beam information when the sensing device senses the target.
  • the sensing receiving device can know the angle of arrival (Angle of Arrival, AoA) of the sensing path, that is, ⁇ R , and the angle of departure (Angle of Departure, AoD), that is, ⁇ T , based on the transmitting beam list and the receiving beam list.
  • the difference RD between the sensing path R T + RR and the distance L between the sensing devices can be calculated based on the reference timestamp and the distance L.
  • the sensing receiving device can calculate the target sensing distance.
  • Method 1 According to L, R D and ⁇ R , determine the distance R R from the sensing target to the sensing receiving device, and the distance R T from the sensing target to the sensing transmitting device.
  • RD RT + RR -L.
  • Method 2 Based on L, R D and ⁇ T , determine the distance RR from the sensing target to the sensing receiving device, and the distance RT from the sensing target to the sensing transmitting device.
  • RD RT + RR -L.
  • Method 3 According to L, ⁇ R , ⁇ T , determine the distance RR from the sensing target to the sensing receiving device, and the distance R T from the sensing target to the sensing transmitting device.
  • Method 4 Based on R D , ⁇ R , ⁇ T , determine the distance RR from the sensing target to the sensing receiving device, and the distance RT from the sensing target to the sensing transmitting device.
  • RD RT + RR -L.
  • the line-of-sight distance L between the sensing transmitting device and the sensing receiving device needs to be known, or the sensing transmitting device needs to be known
  • the location information of the device and the sensing device is used to determine the line-of-sight distance L.
  • FIG. 5 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 5, the method 200 includes the following content:
  • the sensing receiving device determines the target sensing distance based on the target information.
  • the target sensing distance includes distance information from the sensing sending device to the sensing target (denoted as R T ) and/or distance information from the sensing target to the sensing receiving device (denoted as RR ).
  • the distance information from the sensing transmitting device to the sensing target can also be understood as the distance information from the center point of the antenna plane of the sensing transmitting device to the sensing target.
  • the distance information from the sensing target to the sensing receiving device can also be understood as the distance information from the sensing target to the center point of the antenna plane of the sensing receiving device.
  • the sensing receiving device may be an AP, or may also be a STA.
  • the sensing sending device may be a STA, or it may also be an AP.
  • the number of sensing sending devices may be one, or may be multiple.
  • the number of sensing receiving devices may be one, or may be multiple.
  • the sensing receiving device may be a sensing initiating device, or may also be a sensing responding device.
  • the sensing receiving device may be a sensing responding device, or may also be a sensing initiating device.
  • the number of sensing response devices may be one, or may be multiple.
  • the number of sensing initiating devices may be one, or may be multiple.
  • the sensing initiating device may be an AP, or it may also be a STA.
  • the sensing response device may include at least one AP and/or at least one STA.
  • the embodiments of the present application do not limit specific sensing types.
  • the embodiments of the present application can be applied to dual-base sensing scenarios, multi-base sensing scenarios, cooperative dual-base sensing scenarios, etc.
  • the present application is not limited thereto.
  • the number of sensing initiating devices and sensing responding devices is one respectively.
  • the number of sensing sending devices may be one, and the number of sensing responding devices may be multiple.
  • multi-base sensing scenarios may include but are not limited to the following scenarios:
  • the AP is a sensing initiating device and plays the role of sensing sending device.
  • Multiple STAs are sensing responding devices and play the role of sensing receiving devices.
  • the AP is a sensing initiating device and functions as a sensing receiving device.
  • Multiple STAs are sensing responding devices and function as sensing transmitting devices;
  • the AP is a sensing response device, and its role is a sensing receiving device.
  • STA i is a sensing initiating device, and its role is a sensing sending device.
  • the other STAs are sensing responding devices, and their role is a sensing receiving device.
  • the AP is a sensing response device, and its role is a sensing sending device.
  • STA i is a sensing initiating device, and its role is a sensing receiving device.
  • the other STAs are sensing responding devices, and their role is a sensing sending device.
  • the target information includes at least one of the following:
  • the first information is used to determine whether the shortest path between the sensing sending device and the sensing receiving device is a line-of-sight path;
  • the second information includes angle information and/or distance information of the shortest path
  • the third information includes angle information of the sensing beam, where the sensing beam includes a sensing transmitting beam and/or a sensing receiving beam.
  • the second information and the third information may be considered basic sensing parameters, and the first information and the antenna plane information of the sensing device may be considered auxiliary sensing parameters.
  • the shortest path between the sensing sending device and the sensing receiving device is determined during the sensing measurement setup phase.
  • the shortest path may be obtained by measuring distance and angle information between the sensing sending device and the sensing receiving device using a ranging protocol.
  • the ranging protocol may include but is not limited to the 802.11az ranging protocol.
  • the shortest path can be considered to be the actual transmission path of signals from the sensing sending device to the sensing receiving device, or in other words, the propagation path of the ranging signal.
  • the shortest path may be a line-of-sight path, or may be a non-line-of-sight path.
  • the shortest path may be composed of a path from the sensing sending device to the reflecting object and a path from the reflecting object to the sensing receiving device, where the reflecting object is not located on the line-of-sight path between the sensing sending device and the sensing receiving device.
  • the shortest path is also called the first path.
  • the first information may be obtained during the perceptual measurement setup phase.
  • the first information may be determined by measuring distance information and/or angle information between the perception sending device and the perception receiving device.
  • the first information is used to indicate the likelihood that the shortest path is a LOS path, or in other words, the possibility or probability that the shortest path is a LOS path.
  • the first information may be used to indicate a ratio of a probability that the shortest path is a LOS path and a probability that the shortest path is a non-LOS (NLOS) path.
  • the first information may be represented by a logarithmic likelihood.
  • the first information may be expressed as
  • the second information is also called peer orientation information.
  • the angle information of the shortest path includes at least one of the following:
  • Departure angle AoD information of the shortest path Departure angle AoD information of the shortest path, arrival angle AoA information of the shortest path.
  • the angle information in the embodiment of the present application can be characterized by azimuth angle and/or elevation angle.
  • the AoD information of the shortest path may include azimuth information and/or elevation information of the AoD of the shortest path.
  • the AoA information of the shortest path may include azimuth information and/or elevation information of the AoA of the shortest path.
  • the AoD information of the shortest path may be the angle information of the transmit beam (Tx Beam) corresponding to the shortest path.
  • the azimuth angle information of the AoD of the shortest path may be the azimuth angle information of the transmitting beam corresponding to the shortest path
  • the elevation angle information of the AoD of the shortest path may be the elevation angle information of the transmitting beam corresponding to the shortest path.
  • the AoA information of the shortest path may be the angle information of the receive beam (Rx Beam) corresponding to the shortest path.
  • the azimuth angle information of the AoA of the shortest path may be the azimuth angle information of the receiving beam corresponding to the shortest path
  • the elevation angle information of the AoA of the shortest path may be the elevation angle information of the receiving beam corresponding to the shortest path.
  • the angle information of the sensing beam includes at least one of the following:
  • Perceive the azimuth information of the transmitting beam perceive the elevation information of the transmitting beam, perceive the azimuth information of the receiving beam, and perceive the elevation information of the receiving beam.
  • the sensing transmitting beam may be a beam used by the sensing transmitting device to transmit sensing signals.
  • the sensing receiving beam may be a beam used by the sensing receiving device to receive the sensing signal.
  • the angle information of the sensing transmit beam is called the angle information of the transmit beam (Tx Beam) corresponding to the sensing path, or the AoD information of the sensing path.
  • the angle information of the sensing receive beam is called the angle information of the receiving beam (Rx Beam) corresponding to the sensing path, or the AoA information of the sensing path.
  • the angle information of the sensing beam can be considered as the angle information of the sensing path.
  • the sensing path may refer to the propagation path of the sensing signal in the sensing measurement phase.
  • the sensing path may include a path from the sensing sending device to the sensing target and a path from the sensing target to the sensing receiving device.
  • the antenna plane information of the sensing device may be measured according to a ranging protocol.
  • the ranging protocol may include but is not limited to the 802.11az ranging protocol.
  • the antenna plane information is also called antenna panel information.
  • the sensing device includes the sensing receiving device and/or the sensing sending device, or in other words, the sensing device includes a sensing initiating device and a sensing responding device.
  • the antenna plane information of the sensing device may include antenna plane information of the sensing transmitting device and/or antenna plane information of the sensing receiving device.
  • the antenna plane information of the sensing transmitting device, or transmit (Tx) antenna plane information is transmitted.
  • the antenna plane information of the sensing receiving device is also called receive (Rx) antenna plane information.
  • the antenna plane information of the sensing device includes at least one of the following:
  • the azimuth angle information of the antenna plane of the sensing receiving device that is, the azimuth angle information of the receiving antenna plane
  • the elevation angle information of the antenna plane of the sensing receiving device that is, the elevation angle information of the receiving antenna plane
  • the azimuth angle information of the antenna plane of the sensing transmitting device that is, the azimuth angle information of the transmitting antenna plane
  • the elevation angle information of the antenna plane of the sensing transmitting device is, that is, the elevation angle information of the transmitting antenna plane.
  • the coordinate system of the receive antenna plane and the angular information of the transmit antenna plane may be an earth coordinate system.
  • the AoA information on the shortest path may be angle information with a receiving antenna plane as a reference.
  • the AoD information on the shortest path may be angle information with the transmitting antenna plane as a reference.
  • the AoA information and AoD information on the shortest path may be based on different coordinate systems.
  • the AoA information on the sensing path may be angle information with the receiving antenna plane as a reference.
  • the AoD information on the sensing path may be angle information with the transmitting antenna plane as a reference.
  • the AoA information and AoD information on the sensing path may be based on different coordinate systems.
  • the antenna plane information of the sensing device can be used to determine the target sensing distance by combining the angle information of the shortest path and the angle information of the sensing path when the shortest path is an NLOS path.
  • the AoA angle information of the shortest path can be referenced to the receiving antenna plane
  • the AoD angle information of the shortest path can be referenced to the transmitting antenna plane
  • the AoA angle information of the sensing path can be referenced to the receiving antenna plane.
  • the angle information of the AoD of the sensing path can be based on the transmitting antenna plane. Determining the target sensing distance directly based on the angle information of the shortest path and the angle information of the sensing path will affect the accuracy of the results.
  • the angle information of the shortest path and the angle information of the sensing path can first be normalized into the same coordinate system based on the antenna plane information, and further based on the relationship between the sensing path and the shortest path in the same coordinate system. Geometric relationship to determine target sensing distance.
  • the sensing receiving device may determine whether the shortest path is a LOS path according to at least one of the following:
  • the first information, the second information, the antenna plane information of the sensing device, and the received signal strength information are the first information, the second information, the antenna plane information of the sensing device, and the received signal strength information.
  • the sensing receiving device determines whether the shortest path is a LOS path according to the first information.
  • the sensing receiving device may determine whether the shortest path is based on the second information and the antenna plane information of the sensing device. is the LOS path.
  • the sensing receiving device may determine whether the shortest path is a LOS path according to the strength information of the received signal. For example, if the strength of the received signal is higher than the second threshold, the shortest path is determined to be the LOS path; otherwise, the shortest path is determined to be the NLOS path.
  • S303 Determine whether the shortest path is a LOS path based on the first information and the first threshold.
  • the sensing receiving device may determine that the shortest path is the LOS path when the likelihood is greater than the first threshold. Otherwise, the shortest path is determined to be an NLOS path.
  • S304 Determine whether the sensing receiving device obtains the second information and the antenna plane information of the sensing device.
  • S305 Determine whether the shortest path is a LOS path based on the second information and the antenna plane information of the sensing device.
  • determine whether the shortest path is a LOS path by calculating whether the transmit beam direction and the receive beam direction on the shortest path are collinear.
  • the transmitting beam direction on the shortest path can be determined based on the angle information of the transmitting antenna plane and the AoD information on the shortest path
  • the receiving beam direction on the shortest path can be determined based on the angle information of the receiving antenna plane and the AoA on the shortest path.
  • the information is certain.
  • the shortest path is determined to be the LOS path; otherwise, the shortest path is determined to be the NLOS path.
  • S306 Determine whether the shortest path is a LOS path based on the received signal strength information and the second threshold.
  • the shortest path is determined to be the LOS path; otherwise, the shortest path is determined to be the NLOS path.
  • the input parameters for determining the perceived distance of the target may include at least one of the following:
  • the sensing receiving device can select corresponding target information and determine the target sensing distance based on the determination result of whether the shortest path is a LOS path.
  • the sensing receiving device may determine the target sensing distance based on the second information and/or the third information.
  • the perception receiving device can use a triangle ranging algorithm to determine the target perception distance.
  • the target sensing distance can be determined according to the calculation methods shown in the aforementioned methods 1 to 4.
  • the sensing receiving device may determine the target according to at least one of the antenna plane information, the second information, and the third information of the sensing device. Perceive distance.
  • the perception receiving device can use the edge-sharing triangle ranging algorithm to determine the target perception distance.
  • the perception receiving device determines the target perception distance based on the target information, including:
  • a vector corresponding to the sensing path and a vector corresponding to the shortest path are determined, wherein the sensing path is the path where the sensing target is located, and the vector corresponding to the sensing path includes the path from the sensing sending device to The vector of the sensing target and the vector from the sensing target to the sensing receiving device, the vector corresponding to the shortest path includes the vector from the sensing transmitting device to the reflecting object on the shortest path and the vector from the reflecting object to the sensing object.
  • the vector of the sensing receiving device is the path where the sensing target is located, and the vector corresponding to the sensing path includes the path from the sensing sending device to The vector of the sensing target and the vector from the sensing target to the sensing receiving device, the vector corresponding to the shortest path includes the vector from the sensing transmitting device to the reflecting object on the shortest path and the vector from the reflecting object to the sensing object.
  • distance information from the perception sending device to the perception target and/or distance information from the perception target to the perception target is determined.
  • Sense the distance information of the receiving device is determined.
  • the perception is determined.
  • the vector from the transmitting antenna plane to the reflecting object on the shortest path (that is, the vector from the sensing transmitting device to the reflecting object) can be determined based on the antenna plane information of the sensing transmitting device and the AoD information of the shortest path, and Based on the antenna plane information of the sensing receiving device and the AoA information of the shortest path, the vector from the receiving antenna plane to the transmitting object on the shortest path (that is, the vector from the sensing receiving device to the reflecting object) is determined.
  • the vector from the transmitting antenna plane to the sensing target (that is, the vector from the sensing transmitting device to the sensing target) can be determined based on the antenna plane information of the sensing transmitting device and the AoD information of the sensing path, and based on the antenna plane information of the sensing receiving device and the AoA information of the sensing path to determine the vector from the receiving antenna plane to the sensing target (that is, the vector from the sensing receiving device to the sensing target).
  • the above four vectors are projected on the same plane to obtain four projection vectors. That is to say, two distinguishable NLOS paths (i.e., the sensing path and the shortest path) are mapped to the same plane. Then, based on the four projection vectors, the sensing sending device, the sensing receiving device, the sensing target and the reflecting object can be determined. The positional relationship and angular relationship between them on the projection plane, for example, can determine the projection distance from the sensing sending device to the sensing target and the projection distance from the sensing target to the sensing receiving device on the projection plane. Further, the angle information of the sensing transmitting beam and the sensing receiving beam is converted into spatial distance information by converting the above two projection distances, that is, the target sensing distance is obtained.
  • the target information may also include at least one of the following:
  • the length information of the sensing path (denoted as c 0 ), and the length information of the shortest path (denoted as c 1 ).
  • the length information of the sensing path may include the length of the path from the sensing sending device to the sensing target and the length of the path from the sensing target to the sensing receiving device.
  • the length information of the shortest path may include the length of the path from the sensing sending device to the reflecting object and the length of the path from the reflecting object to the sensing receiving device.
  • the length information of the sensing path may be measured using a ranging protocol (such as Fine Timing Measurement (FTM)).
  • FTM Fine Timing Measurement
  • the length information of the shortest path may be measured using a ranging protocol (eg, 802.11az).
  • a ranging protocol eg, 802.11az
  • the following describes how to obtain the target information.
  • the target information may be obtained by the sensing receiving device itself, or may be obtained from the sensing sending device through information interaction, which is not limited in this application.
  • the method 200 further includes:
  • the sensing receiving device and the sensing sending device obtain target information through information interaction.
  • the target information is obtained during a perceptual measurement setup phase.
  • the method of obtaining the target information will be described based on the specific roles of the perception transmitting device and the perception receiving device in the perception measurement.
  • the sensing receiving device is a sensing responding device
  • the sensing sending device is a sensing initiating device.
  • the target information may be obtained from the sensing initiating device.
  • the method 200 further includes:
  • the perception receiving device may obtain the first information, the antenna plane information of the perception sending device, the second information and the third information from the perception sending device.
  • At least one of the first information, the antenna plane information of the sensing transmitting device, the second information and the third information is sent by the sensing receiving device during the sensing measurement setting stage. obtained by the device.
  • the sensing receiving device can obtain the above information through any frame in the sensing measurement setup phase, and this application does not limit this.
  • At least one of the first information, the antenna plane information of the sensing transmitting device, the second information and the third information may be through a sensing measurement setup request frame (Sensing measurement setup request) acquired.
  • the sensing measurement setting request frame may be used to negotiate measurement setting related parameters.
  • the sensing measurement setting request frame is also called a measurement setting request frame.
  • the sensing measurement setting request frame carries the first information
  • the sensing measurement The setting request frame carries the first information and the antenna plane information of the sensing transmitting device.
  • the sensing initiating device can determine the information content carried in the sensing measurement setting request frame based on whether the shortest path is a LOS path. If the shortest path is a LOS path, the sensing receiving device can adopt the aforementioned method 1 to method 4. Determine the target sensing distance by any of the methods. Therefore, the sensing measurement setting request frame does not need to carry the antenna plane information of the sensing sending device. When the shortest path is an NLOS path, the sensing measurement setting request frame needs to carry the sensing sending device. The antenna plane information is used to calculate the target sensing distance. For the specific manner in which the sensing initiating device determines whether the shortest path is a LOS path, refer to the relevant descriptions in the above embodiments.
  • the sensing receiving device is the sensing initiating device, and the sensing sending device is the sensing responding device.
  • the perception receiving device when the perception receiving device is a perception initiating device, the perception receiving device itself can obtain the first information, the second information and the third information.
  • the first information may be obtained by measuring distance information and/or angle information between the sensing response device and the sensing response device using a ranging protocol.
  • the second information may be obtained by measuring distance information and/or angle information between the sensing sending device and the sensing receiving device using a ranging protocol.
  • the third information may be selected by the sensing receiving device from a transmit beam list and/or a receive beam list.
  • the transmitting beam list and/or the receiving beam list may be obtained by the sensing initiating device and the sensing receiving device through frame interaction during the sensing session establishment phase.
  • the method 200 further includes:
  • the perception initiating device sends at least one of the first information, the second information and the third information to the perception response device.
  • the perception initiating device may send at least one of the first information, the second information and the third information to the perception response device in the perception measurement setting phase.
  • the perception initiating device sends a perception measurement setting request frame to the perception response device, wherein the perception measurement setting request frame includes at least the first information, the second information and the third information.
  • the perception measurement setting request frame includes at least the first information, the second information and the third information.
  • the first information may be used to sense the sending device to determine whether the shortest path is a LOS path.
  • the sensing response device may send antenna plane information of the sensing response device to the sensing initiating device, that is, send antenna plane information.
  • the sensing response device determines that the shortest path is an NLOS path according to the first information
  • the sensing response device sends the transmit antenna plane information to the sensing initiating device.
  • the sensing initiating device receives a sensing measurement setting response frame sent by the sensing response device, and the sensing measurement setting response frame carries the transmitting antenna plane information.
  • the sensing measurement setting response frame carries the transmit antenna plane information.
  • the sensing measurement setting response frame may not carry the transmit antenna plane information.
  • the sensing measurement setting response frame is also called a measurement setting response frame.
  • the first information and/or the antenna plane information of the sensing device may be carried in a Directional Multi-Gigabit (DMG) Sensing Measurement Setup element (DMG Sensing Measurement Setup element) , wherein the DMG perception measurement setting element includes a LOS likelihood rate (LOS Log Likelihood Ratio) field and/or an antenna information (Antenna Information) field, wherein the LOS likelihood rate field is used to carry the first information , the antenna information field is used to carry antenna plane information of the sensing device.
  • DMG Directional Multi-Gigabit
  • DMG Sensing Measurement Setup element DMG Sensing Measurement Setup element
  • the DMG perception measurement setting element includes a LOS likelihood rate (LOS Log Likelihood Ratio) field and/or an antenna information (Ana Information) field, wherein the LOS likelihood rate field is used to carry the first information , the antenna information field is used to carry antenna plane information of the sensing device.
  • the number of bytes (Octet) of the LOS likelihood field may be 1.
  • the number of bytes of the antenna information field may be 3.
  • the antenna information field may include an antenna azimuth (Antenna Azimuth) field and/or an antenna elevation (Antenna Elevation) field, where the Antenna Azimuth field is used to indicate the azimuth information of the antenna plane of the sensing device, The Antenna Elevation field is used to indicate the elevation information of the antenna plane of the sensing device.
  • Antenna Azimuth is used to indicate the azimuth information of the antenna plane of the sensing device
  • the Antenna Elevation field is used to indicate the elevation information of the antenna plane of the sensing device.
  • the coordinate system of the azimuth angle information of the antenna plane is an Earth coordinate system.
  • the coordinate information of the elevation angle information of the antenna plane is an earth coordinate system.
  • the number of bits (bits) of the Antenna Azimuth field may be 12.
  • the number of bits (bits) of the Antenna Elevation field may be 12.
  • the second information may be carried in a DMG perception measurement setting element, wherein the DMG perception measurement setting element includes a peer orientation (Peer Orientation) field, wherein the Peer Orientation field is used to carry the second information.
  • DMG perception measurement setting element includes a peer orientation (Peer Orientation) field, wherein the Peer Orientation field is used to carry the second information.
  • the Peer Orientation field may include at least one of the following fields:
  • Azimuth field used to indicate the azimuth information measured by one sensing device of another sensing device
  • Elevation field used to indicate the elevation information measured by one sensing device of another sensing device
  • the distance (Range) field is used to indicate the distance information measured by the sensing device to another sensing device.
  • the line-of-sight distance L between the two can be obtained through the Range field in the Peer Orientation field.
  • the DMG sensing measurement setting element may also include a location configuration information (LCI) field for carrying location information of the sensing device.
  • LCI location configuration information
  • the DMG perception measurement setup element includes a Measurement Setup Control field, wherein the measurement setup control field includes a LOS Log Likelihood Ratio Present field and/or an antenna Information presence (Antenna Information Present) field, wherein the LOS likelihood rate presence field is used to indicate whether the LOS likelihood rate field is included in the DMG perception measurement setting element, and the antenna information presence field is used to indicate whether Whether the antenna information field exists in the DMG sensing measurement setting element.
  • the measurement setup control field includes a LOS Log Likelihood Ratio Present field and/or an antenna Information presence (Ana Information Present) field, wherein the LOS likelihood rate presence field is used to indicate whether the LOS likelihood rate field is included in the DMG perception measurement setting element, and the antenna information presence field is used to indicate whether Whether the antenna information field exists in the DMG sensing measurement setting element.
  • the value of the LOS likelihood rate existence field is 1, which means it exists; otherwise, it means it does not exist.
  • the value of the antenna information existence field is 1, which means it exists; otherwise, it means it does not exist.
  • the Measurement Setup Control may also include an Orientation Present field, which is used to indicate whether the DMG sensing measurement setting element includes a Peer Orientation field.
  • FIG 8 is a schematic format diagram of a DMG Sensing Measurement Setup element provided by the embodiment of the present application. It should be understood that the position and size of each field in the DMG Sensing Measurement Setup element can be flexibly adjusted, and the present application is not limited thereto.
  • Figure 9 is a schematic format diagram of a Measurement Setup Control field provided by an embodiment of the present application. It should be understood that the position and size of each field in the Measurement Setup Control can be flexibly adjusted, and the present application is not limited thereto.
  • the Measurement Setup Control field may also include the following fields:
  • Sensing type field used to indicate the type of sensing. For example, a value of 1 indicates a cooperative single-base sensing type, a value of 2 indicates a dual-base sensing type, a value of 3 indicates a multi-base sensing type, and 0 is a reserved value. .
  • the receiving initiator field is used to indicate the role of the sensing initiating device. For example, a value of 1 indicates that the sensing initiating device is a sensing receiving device, and a value of 0 indicates that the sensing initiating device is a sensing sending device. If the sensing type is not a dual-base sensing type, this field is reserved.
  • the LCI presence field is used to determine whether the LCI field is included in the DMG sensing measurement setting element.
  • Figure 10 is a schematic format diagram of an Antenna Information field provided by an embodiment of the present application. It should be understood that the position and size of each field in the Antenna Information field can be flexibly adjusted, and the present application is not limited thereto.
  • the DMG sensing measurement setting element is carried in a sensing measurement setting request frame and/or a sensing measurement setting response frame.
  • the third information is carried in a DMG Sensing Beam Description element, wherein the DMG Sensing Beam Description element includes a Beam Descriptor field indicating a Angle information of the sensing beam.
  • Figure 11 is a schematic format diagram of a DMG Sensing Beam Description element provided by the embodiment of the present application.
  • the DMG Sensing Beam Description element also includes at least one of the following fields:
  • Element ID field Element ID Extension field, Length field, and beam type (Tx Flag) field.
  • Element ID and Element ID Extension jointly indicate the unique identifier of the DMG Sensing Beam Description element, and Length indicates the length of the DMG Sensing Beam Description element.
  • the Tx Flag field is used to indicate the types of all beam descriptors in the DMG Sensing Beam Description element. For example, a value of 1 indicates a transmit beam, and a value of 0 indicates a receive beam.
  • the Beam Descriptor field may include at least one of the following fields:
  • Beam azimuth field used to indicate the azimuth of the sensing beam
  • Beam elevation field used to indicate the elevation angle of the sensing beam
  • Azimuth width field used to indicate the 3dB width of the sensing beam in the horizontal direction
  • Elevation width field used to indicate the 3dB width of the sensing beam in the vertical direction
  • Beam gain field used to indicate the gain of the sensing beam.
  • the DMG Sensing Beam Description element may be carried in a management frame.
  • Figure 12 is a schematic format diagram of a Beam Descriptor field provided by an embodiment of the present application. It should be understood that the position and size of each field in the Beam Descriptor field can be flexibly adjusted, and the present application is not limited thereto.
  • the DMG Sensing Beam Description element may be carried in at least one of the following frames:
  • the method may include at least some of the following steps:
  • Step 0000 The sensing initiating device and the sensing responding device realize the interaction of device discovery and sensing capabilities through interaction management frames, where.
  • the management frame includes the DMG Sensing Beam Description element, which is used to expose the sensing transmitting beam and sensing receiving beam supported by the sensing device.
  • Step 1000 The sensing initiating device uses a ranging protocol (such as 802.11az) to measure distance and angle information with the sensing response device, and obtains the aforementioned first information and/or second information and/or antenna plane information of the sensing response device.
  • a ranging protocol such as 802.11az
  • the length information of the shortest path that is, c 1 , can also be obtained.
  • Step 1010 The sensing initiating device sends a sensing measurement setup request frame to the sensing response device, where the sensing measurement setup request frame carries the DMG Sensing Measurement Setup element.
  • the sensing measurement setting request frame may include basic sensing parameters, such as the roles of the sensing initiating device and the sensing response device, DMG sensing type, DMG sensing measurement report type, training (Training, TRN) sequence information ( For example, TRN-P, TRN-M, TRN-N), Peer orientation information, selected sensing transmit beam, selected sensing receive beam, etc.
  • basic sensing parameters such as the roles of the sensing initiating device and the sensing response device, DMG sensing type, DMG sensing measurement report type, training (Training, TRN) sequence information ( For example, TRN-P, TRN-M, TRN-N), Peer orientation information, selected sensing transmit beam, selected sensing receive beam, etc.
  • the sensing measurement setting request frame may also include sensing assistance parameters.
  • the specific parameters carried may be determined based on the role of the sensing initiating device and whether the shortest path is a LOS path.
  • the sensing initiating device is a sensing sending device
  • the sensing responding device is a sensing receiving device.
  • the sensing initiating device first determines whether the shortest path is a LOS path.
  • the specific determination method refer to the relevant description of the embodiment shown in FIG. 6 .
  • the sensing initiating device may carry the first information in the sensing measurement setting request frame.
  • the sensing response device uses a triangle ranging algorithm to determine the target sensing distance.
  • the sensing initiating device may carry the first information and the antenna plane information of the sensing initiating device (ie, send the antenna plane information) in the sensing measurement setting request frame.
  • the sensing response device uses a common-edge triangle ranging algorithm to determine the target sensing distance.
  • the sensing initiating device is a sensing receiving device
  • the sensing responding device is a sensing sending device.
  • the sensing initiating device may carry the first information in the sensing measurement setting request frame, so that the sensing responding device determines whether the shortest path is a LOS path based on the first information, and further feeds back the corresponding information.
  • Step 1100 After receiving the sensing measurement setting request frame sent by the sensing initiating device, the sensing response device sends a sensing measurement setting response frame to the sensing initiating device. Specifically, the sensing measurement setting response frame is replied after a short interframe space (SIFS).
  • SIFS short interframe space
  • the sensing measurement setting response frame carries response information indicating whether to receive a request from the sensing initiating device. If accepted, jump to step 2000; if not accepted, return to step 1000 to renegotiate.
  • which parameters the sensing response device carries in the sensing measurement setting response frame can be determined based on the role of the sensing initiating device and whether the shortest path is a LOS path.
  • the sensing response device does not need to carry additional information in the sensing measurement setup response frame.
  • the sensing response device further feeds back corresponding information based on whether the shortest path is a LOS path.
  • the antenna plane information of the sensing response device is carried in the sensing measurement setting response frame, that is, the antenna plane information is sent, or when the shortest path is determined to be an LOS path based on the first information , there is no need to carry other information in the perceptual measurement setup response frame.
  • Figure 13 is the frame interaction process under the role in case 1. As shown in Figure 13, the following steps can be included:
  • Step 1020 The sensing initiating device sends a sensing measurement setting request frame to the sensing responding device.
  • the sensing measurement setting request frame may include the aforementioned sensing basic parameters, for example, second information and third information.
  • the sensing measurement setting request frame when the shortest path is a LOS path, the sensing measurement setting request frame further includes first information.
  • the sensing measurement setting request frame when the shortest path is an NLOS path, the sensing measurement setting request frame also includes the first information and the antenna plane information of the sensing initiating device, that is, the transmitting antenna plane information.
  • the sensing response device returns an acknowledgment (Ack) message to the sensing initiating device.
  • Ack acknowledgment
  • Step 1120 The sensing response device sends a sensing measurement setting response frame to the sensing initiating device.
  • the sensing response device does not accept the request from the sensing initiating device, renegotiation is required.
  • the sensing response device accepts the request from the sensing initiating device, it does not need to carry any information in the sensing measurement setting response frame.
  • Figure 14 is the frame interaction process under the role in case 2. As shown in Figure 14, the following steps may be included:
  • Step 1030 The sensing initiating device sends a sensing measurement setting request frame to the sensing responding device.
  • the perceptual measurement setting request frame may include first information, second information, and third information.
  • the sensing response device returns an acknowledgment (Ack) message to the sensing initiating device.
  • Ack acknowledgment
  • Step 1130 The sensing response device sends a sensing measurement setting response frame to the sensing initiating device.
  • the sensing response device does not accept the request from the sensing initiating device, renegotiation is required.
  • the sensing response device if the sensing response device accepts the request of the sensing initiating device, the sensing response device carries the corresponding information in the sensing measurement setting response frame according to whether the shortest path is a LOS path. Wherein, the sensing response device may determine whether the shortest path is a LOS path according to the first information in the sensing measurement setting request frame.
  • the shortest path is a LOS path
  • the antenna plane information of the sensing response device is carried in the sensing measurement setting response frame, that is, the antenna plane information is sent.
  • step 1020 and step 1130 the specific determination steps of determining whether the shortest path is a LOS path may refer to the description of steps 2110 to 2130.
  • Step 2110 If the first information can be obtained, it can be determined whether the shortest path is a LOS path according to the following formula (5):
  • R is obtained from the Log Likelihood Ratio field, and R th represents the first threshold. Otherwise, determine whether the shortest path is a LOS path according to step 2120.
  • Step 2120 When the sensing initiating device knows its own antenna plane information, the antenna plane information of the sensing response device, the AoA information of the shortest path, and the AoD information of the shortest path, it can calculate the transmitting beam direction and the receiving beam direction on the shortest path. Collinearity determines whether the shortest path is a LOS path.
  • the vector of the transmit beam on the shortest path Determine according to the following formula (6):
  • the vector of the receiving beam on the shortest path Determine according to the following formula (7):
  • Step 2130 Determine whether the shortest path is a LOS path based on the received signal strength information. Alternatively, you can also determine whether the shortest path is a LOS path by collecting channel impulse response data or time data of multiple signal transmissions.
  • Perceptual measurement stage or in other words, perceptual measurement instance stage
  • Step 2000 The sensing initiating device and the sensing response device perform sensing measurement according to the parameters negotiated in the sensing measurement setting phase.
  • the perception receiving device can determine the target perception distance based on the target information.
  • Step 2210 If the shortest path is a LOS path, the sensing receiving device can use the triangle ranging algorithm to calculate RT and RR .
  • the triangle is solved based on the angle information of the sensing transmitting beam, the angle information of the sensing receiving beam, and at least one of the angle information and the distance information of the shortest path, and RT and RR are calculated. Otherwise, RT and RR are calculated according to step 2220.
  • the perception receiving device can calculate RT and RR using any one of the aforementioned methods 1 to 4.
  • Step 2220 If the shortest path is an NLOS path, the sensing and receiving device determines the shortest path based on the angle information of the transmitting antenna plane, the angle information of the receiving antenna plane, the angle information of the transmitting beam corresponding to the sensing path, and the angle information of the receiving beam corresponding to the sensing path.
  • RT and R R can be calculated using the edge-sharing triangle ranging algorithm based on the above information.
  • the edge-sharing triangle distance measurement algorithm refer to the relevant descriptions in steps S2221 to 2228.
  • Step 2221 Determine the vector from the transmitting antenna plane to the sensing target (that is, sense the vector from the transmitting device to the sensing target) The vector from the receiving antenna plane to the sensing target (that is, the vector from the sensing receiving device to the sensing target) And the vector from the transmitting antenna plane to the reflecting object on the shortest path (that is, the vector from the transmitting device to the reflecting object) The vector from the receiving antenna plane to the reflecting object on the shortest path (that is, the vector from the sensing receiving device to the reflecting object)
  • the origin of the coordinate system may be different, but the x, y, and z axis directions of the coordinate system are consistent.
  • the origin of the coordinate system is the center point of the transmitting antenna plane.
  • the origin of the coordinate system is the center point of the receiving antenna plane.
  • Step 2222 Calculate The projection vector of the vector on the projection plane A Among them, the normal vector of the projection plane A is Optionally, the projection plane A can be any plane, or it can also be a predefined plane.
  • Step 2223 According to the projection vector Determine the scene type formed by the projection of the sensing transmitting device (that is, the plane projection of the transmitting antenna), the projection of the sensing receiving device (that is, the plane projection of the receiving antenna), the sensing target projection O1 and the reflecting object projection O2.
  • calculate and The clockwise angle ⁇ t of , and The clockwise angle ⁇ r of , and The angle ⁇ nct , and The angle ⁇ ncr , and The clockwise angle ⁇ tr of , and The angle ⁇ nctr1 , and The angle ⁇ nctr2 is determined based on the above angle information to determine the scene type formed by the plane projection of the transmitting antenna, the plane projection of the receiving antenna, the sensing target projection O1 and the reflecting object projection O2.
  • angle between vectors can point to an angle smaller than ⁇
  • clockwise angle between vectors can refer to the clockwise angle from one vector to another. In this case, the normal vector needs to be considered. direction.
  • the scene type formed by the transmitting antenna plane projection, the receiving antenna plane projection, the sensing target projection O1 and the reflecting object projection O2 can be determined according to the following formula (10):
  • Figures 15 to 19 are schematic position relationship diagrams of scene types 0 to 4. It should be understood that Figures 15 to 19 only take the perception sending device as the AP and the perception receiving device as the STA as examples. In other embodiments, the perception sending device and the perception receiving device can also be a combination of other device types, for example, The sensing sending device is STA, the sensing receiving device is AP, etc.
  • represents the preset threshold ( ⁇ >0 and ⁇ 0). If the scene type is 0, jump to one of steps 2224 to 2226, otherwise, jump to step 2227.
  • Step 2224 If the perception target projection O1 on the projection plane A coincides with the reflection object projection O2, that is,
  • Step 2225 If the transmitting antenna plane projection, the reflecting object projection O2 and the sensing target projection O1 are collinear, that is,
  • the position relationship diagram is shown in Figure 15.
  • ⁇ 2 represents the plane projection of the receiving antenna, the angle formed by the sensing target projection O1 on the sensing path and the reflection object projection O2 on the shortest path.
  • the distance ccos ⁇ t,2 between the projection of the transmitting antenna plane and the reflecting object can be calculated, as well as the length ecos ⁇ e of the line connecting the sensing target projection O1 and the reflecting object projection O2 on the projection plane, where c represents the distance from the transmitting antenna plane to the reflecting object.
  • the calculation formulas of c and ecos ⁇ e are respectively:
  • c 0 represents the length of the sensing path (that is, the length of the path where the sensing target is located)
  • c 1 represents the length of the shortest path (that is, the length of the path where the reflecting object is located)
  • the acquisition methods of c 0 and c 1 refer to the relevant information in the previous embodiments. describe.
  • the distances between the sensing sending device and the sensing receiving device to the sensing target can be determined according to the following formula:
  • Step 2226 If the plane projection of the receiving antenna, the projection of the reflecting object, and the projection of the sensing target are collinear, that is,
  • ⁇ 1 represents the angle formed by the plane projection of the transmitting antenna, the sensing target projection O1 on the sensing path, and the reflection object projection O2 on the shortest path.
  • the distance ccos ⁇ t,2 between the projection of the transmitting antenna plane and the reflecting object can be calculated, as well as the length ecos ⁇ e of the line connecting the sensing target projection O1 and the reflecting object projection O2 on the projection plane, where c represents the distance from the transmitting antenna plane to the reflecting object.
  • the calculation formulas of c and ecos ⁇ e are respectively:
  • c 0 represents the length of the sensing path (that is, the length of the path where the sensing target is located)
  • c 1 represents the length of the shortest path (that is, the length of the path where the reflecting object is located)
  • the acquisition methods of c 0 and c 1 refer to the relevant information in the previous embodiments. describe.
  • the distances between the sensing sending device and the sensing receiving device to the sensing target can be determined according to the following formula:
  • Step 2227 If the scene type is 1, 2, 3, 4, calculate ⁇ 1 , ⁇ 2 , sign. For example, calculate according to the following formula (25) to formula (27) respectively:
  • Step 2228 Calculate ⁇ 1 , ⁇ 2 , ecos ⁇ e , the specific formula is as follows:
  • the distances between the sensing sending device and the sensing receiving device to the sensing target can be determined according to the following formula:
  • Figure 20 is a schematic diagram of an implementation scenario of the embodiment of the present application.
  • the sensing initiating device is the AP, and its role is the sensing sending device.
  • the sensing responding device is the STA, and its role is the sensing receiving device.
  • the unknown parameters are: the xyz coordinates of STA are (6, 2, 1), the coordinates of sensing target 1 on the sensing path are (3, 4, 7), and the coordinates of reflecting object 2 on the shortest path are (2, 2, 0).
  • the actual distances R T and R R between the AP and STA to the sensing target 1 are 7.874007874011811 and 7.0 respectively.
  • the azimuth and elevation angles of the transmit beam corresponding to the sensing path are 1.6251745675842388 and 0.997718445372519 respectively.
  • the azimuth and elevation angles of the receiving beam (i.e., the sensing receive beam) corresponding to the sensing path are 0.4636476090008059, respectively. 1.5337248805009298.
  • the azimuth and elevation angles of the transmit beam corresponding to the shortest path i.e., the AoD of the shortest path
  • the azimuth and elevation angles of the receiving beam corresponding to the shortest path are 2.08994244104142 and 0.2116179307497 respectively. 5277.
  • the lengths of the perceived path and the shortest path are 14.874007874011811 and 5.5373191879907555 respectively.
  • the azimuth and elevation angles of the transmitting antenna plane are 2.6179938779914944 and 1.0471975511965976 respectively, and the azimuth and elevation angles of the receiving antenna plane are 1.0471975511965976 and -0.5235987755982988 respectively.
  • STA can use the calculation method in the aforementioned formula (6) to calculate the vector from the transmitting antenna plane to the sensing target. and the vector from the transmitting antenna plane to the reflecting object on the shortest path
  • calculate and The angle is 0.7043991861118861, and The angle between is 2.3267657372188046, which does not satisfy formula (8). Therefore, the shortest path and the perceived path are both NLOS paths.
  • the clockwise angle ⁇ t is 0.197395559849881
  • the clockwise angle ⁇ r is 5.695182703632021
  • the angle ⁇ nct is 0.197395559849881
  • the angle ⁇ ncr is 0.5880026035475647
  • the clockwise angle ⁇ tr is 4.712388980384686
  • the angle ⁇ nctr1 is 1.5707963267949
  • the angle ⁇ nctr2 is 2.3561944901923453.
  • the angle ⁇ t,1 with the projection plane A is 1.0951586113039717, The angle ⁇ t,2 with the projection plane A is 0.0, The angle ⁇ r,1 with the projection plane A is 1.029696800837752, The angle ⁇ r,2 with the projection plane A is -0.2449786631268647.
  • the target sensing distance is determined according to the formulas in the aforementioned steps 2227 and 2228.
  • ⁇ 1 , ⁇ 2 sign can be determined as:
  • R R is:
  • FIG. 21 shows a schematic block diagram of a perception receiving device 400 according to an embodiment of the present application.
  • the perception receiving device 400 includes:
  • the processing unit 410 is configured to determine the target sensing distance according to the target information, wherein the target sensing distance includes distance information from the sensing sending device to the sensing target and/or distance information from the sensing target to the sensing receiving device;
  • the target information includes at least one of the following:
  • First information used to determine whether the shortest path between the sensing sending device and the sensing receiving device is a line-of-sight path
  • Antenna plane information of a sensing device wherein the sensing device includes the sensing receiving device and/or the sensing transmitting device;
  • the second information includes angle information and/or distance information of the shortest path
  • the third information includes angle information of the sensing beam, where the sensing beam includes a sensing transmitting beam and/or a sensing receiving beam.
  • the first information is used to indicate a likelihood that the shortest path is a line-of-sight path.
  • the antenna plane information of the sensing device includes at least one of the following:
  • Elevation angle information of the antenna plane of the sensing receiving device
  • Elevation angle information of the antenna plane of the sensing transmitting device is derived from the Elevation angle information of the antenna plane of the sensing transmitting device.
  • the angle information of the shortest path includes at least one of the following:
  • Departure angle AoD information of the shortest path Departure angle AoD information of the shortest path, arrival angle AoA information of the shortest path.
  • the angle information of the sensing beam includes at least one of the following:
  • Perceive the azimuth information of the transmitting beam perceive the elevation information of the transmitting beam, perceive the azimuth information of the receiving beam, and perceive the elevation information of the receiving beam.
  • the target information is obtained during a perceptual measurement setup phase.
  • the sensing receiving device is a sensing responding device
  • the sensing sending device is a sensing initiating device
  • the sensing receiving device further includes:
  • a communication unit configured to obtain at least one of the first information, the antenna plane information of the perception transmitting device, the second information and the third information from the perception initiating device.
  • the communication unit is specifically used for:
  • the sensing measurement setting request frame includes the first information, the antenna plane information of the sensing transmitting device, the second information and the third information. At least one item.
  • the perceptual measurement setting request frame carries the first information
  • the perception measurement setting request frame carries the first information and the antenna plane information of the perception transmitting device.
  • the sensing receiving device is a sensing initiating device
  • the sensing sending device is a sensing responding device.
  • the communication unit is specifically used for:
  • the communication unit is also used to:
  • a sensing measurement setting request frame is sent to the sensing response device, where the sensing measurement setting request frame includes at least one of the first information, the second information and the third information.
  • the communication unit is further configured to: receive a sensing measurement setting response frame sent by the sensing response device;
  • the sensing measurement setting response frame carries antenna plane information of the sensing transmitting device.
  • the perception measurement setting response frame when the shortest path is a line-of-sight path, does not carry antenna plane information of the perception sending device.
  • the first information and/or the antenna plane information of the sensing device is carried in a directional multi-gigabit DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes LOS likelihood field and/or an antenna information field, wherein the LOS likelihood field is used to carry the first information, and the antenna information field is used to carry antenna plane information of the sensing receiving device and/or the sensing transmitting device.
  • the DMG sensing measurement setting element includes LOS likelihood field and/or an antenna information field, wherein the LOS likelihood field is used to carry the first information, and the antenna information field is used to carry antenna plane information of the sensing receiving device and/or the sensing transmitting device.
  • the DMG sensing measurement setting element includes a measurement setting control field, wherein the measurement setting control field includes a LOS likelihood rate presence field and/or an antenna information presence field, wherein the LOS likelihood rate The existence field is used to indicate whether the LOS likelihood field is included in the DMG perception measurement setting element, and the antenna information existence field is used to indicate whether the antenna information field exists in the DMG perception measurement setting element.
  • the second information is carried in a DMG aware measurement setting element, wherein the DMG aware measurement setting element includes a peer positioning field, wherein the peer positioning field is used to carry the second information.
  • the location information of the sensing sending device is carried in a DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes a positioning configuration information LCI field, and the LCI field is used to carry the sensing sending device.
  • Device location information is carried in a DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes a positioning configuration information LCI field, and the LCI field is used to carry the sensing sending device.
  • the DMG sensing measurement setting element is carried in a sensing measurement setting request frame and/or a sensing measurement setting response frame.
  • the third information is carried in a DMG sensing beam description element, wherein the DMG sensing beam description element includes a beam description field indicating angle information of the sensing beam.
  • the processing unit 410 is also used to:
  • the shortest path is a line-of-sight path based on at least one of the first information, the antenna plane information of the sensing receiving device, the antenna plane information of the sensing transmitting device, and the angle information of the shortest path .
  • the processing unit 410 is also used to:
  • the shortest path is a line-of-sight path.
  • the processing unit 410 is also used to:
  • the shortest path is determined to be a non-line-of-sight path.
  • the processing unit 410 is also used to:
  • Whether the shortest path is a line-of-sight path is determined based on at least one of the antenna plane information of the sensing receiving device, the antenna plane information of the sensing transmitting device, and the angle information of the shortest path.
  • the processing unit 410 is also used to:
  • the AoA information on the path determines the vector of the receiving beam on the shortest path
  • Whether the shortest path is a line-of-sight path is determined based on whether the vector of the transmit beam on the shortest path and the vector of the receive beam on the shortest path are collinear.
  • the shortest path is determined to be a line-of-sight path; otherwise, it is an NLOS path.
  • the processing unit 410 is also used to:
  • the target sensing distance is determined based on at least one of the following information:
  • the processing unit 410 is also used to:
  • the target sensing distance is determined based on at least one of the following information:
  • the antenna plane information of the sensing receiving device The antenna plane information of the sensing receiving device, the antenna plane information of the sensing transmitting device, the angle information of the sensing transmitting beam, the angle information of the sensing receiving beam, the AoD information of the shortest path, and the AoA information of the shortest path.
  • the processing unit 410 is also used to:
  • a vector corresponding to the sensing path and a vector corresponding to the shortest path are determined, wherein the sensing path is the path where the sensing target is located, and the vector corresponding to the sensing path includes the path from the sensing sending device to The vector of the sensing target and the vector from the sensing target to the sensing receiving device, the vector corresponding to the shortest path includes the vector from the sensing transmitting device to the reflecting object on the shortest path and the vector from the reflecting object to the sensing object.
  • the vector of the sensing receiving device is the path where the sensing target is located, and the vector corresponding to the sensing path includes the path from the sensing sending device to The vector of the sensing target and the vector from the sensing target to the sensing receiving device, the vector corresponding to the shortest path includes the vector from the sensing transmitting device to the reflecting object on the shortest path and the vector from the reflecting object to the sensing object.
  • distance information from the sensing sending device to the sensing target and/or distance information from the sensing target to the sensing receiving device is determined.
  • the processing unit 410 is also used to:
  • a vector from the reflecting object to the sensing receiving device is determined based on the antenna plane information of the sensing receiving device and the angle information of the AoA of the shortest path.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • sensing receiving device 400 may correspond to the sensing receiving device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the sensing receiving device 400 are respectively to implement Figure 5 As for the corresponding process of sensing the receiving device in the method shown in Figure 20, for the sake of simplicity, it will not be described again here.
  • FIG 22 is a schematic block diagram of a sensing sending device according to an embodiment of the present application.
  • the perception sending device 500 of Figure 22 includes:
  • Communication unit 510 configured to send target information to the sensing receiving device, where the target information is used to determine the target sensing distance
  • the target information includes at least one of the following:
  • First information used to determine whether the shortest path between the sensing sending device and the sensing receiving device is a line-of-sight path
  • Antenna plane information of a sensing device wherein the sensing device includes the sensing receiving device and/or the sensing transmitting device;
  • the second information includes angle information and/or distance information of the shortest path
  • the third information includes angle information of the sensing beam, where the sensing beam includes a sensing transmitting beam and/or a sensing receiving beam.
  • the target sensing distance includes at least one of the following:
  • the distance information from the sensing sending device to the sensing target and/or the distance information from the sensing target to the sensing receiving device are used.
  • the first information is used to indicate a likelihood that the shortest path is a line-of-sight path.
  • the antenna plane information of the sensing device includes at least one of the following:
  • Elevation angle information of the antenna plane of the sensing receiving device
  • Elevation angle information of the antenna plane of the sensing transmitting device is derived from the Elevation angle information of the antenna plane of the sensing transmitting device.
  • the angle information of the shortest path includes at least one of the following:
  • Departure angle AoD information of the shortest path Departure angle AoD information of the shortest path, arrival angle AoA information of the shortest path.
  • the angle information of the sensing beam includes at least one of the following:
  • Perceive the azimuth information of the transmitting beam perceive the elevation information of the transmitting beam, perceive the azimuth information of the receiving beam, and perceive the elevation information of the receiving beam.
  • the target information is sent during the perceptual measurement setup phase.
  • the sensing sending device is a sensing initiating device
  • the sensing receiving device is a sensing responding device
  • the communication unit 510 is also used to:
  • the sensing measurement setting request frame includes the first information, the antenna plane information of the sensing sending device, the second information and the third information. At least one item.
  • the perceptual measurement setting request frame carries the first information
  • the perception measurement setting request frame carries the first information and the antenna plane information of the perception transmitting device.
  • the sensing sending device is a sensing responding device
  • the sensing receiving device is a sensing initiating device
  • the communication unit 510 is also used to:
  • the sensing measurement setting request frame includes at least one of the first information, the second information, and the third information.
  • the communication unit 510 is also used to:
  • the sensing measurement setting response frame carries antenna plane information of the sensing transmitting device.
  • the perception measurement setting response frame when the shortest path is a line-of-sight path, does not carry antenna plane information of the perception sending device.
  • the first information and/or the antenna plane information of the sensing device is carried in a directional multi-gigabit DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes LOS likelihood field and/or an antenna information field, wherein the LOS likelihood field is used to carry the first information, and the antenna information field is used to carry antenna plane information of the sensing receiving device and/or the sensing transmitting device.
  • the DMG sensing measurement setting element includes LOS likelihood field and/or an antenna information field, wherein the LOS likelihood field is used to carry the first information, and the antenna information field is used to carry antenna plane information of the sensing receiving device and/or the sensing transmitting device.
  • the DMG sensing measurement setting element includes a measurement setting control field, wherein the measurement setting control field includes a LOS likelihood rate presence field and/or an antenna information presence field, wherein the LOS likelihood rate The existence field is used to indicate whether the LOS likelihood field is included in the DMG perception measurement setting element, and the antenna information existence field is used to indicate whether the antenna information field exists in the DMG perception measurement setting element.
  • the second information is carried in a DMG aware measurement setting element, wherein the DMG aware measurement setting element includes a peer positioning field, wherein the peer positioning field is used to carry the second information.
  • the location information of the sensing sending device is carried in a DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes a positioning configuration information LCI field, and the LCI field is used to carry the sensing sending device.
  • Device location information is carried in a DMG sensing measurement setting element, wherein the DMG sensing measurement setting element includes a positioning configuration information LCI field, and the LCI field is used to carry the sensing sending device.
  • the DMG sensing measurement setting element is carried in a sensing measurement setting request frame and/or a sensing measurement setting response frame.
  • the third information is carried in a DMG sensing beam description element, wherein the DMG sensing beam description element includes a beam description field indicating angle information of the sensing beam.
  • the sensing sending device further includes:
  • a processing unit configured to determine the shortest path based on at least one of the first information, the antenna plane information of the sensing receiving device, the antenna plane information of the sensing transmitting device, and the angle information of the shortest path. Whether it is a line-of-sight path.
  • the processing unit is also used to:
  • the shortest path is a line-of-sight path.
  • the processing unit is also used to:
  • the shortest path is determined to be a non-line-of-sight path.
  • processing unit 510 is also used to:
  • Whether the shortest path is a line-of-sight path is determined based on at least one of the antenna plane information of the sensing receiving device, the antenna plane information of the sensing transmitting device, and the angle information of the shortest path.
  • processing unit 510 is also used to:
  • the AoA information on the path determines the vector of the receiving beam on the shortest path
  • Whether the shortest path is a line-of-sight path is determined based on whether the vector of the transmit beam on the shortest path and the vector of the receive beam on the shortest path are collinear.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the perceptual sending device 500 may correspond to the perceptual sending device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the perceptual sending device 500 are respectively to implement Figure 5
  • the corresponding process of sensing the sending device in the method shown in Figure 20 will not be described again for the sake of simplicity.
  • Figure 23 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 23 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, the communication device 600 may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a perceptual receiving device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the perceptual receiving device in the various methods of the embodiment of the present application. For the sake of brevity, these are not included here. Again.
  • the communication device 600 can be specifically the sensing and sending device in the embodiment of the present application, and the communication device 600 can implement the corresponding processes implemented by the sensing and sending device in the various methods of the embodiment of the present application. For the sake of brevity, they are not mentioned here. Again.
  • Figure 24 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 24 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720.
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the perceptual sending device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the perceptual sending device in the various methods of the embodiment of the present application.
  • the details are not repeated here.
  • the chip can be applied to the perception receiving device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the perception receiving device in the various methods of the embodiment of the present application. For the sake of brevity, details will not be repeated here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • FIG 25 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application.
  • the communication system 900 includes a perception sending device 910 and a perception receiving device 920.
  • the perception sending device 910 can be used to implement the corresponding functions implemented by the perception sending device in the above method
  • the perception receiving device 920 can be used to implement the corresponding functions implemented by the perception receiving device in the above method. For simplicity, in This will not be described again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the perceptual sending device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the perceptual sending device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the perception receiving device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the perception receiving device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the perception sending device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the perception sending device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the perception receiving device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the perception receiving device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the perceptual sending device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the perceptual sending device in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the perceptual sending device in the various methods of the embodiment of the present application.
  • no further details will be given here.
  • the computer program can be applied to the perception receiving device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception receiving device in the various methods of the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception receiving device in the various methods of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:感知接收设备根据目标信息,确定目标感知距离,其中,所述目标感知距离包括感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息;其中,所述目标信息包括以下中的至少一项:第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;第二信息,包括所述最短路径的角度信息和/或距离信息;第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种感知方法和设备。
背景技术
在一些感知场景中,对感知目标进行测距需要已知感知发送设备和感知接收设备之间的视距距离,在感知接收设备和感知发送设备之间的视距路径被遮挡,信号衰落等场景中,无法获得感知发送设备和感知接收设备之间的视距距离,此情况下,如何对感知目标进行测距是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,能够实现对感知目标的测距。
第一方面,提供了一种无线通信的方法,包括:感知接收设备根据目标信息,确定目标感知距离,其中,所述目标感知距离包括感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息;其中,所述目标信息包括以下中的至少一项:第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;第二信息,包括所述最短路径的角度信息和/或距离信息;第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
第二方面,提供了一种无线通信的方法,包括:感知发送设备向感知接收设备发送目标信息,所述目标信息用于确定目标感知距离,所述目标感知距离包括所述感知发送设备到感知目标的距离信息和/或所述感知目标到感知接收设备的距离信息;其中,所述目标信息包括以下中的至少一项:第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;第二信息,包括所述最短路径的角度信息和/或距离信息;第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,感知接收设备能够根据感知发送设备和感知接收设备之间的路径的类型,天线平面信息,最短路径的角度信息、最短路径的距离信息,感知波束的角度信息中的至少之一,确定吗感知距离,有利实现精准的测距。
例如,在感知发送设备和感知接收设备之间的路径为NLOS路径的情况下,感知接收设备可以根据发送天线平面信息和接收天线平面信息,将最短路径的角度、距离信息和感知路径的角度,转换到同一坐标系下,从而能够实现精准的测距。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是一种Wi-Fi sensing过程的示意性图。
图3是雷达测距原理的示意性图。
图4是本申请实施例适用的一种场景的示意性图。
图5是本申请实施例提供的一种无线通信的方法的示意***互图。
图6是确定最短路径是否为LOS路径的示意性流程图。
图7是确定目标感知距离的示意性流程图。
图8是本申请实施例提供的一种DMG Sensing Measurement Setup element的示意性格式图。
图9是本申请实施例提供的一种Measurement Setup Control字段的示意性格式图。
图10是本申请实施例提供的一种Antenna Information字段的示意性格式图。
图11是DMG Sensing Beam Description element的示意性格式图。
图12是Beam Descriptor字段的示意性格式图。
图13是本申请实施例提供的一种测量设置请求帧和测量设置响应帧的交互示意图。
图14是本申请实施例提供的另一种测量设置请求帧和测量设置响应帧的交互示意图。
图15至图19是感知发送设备、感知接收设备,感知目标和反射物体在同一个平面上的投影的位置关系示意性图。
图20是本申请实施例的一个实施场景的示意图。
图21是根据本申请实施例提供的一种感知接收设备的示意性框图。
图22是根据本申请实施例提供的感知发送设备的示意性框图。
图23是根据本申请实施例提供的一种通信设备的示意性框图。
图24是根据本申请实施例提供的一种芯片的示意性框图。
图25是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信***100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对等通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信***中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN或WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation  safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信***100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的接入点110和站点120,接入点110和站点120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括接入点和站点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
为便于理解本申请实施例的技术方案,以下对本申请相关术语进行说明。
关联标识符(Association Identifier,AID),用于标识跟接入点建立关联后的终端。
媒体访问控制(Medium Access Control,MAC),即媒体访问控制地址的简称。
传输机会(Transmission Opportunity,TXOP),指的是一段时间,在该时间段内,拥有该传输机会的终端可以主动发起一次或多次传输。
突发信号(Burst),一般指一小段时间,在该时间段内发送一个或多个信号。
突发信号组(Burst Group),指一个或多个突发信号的组合。同一个突发信号组中的突发信号一般具有一些共同的特征。
感知(Sensing)测量是通过测量信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,Sensing测量是通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,姿势识别以及空间三维图像建立等诸多功能。
参与感知测量的设备可能包括如下角色(role):
感知发起设备(Sensing Initiator),发起感知会话(sensing session)并想要获知感知结果的设备;
感知响应设备(Sensing Responder),参与sensing session的非Sensing Initiator的设备;
感知发送设备(Sensing Transmitter),发起感知测量信号(sensing illumination signal)的设备;
感知接收设备(Sensing Receiver),接收感知测量信号(sensing illumination signal)的设备;
感知处理设备(Sensing processor),处理感知测量结果的设备;
感知参与设备(Sensing Participant),包括感知发起设备,感知发送设备和感知接收设备。
设备在一个感知测量中可能有一个或多个角色,例如感知发起设备可以仅仅是感知发起设备,也可以成为感知发送设备,也可以成为感知接收设备,还可以同时是感知发送设备和感知接收设备。
例如,如图2中的A所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的B所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter);STA2可以是感知接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor)。
又例如,如图2中的C所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知接收设备(Sensing Receiver);STA3可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的D所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知接 收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter);STA3可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的E所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知处理设备(Sensing processor);STA2可以是感知接收设备(Sensing Receiver);STA3可以是感知接收设备(Sensing Receiver)。
又例如,如图2中的F所示,STA1可以是感知发起设备(Sensing Initiator);STA2可以是感知接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor);STA3可以是感知发送设备(Sensing Transmitter);STA4可以是感知发送设备(Sensing Transmitter)。
又例如,如图2中的G所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的H所示,STA1可以是感知发起设备(Sensing Initiator);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的I所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知发送设备(Sensing Transmitter),还可以是感知接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver)。
又例如,如图2中的J所示,STA1可以是感知发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver);STA3可以是感知发送设备(Sensing Transmitter),也可以是感知接收设备(Sensing Receiver)。
需要说明的是,图2仅为本申请的示例,不应理解为对本申请的限制。例如图2中的STA1,STA2,STA3仅仅表示STA的角色,在图2以及后续的感知会话、测量等步骤中,并不用于限制STA的数量,例如,STA1,STA2,STA3所代表的角色可以实现为一个或多个STA。
在一些实施例中,可以具有多种感知类型(Sensing Type)。例如,基于信道状态信息(Channel State Information,CSI)的感知类型,即CSI-based Sensing,该感知类型是通过处理接收到的感知测量信号的CSI获得sensing测量结果。又例如,基于反射信号的感知类型,即Radar-based Sensing,该感知类型是通过处理接收到的感知测量信号的反射信号获得sensing测量结果。
在本申请实施例中,感知发起设备或称感知发起者,发起设备,感知会话发起设备。
在本申请实施例中,感知响应设备或称感知响应者,响应设备,感知会话响应设备。
在本申请实施例中,感知接收设备或称感知信号接收设备,感知接收者。
在本申请实施例中,感知发送设备或称感知信号发送设备,感知发送者。
WLAN感知会话包括以下一个或多个阶段:会话建立、感知测量设置、感知测量、感知上报、感知测量设置终止、会话终止。
会话建立阶段:建立感知会话,交换双方的感知能力和/或确定感知测量相关的操作参数,或者终端声明自身的角色和操作参数(例如,通过信标帧或者其他特殊帧)
感知测量设置阶段:确定感知参与设备及其角色(包括感知发送设备和感知接收设备),决定感知测量相关的操作参数,并且可选的在终端之间交互该参数。
感知测量阶段:实施感知测量,感知信号设备发送感知信号给感知接收设备。
感知上报阶段:上报测量结果,由应用场景决定,感知接收设备可能需要给感知发起设备上报测量结果。
感知测量设置终止阶段:终止一个或多个测量设置,停止相应的测量,并释放相关存储和计算资源。
会话终止阶段:终止所有测量设置,停止测量,终止感知会话。
在一些感知场景中,对感知目标进行测距需要已知感知发送设备和感知接收设备之间的距离,或者已知感知发送设备和感知接收设备的方位信息用于计算二者之间的距离。
目标的感知可包括通过单基感知、双基或多基感知、单基协同感知、双基协同感知实现。以下结合图3说明双基感知中的雷达测距原理。
在双或多基感知场景中,雷达测距需要基于感知发送设备与感知接收设备的距离进行测量,这就要求二者之间的距离已知或可以通过二者之间的位置信息来计算该距离。
在感知测量设置阶段,当感知设备周围存在足够的AP提供定位服务时,感知发送设备与感知接 收设备可以交换双方的位置信息以获得二者之间的距离L。若提供定位服务的AP不足,但视距路径(Line of Sight,LOS)存在时,可通过相关的定位协议(如802.11az协议)或传统设备定位方法确定感知发送设备与感知接收设备之间的距离L。在一些情况中,感知发送设备与感知接收设备还可以交互发送波束列表与接收波束列表,以确定感知设备感知目标时的波束信息。
在感知测量报告阶段,感知接收设备依据发送波束列表与接收波束列表,可知感知路径的到达角(Angle of Arrival,AoA),即θ R、离开角(Angle of Departure,AoD),即θ T,依据参考时间戳以及距离L可计算感知路径R T+R R与感知设备间的距离L之差R D。基于感知路径的角度与距离信息,感知接收设备可计算得出目标感知距离。
以下,说明几种典型的计算方式。
方法1:根据L,R DR,确定感知目标到感知接收设备的距离R R,以及感知目标到感知发送设备的距离R T。其中,R D=R T+R R-L。
例如,根据如下公式(1),计算R T和R R
Figure PCTCN2022101282-appb-000001
方法2:根据L,R DT,确定感知目标到感知接收设备的距离R R,以及感知目标到感知发送设备的距离R T。其中,R D=R T+R R-L。
例如,根据如下公式(2),计算R T和R R
Figure PCTCN2022101282-appb-000002
方法3:根据L,θ RT,确定感知目标到感知接收设备的距离R R,以及感知目标到感知发送设备的距离R T
例如,根据如下公式(3),计算R T和R R
Figure PCTCN2022101282-appb-000003
方法4:根据R DR,θ T,确定感知目标到感知接收设备的距离R R,以及感知目标到感知发送设备的距离R T。其中,R D=R T+R R-L。
例如,根据如下公式(4),计算R T和R R
Figure PCTCN2022101282-appb-000004
由上述四种方法的输入参数可以看出,要想确定目标感知距离R T和R R,均需要已知感知发送设备与感知接收设备之间的视距距离L,或者,需要已知感知发送设备和感知接收设备的位置信息以用于确定该视距距离L。
但是,在一些场景中,如图4所示,如果感知接收设备和感知发送设备之间的视距路径被遮挡、信号衰落等原因,可能导致无法获得感知发送设备和感知接收设备之间的视距距离L,与此同时,如果感知接收设备和感知发送设备周围没有提供定位服务的AP,用于感知发送设备和感知接收设备之间的定位,也无法获得感知发送设备和感知接收设备的位置信息以用于确定视距距离L,此情况下,如何对感知目标进行测距是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技 术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图5是根据本申请实施例的无线通信的方法200的示意***互图,如图5所示,该方法200包括如下内容:
S220,感知接收设备根据目标信息,确定目标感知距离。
在一些实施例中,目标感知距离包括感知发送设备到感知目标的距离信息(记为R T)和/或感知目标到感知接收设备的距离信息(记为R R)。
在一些实施例中,感知发送设备到感知目标的距离信息也可以理解为感知发送设备的天线平面中心点到感知目标的距离信息。
在一些实施例中,感知目标到感知接收设备的距离信息也可以理解为感知目标到感知接收设备的天线平面中心点的距离信息。
在一些实施例中,所述感知接收设备可以是AP,或者,也可以是STA。
在另一些实施例中,所述感知发送设备可以是STA,或者,也可以是AP。
可选地,在本申请实施例中,感知发送设备的数量可以是一个,或者,也可以是多个。
可选地,在本申请实施例中,感知接收设备的数量可以是一个,或者,也可以是多个。
在一些实施例中,感知接收设备可以是感知发起设备,或者,也可以是感知响应设备。
在一些实施例中,感知接收设备可以是感知响应设备,或者,也可以是感知发起设备。
可选地,在本申请实施例中,感知响应设备的数量可以是一个,或者,也可以是多个。
可选地,在本申请实施例中,感知发起设备的数量可以是一个,或者,也可以是多个。
在一些实施例中,感知发起设备可以是AP,或者,也可以是STA。
在一些实施例中,感知响应设备可以包括至少一个AP和/或至少一个STA。
应理解,本申请实施例并不限定具体的感知类型,例如本申请实施例可以应用于双基感知场景,多基感知场景、协作双基感知场景等,本申请并不限于此。
可选地,在双基感知场景中,感知发起设备和感知响应设备的数量分别为一个。
可选地,在多基感知场景中,感知发送设备的数量可以为一个,感知响应设备的数量可以为多个。
可选地,多基感知场景可以包括但不限于如下场景:
AP为感知发起设备,角色为感知发送设备,多个STA为感知响应设备,角色为感知接收设备;
AP为感知发起设备,角色为感知接收设备,多个STA为感知响应设备,角色为感知发送设备;
AP为感知响应设备,角色为感知接收设备,STA i为感知发起设备,角色为感知发送设备,其余STA为感知响应设备,角色为感知接收设备;
AP为感知响应设备,角色为感知发送设备,STA i为感知发起设备,角色为感知接收设备,其余STA为感知响应设备,角色为感知发送设备。
在本申请一些实施例中,目标信息包括以下中的至少一项:
第一信息,用于确定感知发送设备和感知接收设备之间的最短路径是否为视距路径;
感知设备的天线平面信息;
第二信息,包括所述最短路径的角度信息和/或距离信息;
第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
在一些实施例中,所述第二信息和所述第三信息可以认为感知基础参数,所述第一信息和感知设备的天线平面信息可以认为是感知辅助参数。
以下,分别对上述各个信息的具体实现进行说明。
1:第一信息
在一些实施例中,感知发送设备和感知接收设备之间的最短路径是感知测量设置阶段确定的。
在一些实施例中,所述最短路径可以是使用测距协议测量感知发送设备和感知接收设备之间的距离和角度信息得到的。可选地,该测距协议可以包括但不限于802.11az测距协议。
在一些实施例中,可以认为所述最短路径是感知发送设备到感知接收设备的信号的实际传输路径,或者说,测距信号的传播路径。
在一些实施例中,所述最短路径可以是视距路径,或者,也可以是非视距路径。例如,该最短路径可以由感知发送设备到反射物体的路径和反射物体到感知接收设备的路径组成,其中,该反射物体不位于感知发送设备和感知接收设备之间的视距路径上。
在一些实施例中,所述最短路径或称第一路径(first path)。
在一些实施例中,第一信息可以是在感知测量设置阶段获得的。
在一些实施例中,第一信息可以是通过测量感知发送设备和感知接收设备之间的距离信息和/或角度信息确定的。
在一些实施例中,第一信息用于指示所述最短路径是LOS路径的似然率,或者说,所述最短路径是LOS路径的可能性,概率。
在一些实施例中,第一信息可以用于指示所述最短路径是LOS路径的概率和所述最短路径是非视距路径(Non-LOS,NLOS)的概率的比值。
在一些实施例中,第一信息可以采用对数的似然率表示。
作为示例而非限定,第一信息可以表示为
Figure PCTCN2022101282-appb-000005
2、第二信息
在一些实施例中,第二信息或称对等定位(Peer orientation)信息。
在一些实施例中,最短路径的角度信息包括以下中的至少一项:
所述最短路径的离开角AoD信息,所述最短路径的到达角AoA信息。
可选地,本申请实施例中的角度信息可以通过方位角和/或仰角表征。
在一些实施例中,最短路径的AoD信息可以包括最短路径的AoD的方位角信息和/或仰角信息。
在一些实施例中,最短路径的AoA信息可以包括最短路径的AoA的方位角信息和/或仰角信息。
在一些实施例中,最短路径的AoD信息可以为最短路径对应的发送波束(Tx Beam)的角度信息。
例如,最短路径的AoD的方位角信息可以为最短路径对应的发送波束的方位角信息,最短路径的AoD的仰角信息可以为最短路径对应的发送波束的仰角信息。
在一些实施例中,最短路径的AoA信息可以为最短路径对应的接收波束(Rx Beam)的角度信息。
例如,最短路径的AoA的方位角信息可以为最短路径对应的接收波束的方位角信息,最短路径的AoA的仰角信息可以为最短路径对应的接收波束的仰角信息。
3、第三信息
在一些实施例中,感知波束的角度信息包括以下中的至少一项:
感知发送波束的方位角信息,感知发送波束的仰角信息,感知接收波束的方位角信息,感知接收波束的仰角信息。
在一些实施例中,感知发送波束可以是感知发送设备发送感知信号所使用的波束。
在一些实施例中,感知接收波束可以是感知接收设备接收感知信号所使用的波束。
在一些实施例中,感知发送波束的角度信息或称感知路径对应的发送波束(Tx Beam)的角度信息,或者,感知路径的AoD信息。
在一些实施例中,感知接收波束的角度信息或称感知路径对应的接收波束(Rx Beam)的角度信息,或者,感知路径的AoA信息。
也就是说,感知波束的角度信息可以认为是感知路径的角度信息。
可选地,该感知路径可以指在感知测量阶段中,感知信号的传播路径。
具体地,该感知路径可以包括感知发送设备到感知目标的路径以及感知目标到感知接收设备的路径。
4、天线平面信息
在一些实施例中,所述感知设备的天线平面信息可以是根据测距协议测量得到的。可选地,该测 距协议可以包括但不限于802.11az测距协议。
在一些实施例中,天线平面信息或称天线面板信息。
在一些实施例中,感知设备包括所述感知接收设备和/或感知发送设备,或者说,所述感知设备包括感知发起设备和感知响应设备。
在一些实施例中,所述感知设备的天线平面信息可以包括感知发送设备的天线平面信息和/或感知接收设备的天线平面信息。
在一些实施例中,所述感知发送设备的天线平面信息或称发送(Tx)天线平面信息,发射天线平面信息。
在一些实施例中,所述感知接收设备的天线平面信息或称接收(Rx)天线平面信息。
在一些实施例中,所述感知设备的天线平面信息包括以下中的至少之一:
所述感知接收设备的天线平面的方位角信息,即,接收天线平面的方位角信息;
所述感知接收设备的天线平面的仰角信息,即,接收天线平面的仰角信息;
所述感知发送设备的天线平面的方位角信息,即,发送天线平面的方位角信息;
所述感知发送设备的天线平面的仰角信息,即,发送天线平面的仰角信息。
在一些实施例中,接收天线平面和发送天线平面的角度信息的坐标系可以是地球坐标系。
在一些实施例中,所述最短路径上的AoA信息可以是以接收天线平面为参考的角度信息。
在一些实施例中,所述最短路径上的AoD信息可以是以发送天线平面为参考的角度信息。
也即,最短路径上的AoA信息和AoD信息可以是基于不同的坐标系的。
在一些实施例中,所述感知路径上的AoA信息可以是以接收天线平面为参考的角度信息。
在一些实施例中,所述感知路径上的AoD信息可以是以发送天线平面为参考的角度信息。
也即,感知路径上的AoA信息和AoD信息可以是基于不同的坐标系的。
在一些实施例中,感知设备的天线平面信息可以用于在最短路径为NLOS路径的情况下,结合所述最短路径的角度信息以及感知路径的角度信息,确定目标感知距离。
由于最短路径的AoA的角度信息可以是以接收天线平面为参考的,最短路径的AoD的角度信息可以是以发送天线平面为参考的,感知路径的AoA的角度信息可以是以接收天线平面为参考的,感知路径的AoD的角度信息可以是以发送天线平面为参考的,直接根据最短路径的角度信息和感知路径的角度信息确定目标感知距离会影响结果的准确性。因此,在本申请实施例中,可以首先根据天线平面信息将最短路径的角度信息以及感知路径的角度信息归一化到同一坐标系中,进一步基于感知路径和最短路径在该同一坐标系中的几何关系,确定目标感知距离。
在本申请一些实施例中,所述感知接收设备可以根据如下中的至少一项,确定所述最短路径是否为LOS路径:
第一信息,第二信息,感知设备的天线平面信息,接收信号的强度信息。
在一些实施例中,在获得第一信息的情况下,感知接收设备根据第一信息确定所述最短路径是否为LOS路径。
在一些实施例中,在未获得第一信息,但获得第二信息和感知设备的天线平面信息的情况下,感知接收设备可以根据第二信息和感知设备的天线平面信息确定所述最短路径是否为LOS路径。
在一些实施例中,在未获得第一信息,第二信息和感知设备的天线平面信息的情况下,感知接收设备可以根据接收信号的强度信息确定最短路径是否为LOS路径。例如,若接收信号的强度高于第二阈值,则确定最短路径为LOS路径,否则,确定最短路径为NLOS路径。
结合图6,说明所述最短路径是否为LOS路径的判断方式。
S301,获取第一信息,第二信息,感知设备的天线平面信息,接收信号的强度信息中的至少一项。
302,确定是否获得第一信息。
若是,则执行S303,否则,执行S304。
S303,根据第一信息和第一阈值,确定最短路径是否为LOS路径。
例如,若第一信息用于指示最短路径为LOS路径的似然率,则感知接收设备可以在该似然率大于第一阈值的情况下,确定该最短路径为LOS路径。否则,确定该最短路径为NLOS路径。
S304,确定感知接收设备是否获得第二信息和感知设备的天线平面信息。
若是,则执行S305,否则执行S306。
S305,根据第二信息和感知设备的天线平面信息,确定最短路径是否为LOS路径。
例如,通过计算最短路径上的发送波束方向和接收波束方向是否共线确定最短路径是否为LOS路径。其中,最短路径上的发送波束方向可以是根据发送天线平面的角度信息和最短路径上的AoD信息确定的,最短路径上的接收波束方向可以是根据接收天线平面的角度信息和最短路径上的AoA信息确定的。
可选地,在最短路径上的发送波束方向和接收波束方向共线的情况下,确定最短路径为LOS路径,否则,确定最短路径为NLOS路径。
S306,根据接收信号的强度信息和第二阈值,确定最短路径是否为LOS路径。
例如,若接收信号的强度高于第二阈值,则确定最短路径为LOS路径,否则,确定最短路径为NLOS路径。
S307,输出最短路径是否为LOS路径的判断结果。
以下,结合图7说明,目标感知距离的计算方式。
在一些实施例中,确定目标感知距离的输入参数可以包括以下中的至少之一:
所述最短路径是否为LOS路径的判断结果、感知设备的天线平面信息,第二信息和第三信息。
在一些实施例中,如图7所示,感知接收设备可以根据所述最短路径是否为LOS路径的判断结果,选取相应的目标信息,确定目标感知距离。
在一些实施例中,在所述最短路径为LOS路径的情况下,感知接收设备可以根据所述第二信息和/或所述第三信息,确定所述目标感知距离。例如,感知接收设备可以采用三角形测距算法确定目标感知距离。
在一个具体示例中,可以根据前述方法1至方法4中所示的计算方式确定目标感知距离。
在另一些实施例中,在所述最短路径为NLOS路径的情况下,感知接收设备可以根据所述感知设备的天线平面信息,第二信息和第三信息中的至少一项,确定所述目标感知距离。
例如,如图7所示,感知接收设备可以采用共边三角形测距算法确定目标感知距离。
在一些实施例中,所述感知接收设备根据目标信息,确定目标感知距离,包括:
根据所述目标信息,确定感知路径对应的向量和所述最短路径对应的向量,其中,所述感知路径为所述感知目标所在路径,所述感知路径对应的向量包括所述感知发送设备到所述感知目标的向量和所述感知目标到所述感知接收设备的向量,所述最短路径对应的向量包括所述感知发送设备到所述最短路径上的反射物体的向量和所述反射物体到所述感知接收设备的向量;
将所述感知路径对应的向量和所述最短路径对应的向量在第一平面投影,得到所述感知路径对应的投影向量和所述最短路径对应的投影向量;
根据所述感知路径对应的投影向量和所述最短路径对应的投影向量,确定所述感知发送设备在所述第一平面的投影到所述反射物体的投影之间的第一距离信息和/或所述感知目标的投影到所述反射物体的投影之间的第二距离信息和/或所述感知目标的投影到所述反射物体的投影的第三距离信息;
根据所述第一距离信息和/或所述第二距离信息和/或所述第三距离信息,确定所述感知发送设备到所述感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息。
例如,根据所述第一距离信息和/或所述第二距离信息和/或所述第三距离信息,进一步结合最短路径上的角度信息和/或感知路径上的角度信息,确定所述感知发送设备到所述感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息。
在一个具体实施例中,可以根据感知发送设备的天线平面信息和最短路径的AoD信息,确定发送天线平面到最短路径上的反射物体的向量(也即感知发送设备到反射物体的向量),以及根据感知接收设备的天线平面信息和最短路径的AoA信息,确定接收天线平面到最短路径上发射物体的向量(也即感知接收设备到反射物体的向量)。
类似地,可以根据感知发送设备的天线平面信息和感知路径的AoD信息,确定发送天线平面到感知目标的向量(也即感知发送设备到感知目标的向量),以及根据感知接收设备的天线平面信息和感知路径的AoA信息,确定接收天线平面到感知目标的向量(也即感知接收设备到感知目标的向量)。
进一步地,将上述四个向量在同一平面上投影,得到四个投影向量。也就是说,将两条可分辨的NLOS路径(即感知路径和最短路径)映射到同一平面,然后,可以根据该四个投影向量,确定感知发送设备,感知接收设备,感知目标和反射物体之间在投影平面上的位置关系和角度关系,例如,可以确定在投影平面上感知发送设备到感知目标的投影距离以及感知目标到感知接收设备的投影距离。 进一步地,感知发送波束和感知接收波束的角度信息,将上述两个投影距离转换为空间上的距离信息,即得到目标感知距离。
在一些实施例中,所述目标信息还可以包括以下中的至少之一:
所述感知路径的长度信息(记为c 0),所述最短路径的长度信息(记为c 1)。
在一些实施例中,感知路径的长度信息可以包括感知发送设备到感知目标的路径的长度以及感知目标到感知接收设备的路径的长度。
在一些实施例中,最短路径的长度信息可以包括感知发送设备到反射物体的路径的长度以及反射物体到感知接收设备的路径的长度。
在一些实施例中,感知路径的长度信息可以是使用测距协议(如精细时间测量(Fine Timing Measurement,FTM))测量得到的。
在一些实施例中,最短路径的长度信息可以是使用测距协议(例如802.11az)测量得到的。
以下,说明所述目标信息的获取方式。
在一些实施例中,所述目标信息可以是感知接收设备自身获得的,或者,也可以是通过信息交互从感知发送设备获得的,本申请对此不作限定。
在本申请一些实施例中,所述方法200还包括:
S210,感知接收设备和感知发送设备通过信息交互,获得目标信息。
在一些实施例中,所述目标信息是在感知测量设置阶段获得的。
以下,结合感知发送设备和感知接收设备在感知测量中的具体角色,说明所述目标信息的获取方式。
情况1:感知接收设备是感知响应设备,感知发送设备是感知发起设备。
可选地,此情况下,该目标信息可以是从感知发起设备获得的。
在一些实施例中,所述方法200还包括:
感知接收设备可以从感知发送设备获取第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项是感知接收设备在感知测量设置阶段从感知发送设备获取的。
应理解,感知接收设备可以通过感知测量设置阶段的任一帧获取上述信息,本申请对此不作限定。
可选地,所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项可以是通过感知测量设置请求帧(Sensing measurement setup request)获得的。
可选地,感知测量设置请求帧可以用于协商测量设置相关参数。
在一些实施例中,该感知测量设置请求帧或称测量设置请求帧。
在一些实施例中,在所述最短路径是LOS路径的情况下,所述感知测量设置请求帧携带所述第一信息,或者,在所述最短路径是NLOS路径的情况下,所述感知测量设置请求帧携带所述第一信息和所述感知发送设备的天线平面信息。
也就是说,感知发起设备可以根据最短路径是否为LOS路径,确定在感知测量设置请求帧中携带的信息内容,在最短路径为LOS路径的情况下,感知接收设备可以采用前述方法1-方法4中的任一方式确定目标感知距离,因此,感知测量设置请求帧中可以不携带感知发送设备的天线平面信息,在最短路径为NLOS路径的情况下,感知测量设置请求帧中需要携带感知发送设备的天线平面信息,以用于计算目标感知距离。其中,感知发起设备确定最短路径是否为LOS路径的具体方式参考上文实施例中的相关说明。
情况2:感知接收设备为感知发起设备,感知发送设备是感知响应设备。
在一些实施例中,在所述感知接收设备为感知发起设备的情况下,感知接收设备自身可以获知所述第一信息,所述第二信息和第三信息。
可选地,所述第一信息可以是通过使用测距协议测量与感知响应设备之间的距离信息和/或角度信息获得的。
可选地,所述第二信息可以是通过使用测距协议测量感知发送设备和感知接收设备之间的距离信息和/或角度信息得到的。
可选地,所述第三信息可以是感知接收设备从发送波束列表和/或接收波束列表中选择的。
可选地,所述发送波束列表和/或接收波束列表可以是在感知会话建立阶段,感知发起设备和感知接收设备通过帧交互获得的。
在本申请一些实施例中,所述方法200还包括:
所述感知发起设备向所述感知响应设备发送所述第一信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,感知发起设备可以在感知测量设置阶段向感知响应设备发送所述第一信息,所述第二信息和所述第三信息中的至少一项。
例如,所述感知发起设备向所述感知响应设备发送感知测量设置请求帧,其中,所述感知测量设置请求帧包括所述第一信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述第一信息可以用于感知发送设备确定所述最短路径是否为LOS路径。
在一些实施例中,所述感知响应设备可以向所述感知发起设备发送所述感知响应设备的天线平面信息,即发送天线平面信息。
可选地,感知响应设备在根据第一信息确定所述最短路径为NLOS路径的情况下,向感知发起设备发送所述发送天线平面信息。
在一些实施例中,所述感知发起设备接收所述感知响应设备发送的感知测量设置响应帧,所述感知测量设置响应帧携带所述发送天线平面信息。
例如,在所述最短路径为NOLS路径的情况下,所述感知测量设置响应帧携带所述发送天线平面信息。
可选地,在所述最短路径为LOS路径的情况下,所述感知测量设置响应帧可以不携带所述发送天线平面信息。
在一些实施例中,该感知测量设置响应帧或称测量设置响应帧。
应理解,本申请实施例并不限定所述目标信息在帧中的具体承载方式,以下对上述各个信息的典型承载方式进行说明,但本申请并不限于此。
在一些实施例中,所述第一信息和/或所述感知设备的天线平面信息可以承载在定向多千兆比特(Directional Multi-Gigabit,DMG)感知测量设置元素(DMG Sensing Measurement Setup element)中,其中,所述DMG感知测量设置元素包括LOS似然率(LOS Log Likelihood Ratio)字段和/或天线信息(Antenna Information)字段,其中,所述LOS似然率字段用于承载所述第一信息,所述天线信息字段用于承载感知设备的天线平面信息。
可选地,所述LOS似然率字段的字节数(Octet)可以为1。
可选地,天线信息字段的字节数可以为3。
在一些实施例中,所述天线信息字段可以包括天线方位角(Antenna Azimuth)字段和/或天线仰角(Antenna Elevation)字段,其中,Antenna Azimuth字段用于指示感知设备的天线平面的方位角信息,Antenna Elevation字段用于指示感知设备的天线平面的仰角信息。
在一些实施例中,天线平面的方位角信息的坐标系是地球坐标系。
在一些实施例中,天线平面的仰角信息的坐标信息是地球坐标系。
可选地,所述Antenna Azimuth字段的比特数(bits)可以为12。
可选地,所述Antenna Elevation字段的比特数(bits)可以为12。
在一些实施例中,所述第二信息可以承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括对等定位(Peer Orientation)字段,其中,所述Peer Orientation字段用于承载所述第二信息。
在一些实施例中,所述Peer Orientation字段可以包括如下至少一个字段:
方位角(Azimuth)字段,用于指示一个感知设备测量的另一个感知设备的方位角信息;
仰角(Elevation)字段,用于指示一个感知设备测量的另一个感知设备的仰角信息;
距离(Range)字段,用于指示感知设备测量的与另一个感知设备之间的距离信息。
可选地,当最短距离为LOS路径时,可以通过Peer Orientation字段中的Range字段获得二者之间的视距距离L。
在一些实施例中,所述DMG感知测量设置元素中还可以包括定位配置信息(Location configuration information,LCI)字段,用于承载感知设备的位置信息。
在一些实施例中,所述DMG感知测量设置元素包括测量设置控制(Measurement Setup Control)字段,其中,所述测量设置控制字段包括LOS似然率存在(LOS Log Likelihood Ratio Present)字段 和/或天线信息存在(Antenna Information Present)字段,其中,所述LOS似然率存在字段用于指示所述DMG感知测量设置元素中是否包括所述LOS似然率字段,所述天线信息存在字段用于是否指示是否所述DMG感知测量设置元素中是否存在所述天线信息字段。
可选地,LOS似然率存在字段取值为1表示存在,否则,表示不存在。
可选地,天线信息存在字段取值为1表示存在,否则,表示不存在。
在一些实施例中,所述Measurement Setup Control还可以包括定位存在(Orientation Present)字段,用于指示所述DMG感知测量设置元素中是否包括Peer Orientation字段。
图8是本申请实施例提供的一种DMG Sensing Measurement Setup element的示意性格式图,应理解,该DMG Sensing Measurement Setup element中的各个字段的位置,大小可以灵活调整,本申请并不限于此。
图9是本申请实施例提供的一种Measurement Setup Control字段的示意性格式图,应理解,该Measurement Setup Control中的各个字段的位置,大小可以灵活调整,本申请并不限于此。
在一些实施例中,如图9所示,该Measurement Setup Control字段还可以包括如下字段:
感知类型字段,用于指示感知的类型,例如,取值为1时表示为协作单基感知类型,取值为2表示双基感知类型,取值为3表示多基感知类型,0为保留值。
接收发起者字段,用于指示感知发起设备的角色,例如,取值为1表示感知发起设备为感知接收设备,取值为0表示感知发起设备为感知发送设备。如果感知类型不为双基感知类型,该字段保留。
LCI存在字段,用于DMG感知测量设置元素中是否包括LCI字段。
图10是本申请实施例提供的一种Antenna Information字段的示意性格式图,应理解,该Antenna Information字段中的各个字段的位置,大小可以灵活调整,本申请并不限于此。
在一些实施例中,所述DMG感知测量设置元素携带在感知测量设置请求帧和/或感知测量设置响应帧中。
在一些实施例中,所述第三信息承载在DMG感知波束描述元素(DMG Sensing Beam Description element)中,其中,所述DMG感知波束描述元素包括指示一个波束描述(Beam Descriptor)字段,用于指示感知波束的角度信息。图11是本申请实施例提供的一种DMG Sensing Beam Description element的示意性格式图。
在一些实施例中,如图11所示,所述DMG Sensing Beam Description element还包括如下至少一个字段:
元素标识(Element ID)字段、扩展元素标识(Element ID Extension)字段、长度(Length)字段、波束种类(Tx Flag)字段。
其中,Element ID和Element ID Extension联合指示了DMG Sensing Beam Description element的唯一标识符,Length指示DMG Sensing Beam Description element的长度。
可选地,Tx Flag字段用于指示DMG Sensing Beam Description element中的所有波束描述符的种类。例如,取值为1指示发送波束,取值0指示接收波束。
在一些实施例中,如图12所示,Beam Descriptor字段可以包括以下至少一个字段:
波束方位角字段,用于指示感知波束的方位角;
波束仰角字段,用于指示感知波束的仰角;
方位角宽度字段,用于指示感知波束在水平方向上的3dB宽度;
仰角宽度字段,用于指示感知波束在竖直方向上的3dB宽度;
波束增益字段,用于指示感知波束的增益。
在一些实施例中,所述DMG Sensing Beam Description element可以携带在管理帧中。
图12是本申请实施例提供的一种Beam Descriptor字段的示意性格式图,应理解,该Beam Descriptor字段中的各个字段的位置,大小可以灵活调整,本申请并不限于此。
在一些实施例中,所述DMG Sensing Beam Description element可以携带于以下帧中的至少之一:
信标帧(Beacon),探测请求帧(Probe Request),探测响应帧(Probe Response),关联请求帧(Association Request),关联响应帧(Association Response),重关联请求帧(Reassociation Request),重关联响应帧(Reassociation Response),测量设置查询帧(Measurement Setup Query)中。
以下,从感知发起设备和感知响应设备交互的角度,说明根据本申请实施例的无线通信的方法的实施方式。具体地,该方法可以包括如下至少部分步骤:
一、感知会话建立阶段。
步骤0000:感知发起设备和感知响应设备通过交互管理帧实现设备发现和感知能力的交互,其中。管理帧中包括DMG Sensing Beam Description element,用于暴露感知设备所支持的感知发送波束和感知接收波束。
二、感知测量设置阶段
步骤1000:感知发起设备使用测距协议(例如802.11az)测量与感知响应设备之间的距离和角度信息,获得前述第一信息和/或第二信息和/或感知响应设备的天线平面信息。
可选地,在此步骤1000中,还可以获得最短路径的长度信息,即c 1
步骤1010:感知发起设备向感知响应设备发送感知测量设置请求帧,其中,感知测量设置请求帧携带DMG Sensing Measurement Setup element。
在一些实施例中,该感知测量设置请求帧可以包括感知基础参数,例如,感知发起设备和感知响应设备的角色,DMG感知类型,DMG感知测量的报告类型,训练(Training,TRN)序列信息(例如TRN-P,TRN-M,TRN-N),Peer orientation信息,选中的感知发送波束、选中的感知接收波束等。
在一些实施例中,该感知测量设置请求帧还可以包括感知辅助参数,具体携带哪些参数可以根据感知发起设备的角色和最短路径是否为LOS路径确定。
情况1:感知发起设备是感知发送设备,感知响应设备是感知接收设备。
此情况下,感知发起设备首先确定最短路径是否为LOS路径,具体确定方式参考图6所示实施例的相关说明。
进一步地,在最短路径为LOS路径的情况下,感知发起设备可以在感知测量设置请求帧中携带第一信息。此情况下,感知响应设备采用三角形测距算法确定目标感知距离。或者,在最短路径为NLOS路径的情况下,感知发起设备可以在感知测量设置请求帧中携带第一信息和感知发起设备的天线平面信息(即发送天线平面信息)。此情况下,感知响应设备采用共边三角形测距算法确定目标感知距离。
情况2:感知发起设备是感知接收设备,感知响应设备是感知发送设备。
此情况下,感知发起设备可以在感知测量设置请求帧中携带第一信息,用于感知响应设备根据第一信息确定最短路径是否为LOS路径,进一步反馈相应的信息。
步骤1100:感知响应设备在接收到感知发起设备发送的感知测量设置请求帧后,向感知发起设备发送感知测量设置响应帧。具体地,在短帧间间隔(short interframe space,SIFS)后回复感知测量设置响应帧。该感知测量设置响应帧中携带是否接收感知发起设备的请求的应答信息。如果接受,则跳转到步骤2000,如果不接受,回到步骤1000重新协商。
在一些实施例中,感知响应设备在感知测量设置响应帧具体携带哪些参数可以根据感知发起设备的角色和最短路径是否为LOS路径确定。
对于情况1中的角色,感知响应设备无需在感知测量设置响应帧中携带其他信息。
对于情况2中的角色,感知响应设备根据最短路径是否为LOS路径,进一步反馈相应的信息。
例如,在根据第一信息确定最短路径为NLOS路径时,在感知测量设置响应帧中携带感知响应设备的天线平面信息,即发送天线平面信息,或者,在根据第一信息确定最短路径为LOS路径时,无需在感知测量设置响应帧中携带其他信息。
以下结合图13和图14,说明步骤1010-步骤1100中的帧交互过程。
图13是在情况1中的角色下的帧交互过程。如图13所示,可以包括如下步骤:
步骤1020,感知发起设备向感知响应设备发送感知测量设置请求帧。
其中,该感知测量设置请求帧可以包括前述感知基础参数,例如,第二信息,第三信息。
在一些实施例中,在最短路径为LOS路径的情况下,感知测量设置请求帧还包括第一信息。
在另一些实施例中,在最短路径为NLOS路径的情况下,感知测量设置请求帧还包括第一信息和感知发起设备的天线平面信息,即发送天线平面信息。
可选地,感知响应设备向感知发起设备回复确认(Ack)信息。
步骤1120,感知响应设备向感知发起设备发送感知测量设置响应帧。
可选地,若感知响应设备不接受感知发起设备的请求,则需要进行重新协商。
可选地,若感知响应设备接受感知发起设备的请求,则无需在感知测量设置响应帧中携带任何信息。
图14是在情况2中的角色下的帧交互过程。如图14所示,可以包括如下步骤:
步骤1030,感知发起设备向感知响应设备发送感知测量设置请求帧。
其中,该感知测量设置请求帧可以包括第一信息,第二信息,第三信息。
可选地,感知响应设备向感知发起设备回复确认(Ack)信息。
步骤1130,感知响应设备向感知发起设备发送感知测量设置响应帧。
可选地,若感知响应设备不接受感知发起设备的请求,则需要进行重新协商。
可选地,若感知响应设备接受感知发起设备的请求,则感知响应设备根据最短路径是否为LOS路径,在感知测量设置响应帧中携带相应的信息。其中,感知响应设备可以根据感知测量设置请求帧中的第一信息确定最短路径是否为LOS路径。
可选地,在最短路径为LOS路径的情况下,无需在感知测量设置响应帧中携带任何信息。
可选地,在最短路径为NLOS路径的情况下,在感知测量设置响应帧中携带感知响应设备的天线平面信息,即发送天线平面信息。
可选地,在步骤1020和步骤1130中,确定最短路径是否为LOS路径的具体判断步骤可以参考步骤2110~2130的说明。
步骤2110:如果能够获知第一信息,则可以根据如下公式(5)确定最短路径是否为LOS路径:
R>R th       公式(5)
其中,R从Log Likelihood Ratio字段获得,R th表示第一阈值。否则,根据步骤2120确定最短路径是否为LOS路径。
步骤2120:在感知发起设备获知自身的天线平面信息、感知响应设备的天线平面信息、最短路径的AoA信息和最短路径的AoD信息的情况下,可以通过计算最短路径上发送波束方向和接收波束方向是否共线来判断最短路径是否为LOS路径。
假设感知发送设备的天线平面的方位角为α tx,仰角为β tx,最短路径上的AoD的方位角为ω tx和仰角为θ tx,则最短路径上发送波束的向量
Figure PCTCN2022101282-appb-000006
根据如下公式(6)确定:
Figure PCTCN2022101282-appb-000007
其中,
Figure PCTCN2022101282-appb-000008
Figure PCTCN2022101282-appb-000009
Figure PCTCN2022101282-appb-000010
仅包含方向信息,不包含距离信息。
同理,假设感知接收设备的天线平面的方位角为α rx,仰角为β rx,最短路径上的AoA的方位角为ω rx和仰角为θ rx,则最短路径上的接收波束的向量
Figure PCTCN2022101282-appb-000011
根据如下公式(7)确定:
Figure PCTCN2022101282-appb-000012
其中,
Figure PCTCN2022101282-appb-000013
Figure PCTCN2022101282-appb-000014
因此,最短路径是否为LOS路径,可以依据如下公式(8)确定:
Figure PCTCN2022101282-appb-000015
其中,
Figure PCTCN2022101282-appb-000016
分别为根据公式(6)和公式(7)计算得到的最短路径上的发送波束和接收波束的向量表示,eps为第一阈值;否则,根据步骤2130确定最短路径是否为LOS路径。
步骤2130:根据接收信号的强度信息确定最短路径是否为LOS路径。或者,也可以通过采集信道冲击响应数据,或通过信号多次传输的时间数据确定最短路径是否为LOS路径。
三、感知测量阶段,或者说,感知测量实例阶段
步骤2000:感知发起设备和感知响应设备根据感知测量设置阶段中协商的参数执行感知测量。
具体地,在该感知测量阶段,感知接收设备可以根据目标信息,确定目标感知距离。
步骤2210:若最短路径为LOS路径,则感知接收设备可以使用三角形测距算法计算R T和R R
例如,根据感知发送波束的角度信息,感知接收波束的角度信息以及最短路径的角度信息和距离信息中的至少之一求解三角形,计算R T和R R。否则,根据步骤2220计算R T和R R
在一个具体实施例中,在步骤2210中,感知接收设备可以采用前述方法1至方法4中任一方法计算R T和R R
步骤2220:若最短路径为NLOS路径,则感知接收设备根据发送天线平面的角度信息,接收天线平面的角度信息,感知路径对应的发送波束的角度信息,感知路径对应的接收波束的角度信息,最短路径对应的发送波束的角度信息和最短路径对应的接收波束的角度信息中的至少之一,计算R T和R R。例如,可以根据上述信息使用共边三角形测距算法计算R T和R R。其中,共边三角形测距算法的具体实现参考步骤S2221-步骤2228中的相关描述。
以下,结合步骤2221至步骤2228,说明R T和R R的计算方式。
步骤2221:确定确定发送天线平面到感知目标的向量(也即感知发送设备到感知目标的向量)
Figure PCTCN2022101282-appb-000017
接收天线平面到感知目标的向量(也即感知接收设备到感知目标的向量)
Figure PCTCN2022101282-appb-000018
以及发送天线平面到最短路径上的反射物体的向量(也即感知发送设备到反射物体的向量)
Figure PCTCN2022101282-appb-000019
接收天线平面到最短路径上的反射物体的向量(也即感知接收设备到反射物体的向量)
Figure PCTCN2022101282-appb-000020
作为示例,利用公式(6)或公式(7)中的计算方式,根据发送天线平面的方位角α t和仰角β t和感知路径对应的发送波束的方位角α t,1和仰角β t,1,确定发送天线平面到感知目标的向量
Figure PCTCN2022101282-appb-000021
作为示例,利用公式(6)或公式(7)中的计算方式,根据接收天线平面的方位角α r和仰角β r和感知路径对应的接收波束的方位角α r,1和仰角β r,1确定接收天线平面到感知目标的向量
Figure PCTCN2022101282-appb-000022
作为示例,利用公式(6)或公式(7)中的计算方式,根据发送天线平面的方位角α t和仰角β t和最短路径对应的发送波束的方位角α t,2和仰角β t,2确定发送天线平面到最短路径上的反射物体的向量
Figure PCTCN2022101282-appb-000023
作为示例,利用公式(6)或公式(7)中的计算方式,根据接收天线平面的方位角α r和仰角β r和最短路径对应的接收波束的方位角α r,2和仰角β r,2,确定接收天线平面到最短路径上的反射物体的向量
Figure PCTCN2022101282-appb-000024
由于感知发送设备和感知接收设备的位置未知,
Figure PCTCN2022101282-appb-000025
所处坐标系的原点可能是不同的,但是坐标系的x,y,z轴方向是一致的。对于向量
Figure PCTCN2022101282-appb-000026
坐标系原点是发送天线平面的中心点,对于
Figure PCTCN2022101282-appb-000027
向量,坐标系原点是接收天线平面的中心点。
因此,直接根据上述四个向量确定目标感知距离会影响感知结果的准确性。
步骤2222:计算
Figure PCTCN2022101282-appb-000028
向量在投影平面A上的投影向量
Figure PCTCN2022101282-appb-000029
其中,投影平面A的法向量为
Figure PCTCN2022101282-appb-000030
可选地,投影平面A可以是任意平面,或者,也可以是预定义平面。
在一个具体实施例中,可以根据如下公式(9)计算:
Figure PCTCN2022101282-appb-000031
步骤2223:根据投影向量
Figure PCTCN2022101282-appb-000032
确定感知发送设备投影(即发送天线平面投影),感知接收设备投影(即接收天线平面投影)、感知目标投影O1和反射物体投影O2所形成的场景类型。
具体地,计算
Figure PCTCN2022101282-appb-000033
Figure PCTCN2022101282-appb-000034
的顺时针夹角Δα t
Figure PCTCN2022101282-appb-000035
Figure PCTCN2022101282-appb-000036
的顺时针夹角Δα r
Figure PCTCN2022101282-appb-000037
Figure PCTCN2022101282-appb-000038
的夹角Δα nct
Figure PCTCN2022101282-appb-000039
Figure PCTCN2022101282-appb-000040
的夹角Δα ncr
Figure PCTCN2022101282-appb-000041
Figure PCTCN2022101282-appb-000042
的顺时针夹角Δα tr
Figure PCTCN2022101282-appb-000043
Figure PCTCN2022101282-appb-000044
的夹角Δα nctr1
Figure PCTCN2022101282-appb-000045
Figure PCTCN2022101282-appb-000046
的夹角Δα nctr2,根据上述角度信息确定发送天线平面投影,接收天线平面投影、感知目标投影O1和反射物体投影O2所形成的场景类型。
应理解,向量之间的夹角可以指向量之间小于π的角,向量之间的顺时针夹角可以指从一个向量到另一个向量的顺时针方向的夹角,此时需要考虑法向量方向。
作为示例,可以根据如下公式(10),确定发送天线平面投影,接收天线平面投影、感知目标投影O1和反射物体投影O2所形成的场景类型(type):
Figure PCTCN2022101282-appb-000047
图15至图19是场景类型0至场景类型4的示意性位置关系图。应理解,图15至图19仅以感知发送设备为AP,感知接收设备为STA为例进行示例,在其他实施例中,感知发送设备和感知接收设备也可以为其他设备类型的组合,例如,感知发送设备为STA,感知接收设备为AP等。
其中,ε表示预设阈值(ε>0且ε→0)。如果场景类型为0,跳转到步骤2224至步骤2226中的一个步骤,否则,跳转到步骤2227。
步骤2224:如果投影平面A上的感知目标投影O1与反射物体投影O2重合,即|sinΔα nct|≤ε且|sinΔα ncr|≤ε,则跳转到步骤2222,重新选择投影平面A。
步骤2225:如果发送天线平面投影,反射物体投影O2和感知目标投影O1共线,即|sinΔα nct|≤ε,计算signa,signc,λ 2,θ。如图15所示的位置关系图。
此情况下,根据如下公式(11)至公式(14)计算如下参数:
Figure PCTCN2022101282-appb-000048
Figure PCTCN2022101282-appb-000049
Figure PCTCN2022101282-appb-000050
θ=π-Δα ncr2      公式(14)
其中,λ 2表示接收天线平面投影,感知路径上的感知目标投影O1和最短路径上的反射物体投影O2形成的夹角。
进一步地,可以计算发送天线平面投影到反射物体之间的距离ccosβ t,2,以及感知目标投影O1和反射物体投影O2的连线在投影平面的长度ecosβ e,其中,c表示发送天线平面到反射物体之间的距离,e表示感知目标到反射物体之间的距离,β e表示感知目标到反射物体的连线相对于投影平面A的海拔角。例如,c和ecosβ e的计算公式分别为:
Figure PCTCN2022101282-appb-000051
Figure PCTCN2022101282-appb-000052
其中,c 0表示感知路径的长度(即感知目标所在路径的长度),c 1表示最短路径的长度(即反射物体所在路径的长度),c 0和c 1的获取方式参考前述实施例的相关描述。
因此,感知发送设备和感知接收设备分别到感知目标的距离可以根据如下公式确定:
Figure PCTCN2022101282-appb-000053
步骤2226:如果接收天线平面投影、反射物体投影、感知目标投影共线,即|sinΔα ncr|≤ε,计算signb,signd,λ 1,θ。此情况下,根据如下公式(18)至公式(21)计算如下参数:
Figure PCTCN2022101282-appb-000054
Figure PCTCN2022101282-appb-000055
Figure PCTCN2022101282-appb-000056
θ=π-Δα nct1        公式(21)
其中,λ 1表示发送天线平面投影,感知路径上的感知目标投影O1和最短路径上的反射物体投影O2形成的夹角。
进一步地,可以计算发送天线平面投影到反射物体之间的距离ccosβ t,2,以及感知目标投影O1和反射物体投影O2的连线在投影平面的长度ecosβ e,其中,c表示发送天线平面到反射物体之 间的距离,e表示感知目标到反射物体之间的距离,β e表示感知目标到反射物体的连线相对于投影平面A的海拔角。例如,c和ecosβ e的计算公式分别为:
Figure PCTCN2022101282-appb-000057
Figure PCTCN2022101282-appb-000058
其中,c 0表示感知路径的长度(即感知目标所在路径的长度),c 1表示最短路径的长度(即反射物体所在路径的长度),c 0和c 1的获取方式参考前述实施例的相关描述。
因此,感知发送设备和感知接收设备分别到感知目标的距离可以根据如下公式确定:
Figure PCTCN2022101282-appb-000059
步骤2227:如果场景类型为1,2,3,4,则计算θ 1,θ 2,sign。例如,分别根据如下公式(25)至公式(27)计算:
Figure PCTCN2022101282-appb-000060
θ 2=θ 1+Δα ncr        公式(26)
Figure PCTCN2022101282-appb-000061
进一步地,基于公式(28),计算二维向量E,具体公式如下:
Figure PCTCN2022101282-appb-000062
如果E的两个元素用于确定λ 1。则当E第一个元素E[0]小于一个阈值(例如ε→0)时,跳转到步骤2222,重选投影平面。
步骤2228:计算λ 1,λ 2,ecosβ e,具体公式如下:
Figure PCTCN2022101282-appb-000063
因此,感知发送设备和感知接收设备分别到感知目标的距离可以根据如下公式确定:
Figure PCTCN2022101282-appb-000064
以下,结合具体示例,说明目标感知距离的确定方式。
图20是本申请实施例的一个实施场景的示意图。
在该场景中,感知发起设备为AP,角色为感知发送设备,感知响应设备为STA,角色为感知接收设备。
未知参数为:STA的xyz坐标为(6,2,1),感知路径上的感知目标1的坐标为(3,4,7),最短路径上的反射物体2的坐标为(2,2,0)。AP和STA到感知目标1的实际距离R T,R R分别为7.874007874011811,7.0。
已知参数:感知路径对应的发送波束(即感知发送波束)的方位角和仰角分别为1.6251745675842388,0.997718445372519,感知路径对应的接收波束((即感知接收波束))的方位角和仰角分别为0.4636476090008059,1.5337248805009298。最短路径对应的发送波束(即最短路径的AoD)的方位角和仰角分别为4.220436769042881,0.9908942382701892,最短路径对应的接收波束(即最短路径的AoA)的方位角和仰角分别为2.08994244104142,0.21161793074975277。感知路径和最短路径的长度分别为14.874007874011811,5.5373191879907555。发送天线平面的方位角和仰角分别为2.6179938779914944,1.0471975511965976,接收天线平面的方位角和仰角分别为1.0471975511965976,-0.5235987755982988。
STA可以利用前述公式(6)中的计算方式,计算发送天线平面到感知目标的向量
Figure PCTCN2022101282-appb-000065
和发送天线平面到最短路径上的反射物体的向量
Figure PCTCN2022101282-appb-000066
Figure PCTCN2022101282-appb-000067
Figure PCTCN2022101282-appb-000068
其中,
Figure PCTCN2022101282-appb-000069
Figure PCTCN2022101282-appb-000070
Figure PCTCN2022101282-appb-000071
以及,利用公式(7)的计算方式,计算接收天线平面到感知目标的向量
Figure PCTCN2022101282-appb-000072
和接收天线平面到最短路径上的反射物体的向量
Figure PCTCN2022101282-appb-000073
Figure PCTCN2022101282-appb-000074
Figure PCTCN2022101282-appb-000075
其中,
Figure PCTCN2022101282-appb-000076
Figure PCTCN2022101282-appb-000077
Figure PCTCN2022101282-appb-000078
进一步地,计算
Figure PCTCN2022101282-appb-000079
Figure PCTCN2022101282-appb-000080
的夹角为0.7043991861118861,
Figure PCTCN2022101282-appb-000081
Figure PCTCN2022101282-appb-000082
的夹角为2.3267657372188046,不满足公式(8),因此,最短路径和感知路径均为NLOS路径。
选取投影平面A为z=0,因此,
Figure PCTCN2022101282-appb-000083
利用公式(9),确定
Figure PCTCN2022101282-appb-000084
在A平面的投影向量
Figure PCTCN2022101282-appb-000085
分别为:
Figure PCTCN2022101282-appb-000086
Figure PCTCN2022101282-appb-000087
Figure PCTCN2022101282-appb-000088
Figure PCTCN2022101282-appb-000089
因此,
Figure PCTCN2022101282-appb-000090
Figure PCTCN2022101282-appb-000091
的顺时针夹角Δα t为0.197395559849881,
Figure PCTCN2022101282-appb-000092
Figure PCTCN2022101282-appb-000093
的顺时针夹角Δα r为5.695182703632021,
Figure PCTCN2022101282-appb-000094
Figure PCTCN2022101282-appb-000095
的夹角Δα nct为0.197395559849881,
Figure PCTCN2022101282-appb-000096
Figure PCTCN2022101282-appb-000097
的夹角Δα ncr为0.5880026035475647,
Figure PCTCN2022101282-appb-000098
Figure PCTCN2022101282-appb-000099
的顺时针夹角Δα tr为4.712388980384686,
Figure PCTCN2022101282-appb-000100
Figure PCTCN2022101282-appb-000101
的夹角Δα nctr1为1.5707963267949,
Figure PCTCN2022101282-appb-000102
Figure PCTCN2022101282-appb-000103
的夹角Δα nctr2为2.3561944901923453。
Figure PCTCN2022101282-appb-000104
与投影平面A的夹角β t,1为1.0951586113039717,
Figure PCTCN2022101282-appb-000105
与投影平面A的夹角β t,2为0.0,
Figure PCTCN2022101282-appb-000106
与投影平面A的夹角β r,1为1.029696800837752,
Figure PCTCN2022101282-appb-000107
与投影平面A的夹角β r,2为-0.2449786631268647。
此时Δα t<π,Δα r>π,根据公式(10),可以确定属于场景类型1。因此根据前述步骤2227和步骤2228中的公式确定目标感知距离。例如,根据公式(25)至(27),可以确定θ 1,θ 2,sign为:
θ 1=2π-Δα tr=1.5707963267949
θ 2=θ 1+Δα ncr=2.158798930342465
sign=-1
进一步地,根据公式(28),可以确定A,B,C,D,E分别为:
A=[cosΔα nct,sinΔα nct]*sinΔα ncrcosβ r,1cosβ t,2cosβ r,2=[0.27180085,0.05436017]
B=[sign*cosθ 2,sinθ 2]*sinΔα nctcosβ t,1cosβ t,2cosβ r,2=[0.04832624,0.07248936]
Figure PCTCN2022101282-appb-000108
Figure PCTCN2022101282-appb-000109
E=A+B-C-D=[-0.02080805,0.00260101]。
进一步地,根据公式(29),确定λ 1,λ 2,ecosβ e为:
Figure PCTCN2022101282-appb-000110
λ 2=θ 11=1.4464413322481482
Figure PCTCN2022101282-appb-000111
然后根据公式(30),确定发送天线平面中心点(相当于感知发送设备的位置)和接收天线平面的中心点(相当于感知接收设备的位置)分别到感知路径上的感知目标的距离R T,R R为:
Figure PCTCN2022101282-appb-000112
Figure PCTCN2022101282-appb-000113
与前述实际距离7.874007874011811,7.0对比,可以看出,基于本申请实施例的技术方案,能够在感知发送设备和感知接收设备之间的路径为NLOS路径的情况下,根据天线平面信息、最短路径的角度和距离信息和感知路径的角度和距离信息,准确确定感知距离。
上文结合图5至图20,详细描述了本申请的方法实施例,下文结合图21至图25,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图21示出了根据本申请实施例的感知接收设备400的示意性框图。如图21所示,该感知接收设备400包括:
处理单元410,用于根据目标信息,确定目标感知距离,其中,所述目标感知距离包括感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息;
其中,所述目标信息包括以下中的至少一项:
第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;
感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
第二信息,包括所述最短路径的角度信息和/或距离信息;
第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
在一些实施例中,所述第一信息用于指示所述最短路径是视距路径的似然率。
在一些实施例中,所述感知设备的天线平面信息包括以下中的至少之一:
所述感知接收设备的天线平面的方位角信息;
所述感知接收设备的天线平面的仰角信息;
所述感知发送设备的天线平面的方位角信息;
所述感知发送设备的天线平面的仰角信息。
在一些实施例中,所述最短路径的角度信息包括以下中的至少一项:
所述最短路径的离开角AoD信息,所述最短路径的到达角AoA信息。
在一些实施例中,所述感知波束的角度信息包括以下中的至少一项:
感知发送波束的方位角信息,感知发送波束的仰角信息,感知接收波束的方位角信息,感知接收波束的仰角信息。
在一些实施例中,所述目标信息是在感知测量设置阶段获得的。
第一种情况:感知发起者是发送者,感知响应者是接收者
在一些实施例中,所述感知接收设备为感知响应设备,所述感知发送设备为感知发起设备。
在一些实施例中,所述感知接收设备还包括:
通信单元,用于从所述感知发起设备获取所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述通信单元具体用于:
接收所述感知发起设备的感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,在所述最短路径是视距路径的情况下,所述感知测量设置请求帧携带所述第一信息;或者
在所述最短路径是非视距路径的情况下,所述感知测量设置请求帧携带所述第一信息和所述感知发送设备的天线平面信息。
在一些实施例中,所述感知接收设备为感知发起设备,所述感知发送设备是感知响应设备。
在一些实施例中,所述通信单元具体用于:
向所述感知响应设备发送所述第一信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述通信单元还用于:
向所述感知响应设备发送感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述通信单元还用于:接收所述感知响应设备发送的感知测量设置响应帧;
其中,在所述最短路径为非视距路径的情况下,所述感知测量设置响应帧携带所述感知发送设备的天线平面信息。
在一些实施例中,在所述最短路径为视距路径的情况下,所述感知测量设置响应帧不携带所述感知发送设备的天线平面信息。
在一些实施例中,所述第一信息和/或所述感知设备的天线平面信息承载在定向多千兆比特DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括LOS似然率字段和/或天线信息字段,其中,所述LOS似然率字段用于承载所述第一信息,所述天线信息字段用于承载感知接收设备和/或所述感知发送设备的天线平面信息。
在一些实施例中,所述DMG感知测量设置元素包括测量设置控制字段,其中,所述测量设置控制字段包括LOS似然率存在字段和/或天线信息存在字段,其中,所述LOS似然率存在字段用于指示所述DMG感知测量设置元素中是否包括所述LOS似然率字段,所述天线信息存在字段用于是否指示是否所述DMG感知测量设置元素中是否存在所述天线信息字段。
在一些实施例中,所述第二信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括对等定位字段,其中,所述对等定位字段用于承载所述第二信息。
在一些实施例中,所述感知发送设备的位置信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括定位配置信息LCI字段,所述LCI字段用于承载所述感知发送设备的位置信息。
在一些实施例中,所述DMG感知测量设置元素携带在感知测量设置请求帧和/或感知测量设置响应帧中。
在一些实施例中,所述第三信息承载在DMG感知波束描述元素中,其中,所述DMG感知波束描述元素包括指示一个波束描述字段,用于指示所述感知波束的角度信息。
在一些实施例中,所述处理单元410还用于:
根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元410还用于:
根据所述第一信息,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元410还用于:
在所述似然率大于第一阈值的情况下,确定所述最短路径为视距路径;或者
在所述似然率小于或等于所述第一阈值的情况下,确定所述最短路径为非视距路径。
在一些实施例中,所述处理单元410还用于:
根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元410还用于:
根据所述感知发送设备的天线平面的角度信息和所述最短路径上的AoD信息,确定所述最短路径上发送波束的向量,以及根据所述感知接收设备的天线平面的角度信息和所述最短路径上的AoA信息,确定所述最短路径上接收波束的向量;
根据所述最短路径上发送波束的向量和所述最短路径上接收波束的向量是否共线,确定所述最短路径是否为视距路径。
例如,在所述最短路径上发送波束的向量和所述最短路径上接收波束的向量共线的情况下,确定所述最短路径为视距路径,否则,为NLOS路径。
在一些实施例中,所述处理单元410还用于:
在所述最短路径为视距路径的情况下,根据以下信息中的至少一项,确定所述目标感知距离:
感知发送波束的角度信息,感知接收波束的角度信息,所述最短路径的角度信息,所述最短路径的距离信息。
在一些实施例中,所述处理单元410还用于:
在所述最短路径为非视距路径的情况下,根据以下信息中的至少一项,确定所述目标感知距离:
所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,感知发送波束的角度信息,感知接收波束的角度信息,所述最短路径的AoD信息,所述最短路径的AoA信息。
在一些实施例中,所述处理单元410还用于:
根据所述目标信息,确定感知路径对应的向量和所述最短路径对应的向量,其中,所述感知路径为所述感知目标所在路径,所述感知路径对应的向量包括所述感知发送设备到所述感知目标的向量和所述感知目标到所述感知接收设备的向量,所述最短路径对应的向量包括所述感知发送设备到所述最短路径上的反射物体的向量和所述反射物体到所述感知接收设备的向量;
将所述感知路径对应的向量和所述最短路径对应的向量在第一平面投影,得到所述感知路径对应的投影向量和所述最短路径对应的投影向量;
根据所述感知路径对应的投影向量和所述最短路径对应的投影向量,确定所述感知发送设备在所述第一平面的投影到所述反射物体的投影之间的第一距离信息和/或所述感知目标的投影到所述反射物体的投影之间的第二距离信息;
根据所述第一距离信息和/或所述第二距离信息,确定所述感知发送设备到所述感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息。
在一些实施例中,所述处理单元410还用于:
根据所述感知发送设备的天线平面信息和所述感知发送波束的角度信息,确定所述感知发送设备到所述感知目标的向量;
根据所述感知接收设备的天线平面信息和所述感知接收波束的角度信息,确定所述感知目标到所述感知接收设备的向量;
根据所述感知发送设备的天线平面信息和所述最短路径的AoD的角度信息,确定所述感知发送设备到所述最短路径上的反射物体的向量;
根据所述感知接收设备的天线平面信息和所述最短路径的AoA的角度信息,确定所述反射物体到所述感知接收设备的向量。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的感知接收设备400可对应于本申请方法实施例中的感知接收设备,并且感知接收设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5至图20所示方法中感知接收设备的相应流程,为了简洁,在此不再赘述。
图22是根据本申请实施例的感知发送设备的示意性框图。图22的感知发送设备500包括:
通信单元510,用于向感知接收设备发送目标信息,所述目标信息用于确定目标感知距离;
其中,所述目标信息包括以下中的至少一项:
第一信息,用于确定所述感知发送设备和感知接收设备之间的最短路径是否为视距路径;
感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
第二信息,包括所述最短路径的角度信息和/或距离信息;
第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
在一些实施例中,所述目标感知距离包括以下中的至少之一:
所述感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息。
在一些实施例中,所述第一信息用于指示所述最短路径是视距路径的似然率。
在一些实施例中,所述感知设备的天线平面信息包括以下中的至少之一:
所述感知接收设备的天线平面的方位角信息;
所述感知接收设备的天线平面的仰角信息;
所述感知发送设备的天线平面的方位角信息;
所述感知发送设备的天线平面的仰角信息。
在一些实施例中,所述最短路径的角度信息包括以下中的至少一项:
所述最短路径的离开角AoD信息,所述最短路径的到达角AoA信息。
在一些实施例中,所述感知波束的角度信息包括以下中的至少一项:
感知发送波束的方位角信息,感知发送波束的仰角信息,感知接收波束的方位角信息,感知接收波束的仰角信息。
在一些实施例中,所述目标信息是在感知测量设置阶段发送的。
在一些实施例中,所述感知发送设备为感知发起设备,所述感知接收设备为感知响应设备。
在一些实施例中,所述通信单元510还用于:
向所述感知响应设备发送感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,在所述最短路径是视距路径的情况下,所述感知测量设置请求帧携带所述第一信息;或者
在所述最短路径是非视距路径的情况下,所述感知测量设置请求帧携带所述第一信息和所述感知发送设备的天线平面信息。
在一些实施例中,所述感知发送设备是感知响应设备,所述感知接收设备为感知发起设备。
在一些实施例中,所述通信单元510还用于:
接收所述感知发送设备发送的感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述第二信息和所述第三信息中的至少一项。
在一些实施例中,所述通信单元510还用于:
向所述感知发起设备发送感知测量设置响应帧;
其中,在所述最短路径为非视距路径的情况下,所述感知测量设置响应帧携带所述感知发送设备的天线平面信息。
在一些实施例中,在所述最短路径为视距路径的情况下,所述感知测量设置响应帧不携带所述感知发送设备的天线平面信息。
在一些实施例中,所述第一信息和/或所述感知设备的天线平面信息承载在定向多千兆比特DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括LOS似然率字段和/或天线信息字段,其中,所述LOS似然率字段用于承载所述第一信息,所述天线信息字段用于承载感知接收设备和/或所述感知发送设备的天线平面信息。
在一些实施例中,所述DMG感知测量设置元素包括测量设置控制字段,其中,所述测量设置控制字段包括LOS似然率存在字段和/或天线信息存在字段,其中,所述LOS似然率存在字段用于指示所述DMG感知测量设置元素中是否包括所述LOS似然率字段,所述天线信息存在字段用于是否指示是否所述DMG感知测量设置元素中是否存在所述天线信息字段。
在一些实施例中,所述第二信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括对等定位字段,其中,所述对等定位字段用于承载所述第二信息。
在一些实施例中,所述感知发送设备的位置信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括定位配置信息LCI字段,所述LCI字段用于承载所述感知发送设备的位置信息。
在一些实施例中,所述DMG感知测量设置元素携带在感知测量设置请求帧和/或感知测量设置响应帧中。
在一些实施例中,所述第三信息承载在DMG感知波束描述元素中,其中,所述DMG感知波束描述元素包括指示一个波束描述字段,用于指示所述感知波束的角度信息。
在一些实施例中,所述感知发送设备还包括:
处理单元,用于根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元还用于:
根据所述第一信息,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元还用于:
在所述似然率大于第一阈值的情况下,确定所述最短路径为视距路径;或者
在所述似然率小于或等于所述第一阈值的情况下,确定所述最短路径为非视距路径。
在一些实施例中,所述处理单元510还用于:
根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
在一些实施例中,所述处理单元510还用于:
根据所述感知发送设备的天线平面的角度信息和所述最短路径上的AoD信息,确定所述最短路径上发送波束的向量,以及根据所述感知接收设备的天线平面的角度信息和所述最短路径上的AoA信息,确定所述最短路径上接收波束的向量;
根据所述最短路径上发送波束的向量和所述最短路径上接收波束的向量是否共线,确定所述最短路径是否为视距路径。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的感知发送设备500可对应于本申请方法实施例中的感知发送设备,并且感知发送设备500中的各个单元的上述和其它操作和/或功能分别为了实现图5至图20所示方法 中感知发送设备的相应流程,为了简洁,在此不再赘述。
图23是本申请实施例提供的一种通信设备600示意性结构图。图23所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图23所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图23所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的感知接收设备,并且该通信设备600可以实现本申请实施例的各个方法中由感知接收设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的感知发送设备,并且该通信设备600可以实现本申请实施例的各个方法中由感知发送设备实现的相应流程,为了简洁,在此不再赘述。
图24是本申请实施例的芯片的示意性结构图。图24所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的感知发送设备,并且该芯片可以实现本申请实施例的各个方法中由感知发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的感知接收设备,并且该芯片可以实现本申请实施例的各个方法中由感知接收设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图25是本申请实施例提供的一种通信***900的示意性框图。如图25所示,该通信***900包括感知发送设备910和感知接收设备920。其中,该感知发送设备910可以用于实现上述方法中由感知发送设备实现的相应的功能,以及该感知接收设备920可以用于实现上述方法中由感知接收设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的感知发送设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由感知发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的感知接收设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由感知接收设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的感知发送设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由感知发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的感知接收设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由感知接收设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的感知发送设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由感知发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的感知接收设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由感知接收设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (62)

  1. 一种无线通信的方法,其特征在于,包括:
    感知接收设备根据目标信息,确定目标感知距离,其中,所述目标感知距离包括感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息;
    其中,所述目标信息包括以下中的至少一项:
    第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;
    感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
    第二信息,包括所述最短路径的角度信息和/或距离信息;
    第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息用于指示所述最短路径是视距路径的似然率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述感知设备的天线平面信息包括以下中的至少之一:
    所述感知接收设备的天线平面的方位角信息;
    所述感知接收设备的天线平面的仰角信息;
    所述感知发送设备的天线平面的方位角信息;
    所述感知发送设备的天线平面的仰角信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述最短路径的角度信息包括以下中的至少一项:
    所述最短路径的离开角AoD信息,所述最短路径的到达角AoA信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述感知波束的角度信息包括以下中的至少一项:
    感知发送波束的方位角信息,感知发送波束的仰角信息,感知接收波束的方位角信息,感知接收波束的仰角信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述目标信息是在感知测量设置阶段获得的。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述感知接收设备为感知响应设备,所述感知发送设备为感知发起设备。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    从所述感知发起设备获取所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
  9. 根据权利要求8所述的方法,其特征在于,所述从所述感知发起设备获取所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项,包括:
    所述感知响应设备接收所述感知发起设备的感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
  10. 根据权利要求9所述的方法,其特征在于,在所述最短路径是视距路径的情况下,所述感知测量设置请求帧携带所述第一信息;或者
    在所述最短路径是非视距路径的情况下,所述感知测量设置请求帧携带所述第一信息和所述感知发送设备的天线平面信息。
  11. 根据权利要求1-6中任一项所述的方法,其特征在于,所述感知接收设备为感知发起设备,所述感知发送设备是感知响应设备。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述感知发起设备向所述感知响应设备发送所述第一信息,所述第二信息和所述第三信息中的至少一项。
  13. 根据权利要求12所述的方法,其特征在于,所述感知发起设备向所述感知响应设备发送所述第一信息,所述第二信息和所述第三信息中的至少一项,包括:
    所述感知发起设备向所述感知响应设备发送感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述第二信息和所述第三信息中的至少一项。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述感知发起设备接收所述感知响应设备发送的感知测量设置响应帧;
    其中,在所述最短路径为非视距路径的情况下,所述感知测量设置响应帧携带所述感知发送设备 的天线平面信息。
  15. 根据权利要求14所述的方法,其特征在于,在所述最短路径为视距路径的情况下,所述感知测量设置响应帧不携带所述感知发送设备的天线平面信息。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一信息和/或所述感知设备的天线平面信息承载在定向多千兆比特DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括LOS似然率字段和/或天线信息字段,其中,所述LOS似然率字段用于承载所述第一信息,所述天线信息字段用于承载感知接收设备和/或所述感知发送设备的天线平面信息。
  17. 根据权利要求16所述的方法,其特征在于,所述DMG感知测量设置元素包括测量设置控制字段,其中,所述测量设置控制字段包括LOS似然率存在字段和/或天线信息存在字段,其中,所述LOS似然率存在字段用于指示所述DMG感知测量设置元素中是否包括所述LOS似然率字段,所述天线信息存在字段用于是否指示是否所述DMG感知测量设置元素中是否存在所述天线信息字段。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,所述第二信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括对等定位字段,其中,所述对等定位字段用于承载所述第二信息。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述感知发送设备的位置信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括定位配置信息LCI字段,所述LCI字段用于承载所述感知发送设备的位置信息。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述DMG感知测量设置元素携带在感知测量设置请求帧和/或感知测量设置响应帧中。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述第三信息承载在DMG感知波束描述元素中,其中,所述DMG感知波束描述元素包括指示一个波束描述字段,用于指示所述感知波束的角度信息。
  22. 根据权利要求1-21中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径,包括:
    根据所述第一信息,确定所述最短路径是否为视距路径。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信息用于指示所述最短路径为视距路径的似然率,所述根据所述第一信息,确定所述最短路径是否为视距路径,包括:
    在所述似然率大于第一阈值的情况下,确定所述最短路径为视距路径;或者
    在所述似然率小于或等于所述第一阈值的情况下,确定所述最短路径为非视距路径。
  25. 根据权利要求22所述的方法,其特征在于,所述根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径,包括:
    根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
  26. 根据权利要求25所述的方法,其特征在于,所述根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径,包括:
    根据所述感知发送设备的天线平面的角度信息和所述最短路径上的AoD信息,确定所述最短路径上发送波束的向量,以及根据所述感知接收设备的天线平面的角度信息和所述最短路径上的AoA信息,确定所述最短路径上接收波束的向量;
    根据所述最短路径上发送波束的向量和所述最短路径上接收波束的向量是否共线,确定所述最短路径是否为视距路径。
  27. 根据权利要求1-26中任一项所述的方法,其特征在于,所述感知接收设备根据目标信息,确定目标感知距离,包括:
    在所述最短路径为视距路径的情况下,根据以下信息中的至少一项,确定所述目标感知距离:
    感知发送波束的角度信息,感知接收波束的角度信息,所述最短路径的角度信息,所述最短路径的距离信息。
  28. 根据权利要求1-27中任一项所述的方法,其特征在于,所述感知接收设备根据目标信息, 确定目标感知距离,包括:
    在所述最短路径为非视距路径的情况下,根据以下信息中的至少一项,确定所述目标感知距离:
    所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,感知发送波束的角度信息,感知接收波束的角度信息,所述最短路径的AoD信息,所述最短路径的AoA信息。
  29. 根据权利要求1-28中任一项所述的方法,其特征在于,所述感知接收设备根据目标信息,确定目标感知距离,包括:
    根据所述目标信息,确定感知路径对应的向量和所述最短路径对应的向量,其中,所述感知路径为所述感知目标所在路径,所述感知路径对应的向量包括所述感知发送设备到所述感知目标的向量和所述感知目标到所述感知接收设备的向量,所述最短路径对应的向量包括所述感知发送设备到所述最短路径上的反射物体的向量和所述反射物体到所述感知接收设备的向量;
    将所述感知路径对应的向量和所述最短路径对应的向量在第一平面投影,得到所述感知路径对应的投影向量和所述最短路径对应的投影向量;
    根据所述感知路径对应的投影向量和所述最短路径对应的投影向量,确定所述感知发送设备在所述第一平面的投影到所述反射物体的投影之间的第一距离信息和/或所述感知目标的投影到所述反射物体的投影之间的第二距离信息;
    根据所述第一距离信息和/或所述第二距离信息,确定所述感知发送设备到所述感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息。
  30. 根据权利要求29所述的方法,其特征在于,所述根据所述目标信息,确定感知路径对应的向量和所述最短路径对应的向量,包括:
    根据所述感知发送设备的天线平面信息和所述感知发送波束的角度信息,确定所述感知发送设备到所述感知目标的向量;
    根据所述感知接收设备的天线平面信息和所述感知接收波束的角度信息,确定所述感知目标到所述感知接收设备的向量;
    根据所述感知发送设备的天线平面信息和所述最短路径的AoD的角度信息,确定所述感知发送设备到所述最短路径上的反射物体的向量;
    根据所述感知接收设备的天线平面信息和所述最短路径的AoA的角度信息,确定所述反射物体到所述感知接收设备的向量。
  31. 一种无线通信的方法,其特征在于,包括:
    感知发送设备向感知接收设备发送目标信息,所述目标信息用于确定目标感知距离,所述目标感知距离包括所述感知发送设备到感知目标的距离信息和/或所述感知目标到感知接收设备的距离信息;
    其中,所述目标信息包括以下中的至少一项:
    第一信息,用于确定所述感知发送设备和感知接收设备之间的最短路径是否为视距路径;
    感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
    第二信息,包括所述最短路径的角度信息和/或距离信息;
    第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
  32. 根据权利要求31所述的方法,其特征在于,所述第一信息用于指示所述最短路径是视距路径的似然率。
  33. 根据权利要求31或32所述的方法,其特征在于,所述感知设备的天线平面信息包括以下中的至少之一:
    所述感知接收设备的天线平面的方位角信息;
    所述感知接收设备的天线平面的仰角信息;
    所述感知发送设备的天线平面的方位角信息;
    所述感知发送设备的天线平面的仰角信息。
  34. 根据权利要求31-33中任一项所述的方法,其特征在于,所述最短路径的角度信息包括以下中的至少一项:
    所述最短路径的离开角AoD信息,所述最短路径的到达角AoA信息。
  35. 根据权利要求31-34中任一项所述的方法,其特征在于,所述感知波束的角度信息包括以下中的至少一项:
    感知发送波束的方位角信息,感知发送波束的仰角信息,感知接收波束的方位角信息,感知接收波束的仰角信息。
  36. 根据权利要求31-35中任一项所述的方法,其特征在于,所述目标信息是在感知测量设置阶段发送的。
  37. 根据权利要求31-36中任一项所述的方法,其特征在于,所述感知发送设备为感知发起设备,所述感知接收设备为感知响应设备。
  38. 根据权利要求37所述的方法,其特征在于,所述感知发送设备向感知接收设备发送目标信息,包括:
    所述感知发起设备向所述感知响应设备发送感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述感知发送设备的天线平面信息,所述第二信息和所述第三信息中的至少一项。
  39. 根据权利要求38所述的方法,其特征在于,在所述最短路径是视距路径的情况下,所述感知测量设置请求帧携带所述第一信息;或者
    在所述最短路径是非视距路径的情况下,所述感知测量设置请求帧携带所述第一信息和所述感知发送设备的天线平面信息。
  40. 根据权利要求31-36中任一项所述的方法,其特征在于,所述感知发送设备是感知响应设备,所述感知接收设备为感知发起设备。
  41. 根据权利要求40所述的方法,其特征在于,所述方法还包括:
    所述感知响应设备接收所述感知发送设备发送的感知测量设置请求帧,所述感知测量设置请求帧包括所述第一信息,所述第二信息和所述第三信息中的至少一项。
  42. 根据权利要求40或41所述的方法,其特征在于,所述方法还包括:
    所述感知响应设备向所述感知发起设备发送感知测量设置响应帧;
    其中,在所述最短路径为非视距路径的情况下,所述感知测量设置响应帧携带所述感知发送设备的天线平面信息。
  43. 根据权利要求42所述的方法,其特征在于,在所述最短路径为视距路径的情况下,所述感知测量设置响应帧不携带所述感知发送设备的天线平面信息。
  44. 根据权利要求31-43中任一项所述的方法,其特征在于,所述第一信息和/或所述感知设备的天线平面信息承载在定向多千兆比特DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括LOS似然率字段和/或天线信息字段,其中,所述LOS似然率字段用于承载所述第一信息,所述天线信息字段用于承载感知接收设备和/或所述感知发送设备的天线平面信息。
  45. 根据权利要求44所述的方法,其特征在于,所述DMG感知测量设置元素包括测量设置控制字段,其中,所述测量设置控制字段包括LOS似然率存在字段和/或天线信息存在字段,其中,所述LOS似然率存在字段用于指示所述DMG感知测量设置元素中是否包括所述LOS似然率字段,所述天线信息存在字段用于是否指示是否所述DMG感知测量设置元素中是否存在所述天线信息字段。
  46. 根据权利要求31-45中任一项所述的方法,其特征在于,所述第二信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括对等定位字段,其中,所述对等定位字段用于承载所述第二信息。
  47. 根据权利要求31-46中任一项所述的方法,其特征在于,所述感知发送设备的位置信息承载在DMG感知测量设置元素中,其中,所述DMG感知测量设置元素包括定位配置信息LCI字段,所述LCI字段用于承载所述感知发送设备的位置信息。
  48. 根据权利要求44-47中任一项所述的方法,其特征在于,所述DMG感知测量设置元素携带在感知测量设置请求帧和/或感知测量设置响应帧中。
  49. 根据权利要求31-48中任一项所述的方法,其特征在于,所述第三信息承载在DMG感知波束描述元素中,其中,所述DMG感知波束描述元素包括指示一个波束描述字段,用于指示所述感知波束的角度信息。
  50. 根据权利要求31-49中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
  51. 根据权利要求50所述的方法,其特征在于,所述根据所述第一信息、所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径包括:
    根据所述第一信息,确定所述最短路径是否为视距路径。
  52. 根据权利要求51所述的方法,其特征在于,所述第一信息用于指示所述最短路径为视距路径的似然率,所述根据所述第一信息,确定所述最短路径是否为视距路径,包括:在所述似然率大于第一阈值的情况下,确定所述最短路径为视距路径;或者
    在所述似然率小于或等于所述第一阈值的情况下,确定所述最短路径为非视距路径。
  53. 根据权利要求50所述的方法,其特征在于,所述根据所述目标信息,确定所述最短路径是否为视距路径,包括:
    根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径。
  54. 根据权利要求53所述的方法,其特征在于,所述根据所述感知接收设备的天线平面信息,所述感知发送设备的天线平面信息,所述最短路径的角度信息中的至少一项,确定所述最短路径是否为视距路径,包括:
    根据所述感知发送设备的天线平面的角度信息和所述最短路径上的AoD信息,确定所述最短路径上发送波束的向量,以及根据所述感知接收设备的天线平面的角度信息和所述最短路径上的AoA信息,确定所述最短路径上接收波束的向量;
    根据所述最短路径上发送波束的向量和所述最短路径上接收波束的向量是否共线,确定所述最短路径是否为视距路径。
  55. 一种感知接收设备,其特征在于,包括
    处理单元,用于根据目标信息,确定目标感知距离,其中,所述目标感知距离包括感知发送设备到感知目标的距离信息和/或所述感知目标到所述感知接收设备的距离信息;
    其中,所述目标信息包括以下中的至少一项:
    第一信息,用于确定所述感知发送设备和所述感知接收设备之间的最短路径是否为视距路径;
    感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
    第二信息,包括所述最短路径的角度信息和/或距离信息;
    第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
  56. 一种感知发送设备,其特征在于,包括
    通信单元,用于向感知接收设备发送目标信息,所述目标信息用于确定目标感知距离;
    其中,所述目标信息包括以下中的至少一项:
    第一信息,用于确定所述感知发送设备和感知接收设备之间的最短路径是否为视距路径;
    感知设备的天线平面信息,其中,所述感知设备包括所述感知接收设备和/或所述感知发送设备;
    第二信息,包括所述最短路径的角度信息和/或距离信息;
    第三信息,包括感知波束的角度信息,其中,所述感知波束包括感知发送波束和/或感知接收波束。
  57. 一种感知接收设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述感知接收设备执行如权利要求1至30中任一项所述的方法。
  58. 一种感知发送设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述感知发送设备执行如权利要求31至54中任一项所述的方法。
  59. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法,或者,如权利要求31至54中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法,或者,如权利要求31至54中任一项所述的方法。
  61. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法,或者,如权利要求31至54中任一项所述的方法。
  62. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法,或者,如权利要求31至54中任一项所述的方法。
PCT/CN2022/101282 2022-06-24 2022-06-24 无线通信的方法和设备 WO2023245664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101282 WO2023245664A1 (zh) 2022-06-24 2022-06-24 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101282 WO2023245664A1 (zh) 2022-06-24 2022-06-24 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023245664A1 true WO2023245664A1 (zh) 2023-12-28

Family

ID=89379082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101282 WO2023245664A1 (zh) 2022-06-24 2022-06-24 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2023245664A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212963A (zh) * 2019-05-24 2019-09-06 Oppo广东移动通信有限公司 波束跟踪方法、装置及计算机存储介质和终端设备
US20200018814A1 (en) * 2019-09-27 2020-01-16 Javier Perez-Ramirez Locating radio transmission source by scene reconstruction
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN112986903A (zh) * 2021-04-29 2021-06-18 香港中文大学(深圳) 一种智能反射平面辅助的无线感知方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212963A (zh) * 2019-05-24 2019-09-06 Oppo广东移动通信有限公司 波束跟踪方法、装置及计算机存储介质和终端设备
US20200018814A1 (en) * 2019-09-27 2020-01-16 Javier Perez-Ramirez Locating radio transmission source by scene reconstruction
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN112986903A (zh) * 2021-04-29 2021-06-18 香港中文大学(深圳) 一种智能反射平面辅助的无线感知方法及装置

Similar Documents

Publication Publication Date Title
US9332523B2 (en) Systems and methods of offloaded positioning for determining location of WLAN nodes
CN108700641B (zh) 用于无线局域网测距和测向的单播和广播协议
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
JP2018509612A (ja) 到来角および離脱角を用いたftmプロトコル
US10609544B2 (en) Method and apparatus for identifying a target device
EP3972331B1 (en) Positioning method and apparatus
US20220361244A1 (en) Anonymous collection of directional transmissions
WO2023245664A1 (zh) 无线通信的方法和设备
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
US11510172B1 (en) Device detection and locationing within a wireless network
WO2022126642A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024113385A1 (zh) 基于代理的感知方法、装置、设备及存储介质
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2024040612A1 (zh) 无线通信的方法和设备
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备
WO2023130388A1 (zh) 无线通信的方法及设备
WO2023130384A1 (zh) 感知上报方法和设备
WO2023185342A1 (zh) 测量方法及测量装置
US9894635B2 (en) Location configuration information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947430

Country of ref document: EP

Kind code of ref document: A1