WO2024016365A1 - 协作感知测量方法、装置、设备及存储介质 - Google Patents

协作感知测量方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024016365A1
WO2024016365A1 PCT/CN2022/107539 CN2022107539W WO2024016365A1 WO 2024016365 A1 WO2024016365 A1 WO 2024016365A1 CN 2022107539 W CN2022107539 W CN 2022107539W WO 2024016365 A1 WO2024016365 A1 WO 2024016365A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
frame
measurement
polling
perception
Prior art date
Application number
PCT/CN2022/107539
Other languages
English (en)
French (fr)
Inventor
高宁
黄磊
罗朝明
周培
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/107539 priority Critical patent/WO2024016365A1/zh
Publication of WO2024016365A1 publication Critical patent/WO2024016365A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the present application relates to the field of perception measurement, and in particular to a collaborative perception measurement method, device, equipment and storage medium.
  • Wireless Local Area Networks (WLAN) sensing refers to the technology of sensing people or objects in the environment by measuring changes in scattering and/or reflection of WLAN signals through people or objects.
  • WLAN Wireless Local Area Networks
  • the number of devices participating in sensing is no less than two, usually including a sensing initiator and at least one sensing responder.
  • the sensing initiator is used to control all sensing responders to achieve collaborative sensing.
  • This application provides a collaborative sensing measurement method, device, equipment and storage medium.
  • the technical solutions are as follows:
  • a collaborative sensing measurement method is provided, the method is performed by a sensing initiator, and the method includes:
  • the sensing initiator uses a polling triggering method to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process.
  • a collaborative sensing measurement method is provided, the method is performed by a sensing responder, the method includes:
  • each group or each sensing responder participating in the collaboration executes all or part of the stages in the sensing measurement process based on the triggering of the sensing initiator using the polling triggering method.
  • a collaborative sensing measurement device which device includes:
  • a triggering module is configured to use a polling triggering method to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process during the collaborative sensing measurement process.
  • a collaborative sensing measurement device which device includes:
  • the execution module is configured to execute all or part of the stages in the sensing measurement process according to the triggering of the sensing initiator using the polling trigger method by each group or each device participating in the collaboration during the collaborative sensing measurement process.
  • a perception initiating device includes:
  • transceiver coupled to said processor
  • the processor is configured to load the executable instructions so that the sensing initiating device implements the cooperative sensing measurement method as described in the above aspect.
  • a sensing response device is provided, and the device includes:
  • transceiver coupled to said processor
  • the processor is configured to load the executable instructions so that the sensing initiating device implements the cooperative sensing measurement method as described in the above aspect.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the computer-readable storage medium, and the computer program is used to be executed by a perceptual measurement device to implement the above aspects.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions.
  • a perceptual measurement device installed with the chip is running, it is used to implement the above aspects. Collaboration perception measurement method.
  • a computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium, and a perceptual measurement device is configured from The computer-readable storage medium reads and executes the computer instructions to implement the cooperative sensing measurement method described in the above aspect.
  • each or each group of sensing responders participating in the collaboration can perform the sensing according to the sensing
  • the trigger of the initiator executes the relevant stages in the perceptual measurement process. It can be realized that there is no need to determine the timing of starting sensing measurement based on the acknowledgment (ACK) frame sent by the sensing initiator, and there is no need to judge whether the sensing measurement process of the previous sensing responder has ended, which can avoid the normal cooperative sensing of multiple sensing devices. ongoing issues.
  • ACK acknowledgment
  • Figure 1 is a block diagram of a perceptual measurement system provided by an exemplary embodiment of the present application
  • Figure 2 is a schematic diagram of the millimeter wave sensing type provided by an exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of a millimeter wave sensing process provided by an exemplary embodiment of the present application.
  • Figure 4 is a schematic diagram of an example of a sequential mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application;
  • Figure 5 is a schematic diagram of an example of a parallel mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application
  • Figure 6 is a schematic diagram of an example of millimeter-wave cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic diagram of the format of a beamforming frame provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic diagram of the format of a sensing request frame provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic diagram of the format of a sensing response frame provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic diagram of the format of a sensing polling frame provided by an exemplary embodiment of the present application.
  • Figure 11 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 12 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 13 is a schematic diagram of the format of a sensing measurement polling frame provided by an exemplary embodiment of the present application.
  • Figure 14 is a schematic diagram of the format of a sensing measurement polling frame provided by an exemplary embodiment of the present application.
  • Figure 15 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 16 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 17 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 18 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 19 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 20 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 21 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 22 is a schematic flowchart of a parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application
  • Figure 23 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 24 is a schematic flowchart of a parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 25 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 26 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 27 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 28 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 29 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application.
  • Figure 30 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • Figure 31 is a block diagram of a cooperative sensing measurement device provided by an exemplary embodiment of the present application.
  • Figure 32 is a block diagram of a collaborative sensing measurement device provided by an exemplary embodiment of the present application.
  • Figure 33 is a schematic structural diagram of a perceptual measurement device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • WLAN Sensing Sensing people or objects in the environment by measuring changes in WLAN signals scattered and/or reflected by people or objects. That is to say, WLAN sensing uses wireless signals to measure and perceive the surrounding environment, so that it can complete many functions such as indoor intrusion/movement/fall detection, gesture recognition, and spatial three-dimensional image creation.
  • Association Identifier used to identify the terminal that is associated with the access point.
  • WLAN devices participating in WLAN awareness may include the following roles:
  • Sensing Initiator It can also be called sensing session initiator, sensing initiating device, and initiator.
  • the sensing initiator is the device that initiates sensing measurement (Sensing Measurement) and wants to know the sensing results;
  • Sensing Responder Also known as Sensing Session Responder, Sensing Response Device, and Responder.
  • a perception responder is a device that participates in a perception measurement that is not a perception initiating device;
  • Sensing Transmitter It can also be called Sensing Signal Transmitter, Sensing Transmitter, Sensing Transmitter, or Transmitter.
  • the sensing signal sender is the device that sends sensing (Sensing) Physical Layer Protocol Data Unit (PPDU);
  • Sensing signal receiver (Sensing Receiver): It can also be called sensing signal receiving device, sensing receiver, sensing receiving device, and Receiver.
  • a sensory signal receiver is a device that receives an echo signal.
  • the echo signal is the perceptual physical layer protocol data unit sent by the perceptual signal sender after being scattered and/or reflected by people or objects.
  • a WLAN terminal may have one or more roles in a sensing measurement.
  • a sensing initiator can be just a sensing initiator, a sensing signal sender, a sensing signal receiver, or a sensing signal sender at the same time.
  • perceptual signal receivers The above devices can be collectively referred to as perceptual measurement devices.
  • FIG. 1 is a block diagram of a perceptual measurement system provided by an exemplary embodiment of the present application.
  • the perceptual measurement system includes terminals and terminals, or terminals and network equipment, or access points (Access Point, AP) and stations (Station, STA), which are not limited in this application.
  • This application takes the perceptual measurement system including AP and STA as an example for explanation.
  • the AP can be called AP STA, that is, in a certain sense, the AP is also a kind of STA. In some scenarios, STA is also called non-AP STA (non-AP STA).
  • STAs may include AP STAs and non-AP STAs.
  • Communication in the communication system can be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA can refer to the communication with STA.
  • a device for peer communication may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wireless-Fidelity (Wi-Fi) chip.
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes, and Sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart remote controls
  • smart water meters smart homes
  • Sensors in smart cities, etc.
  • non-AP STA may support but is not limited to the 802.11bf standard.
  • Non-AP STA can also support a variety of current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the AP may be a device supporting the 802.11bf standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA can be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) that supports WLAN/Wi-Fi technology Equipment, wireless equipment in Industrial Control, set-top boxes, wireless equipment in Self Driving, vehicle communication equipment, wireless equipment in Remote Medical, and smart grid Wireless devices, wireless devices in Transportation Safety, wireless devices in Smart City (Smart City) or wireless devices in Smart Home (Smart Home), wireless communication chips/ASIC/SOC/, etc.
  • WLAN technology can support frequency bands including but not limited to: low frequency band (2.4GHz, 5GHz, 6GHz) and high frequency band (60GHz).
  • low frequency band 2.4GHz, 5GHz, 6GHz
  • high frequency band 60GHz
  • One or more links exist between the site and the access point.
  • stations and access points support multi-band communications, for example, communicating on 2.4GHz, 5GHz, 6GHz, and 60GHz frequency bands simultaneously, or communicating on different channels of the same frequency band (or different frequency bands) simultaneously, improving Communication throughput and/or reliability between devices.
  • This kind of device is usually called a multi-band device, or a multi-link device (Multi-Link Device, MLD), sometimes also called a multi-link entity or a multi-band entity.
  • Multilink devices can be access point devices or site devices. If the multilink device is an access point device, the multilink device contains one or more APs; if the multilink device is a site device, the multilink device contains one or more non-AP STAs.
  • a multi-link device including one or more APs is called an AP, and a multi-link device including one or more non-AP STAs is called a Non-AP.
  • the Non-AP may be called a STA.
  • APs may include multiple APs
  • Non-APs may include multiple STAs.
  • Multiple links may be formed between APs in APs and STAs in Non-APs.
  • APs in APs and Non-APs may Corresponding STAs in can communicate with each other through corresponding links.
  • a site may include: User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent or user device.
  • UE User Equipment
  • the site can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA),
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • both the station and the access point support the IEEE 802.11 standard, but are not limited to the IEEE 802.11 standard. They may also be other standards related to perception measurement, such as the IEEE 802.11bf D0.1 standard.
  • WLAN terminals participating in sensing include: sensing initiators and sensing responders. Further, perception responders can be divided into perception senders and perception receivers.
  • Perceptual measurement can be applied to cellular network communication systems, wireless local area networks (Wireless Local Area Networks, WLAN) systems or wireless fidelity network (Wi-Fi) systems, and this application is not limited to this.
  • WLAN wireless Local Area Networks
  • Wi-Fi wireless fidelity network
  • the application of perceptual measurement in a WLAN or Wi-Fi system is used as an example for schematic explanation.
  • the cooperative sensing measurement in the embodiment of this application is implemented based on millimeter waves.
  • FIG. 2 is a schematic diagram of the millimeter wave sensing type provided by an exemplary embodiment of the present application.
  • (a) of Figure 2 is single-base sensing.
  • This device senses the environment by spontaneously (self-sending) sensing PPDU and self-receiving (self-receiving) Echo signals, which is different from traditional The radar works similarly.
  • spontaneous self-receiving means that when the device sends a sensing PPDU, it will set the sender address and the receiver address of the sensing PPDU to the device's own address.
  • the sensing PPDU sent by the device will form an Echo signal after being scattered and/or reflected by the environment.
  • Figure 2(b) shows dual-base sensing. There are two devices participating in sensing. One device sends sensing PPDU, and the other device receives Echo signal to sense the environment.
  • (c) in Figure 2 is cooperative single-base sensing. The number of devices participating in sensing is more than one. Each device senses the environment by spontaneously sensing PPDUs and receiving Echo signals. There is an Initiator to control all other devices to achieve collaboration.
  • (d) in Figure 2 is cooperative dual-base sensing. There are more than two devices participating in sensing, that is, there are at least two pairs of dual-base sensing devices.
  • Each sending device (awareness sender) sends a sensing PPDU separately and is sent by the same group of devices.
  • the receiving device receives the corresponding Echo signal to achieve collaborative sensing.
  • (e) in Figure 2 is multi-base sensing. There are more than two devices participating in sensing. One sending device sends sensing PPDU, and multiple receiving devices receive Echo signals at the same time and complete environment sensing at the same time.
  • FIG 3 is a schematic diagram of a millimeter wave sensing process provided by an exemplary embodiment of the present application. As shown in Figure 3, this process is the general process of millimeter wave sensing. From left to right, it is the session setup stage, millimeter wave sensing measurement setup (Directional Multi-Gigabit, DMG) Measurement setup. ) stage and the perceptual measurement stage. Among them, the sensing measurement phase consists of multiple sensing measurement bursts (Burst), and each burst is composed of multiple sensing measurement instances (DMG Sensing Instance).
  • DMG Directional Multi-Gigabit
  • the time interval between bursts is the inter-burst interval (Inter-burst interval), and the time interval between adjacent sensing measurement instances in a burst is the intra-burst interval (Intra-burst interval).
  • MACADDR in Figure 3 refers to the Medium Access Control (MAC) address
  • AID refers to the association identifier
  • DMG Measurement setup ID (DMG Measurement setup ID) refers to the millimeter wave sensing measurement setup identifier
  • MS ID refers to the measurement setup (Measurement Setup, MS) identification
  • burst ID (Burst ID) refers to the burst identification
  • the instance (Instance) sequence number (Sequential Number, SN) refers to the identification of the sensing measurement instance, which can also be called the sensing instance.
  • SN(SensingInstanceSN) refers to the identification of the sensing measurement instance, which can also be called the sensing instance.
  • SN(SensingInstanceSN) refers to
  • FIG. 4 is a schematic diagram of an example of a sequential mode of millimeter wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • FIG. 5 is a parallel mode of millimeter-wave cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. Schematic diagram of a pattern instance.
  • the similarity between the sequential mode and the parallel mode is that the sensing initiator (Initiator) needs to send a sensing request (DMG Sensing Request) frame to each sensing responder (DMG Sensing Request) in the initial stage of the sensing measurement instance. Responder), and each sensing responder needs to reply a sensing response (DMG Sensing Response) frame to the sensing initiator within the short interframe space (SIFS) time.
  • the DMG sensing request can also be called RQ
  • the DMG sensing response can also be called RSP.
  • each sensing responder sequentially sends and receives a single base sensing measurement frame (Monostatic PPDU) to sense the environment, and in SIFS time Send a Sensing Measurement Report frame (DMG Sensing Measurement Report) to the sensing initiator.
  • DMG Sensing Measurement Report Send a Sensing Measurement Report frame
  • each sensing responder simultaneously sends and receives single-base sensing measurement frames to sense the environment, and then sends DMG sensing measurement report frames (perception measurement report frames) to the sensing initiator in sequence.
  • the grid above the horizontal line corresponding to the sensing initiator or sensing responder represents the frame sent by the device, and the grid (blank grid) below the horizontal line represents the frame received by the device, and There is a correspondence between the sent frame and the received frame.
  • the grid with the center pressed on the horizontal line corresponding to the sensor responder it represents the frame in which the sensor responder spontaneously collects itself, for example, the single-base sensor measurement frame in which the sensor responder spontaneously collects itself.
  • the sensing initiator sends an RQ to the sensing responder STA A (represented by the grid above the horizontal line corresponding to the sensing initiator).
  • the sensing responder STA A will receive the RQ (represented by the sensing responder STA A
  • the blank grid below the horizontal line corresponding to STA A indicates).
  • the meaning of the blank spaces in other drawings of this application can be referred to the above description, and will not be described again.
  • FIG. 6 is a schematic diagram of an example of millimeter-wave cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • this cooperative dual-base sensing measurement instance is participated by one Initiator (STA) and four Responders (STA A, STA B, STA C, STA D).
  • STA A and STA C are sensing senders
  • STA B and STA D are sensing receivers.
  • STA A sends a Beam Refinement Protocol (BRP) frame with a training (TRN) field to STA B
  • BRP Beam Refinement Protocol
  • STA A sends a Sensing Measurement Report (DMG Sensing Measurement Report) frame to report the measurement results to the Initiator.
  • DMG Sensing Measurement Report Sensing Measurement Report
  • STA C sends a BRP frame with a TRN field to STA D, and STA D replies with a BRP frame with a Report to STA C. Then STA C sends a DMG Sensing Measurement Report frame to report the measurement results to the Initiator.
  • FIG. 7 is a schematic diagram of the format of a beamforming frame provided by an exemplary embodiment of the present application.
  • the TDD Beamforming frame is a type of control frame. Its MAC frame body consists of two parts: TDD Beamforming Control field and TDD Beamforming Information field.
  • the meanings of the fields in the MAC header of the TDD beamforming frame are as follows:
  • Frame Control Indicates information such as the type of the MAC frame, including information indicating that the frame is a TDD beamforming frame.
  • ⁇ Duration Indicates the length of time the frame is sent.
  • RA MAC Address
  • TA Transmitter Address
  • ⁇ TDD Beamforming Frame Type Indicates the type of TDD beamforming frame. See Table 1 for specific values and their meanings.
  • the values 0, 1, and 2 of the TDD beamforming frame type field all indicate that the TDD beamforming frame is a type related to beam training. This type has nothing to do with the method provided by the embodiment of this application.
  • the value 3 indicates The TDD beamforming frame is a type related to DMG sensing.
  • the TDD Group Beamforming (TDD Group Beamforming) field and the TDD Beam Measurement (TDD Beam Measurement) field jointly indicate the location of a TDD beamforming frame in DMG perception.
  • TDD Group Beamforming TDD Group Beamforming
  • TDD Beam Measurement TDD Beam Measurement
  • the TDD group beamforming field when the value of the TDD group beamforming field is 0 and the value of the TDD beam measurement field is 0, it indicates that the TDD beamforming frame is a DMG sensing request frame (sensing request frame); in TDD When the value of the group beamforming field is 0 and the value of the TDD beam measurement field is 1, it indicates that the TDD beamforming frame is a DMG sensing response frame (perception response frame); the value in the TDD group beamforming field When it is 1 and the TDD beam measurement field value is 0, it indicates that the TDD beamforming frame is a DMG sensing polling frame (sensing polling frame).
  • FIG. 8 is a schematic diagram of the format of a sensing request frame provided by an exemplary embodiment of the present application. As shown in Figure 8, the meanings of the fields in the TDD beamforming information field of the DMG sensing request frame are as follows:
  • ⁇ Measurement Setup ID The identifier of the sensing measurement setup associated with this frame.
  • ⁇ Measurement Burst ID The identifier of the sensing measurement burst associated with this frame.
  • Sequential Number Indicates the sequence number of a sensing measurement instance in a measurement burst.
  • ⁇ Sensing type Indicates the sensing type requested by the frame. See Table 3 for specific values and meanings:
  • ⁇ STA ID Indicates the order in which a STA participates in measurement in a sensing measurement instance.
  • ⁇ First Beam Index Indicates the index of the first transmit beam used in a sensing measurement instance.
  • ⁇ Num of STAs in Instance Indicates the number of STAs participating in the measurement in a sensing measurement instance.
  • ⁇ Num of PPDUs in Instance Indicates the number of PPDUs that appear in a sensing measurement instance.
  • EDMG TRN Length Indicates the number of TRN-units (Unit) contained in a PPDU.
  • ⁇ EDMG TRN-Unit P Indicates the number of TRN subfields (TRN subfields) in which the beam direction is aligned with the opposite end device in a TRN-Unit.
  • ⁇ EDMG TRN-Unit M Indicates the number of TRN subfields with variable beam directions in a TRN-Unit.
  • ⁇ EDMG TRN-Unit N Indicates the number of TRN subfields sent continuously using the same beam direction among the TRN-Unit-M TRN subfields.
  • TRN Subfield Sequence Length Indicates the length of the Gray sequence used for each TRN subfield.
  • ⁇ Bandwidth Indicates the bandwidth used to send the TRN field.
  • FIG 9 is a schematic diagram of the format of a sensing response frame provided by an exemplary embodiment of the present application. As shown in Figure 9, the MAC frame body of the DMG sensing response frame only contains the TDD beamforming control field.
  • FIG. 10 is a schematic diagram of the format of a sensing polling frame provided by an exemplary embodiment of the present application. As shown in Figure 10, the meanings of the fields in the TDD beamforming information field of the DMG sensing polling frame are as follows:
  • ⁇ Measurement Setup ID An identifier indicating the sensing measurement setting associated with this DMG sensing polling frame.
  • ⁇ Measurement Burst ID Indicates the identifier of the sensing measurement burst associated with this DMG sensing polling frame.
  • Sensing instance SN (SensingInstanceSequential Number): indicates the identifier of the sensing measurement instance related to this DMG sensing polling frame.
  • the sensing responder STA B should send and Receive single-base sensing measurement frames.
  • millimeter wave communication usually sends signals in a direction (using narrower width beams)
  • the ACK frame will be directed to the sensing responder STA A instead of STA B. Therefore, there is no guarantee that STA B can receive the ACK frame, and thus there is no guarantee that STA B can accurately send the single-base sensing measurement frame within the SIFS time after the sensing initiator sends the ACK frame.
  • PPDUs that meet the requirements, such as DMG control mode PPDU, DMG single carrier (Single Carrier, SC) mode PPDU, EDMG control mode PPDU, EDMG SC mode PPDU, EDMG orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) mode PPDU.
  • the duration of each PPDU is different.
  • the DMG perception measurement report frame is a management frame, it can be sent using different modulation and coding schemes (Modulation and Coding Scheme, MCS). As a result, the duration of the DMG perception measurement report frame may also be different.
  • MCS Modulation and Coding Scheme
  • the sensing responder STA B should send a DMG sensing measurement report frame to the SIFS time after the sensing initiator replies the ACK frame to the sensing responder STA A. Perception initiator.
  • the sensing responder STA B cannot receive the ACK frame and the sensing responder STA A sends a single-base sensing measurement frame and a DMG sensing measurement report frame for a variable duration, causing STA B to be unable to accurately time.
  • the method provided by the embodiment of the present application uses a polling triggering method by the sensing initiator to trigger each group (cooperating dual base) or each (cooperating single base) of sensing responders participating in the collaboration to execute all stages or parts of the sensing measurement process.
  • the polling trigger can be implemented through one of the sensing request frame, sensing measurement polling frame, and sensing reporting polling frame, so that each or each group of sensing responders participating in the collaboration can respond based on the triggering of the sensing initiator. Perform the relevant stages in the perceptual measurement process.
  • Figure 11 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be executed by the sensing initiator and includes:
  • Step 1102 During the collaborative sensing measurement process, the sensing initiator uses a polling triggering method to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process.
  • the cooperative sensing measurement can be divided into sequential mode type of cooperative single base, parallel mode type of cooperative single base and cooperative double base type.
  • the sensing initiator triggers each participating sensing responder to perform all or part of the stages in the sensing measurement process.
  • the sensing initiator triggers each group of sensing responders participating in the collaboration to perform all or part of the stages in the sensing measurement process.
  • each group of sensing responders participating in the collaboration includes a sensing sender and a sensing receiver, and in the collaborative dual-base sensing measurement, there are at least two groups of sensing responders.
  • the process of the sequential mode of cooperative single-base sensing measurement may include a request phase, a sensing measurement phase, and a reporting phase.
  • the request phase includes the steps of the sensing initiator sending the sensing request frame to the sensing responder and the sensing responder sending the sensing response frame to the sensing initiator.
  • the sensing measurement phase includes the steps of the sensing responder sending the single-base sensing measurement frame.
  • the reporting phase includes The step of the sensing responder sending a sensing measurement report frame to the sensing initiator.
  • the process of the parallel mode of cooperative single-base sensing measurement may include a request phase, a sensing measurement phase, and a reporting phase.
  • the request phase includes the steps of the sensing initiator sending the sensing request frame to the sensing responder and the sensing responder sending the sensing response frame to the sensing initiator.
  • the sensing measurement phase includes the steps of the sensing responder sending the single-base sensing measurement frame.
  • the reporting phase includes The step of the sensing responder sending a sensing measurement report frame to the sensing initiator.
  • the process of cooperative dual-base sensing measurement may include a request phase, a sensing measurement phase, and a reporting phase.
  • the request phase includes the steps of the sensing initiator sending the sensing request frame to the sensing responder (including the sensing sender and the sensing receiver) and the sensing responder sending the sensing response frame to the sensing initiator.
  • the perception measurement phase includes the steps of the perception sender sending a BRP frame with a TRN field to the perception receiver and the perception receiver sending a BRP frame with a Report to the perception sender.
  • the reporting phase includes the step of the sensing sender sending a sensing measurement report frame to the sensing initiator.
  • the polling triggering of the awareness initiator is implemented based on at least one of the following frames:
  • the sensing measurement polling frame is a trigger frame, specifically a trigger frame used to trigger the transmission of PPDU for sensing measurement.
  • the sensing reporting polling frame is a trigger frame, specifically a trigger frame used to trigger reporting of sensing measurement results.
  • the sensing request frame is used to trigger the sensing responder to perform all stages in the sensing measurement process
  • the sensing measurement polling frame is used to trigger the sensing responder to execute the sensing measurement phase and the reporting phase in the sensing measurement process
  • the sensing reporting polling The frame is used to trigger the perception responder to perform the reporting phase in the perception measurement process.
  • the perception measurement polling frame is a trigger frame used to trigger the perception responder to send a PPDU for perception measurement, for example, used to trigger the perception responder to send a single-base perception measurement frame.
  • the sensing responder After receiving the sensing measurement polling frame, the sensing responder will sequentially perform sensing measurement and report the sensing measurement results after the sensing measurement.
  • the perception reporting polling frame is a trigger frame used to trigger the perception responder to report perception measurement results, for example, to trigger the perception responder to send a perception measurement report frame. After receiving the sensing reporting polling frame, the sensing responder will report the sensing measurement results.
  • the sensing initiator triggers the sensing responder to perform all stages in the sensing measurement process through the sensing request frame.
  • the sensing initiator triggers the sensing responder to execute the sensing measurement phase and reporting phase in the sensing measurement process through sensing measurement polling frames.
  • the sensing initiator triggers the sensing responder to perform the reporting phase in the sensing measurement process through sensing reporting polling frames.
  • the method provided by this embodiment enables the sensing initiator to use polling triggering to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process, thereby enabling the participating Each or each group of collaborative sensing responders can perform relevant stages in the sensing measurement process based on triggers from the sensing initiator. It can be realized that there is no need to determine the timing of starting sensing measurement based on the ACK frame sent by the sensing initiator, and there is no need to judge whether the sensing measurement process of the previous sensing responder has ended, which can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • Figure 12 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application. This method can be executed by the perception responder and includes:
  • Step 1202 During the collaborative sensing measurement process, each group or each sensing responder participating in the collaboration executes all or part of the stages in the sensing measurement process based on the triggering of the sensing initiator using the polling triggering method.
  • the cooperative sensing measurement can be divided into sequential mode type of cooperative single base, parallel mode type of cooperative single base and cooperative double base type.
  • the sensing initiator triggers each participating sensing responder to perform all or part of the stages in the sensing measurement process.
  • the sensing initiator triggers each group of sensing responders participating in the collaboration to execute all or part of the stages in the sensing measurement process.
  • each group of sensing responders participating in the collaboration includes a sensing sender and a sensing receiver, and in the collaborative dual-base sensing measurement, there are at least two groups of sensing responders.
  • the request phase includes the steps of the sensing initiator sending the sensing request frame to the sensing responder and the sensing responder sending the sensing response frame to the sensing initiator.
  • the sensing measurement phase includes sensing The step of the responder sending a single-base sensing measurement frame.
  • the reporting phase includes the step of the sensing responder sending a sensing measurement report frame to the sensing initiator.
  • the request phase includes the sensing initiator sending a sensing measurement report frame to the sensing initiator.
  • the responder sends a sensing request frame and the sensing responder sends a sensing response frame to the sensing initiator.
  • the sensing measurement phase includes the steps of the sensing responder sending a single-base sensing measurement frame.
  • the reporting phase includes the sensing responder sending sensing measurements to the sensing initiator.
  • the step of reporting frames; in the process of cooperative dual-base sensing measurement, the request phase includes the steps of the sensing initiator sending a sensing request frame to the sensing responder and the sensing responder sending a sensing response frame to the sensing initiator.
  • the perception measurement phase includes the steps of the perception sender sending a BRP frame with a TRN field to the perception receiver and the perception receiver sending a BRP frame with a Report to the perception sender.
  • the reporting phase includes the step of the sensing sender sending a sensing measurement report frame to the sensing initiator.
  • the polling triggering of the awareness initiator is implemented based on at least one of the following frames:
  • the sensing measurement polling frame is a trigger frame, specifically a trigger frame used to trigger the transmission of PPDU for sensing measurement.
  • the sensing reporting polling frame is a trigger frame, specifically a trigger frame used to trigger reporting of sensing measurement results.
  • the sensing request frame is used to trigger the sensing responder to perform all stages in the sensing measurement process
  • the sensing measurement polling frame is used to trigger the sensing responder to execute the sensing measurement phase and the reporting phase in the sensing measurement process
  • the sensing reporting polling The frame is used to trigger the perception responder to perform the reporting phase in the perception measurement process.
  • the perception measurement polling frame is a trigger frame used to trigger the perception responder to send a PPDU for perception measurement, for example, used to trigger the perception responder to send a single-base perception measurement frame.
  • the sensing responder After receiving the sensing measurement polling frame, the sensing responder will sequentially perform sensing measurement and report the sensing measurement results after the sensing measurement.
  • the perception reporting polling frame is a trigger frame used to trigger the perception responder to report perception measurement results, for example, to trigger the perception responder to send a perception measurement report frame. After receiving the sensing reporting polling frame, the sensing responder will report the sensing measurement results.
  • the sensing initiator triggers the sensing responder to perform all stages in the sensing measurement process through the sensing request frame.
  • the sensing initiator triggers the sensing responder to execute the sensing measurement phase and reporting phase in the sensing measurement process through sensing measurement polling frames.
  • the sensing initiator triggers the sensing responder to perform the reporting phase in the sensing measurement process through sensing reporting polling frames.
  • the method provided by this embodiment enables the sensing initiator to use polling triggering to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process, thereby enabling the participating Each or each group of collaborative sensing responders can perform relevant stages in the sensing measurement process based on triggers from the sensing initiator. It can be realized that there is no need to determine the timing of starting sensing measurement based on the ACK frame sent by the sensing initiator, and there is no need to judge whether the sensing measurement process of the previous sensing responder has ended, which can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • the method provided by the embodiment of the present application uses a polling triggering method by the sensing initiator to trigger each group or each sensing responder participating in the collaboration to execute all or part of the stages in the sensing measurement process, thereby enabling each or every sensing responder participating in the collaboration to perform all or part of the sensing measurement process.
  • Each group of sensing responders can execute relevant stages in the sensing measurement process based on the triggering of the sensing initiator, which can avoid the problem that collaborative sensing of multiple sensing devices cannot proceed normally.
  • the polling triggering of the awareness initiator is implemented based on at least one of the following frames:
  • the sensing measurement polling frame is a type of TDD beamforming frame, and it is not any type of sensing request frame, sensing response frame, or sensing polling frame in the TDD beamforming frame.
  • FIG. 13 is a schematic diagram of the format of a sensing measurement polling frame provided by an exemplary embodiment of the present application.
  • the meanings of the fields in the MAC header of the sensing measurement polling frame are as follows:
  • Frame Control Indicates information such as the type of the MAC frame, including information indicating that the frame is a TDD beamforming frame.
  • ⁇ Duration Indicates the length of time the frame is sent.
  • ⁇ TA Indicates the MAC address of the frame sender.
  • ⁇ RA Indicates the MAC address of the frame receiver.
  • the MAC frame body of the TDD beamforming frame includes a TDD beamforming control field, and the TDD beamforming control field includes a TDD group beamforming field and a TDD beam measurement field.
  • TDD beamforming frame The meanings of the fields in the MAC frame body of the sensing measurement polling frame (TDD beamforming frame) are as follows:
  • TDD Group Beamforming (TDD Group Beamforming) and TDD Beam Measurement (TDD Beam Measurement) together indicate the purpose of a TDD beamforming frame. See Table 4 for specific values and their meanings.
  • the TDD group beamforming field when the value of the TDD group beamforming field is 0 and the value of the TDD beam measurement field is 0, it indicates that the TDD beamforming frame is a sensing request frame; in the TDD group beamforming field When the value is 0 and the TDD beam measurement field value is 1, it indicates that the TDD beamforming frame is a sensing response frame; when the TDD group beamforming field value is 1 and the TDD beam measurement field value is 0 , indicating that the TDD beamforming frame is a sensing polling frame. When the TDD group beamforming field has a value of 1 and the TDD beam measurement field has a value of 1, it indicates that the TDD beamforming frame is a sensing measurement polling frame.
  • TDD Beamforming Frame Type Indicates the type of TDD beamforming frame. A value of 3 indicates that the frame is a TDD beamforming frame for DMG sensing.
  • ⁇ End of Training Indicates whether beam training is over.
  • ⁇ Measurement Setup ID An identifier indicating the sensing measurement setup associated with this sensing measurement polling frame.
  • ⁇ Measurement Burst ID Indicates the identifier of the sensing measurement burst associated with this sensing measurement polling frame.
  • Sensing instance SN (Sensing Instance Sequential Number): indicates the identifier of the sensing measurement instance related to this sensing measurement polling frame.
  • the sensing measurement polling frame is a sensing polling frame (DMG Sensing Poll frame) with a polling type field added to the TDD beamforming control field in the MAC frame body.
  • the polling type field is used to indicate the addition of polling.
  • the sensing polling frame in the type field is a sensing measurement polling frame.
  • the sensing polling frame is defined in the IEEE 802.11bf D0.1 standard.
  • FIG. 14 is a schematic diagram of the format of a sensing measurement polling frame provided by an exemplary embodiment of the present application.
  • the meaning of the fields in the MAC frame header of the sensing measurement polling frame can refer to the above-mentioned newly defined sensing measurement polling frame.
  • No further details will be given.
  • the values of the TDD Group Beamforming (TDD Group Beamforming) field and the TDD Beam Measurement (TDD Beam Measurement) field in the MAC frame body of the sensing measurement polling frame are 1 and 0 respectively, and the TDD Beamforming frame type (TDD Beamforming Frame Type) has a value of 3, indicating that the frame is a sensing polling frame in the TDD beamforming frame for DMG sensing.
  • Poll Type Indicates the type of the sensing polling frame. See Table 5 for specific values and their meanings.
  • the sensing polling frame with the polling type field added is a sensing measurement polling frame.
  • the sensing polling frame with the polling type field added is a sensing reporting polling frame.
  • the DMG perception reporting polling indicates that the trigger frame is a trigger frame used to trigger the reporting of perception measurement results
  • the DMG perception measurement polling indicates that the trigger frame is a trigger frame used to trigger the transmission of PPDU for perception measurement.
  • the only difference in the frame format between these two trigger frames is the value of the "Polling Type" field. The other fields and their meanings are the same.
  • the sensing polling frame with the polling type field added is a sensing measurement polling frame.
  • the sensing polling frame with the polling type field added is a sensing reporting polling frame. That is, when the value of the polling type field is 0 or 1, the sensing polling frame with the added polling type field may be a sensing measurement polling frame.
  • the values of the polling type field of the sensing measurement polling frame and the sensing reporting polling frame are different.
  • the value of the polling type field of the sensing measurement polling frame can also be 2, and the value of the polling type field of the sensing reporting polling frame can be 2.
  • the value of the field can also be 3.
  • the name "Polling Type" is only used as an example and other names may be used instead.
  • the sensing reporting polling frame is a sensing polling frame in which a polling type field is added to the TDD beamforming control field in the MAC frame body.
  • the polling type field is used to indicate that the sensing polling frame in which a polling type field is added is Perception reporting polling frame. Similar to the above description, when the value of the polling type field is 0 or 1, the sensing polling frame with the added polling type field may be a sensing reporting polling frame. However, it is necessary to ensure that the values of the polling type field of the sensing measurement polling frame and the sensing reporting polling frame are different.
  • the sensing initiator can trigger each group or each participating sensing responder to perform all or part of the stages in the sensing measurement process. Specifically, it can be divided into the following 8 situations:
  • each sensing executor is triggered to execute the sensing measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame;
  • each sensing executor except the first sensing executor is triggered to execute the sensing measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame;
  • each sensing executor is triggered to execute all stages of the sensing measurement process through the sensing request frame;
  • each sensing executor is triggered to perform the reporting phase in the sensing measurement process through the sensing reporting polling frame;
  • each sensing executor except the first sensing executor is triggered to execute the reporting stage in the sensing measurement process through the sensing reporting polling frame;
  • each group of sensing executors is triggered through the sensing measurement polling frame to execute the sensing measurement phase and reporting phase in the sensing measurement process;
  • each group of sensing executors except the first group of sensing executors is triggered to execute the sensing measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame;
  • each group of sensing executors is triggered to execute all stages of the sensing measurement process through the sensing request frame.
  • Figure 15 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 1502 After receiving the sensing response frames sent by all sensing responders, the sensing initiator sends a sensing measurement polling frame to the first sensing responder.
  • the type of cooperative sensing measurement in this embodiment is the sequential mode of cooperative single base, and each sensing responder corresponds to a sensing measurement polling frame.
  • the sensing measurement polling frame is used to trigger the sensing responder to send a single-base sensing measurement frame.
  • the first sensing responder After receiving the sensing measurement polling frame, the first sensing responder will send and receive single-base sensing measurement frames on its own, thereby realizing awareness of the environment, and sending sensing measurement report frames to the sensing initiator.
  • the sensing response frame corresponding to the last sensing responder there is a SIFS time difference between the sensing response frame corresponding to the last sensing responder and the sensing measurement polling frame corresponding to the first sensing responder.
  • Step 1504 After receiving the sensing measurement report frame sent by the i-th sensing responder or sending an ACK frame to the i-th sensing responder, the sensing initiator sends a sensing measurement polling frame to the i+1-th sensing responder.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing measurement polling frame to the i+1th sensing responder after sending the ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing measurement polling frame to the i+1-th sensing responder.
  • the i+1th sensing responder After receiving the sensing measurement polling frame, the i+1th sensing responder will send and receive single-base sensing measurement frames on its own, thereby realizing the perception of the environment, and sending sensing measurement report frames to the sensing responder.
  • i is a positive integer.
  • FIG. 16 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application.
  • the process involves an Initiator (STA) and two Responders (STA A, STA B), including the following processes (from left to right):
  • the Initiator sends a DMG sensing measurement polling frame to STA A, triggering STA A to start sensing measurement;
  • STA A spontaneously receives a single-base sensing measurement frame to sense the environment
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA A;
  • the Initiator After the SIFS time, the Initiator sends a DMG sensing measurement polling frame to STA B, triggering STA B to start sensing measurement;
  • STA B After the SIFS time, STA B sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA B.
  • the above (8) and (12) are optional steps. In the above example, there are only two Responders. If there are more Responders, the above method can be used to trigger subsequent Responders to send single-base sensing measurement frames.
  • the above-mentioned DMG perception measurement report frame is in the format shown in FIG. 13 or in the format shown in FIG. 14 .
  • the Initiator needs to send DMG sensing measurement polling frames to each Responder in order to trigger it to send and receive single-base sensing measurement frames.
  • Each Responder needs to send DMG sensing measurement polling frames after receiving the DMG sensing measurement polling frame.
  • the spontaneous collection of single-base sensing measurement frames begins within the SIFS time after the frame, and other processes are the same.
  • the method provided by this embodiment enables the sensing initiator to trigger each sensing responder participating in the collaboration to perform the measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame, so that each sensing responder can
  • the time when a responder sends and receives single-base sensing measurement frames is only related to the time when it receives a sensing measurement polling frame, and has nothing to do with the duration of sending and receiving single-base sensing measurement frames by other sensing responders, which can avoid the cooperation of multiple sensing devices. Sensing problems that don't work properly.
  • the sensing initiator can send the sensing measurement polling frame to each sensing responder in a directed manner, ensuring that each sensing responder can reliably receive the trigger signal.
  • Figure 17 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 1702 After receiving the sensing measurement report frame sent by the i-th sensing responder or sending the ACK frame to the i-th sensing responder, the sensing initiator sends a sensing measurement polling frame to the i+1-th sensing responder.
  • the type of cooperative sensing measurement in this embodiment is the sequential mode of cooperative single base, and each sensing responder except the first one corresponds to a sensing measurement polling frame.
  • the sensing measurement polling frame is used to trigger the sensing responder to send a single-base sensing measurement frame.
  • i is a positive integer.
  • the first sensing responder After all sensing responders receive the sensing request frame sent by the sensing initiator and reply to the sensing response frame, the first sensing responder will send and receive the single-base sensing measurement frame by itself, thereby realizing the perception of the environment and reporting to the sensing responder.
  • the initiator sends a sensing measurement report frame.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing measurement polling frame to the i+1th sensing responder after sending the ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing measurement polling frame to the i+1-th sensing responder.
  • the i+1th sensing responder After receiving the sensing measurement polling frame, the i+1th sensing responder will send and receive single-base sensing measurement frames on its own, thereby realizing the perception of the environment, and sending sensing measurement report frames to the sensing responder.
  • FIG. 18 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. As shown in Figure 18, the process involves an Initiator (STA) and two Responders (STA A, STA B), including the following processes (from left to right):
  • STA Initiator
  • STA A, STA B Responders
  • STA A spontaneously receives a single-base sensing measurement frame to sense the environment
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA A;
  • the Initiator sends a DMG sensing measurement polling frame to STA B, triggering STA B to start sensing measurement;
  • STA B After the SIFS time, STA B sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the above (7) and (11) are optional steps. In the above example, there are only two Responders. If there are more Responders, the above method can be used to trigger subsequent Responders to send single-base sensing measurement frames.
  • the above-mentioned DMG perception measurement report frame is in the format shown in FIG. 13 or in the format shown in FIG. 14 .
  • the difference is that after the last Responder (STA B) replies the DMG sensing response frame to the Initiator, after the SIFS time, the first Responder (STA A) actively starts to collect the single base automatically. Sense the measurement frame to sense the environment. There is no need to wait for the Initiator to send the DMG sensing measurement polling frame.
  • the other processes are the same.
  • the method provided by this embodiment enables the sensing initiator to trigger each participating sensing responder after the first one to execute the measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame.
  • the implementation makes the time when each perception responder sends and receives single-base perception measurement frames except the first one only related to the time when it receives the perception measurement polling frame, and is not related to the time when other perception responders send and receive single-base perception measurement frames. It has nothing to do with the duration and can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • the sensing initiator can send the sensing measurement polling frame to each sensing responder except the first one in a directed manner, ensuring that every sensing responder except the first one can reliably receive the trigger signal. .
  • Figure 19 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 1902 The sensing initiator sends a sensing request frame to the first sensing responder.
  • the type of cooperative sensing measurement in this embodiment is a cooperative single-base sequential mode, and each sensing responder corresponds to a sensing request frame.
  • the sensing request frame is used to trigger a sensing responder to perform all stages of the sensing measurement process.
  • the first sensing responder After receiving the sensing request frame, the first sensing responder will send a sensing response frame to the sensing initiator, and then it will send and receive single-base sensing measurement frames on its own to realize the perception of the environment and send sensing to the sensing responder. Measurement report frame.
  • Step 1904 After receiving the sensing measurement report frame sent by the i-th sensing responder or sending the ACK frame to the i-th sensing responder, the sensing initiator sends a sensing request frame to the i+1-th sensing responder.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing request frame to the i+1th sensing responder after sending the ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing measurement polling frame to the i+1-th sensing responder.
  • the i+1th sensing responder After receiving the sensing request frame, the i+1th sensing responder will send a sensing response frame to the sensing initiator, and then it will send and receive single-base sensing measurement frames on its own, thereby realizing the perception of the environment and sending messages to the sensing responder. Send sensing measurement report frame.
  • i is a positive integer.
  • the sensing measurement report frame corresponding to the i-th sensing responder or the ACK frame corresponding to the i-th sensing responder there is a SIFS time difference between the sensing measurement report frame corresponding to the i-th sensing responder or the ACK frame corresponding to the i-th sensing responder and the sensing request frame corresponding to the i+1-th sensing responder.
  • FIG. 20 is a schematic flowchart of the sequential mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. As shown in Figure 20, the process involves an Initiator (STA) and two Responders (STA A, STA B), including the following processes (from left to right):
  • STA Initiator
  • STA A, STA B two Responders
  • STA A sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA A;
  • STA B spontaneously receives a single-base sensing measurement frame to sense the environment
  • STA B After the SIFS time, STA B sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the above (5) and (10) are optional steps. In the above example, there are only 2 Responders. If there are more Responders, the above method can be used to trigger the subsequent Responders to perform the entire perception measurement process.
  • the above-mentioned DMG sensing request frame has the format shown in Figure 8. Compared with the process shown in Figure 4, the difference is that the Initiator starts interacting with STA B after all frames have been interacted with STA A. That is to say, after the Responder completes the entire sensing measurement process, the Initiator will trigger the next Responder to execute the entire sensing measurement process through the DMG sensing request frame.
  • the method provided by this embodiment enables the sensing initiator to trigger the entire process of each sensing responder participating in the collaboration to perform sensing measurement through the sensing request frame, so that each sensing responder can start to perform sensing measurement.
  • the time of the process is only related to the time when it receives the sensing request frame, which can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • Figure 21 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 2102 After the first sensing responder sends and receives the single-base sensing measurement frame, the sensing initiator sends a sensing reporting polling frame to the first sensing responder.
  • the type of cooperative sensing measurement in this embodiment is a cooperative single-base parallel mode, and each sensing responder corresponds to a sensing reporting polling frame.
  • the perception reporting polling frame is used to trigger the perception responder to send a perception measurement report frame.
  • the first sensing responder After receiving the sensing reporting polling frame, the first sensing responder sends a sensing measurement report frame to the sensing initiator. Prior to this, the first perception responder has sent and received single-base perception measurement frames on its own, thereby realizing awareness of the environment.
  • different sensing responders send and receive single-base sensing measurement frames by themselves at the same time, thereby realizing the perception of the environment.
  • Step 2104 After receiving the sensing measurement report frame sent by the i-th sensing responder or sending an ACK frame to the i-th sensing responder, the sensing initiator sends a sensing reporting polling frame to the i+1-th sensing responder.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing reporting polling frame to the i+1th sensing responder after sending the ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing reporting polling frame to the i+1-th sensing responder.
  • the i+1th sensing responder After receiving the sensing reporting polling frame, the i+1th sensing responder will send a sensing measurement report frame to the sensing responder.
  • i is a positive integer.
  • FIG. 22 is a schematic flowchart of a parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. As shown in Figure 22, the process is participated by an Initiator (STA) and two Responders (STA A, STA B), including the following processes (from left to right):
  • STA Initiator
  • STA A, STA B two Responders
  • the Initiator sends a DMG sensing reporting polling frame to STA A, triggering STA A to report sensing measurement results;
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA A;
  • the Initiator After the SIFS time, the Initiator sends a DMG sensing reporting polling frame to STA B, triggering STA B to report sensing measurement results;
  • STA B After the SIFS time, STA B sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the above (8) and (11) are optional steps. In the above example, there are only 2 Responders. If there are more Responders, the above method can be used to trigger subsequent Responders to send DMG perception measurement report frames.
  • the above DMG awareness reporting polling frame has the format shown in Figure 14.
  • the DMG sensing reporting polling frame used in the embodiment of the present application can be replaced by a DMG sensing polling frame, and the DMG sensing polling frame has the format shown in Figure 10 . That is to say, the DMG sensing polling frame can also trigger the Responder to send a DMG sensing measurement report frame.
  • the Initiator sends the DMG sensing polling frame to the Responder, thereby triggering the Responder to send a DMG sensing measurement report frame.
  • the Initiator needs to send DMG sensing reporting polling frames to each Responder in order to trigger it to send a DMG sensing measurement report frame. After receiving the DMG sensing reporting polling frame, each Responder Feed back the DMG perception measurement report frame to the Initiator within the SIFS time, and other processes are the same.
  • the method provided by this embodiment can enable each sensing responder to send
  • the time of the sensing measurement reporting frame is only related to the time when it receives the sensing reporting polling frame, and has nothing to do with the time when other sensing responders send the sensing measurement reporting frame. This can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • the sensing initiator can send the sensing reporting polling frame to each sensing responder in a directed manner, ensuring that each sensing responder can reliably receive the trigger signal.
  • Figure 23 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 2302 After receiving the sensing measurement report frame sent by the i-th sensing responder or sending the ACK frame to the i-th sensing responder, the sensing initiator sends a sensing reporting polling frame to the i+1-th sensing responder.
  • the type of cooperative sensing measurement in this embodiment is a cooperative single-base parallel mode, and each sensing responder except the first one corresponds to a sensing reporting polling frame.
  • This perception reporting polling frame is used to trigger the perception responder to send a perception measurement report frame, where i is a positive integer.
  • each sensing responder After all sensing responders receive the sensing request frame sent by the sensing initiator and reply to the sensing response frame, each sensing responder will simultaneously send and receive single-base sensing measurement frames on its own, thereby realizing awareness of the environment. The first sensing responder then sends a sensing measurement report frame to the sensing initiator.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing reporting polling frame to the i+1th sensing responder after sending the ACK frame to the i-th sensing responder.
  • the sensing initiator will send a sensing reporting polling frame to the i+1-th sensing responder.
  • the i+1th sensing responder After receiving the sensing reporting polling frame, the i+1th sensing responder will send a sensing measurement report frame to the sensing responder.
  • FIG. 24 is a schematic flowchart of the parallel mode of cooperative single-base sensing measurement provided by an exemplary embodiment of the present application. As shown in Figure 24, the process involves an Initiator (STA) and two Responders (STA A, STA B), including the following processes (from left to right):
  • STA Initiator
  • STA A, STA B Responders
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the Initiator replies with an ACK frame to STA A;
  • the Initiator sends a DMG sensing reporting polling frame to STA B, triggering STA B to report sensing measurement results;
  • STA B After the SIFS time, STA B sends a DMG perception measurement report frame to the Initiator to report the results of the perception measurement;
  • the above (7) and (10) are optional steps. In the above example, there are only 2 Responders. If there are more Responders, the above method can be used to trigger subsequent Responders to send DMG perception measurement report frames.
  • the above DMG awareness reporting polling frame has the format shown in Figure 14.
  • the DMG sensing reporting polling frame used in the embodiment of the present application can be replaced by a DMG sensing polling frame, and the DMG sensing polling frame has the format shown in Figure 10 . That is to say, the DMG sensing polling frame can also trigger the Responder to send a DMG sensing measurement report frame.
  • the Initiator sends the DMG sensing polling frame to the Responder, thereby triggering the Responder to send a DMG sensing measurement report frame.
  • the difference is that the first Responder (STA A) can actively send the DMG sensing measurement report frame to the Initiator at the SIFS time after the spontaneous self-receiving single-base sensing measurement frame, without waiting for the Initiator to send it. DMG awareness reporting polling frame.
  • the method provided by this embodiment can realize the use of the sensing initiator to trigger each participating sensing responder except the first one to perform the reporting phase in the sensing measurement process through the sensing reporting polling frame.
  • the time when each sensing responder except the first one sends a sensing measurement reporting frame is only related to the time when it receives the sensing reporting polling frame, and has nothing to do with the time when other sensing responders send sensing measurement reporting frames, which can avoid multiple The problem of cooperative sensing of sensing devices not working properly.
  • the sensing initiator can send the sensing reporting polling frame to each sensing responder except the first one in a directed manner, ensuring that every sensing responder except the first one can reliably receive the trigger signal. .
  • Figure 25 is a flow chart of a cooperative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 2502 After receiving the sensing response frames sent by all sensing responders, the sensing initiator sends a sensing measurement polling frame to the sensing senders in the first group of sensing responders.
  • each group of sensing responders includes a sensing sender and a sensing receiver.
  • Each group of sensing responders corresponds to a sensing measurement polling frame, and the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field.
  • the sensing sender in the first group of sensing responders After receiving the sensing measurement polling frame, the sensing sender in the first group of sensing responders will send a BRP frame with a TRN field to the sensing receiver in the first group, and receive the BRP frame with the TRN field sent by the sensing receiver.
  • the BRP frame of the report is used to realize the perception of the environment, and then the perception measurement report frame is sent to the perception initiator.
  • the sensing response frame corresponding to the sensing receiver in the last group of sensing responders there is a SIFS time difference between the sensing response frame corresponding to the sensing receiver in the last group of sensing responders and the sensing measurement polling frame corresponding to the sensing sender in the first group of sensing responders.
  • Step 2504 After receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, or sending an ACK frame to the sensing sender in the i-th group of sensing responders, the sensing initiator sends a message to the i+1-th sensing sender.
  • the awareness sender in the group awareness responder sends an awareness measurement poll frame.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the sensing sender in the i-th group of sensing responders.
  • the sensing initiator In the case of sending an ACK frame, after the sensing initiator sends an ACK frame to the sensing sender in the i-th group of sensing responders, it will send a sensing measurement polling frame to the sensing sender in the i+1 group of sensing responders. . Without sending an ACK frame, after receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, the sensing initiator will send a sensing sender to the sensing sender in the i+1 group of sensing responders. Perceptual measurement polling frame.
  • the sensing sender in the i+1 group of sensing responders After receiving the sensing measurement polling frame, the sensing sender in the i+1 group of sensing responders will send a BRP frame with a TRN field to the sensing receiver in the i-th group, and receive the BRP frame sent by the sensing receiver. BRP frame with report, thereby realizing the perception of the environment, and then sending the perception measurement report frame to the perception initiator.
  • i is a positive integer.
  • the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders or the ACK frame corresponding to the perception sender in the i-th group of perception responders is the same as the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders.
  • FIG. 26 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • this process is participated by one Initiator (STA) and four Responders (STA A, STA B, STA C, STA D).
  • STA A and STA B are a group
  • STA C and STA D are a group
  • STA A and STA C are perception senders
  • STA B and STA D are perception receivers (the role setting completed by the Initiator in the perception measurement setting phase).
  • STA D replies the DMG sensing response frame to the Initiator
  • the Initiator After the SIFS time, the Initiator sends a DMG sensing measurement polling frame to STA A, triggering STA A to start dual-base sensing measurement with STA B;
  • STA A After the SIFS time, STA A sends a BRP frame with a TRN field to STA B to sense the environment;
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator After the SIFS time, the Initiator sends a DMG sensing measurement polling frame to STA C, triggering STA C to start sensing measurement;
  • STA C After the SIFS time, STA C sends a BRP frame with a TRN field to STA D to sense the environment;
  • STA C After the SIFS time, STA C sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator replies with an ACK frame to STA C.
  • the above (13) and (18) are optional steps.
  • the above-mentioned DMG perception measurement report frame is in the format shown in FIG. 13 or in the format shown in FIG. 14 .
  • the Initiator needs to send DMG sensing measurement polling frames to the Tx in each group of Responders in order to trigger the dual-base sensing measurement.
  • the Tx in each group of Responders receives the DMG sensing measurement. After the SIFS time after the polling frame, the dual-base sensing measurement with Rx is started, and the other processes are the same.
  • the method provided by this embodiment enables each group of sensing responders to perform the measurement phase and reporting phase in the sensing measurement process by triggering each group of sensing responders participating in the collaboration through the sensing measurement polling frame.
  • the time when a responder performs dual-base sensing measurement is only related to the time when it receives the sensing measurement polling frame, and has nothing to do with the time when other groups of sensing responders perform dual-base sensing measurement. This can avoid the failure of cooperative sensing by multiple sensing devices to proceed normally.
  • the sensing initiator can send the sensing measurement polling frame to the sensing senders in each group of sensing responders in a directed manner, ensuring that each sensing sender can reliably receive the trigger signal.
  • Figure 27 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 2702 After receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, or sending an ACK frame to the sensing sender in the i-th group of sensing responders, the sensing initiator sends a message to the i+1-th sensing sender.
  • the awareness sender in the group awareness responder sends an awareness measurement poll frame.
  • the type of cooperative sensing measurement in this embodiment is cooperative double base, and each group of sensing responders includes a sensing sender and a sensing receiver. Each group of sensing responders except the first group corresponds to one sensing measurement polling frame.
  • the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field. Among them, i is a positive integer.
  • the first group of sensing responders After all sensing responders receive the sensing request frame sent by the sensing initiator and reply to the sensing response frame, the first group of sensing responders will perform dual-base sensing measurements to realize the perception of the environment, and the first group of sensing responders will respond The sensing sender among the senders sends the sensing measurement report frame to the sensing initiator.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the sensing sender in the i-th group of sensing responders.
  • the sensing initiator In the case of sending an ACK frame, after the sensing initiator sends an ACK frame to the sensing sender in the i-th group of sensing responders, it will send a sensing measurement polling frame to the sensing sender in the i+1 group of sensing responders. . Without sending an ACK frame, after receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, the sensing initiator will send a sensing sender to the sensing sender in the i+1 group of sensing responders. Perceptual measurement polling frame.
  • the sensing sender in the i+1 group of sensing responders After receiving the sensing measurement polling frame, the sensing sender in the i+1 group of sensing responders will send a BRP frame with a TRN field to the sensing receiver in the i-th group, and receive the BRP frame sent by the sensing receiver. BRP frame with report, thereby realizing the perception of the environment, and then sending the perception measurement report frame to the perception initiator.
  • the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders or the ACK frame corresponding to the perception sender in the i-th group of perception responders is the same as the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders.
  • FIG. 28 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • this process is participated by one Initiator (STA) and four Responders (STA A, STA B, STA C, STA D).
  • STA A and STA B are a group
  • STA C and STA D are a group
  • STA A and STA C are perception senders
  • STA B and STA D are perception receivers (the role setting completed by the Initiator in the perception measurement setting phase).
  • STA D replies the DMG sensing response frame to the Initiator
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator After the SIFS time, the Initiator sends a DMG sensing measurement polling frame to STA C, triggering STA C to start sensing measurement;
  • STA C After the SIFS time, STA C sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator replies with an ACK frame to STA C.
  • the above (12) and (17) are optional steps.
  • the above-mentioned DMG perception measurement report frame is in the format shown in FIG. 13 or in the format shown in FIG. 14 .
  • the difference is that after the last Responder (STA D) replies the DMG sensing response frame to the Initiator, after the SIFS time, the first Responder (STA A) actively starts sending BRP frames to STA B To sense the environment, there is no need to wait for the Initiator to send a DMG sensing measurement polling frame.
  • the sensing initiator triggers each group of participating sensing responders except the first group to perform the measurement phase and reporting phase in the sensing measurement process through the sensing measurement polling frame. It can be realized that the time when each group of sensing responders except the first group performs dual-base sensing measurement is only related to the time when it receives the sensing measurement polling frame, and has nothing to do with the time when other groups of sensing responders perform dual-base sensing measurement. It can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • the sensing initiator can send the sensing measurement polling frame in a directed manner to the sensing senders in each group of sensing responders except the first group, ensuring that each sensing sender can reliably receive the trigger signal.
  • Figure 29 is a flow chart of a collaborative sensing measurement method provided by an exemplary embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 2902 The sensing initiator sends sensing request frames to the sensing sender and sensing receiver in the first group of sensing responders respectively.
  • the type of cooperative sensing measurement in this embodiment is cooperative double base, and each sensing responder in a group of sensing responders corresponds to a sensing request frame.
  • Each set of perception responders includes a perception sender and a perception receiver.
  • the sensing request frame is used to trigger a group of sensing responders to perform all stages in the sensing measurement process.
  • the sensing sender and sensing receiver in the first group of sensing responders will send sensing response frames to the sensing initiator in sequence.
  • the first group of sensing responders will perform dual-base sensing measurements (including The awareness sender in the first group sends a BRP frame with a TRN field to the awareness receiver, and receives a BRP frame with a report sent by the awareness receiver), thereby realizing awareness of the environment, and the awareness of the environment by the awareness receiver.
  • the perception sender sends a perception measurement report frame to the perception responder.
  • Step 2904 After receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, or sending an ACK frame to the sensing sender in the i-th group of sensing responders, the sensing initiator sends a message to the i+1-th sensing sender.
  • the sensing sender and sensing receiver in the group sensing responder send sensing request frames respectively.
  • the sensing initiator may send an ACK frame or not send an ACK frame to the sensing sender in the i-th group of sensing responders.
  • sending an ACK frame after the sensing initiator sends an ACK frame to the sensing sender in the i-th group of sensing responders, it will send the ACK frame to the sensing sender and sensing receiver in the i+1 group of sensing responders respectively.
  • Sensing request frame Without sending an ACK frame, after receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, the sensing initiator will send a message to the sensing sender in the i+1 group of sensing responders and Sensing receivers send sensing request frames respectively.
  • the sensing sender and sensing receiver in the i+1th group of sensing responders will send sensing response frames to the sensing initiator respectively.
  • the sensing responder in the i+1th group will perform a dual-base Perception measurement is performed to realize perception of the environment, and the perception measurement report frame is sent by the perception sender in the i+1th group to the perception responder.
  • i is a positive integer.
  • the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders or the ACK frame corresponding to the perception sender in the i-th group of perception responders is the same as the perception measurement report frame corresponding to the perception sender in the i-th group of perception responders.
  • FIG. 30 is a schematic flowchart of cooperative dual-base sensing measurement provided by an exemplary embodiment of the present application.
  • this process is participated by one Initiator (STA) and four Responders (STA A, STA B, STA C, STA D).
  • STA A and STA B are a group
  • STA C and STA D are a group
  • STA A and STA C are perception senders
  • STA B and STA D are perception receivers (the role setting completed by the Initiator in the perception measurement setting phase).
  • STA A After the SIFS time, STA A sends a BRP frame with a TRN field to STA B to sense the environment;
  • STA A After the SIFS time, STA A sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator replies with an ACK frame to STA A;
  • STA C After the SIFS time, STA C sends a DMG perception measurement report frame to the Initiator to report the perception measurement results;
  • the Initiator replies with an ACK frame to STA C.
  • the above (8) and (16) are optional steps.
  • the above-mentioned DMG sensing request frame has the format shown in Figure 8. Compared with the process shown in Figure 6, the difference is that the Initiator starts interacting with the second group of Responders after interacting with the first group of Responders for all frames. That is to say, after a group of Responders completes the entire sensing measurement process, the Initiator will trigger the next group of Responders to perform the entire sensing measurement process through the DMG sensing request frame.
  • the method provided by this embodiment enables the sensing initiator to trigger the entire process of each group of sensing responders participating in the collaboration to perform sensing measurements through the sensing request frame, so that each group of sensing responders can start to perform sensing measurements.
  • the time of the process is only related to the time when it receives the sensing request frame, which can avoid the problem that cooperative sensing of multiple sensing devices cannot proceed normally.
  • Figure 31 is a block diagram of a cooperative sensing measurement device provided by an exemplary embodiment of the present application. As shown in Figure 31, the device includes:
  • the trigger module 3101 is configured to use a polling triggering method to trigger each group or each sensing responder participating in the collaboration to perform all or part of the stages in the sensing measurement process during the collaborative sensing measurement process.
  • the polling trigger is implemented based on at least one of the following frames:
  • the sensing request frame is used to trigger the sensing responder to perform all stages in the sensing measurement process
  • the sensing measurement polling frame is used to trigger the sensing responder to perform sensing in the sensing measurement process.
  • the perception reporting polling frame is used to trigger the perception responder to execute the reporting phase in the perception measurement process.
  • each group or each perception responder corresponds to one perception measurement polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base sequential mode; the device further includes a sending module 3102, and the sending module 3102 is used for:
  • the sensing measurement polling frame is used to trigger the sensing responder to send a single-base sensing measurement frame, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the sensing responders includes a sensing sender and a sensing receiver; the device also includes a sending module 3102. Module 3102, for:
  • the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field, and i is a positive integer.
  • each group of the sensing responders except the first group or each sensing responder except the first one corresponds to one sensing measurement polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base sequential mode; the device further includes a sending module 3102, and the sending module 3102 is used for:
  • the sensing measurement polling frame is used to trigger the sensing responder to send a single-base sensing measurement frame, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the sensing responders includes a sensing sender and a sensing receiver; the device also includes a sending module 3102. Module 3102, for:
  • the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field, and i is a positive integer.
  • each sensing responder in a group of sensing responders corresponds to one sensing request frame, or each sensing responder corresponds to one sensing request frame.
  • the type of cooperative sensing measurement is the sequential mode of cooperative single base; the device further includes a sending module 3102, and the sending module 3102 is used for:
  • the sensing request frame is used to trigger one sensing responder to perform all stages in the sensing measurement process, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the sensing responders includes a sensing sender and a sensing receiver; the device also includes a sending module 3102. Module 3102, for:
  • sensing sender After receiving the sensing measurement report frame sent by the sensing sender in the i-th group of sensing responders, or sending an ACK frame to the sensing sender in the i-th group of sensing responders, send a message to the i-th sensing sender.
  • the sensing sender and the sensing receiver in the +1 group of sensing responders respectively send the sensing request frame;
  • the sensing request frame is used to trigger a group of sensing responders to perform all stages in the sensing measurement process, and i is a positive integer.
  • each sensing responder corresponds to a sensing reporting polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base parallel mode; the device further includes a sending module 3102, and the sending module 3102 is used for:
  • the first sensing responder After the first sensing responder sends and receives a single-base sensing measurement frame, send the sensing reporting polling frame to the first sensing responder;
  • the perception reporting polling frame is used to trigger the perception responder to send the perception measurement report frame, and i is a positive integer.
  • each sensing responder except the first one corresponds to one sensing reporting polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base parallel mode; the device further includes a sending module 3102, and the sending module 3102 is used for:
  • the perception reporting polling frame is used to trigger the perception responder to send the perception measurement report frame, and i is a positive integer.
  • the perception measurement polling frame is a type of TDD beamforming frame.
  • the MAC frame body of the TDD beamforming frame includes a TDD beamforming control field, and the TDD beamforming control field includes a TDD group beamforming field and a TDD beam measurement field;
  • the TDD beamforming frame is the perception measurement polling frame.
  • the sensing measurement polling frame is a sensing polling frame in which a polling type field is added to the TDD beamforming control field in the MAC frame body, and the polling type field is used to indicate that the polling type field is added.
  • the sensing polling frame in the polling type field is the sensing measurement polling frame.
  • the sensing polling frame in which the polling type field is added is the sensing measurement polling frame.
  • the sensing reporting polling frame is a sensing polling frame in which a polling type field is added to the TDD beamforming control field in the MAC frame body, and the polling type field is used to indicate that the polling type field is added.
  • the sensing polling frame in the polling type field is the sensing reporting polling frame.
  • the sensing polling frame in which the polling type field is added is the sensing reporting polling frame.
  • Figure 32 is a block diagram of a cooperative sensing measurement device provided by an exemplary embodiment of the present application. As shown in Figure 32, the device includes:
  • the execution module 3201 is configured to execute all or part of the stages in the sensing measurement process according to the triggering of the sensing initiator using the polling trigger method by each group or each device participating in the collaboration during the collaborative sensing measurement process.
  • the polling trigger is implemented based on at least one of the following frames:
  • the perception request frame is used to trigger the device to execute all stages in the perception measurement process
  • the perception measurement polling frame is used to trigger the device to execute the perception measurement phase and report in the perception measurement process.
  • the perception reporting polling frame is used to trigger the device to execute the reporting stage in the perception measurement process.
  • each group or each device corresponds to one perceptual measurement polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base sequential mode; the device further includes a receiving module 3202, and the receiving module 3202 is used to:
  • the first device After the sensing initiator receives the sensing response frames sent by all the devices, the first device receives the sensing measurement polling frame sent by the sensing initiator;
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the i-th device, or sends an ACK frame to the i-th device, the i+1-th device receives the sensing initiator.
  • the sensing measurement polling frame
  • the sensing measurement polling frame is used to trigger the device to send a single-base sensing measurement frame, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the devices includes a sensing sender and a sensing receiver; the device also includes a receiving module 3202, and the receiving module 3202 , used for:
  • the sensing sender in the first group of devices receives the sensing measurement polling frame sent by the sensing initiator;
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the sensing sender in the i-th group of devices, or sends an ACK frame to the sensing sender in the i-th group of devices, the i-th The sensing sender in the device in the +1 group receives the sensing measurement polling frame sent by the sensing initiator;
  • the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field, and i is a positive integer.
  • each group of said devices except the first group or each said device except the first one corresponds to one said sensing measurement polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base sequential mode; the device further includes a receiving module 3202, and the receiving module 3202 is used to:
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the i-th device, or sends an ACK frame to the i-th device, the i+1-th device receives the sensing initiator.
  • the sensing measurement polling frame
  • the sensing measurement polling frame is used to trigger the device to send a single-base sensing measurement frame, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the devices includes a sensing sender and a sensing receiver; the device also includes a receiving module 3202, and the receiving module 3202 , used for:
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the sensing sender in the i-th group of devices, or sends an ACK frame to the sensing sender in the i-th group of devices, the i-th The sensing sender in the device in the +1 group receives the sensing measurement polling frame sent by the sensing initiator;
  • the sensing measurement polling frame is used to trigger the sensing sender to send a BRP frame carrying a TRN field, and i is a positive integer.
  • each device in a group of devices corresponds to one sensing request frame, or each device corresponds to one sensing request frame.
  • the type of cooperative sensing measurement is a cooperative single-base sequential mode; the device further includes a receiving module 3202, and the receiving module 3202 is used to:
  • the first device receives the sensing request frame sent by the sensing initiator
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the i-th device, or sends an ACK frame to the i-th device, the i+1-th device receives the sensing initiator.
  • the sensing request frame
  • the sensing request frame is used to trigger one of the devices to perform all stages in the sensing measurement process, and i is a positive integer.
  • the type of cooperative sensing measurement is cooperative double base, and each group of the devices includes a sensing sender and a sensing receiver; the device also includes a receiving module 3202, and the receiving module 3202 , used for:
  • the sensing sender and the sensing receiver in the first group of devices respectively receive the sensing request frame sent by the sensing initiator;
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the sensing sender in the i-th group of devices, or sends an ACK frame to the sensing sender in the i-th group of devices, the i-th The sensing sender and the sensing receiver in the +1 group of devices respectively receive the sensing request frame sent by the sensing initiator;
  • the sensing request frame is used to trigger a group of devices to perform all stages in the sensing measurement process, and i is a positive integer.
  • each device corresponds to a sensing reporting polling frame.
  • the type of cooperative sensing measurement is a cooperative single-base parallel mode; the device further includes a receiving module 3202, and the receiving module 3202 is used for:
  • the first device After the first device sends and receives a single-base sensing measurement frame, the first device receives the sensing reporting polling frame sent by the sensing initiator;
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the i-th device, or sends an ACK frame to the i-th device, the i+1-th device receives the sensing initiator.
  • the sensing reporting polling frame
  • the perception reporting polling frame is used to trigger the device to send the perception measurement report frame, and i is a positive integer.
  • each of the devices except the first one corresponds to one of the sensing reporting polling frames.
  • the type of cooperative sensing measurement is a cooperative single-base parallel mode; the device further includes a receiving module 3202, and the receiving module 3202 is used for:
  • the sensing initiator After the sensing initiator receives the sensing measurement report frame sent by the i-th device, or sends an ACK frame to the i-th device, the i+1-th device receives the sensing initiator.
  • the sensing reporting polling frame
  • the perception reporting polling frame is used to trigger the device to send the perception measurement report frame, and i is a positive integer.
  • the perception measurement polling frame is a type of TDD beamforming frame.
  • the MAC frame body of the TDD beamforming frame includes a TDD beamforming control field, and the TDD beamforming control field includes a TDD group beamforming field and a TDD beam measurement field;
  • the TDD beamforming frame is the perception measurement polling frame.
  • the sensing measurement polling frame is a sensing polling frame in which a polling type field is added to the TDD beamforming control field in the MAC frame body, and the polling type field is used to indicate that the polling type field is added.
  • the sensing polling frame in the polling type field is the sensing measurement polling frame.
  • the sensing polling frame in which the polling type field is added is the sensing measurement polling frame.
  • the sensing reporting polling frame is a sensing polling frame in which a polling type field is added to the TDD beamforming control field in the MAC frame body, and the polling type field is used to indicate that the polling type field is added.
  • the sensing polling frame in the polling type field is the sensing reporting polling frame.
  • the sensing polling frame in which the polling type field is added is the sensing reporting polling frame.
  • the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG 33 is a schematic structural diagram of a perception measurement device (perception initiator and/or perception responder) provided by an exemplary embodiment of the present application.
  • the perception measurement device 3300 includes: a processor 3301, a receiver 3302, a transmitter 3303, and a memory. 3304 and bus 3305.
  • the processor 3301 includes one or more processing cores.
  • the processor 3301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 3302 and the transmitter 3303 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 3304 is connected to the processor 3301 through a bus 3305.
  • the memory 3304 can be used to store at least one instruction, and the processor 3301 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 3304 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • PROM Programmable Read-Only Memory
  • Embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored, and the computer program is used to be executed by a perceptual measurement device to implement the above-mentioned perceptual measurement device (perception initiator). and/or perceived responders) collaborative perception measurement method.
  • a perceptual measurement device to implement the above-mentioned perceptual measurement device (perception initiator). and/or perceived responders) collaborative perception measurement method.
  • the computer-readable storage medium may include: read-only memory (Read-Only Memory, ROM), random access memory (Random-Access Memory, RAM), solid state drive (Solid State Drives, SSD) or optical disk, etc.
  • random access memory can include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • Embodiments of the present application also provide a chip, which includes programmable logic circuits and/or program instructions, and is used to implement the cooperative sensing measurement method of the above-mentioned sensing measurement device when the perceptual measurement device installed with the chip is running.
  • Embodiments of the present application also provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the perceptual measurement device is readable from the computer.
  • the storage medium reads and executes the computer instructions to implement the cooperative sensing measurement method of the above sensing measurement device.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种协作感知测量方法、装置、设备及存储介质,属于感知测量领域。所述方法包括:在协作感知测量的过程中,感知发起者采用轮询触发的方式向每组参与协作的感知响应者分别指示执行感知测量流程的时机,一组参与协作的感知响应者包括一个或多个感知响应者。上述轮询触发可以是基于感知请求帧、感知测量轮询帧或感知上报轮询帧来实现。每组感知响应者对应其包括的感知响应者数量的感知请求帧,或每组感知响应者对应一个感知上报轮询帧,或每组感知响应者对应一个感知测量轮询帧,或除第一组以外的每组感知响应者对应一个感知上报轮询帧,或除第一组以外的每组感知响应者对应一个感知测量轮询帧。本申请可避免感知无法正常进行。

Description

协作感知测量方法、装置、设备及存储介质 技术领域
本申请涉及感知测量领域,特别涉及一种协作感知测量方法、装置、设备及存储介质。
背景技术
无线局域网(Wireless Local Area Networks,WLAN)感知是指通过测量WLAN信号经过人或物的散射和/或反射的变化来感知环境中的人或物的技术。
在协作感知中,参与感知的设备的数量不少于两个,通常包括一个感知发起者(Sensing Initiator)和至少一个感知响应者(Sensing Responder)。其中,感知发起者用于控制所有感知响应者以实现协作感知。
发明内容
本申请提供了一种协作感知测量方法、装置、设备及存储介质。所述技术方案如下:
根据本申请的一方面,提供了一种协作感知测量方法,所述方法由感知发起者执行,所述方法包括:
在协作感知测量的过程中,所述感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
根据本申请的一方面,提供了一种协作感知测量方法,所述方法由感知响应者执行,所述方法包括:
在协作感知测量的过程中,每组或每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
根据本申请的另一方面,提供了一种协作感知测量装置,所述装置包括:
触发模块,用于在协作感知测量的过程中,所述装置采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
根据本申请的另一方面,提供了一种协作感知测量装置,所述装置包括:
执行模块,用于在协作感知测量的过程中,每组或每个参与协作的所述装置根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
根据本申请的另一方面,提供了一种感知发起设备,所述设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如上述方面所述的协作感知测量方法。
根据本申请的另一方面,提供了一种感知响应设备,所述设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如上述方面所述的协作感知测量方法。
根据本申请实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现上述方面所述的协作感知测量方法。
根据本申请实施例的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现上述方面所述的协作感知测量方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述方面所述的协作感知测量方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过由感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,从而能够使得参与协作的各个或各组感知响应者能够根据感知发起者的触发来执行感知测量流程中的相关阶段。可实现无需根据感知发起者发送的确认(Acknowledge,ACK)帧来确定启动感知测量的时机,以及无需判断前一个感知响应者的感知测量流程是否结束,能够避免多个感知设备的协作感知无法正常进行的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的感知测量***的框图;
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图;
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图;
图4是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图;
图5是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图;
图6是本申请一个示例性实施例提供的毫米波协作双基感知测量实例的示意图;
图7是本申请一个示例性实施例提供的波束赋形帧的格式的示意图;
图8是本申请一个示例性实施例提供的感知请求帧的格式的示意图;
图9是本申请一个示例性实施例提供的感知响应帧的格式的示意图;
图10是本申请一个示例性实施例提供的感知轮询帧的格式的示意图;
图11是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图12是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图13是本申请一个示例性实施例提供的感知测量轮询帧的格式的示意图;
图14是本申请一个示例性实施例提供的感知测量轮询帧的格式的示意图;
图15是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图16是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图;
图17是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图18是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图;
图19是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图20是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图;
图21是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图22是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图;
图23是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图24是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图;
图25是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图26是本申请一个示例性实施例提供的协作双基感知测量的流程示意图;
图27是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图28是本申请一个示例性实施例提供的协作双基感知测量的流程示意图;
图29是本申请一个示例性实施例提供的协作感知测量方法的流程图;
图30是本申请一个示例性实施例提供的协作双基感知测量的流程示意图;
图31是本申请一个示例性实施例提供的协作感知测量装置的框图;
图32是本申请一个示例性实施例提供的协作感知测量装置的框图;
图33是本申请一个示例性实施例提供的感知测量设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
首先,对本申请实施例涉及的一些名词作如下介绍:
WLAN感知(WLAN Sensing):通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN感知通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵/移动/跌倒等的检测、姿势识别以及空间三维图像建立等诸多功能。
关联标识符(Association Identifier,AID):用于标识跟接入点建立关联后的终端。
参与WLAN感知的WLAN设备可能包括如下角色(Role):
感知发起者(Sensing Initiator):也可称为感知会话发起者、感知发起设备、Initiator。感知发起者是发起感知测量(Sensing Measurement)并想要获知感知结果的设备;
感知响应者(Sensing Responder):也可称为感知会话响应者、感知响应设备、Responder。感知响应者是参与感知测量的非感知发起设备的设备;
感知信号发送者(Sensing Transmitter):也可称为感知信号发送设备、感知发送者、感知发送设备、Transmitter。感知信号发送者是发送感知(Sensing)物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)的设备;
感知信号接收者(Sensing Receiver):也可称为感知信号接收设备、感知接收者、感知接收设备、Receiver。感知信号接收者是接收回响(Echo)信号的设备。回响信号是感知信号发送者发送的感知物理层协议数据单元经过人或物散射和/或反射得到的。
WLAN终端在一个感知测量中可能有一个或多个角色,例如感知发起者可以仅仅是感知发起者,也可以成为感知信号发送者,也可以成为感知信号接收者,还可以同时是感知信号发送者和感知信号接收者。上述设备可统称为感知测量设备。
接着,对本申请实施例涉及的相关技术背景进行介绍:
图1是本申请一个示例性实施例提供的感知测量***的框图。该感知测量***中包括终端与终端,或终端与网络设备,或接入点(Access Point,AP)与站点(Station,STA),本申请对此不作限定。本申请中以感知测量***中包括:AP和STA为例进行说明。
在一些场景中,AP可以或称AP STA,即在某种意义上来说,AP也是一种STA。在一些场景中,STA或称非AP STA(non-AP STA)。
在一些实施例中,STA可以包括AP STA和non-AP STA。
通信***中的通信可以是AP与non-AP STA之间通信,也可以是non-AP STA与non-AP STA之前通信,或者STA和peer STA之间通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有无线保真(Wireless-Fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信***中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet ofThings,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持但不限于802.11bf制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式。
在一些实施例中,AP可以为支持802.11bf制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/Wi-Fi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(Industrial Control)中的无线设备、机顶盒、无人驾驶(Self Driving)中的无线设备、车载通信设备、远程医疗(Remote Medical)中的无线设备、智能电网(Smart Grid)中的无线设备、运输安全(Transportation Safety)中的无线设备、智慧城市(Smart City)中的无线设备或智慧家庭(Smart Home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(60GHz)。
站点和接入点之间存在一个或多个链路。
在一些实施例中,站点和接入点支持多频段通信,例如,同时在2.4GHz,5GHz,6GHz以及60GHz频段上进行通信,或者同时在同一频段(或不同频段)的不同信道上通信,提高设备之间的通信吞吐量和/或可靠性。这种设备通常称为多频段设备,或称为多链路设备(Multi-Link Device,MLD),有时也称为 多链路实体或多频段实体。多链路设备可以是接入点设备,也可以是站点设备。如果多链路设备是接入点设备,则多链路设备中包含一个或多个AP;如果多链路设备是站点设备,则多链路设备中包含一个或多个non-AP STA。
包括一个或多个AP的多链路设备或称AP,包括一个或多个non-AP STA的多链路设备或称Non-AP,在申请实施例中,Non-AP可以称为STA。
在本申请实施例中,AP可以包括多个AP,Non-AP包括多个STA,AP中的AP和Non-AP中的STA之间可以形成多条链路,AP中的AP和Non-AP中的对应STA之间可以通过对应的链路进行数据通信。
AP是一种部署在无线局域网中用以为STA提供无线通信功能的设备。站点可以包括:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,站点还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1 Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,本申请实施例对此并不限定。
在本申请实施例中,站点和接入点均支持IEEE 802.11标准,但不限于IEEE 802.11标准,也可以是其它与感知测量有关的标准,例如为IEEE 802.11bf D0.1标准。
在WLAN感知场景下,参与感知的WLAN终端包括:感知发起者和感知响应者。进一步的,感知响应者可分为感知发送者和感知接收者。
感知测量可应用于蜂窝网络通信***、无线局域网(Wireless Local Area Networks,WLAN)***或无线保真网络(Wi-Fi)***中,本申请对此不做限定。本申请中以感知测量应用于WLAN或Wi-Fi***中为例进行示意性说明。
可选地,本申请实施例中的协作感知测量是基于毫米波实现的。对毫米波感知类型进行介绍:
图2是本申请一个示例性实施例提供的毫米波感知类型的示意图。如图2所示,图2的(a)为单基感知,参与感知的设备仅有一个,该设备通过自发(自行发送)感知PPDU和自收(自行接收)Echo信号来感知环境,与传统的雷达工作方式相似。其中,自发自收指设备在发送感知PPDU时,会将该感知PPDU的发送方地址以及接收方地址均设置为该设备自身的地址。设备发送的感知PPDU经过环境的散射和/或反射,会形成Echo信号,之后该设备可通过自身的地址接收到该Echo信号,通过分析该Echo信号能够实现对环境的感知。图2的(b)为双基感知,参与感知的设备有两个,其中一个设备发送感知PPDU,另一个设备接收Echo信号来感知环境。图2的(c)为协作单基感知,参与感知的设备数量大于一个,每个设备通过自发感知PPDU和自收Echo信号来感知环境,存在一个Initiator控制所有其他设备以实现协作。图2的(d)为协作双基感知,参与感知的设备多于两个,即存在至少两对双基感知设备,每个发送设备(感知发送者)分别发送感知PPDU且由与其同组的接收设备(感知接收者)接收相应的Echo信号,从而实现协作感知。图2的(e)为多基感知,参与感知的设备大于两个,一个发送设备发送感知PPDU,多个接收设备同时接收Echo信号并同时完成环境感知。
对毫米波感知的流程进行介绍:
图3是本申请一个示例性实施例提供的毫米波感知的流程的示意图。如图3所示,该流程为毫米波感知的一般流程,从左向右依次为会话建立(session setup)阶段、毫米波感知测量设置(方向性多吉比特(Directional Multi-Gigabit,DMG)Measurement setup)阶段和感知测量阶段。其中,感知测量阶段由多个感知测量猝发(Burst)组成,每个猝发又由多个感知测量实例(DMG Sensing Instance)组成。猝发与猝发之间的时间间隔为猝发间间隔(Inter-burst interval),一个猝发中相邻的感知测量实例之间的时间间隔为猝发内间隔(Intra-burst interval)。图3中的MACADDR是指媒体接入控制(Medium Access Control,MAC)地址(address),AID是指关联标识符,DMG测量设置ID(DMG Measurement setup ID)是指毫米波感知测量设置标识,MS ID是指测量设置(Measurement Setup,MS)标识,猝发ID(Burst ID)是指猝发标识,实例(Instance)序列号(Sequential Number,SN)是指感知测量实例的标识,也可称为感知实例SN(SensingInstanceSN)。上述描述中的“猝发”也可称为“突发”。
对毫米波协作单基感知测量实例进行介绍:
毫米波协作单基感知测量实例存在两种模式,一种为顺序模式,另一种为并行模式。示例地,图4是本申请一个示例性实施例提供的毫米波协作单基感知测量的顺序模式实例的示意图,图5是本申请一个示例性实施例提供的毫米波协作单基感知测量的并行模式实例的示意图。
如图4和图5所示,顺序模式与并行模式的相同点在于:感知发起者(Initiator)在感知测量实例的初始阶段需要分别发送感知请求(DMG Sensing Request)帧至每个感知响应者(Responder),而且每个感知响应者需要在短帧间隔(Short Interframe Space,SIFS)时间内回复一个感知响应(DMG Sensing Response)帧至感知发起者。DMG感知请求也可称为RQ,DMG感知响应也可称为RSP。
如图4和图5所示,顺序模式与并行模式的不同点在于:顺序模式中,每个感知响应者依次自行发送且接收单基感知测量帧(Monostatic PPDU)来感知环境,并在SIFS时间内发送感知测量报告帧(DMG Sensing Measurement Report)至感知发起者。并行模式中,每个感知响应者同时发送且接收单基感知测量帧来感知环境,随后依次发送DMG感知测量报告帧(感知测量报告帧)至感知发起者。
需要说明的是,图4和图5中,在感知发起者或感知响应者对应的横线上方的格子,表示设备发送的帧,横线下方的格子(空白格)表示设备接收的帧,并且发送的帧和接收的帧之间是对应的。对于正中压在感知响应者对应的横线上的格子,表示感知响应者自发自收的帧,例如感知响应者自发自收的单基感知测量帧。例如,图4中感知发起者向感知响应者STA A发送了RQ(由感知发起者对应的横线上方的格子表示),相应的,感知响应者STA A会接收到该RQ(由感知响应者STA A对应的横线下方的空白格子表示)。本申请的其它附图中的空白格的含义可参照上述说明,对此不再赘述。
对毫米波协作双基感知测量实例进行介绍:
示例地,图6是本申请一个示例性实施例提供的毫米波协作双基感知测量实例的示意图。如图6所示,该协作双基感知测量实例由一个Initiator(STA)和四个Responder(STA A、STA B、STA C、STA D)参与。其中,STA A和STA C为感知发送者,STA B和STA D为感知接收者。STA A发送带有训练(Training,TRN)字段的波束优化协议(Beam Refinement Protocol,BRP)帧(BRP frame with TRN)至STA B,STA B回复带有报告(Report)的BRP帧(BRP frame with Report)至STA A,之后STA A发送感知测量报告(DMG Sensing Measurement Report)帧将测量结果上报至Initiator。同理,STA C发送带有TRN字段的BRP帧至STA D,STA D回复带有Report的BRP帧至STA C,之后STA C发送DMG Sensing Measurement Report帧将测量结果上报Initiator。
对时分双工(Time Division Duplexing,TDD)波束赋形帧进行介绍:
图7是本申请一个示例性实施例提供的波束赋形帧的格式的示意图。如图7所示,TDD波束赋形帧(TDD Beamforming frame)为控制帧的一种。其MAC帧体由两部分组成:TDD波束赋形控制(TDD Beamforming Control)字段和TDD波束赋形信息(TDD Beamforming Information)字段。TDD波束赋形帧的MAC帧头中的字段的含义如下:
·帧控制(Frame Control):指示该MAC帧的类型等信息,其中包括指示该帧为TDD波束赋形帧的信息。
·时长(Duration):指示该帧的发送时间长度。
·接收方地址(Receiver Address,RA):指示帧接收者的MAC地址。
·发送方地址(Transmitter Address,TA):指示帧发送者的MAC地址。
·TDD波束赋形帧类型(TDD Beamforming Frame Type):指示TDD波束赋形帧的类型,具体取值及其含义可参见表1。
表1
取值 含义
0 TDD扇区扫描(Sector Sweep,SSW)
1 TDD SSW反馈(Feedback)
2 TDD SSW确认(Ack)
3 DMG感知
如表1所示,TDD波束赋形帧类型字段取值0、1、2均表示TDD波束赋形帧为波束训练相关的类型,该类型与本申请实施例提供的方法无关,取值3表示TDD波束赋形帧为DMG感知相关的类型。
当TDD波束赋形帧类型字段的取值为3时,TDD群组波束赋形(TDD Group Beamforming)字段和TDD波束测量(TDD Beam Measurement)字段共同指示一个TDD波束赋形帧在DMG感知中的用途,具体取值及其含义可参见表2。
表2
Figure PCTCN2022107539-appb-000001
如表2所示,在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知请求帧(感知请求帧);在TDD群组波束赋形字段取值为0,且TDD波束测量字 段取值为1时,指示该TDD波束赋形帧为DMG感知响应帧(感知响应帧);在TDD群组波束赋形字段取值为1且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为DMG感知轮询帧(感知轮询帧)。
对DMG感知请求帧进行介绍:
图8是本申请一个示例性实施例提供的感知请求帧的格式的示意图。如图8所示,DMG感知请求帧的TDD波束赋形信息字段中的字段的含义如下:
·测量设置ID(Measurement Setup ID):与该帧相关的感知测量设置的标识符。
·测量猝发ID(Measurement Burst ID):与该帧相关的感知测量猝发的标识符。
·感知实例(Sensing Instance)序列号(Sequential Number,SN):指示一个感知测量实例在一个测量猝发中的序号。
·感知类型(Sensing type):指示该帧所请求的感知类型,具体取值及含义可参见表3:
表3
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 多基(Multistatic)
3 保留(Reserved)
·STA ID:指示某个STA在一个感知测量实例中参与测量的顺序。
·第一波束索引(First Beam Index):指示在一个感知测量实例中第一个使用的发送波束的索引。
·实例中STA数量(Num of STAs in Instance):指示一个感知测量实例中参与测量的STA的个数。
·实例中PPDU数量(Num of PPDUs in Instance):指示一个感知测量实例中出现的PPDU的个数。
·增强型方向性多吉比特(Enhanced Directional Multi-Gigabit,EDMG)TRN长度(EDMG TRN Length):指示一个PPDU中包含的TRN-单元(Unit)的个数。
·每个发送(Transmit,TX)TRN-Unit的接收(Receive,RX)TRN-Unit的数量(RX TRN-Units per Each TX TRN-Unit):指示连续向相同方向发送的TRN-Unit的数量。
·EDMG TRN-Unit P:指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段(TRN subfield)的个数。
·EDMG TRN-Unit M:指示在一个TRN-Unit中波束方向可变的TRN子字段的个数。
·EDMG TRN-Unit N:指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数。
·TRN子字段序列长度(TRN Subfield Sequence Length):指示每个TRN子字段所使用的格雷序列的长度。
·带宽(Bandwidth):指示发送TRN字段所使用的带宽。
对DMG感知响应帧进行介绍:
图9是本申请一个示例性实施例提供的感知响应帧的格式的示意图。如图9所示,DMG感知响应帧的MAC帧体仅包含TDD波束赋形控制字段。
对DMG感知轮询帧进行介绍:
图10是本申请一个示例性实施例提供的感知轮询帧的格式的示意图。如图10所示,DMG感知轮询帧的TDD波束赋形信息字段中的字段的含义如下:
·测量设置ID(Measurement Setup ID):指示与该DMG感知轮询帧相关的感知测量设置的标识符。
·测量猝发ID(Measurement Burst ID):指示与该DMG感知轮询帧相关的感知测量猝发的标识符。
·感知实例SN(SensingInstanceSequential Number):指示与该DMG感知轮询帧相关的感知测量实例的标识符。
对上述协作感知测量中的定时问题进行分析:
在如图4所示的协作单基感知测量的顺序模式的流程中,感知响应者STA B应该在感知发起者回复确认(Acknowledge,ACK)帧至感知响应者STA A之后的SIFS时间内发送和接收单基感知测量帧。但是,由于毫米波通信通常定向发送信号(使用较窄宽度的波束),所以该ACK帧会指向感知响应者STA A而非STA B,因此无法保证STA B能够收到ACK帧,进而无法保证STA B能够准确地在感知发起者发送ACK帧之后的SIFS时间内发出单基感知测量帧。
另外,感知响应者STA A发送和接收单基感知测量帧所持续的时长和发送DMG感知测量报告帧(感知测量报告帧)所持续的时长是可变的。这是因为目前没有明确规定该单基感知测量帧的格式,任何符合要求的PPDU(发送地址=接收地址)都可以用来实现单基感知测量。然而,符合要求的PPDU存在多种,例如DMG控制模式(controlmode)PPDU,DMG单载波(Single Carrier,SC)模式PPDU,EDMG控制 模式PPDU,EDMG SC模式PPDU,EDMG正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)模式PPDU。其中,每种PPDU所持续的时长存在不同。另外,由于DMG感知测量报告帧为管理帧,所以可以使用不同的调制编码方案(Modulation and Coding Scheme,MCS)来发送,导致DMG感知测量报告帧所持续的时长可能也不同。
因此,在上述协作单基感知测量的顺序模式的流程中,感知响应者STA B应该在什么时刻发送和接收单基感知测量帧是不确定的,从而可能出现无法正常进行协作单基感知的问题。
在如图5所示的协作单基感知测量的并行模式的流程中,感知响应者STA B应该在感知发起者回复ACK帧至感知响应者STA A之后的SIFS时间内发送DMG感知测量报告帧至感知发起者。但是,这里同样会遇到感知响应者STA B无法收到ACK帧和感知响应者STA A发送单基感知测量帧和DMG感知测量报告帧所持续的时长可变的问题,导致STA B无法准确定时发送自己的DMG感知测量报告帧,从而无法顺利完成协作单基感知实例。
另外,在如图6所示的协作双基感知测量的流程中,如果感知发送设备的数量大于一个也会出现类似上述协作单基感知类型中的定时问题。具体地,STA C需要在感知发起者回复ACK帧至STA A之后的SIFS时间开始发送BRP帧。但是,由于毫米波通信***使用的波束较窄,感知发起者发送的ACK帧的信号会仅指向STA A所在的方向,难以保证STA C能收到该帧,从而导致STA C无法按时发送BRP帧,最终影响协作双基感知测量实例的正常进行。
本申请实施例提供的方法,通过由感知发起者采用轮询触发方式触发每组(协作双基)或每个(协作单基)参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,该轮询触发可通过感知请求帧、感知测量轮询帧和感知上报轮询帧中的一种实现,从而能够使得参与协作的各个或各组感知响应者能够根据感知发起者的触发来执行感知测量流程中的相关阶段。可实现无需根据感知发起者发送的ACK帧来确定启动感知测量的时机,以及无需判断前一个感知响应者的感知测量流程是否结束,能够避免多个感知设备的协作感知无法正常进行的问题。
图11是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可由感知发起者执行,该方法包括:
步骤1102:在协作感知测量的过程中,感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
该协作感知测量可分为协作单基的顺序模式类型、协作单基的并行模式类型以及协作双基类型。在协作单基感知测量的流程中,感知发起者会触发每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。在协作双基感知测量的流程中,感知发起者会触发每组参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。可选地,每组参与协作的感知响应者包括一个感知发送者和一个感知接收者,在该协作双基感知测量中,存在至少两组感知响应者。
示例地,如图4所示,在协作单基感知测量的顺序模式的流程中,可包括请求阶段、感知测量阶段以及上报阶段。其中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤。
示例地,如图5所示,在协作单基感知测量的并行模式的流程中,可包括请求阶段、感知测量阶段以及上报阶段。其中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤。
示例地,如图6所示,在协作双基感知测量的流程中,可包括请求阶段、感知测量阶段以及上报阶段。其中,请求阶段包括感知发起者向感知响应者(包括感知发送者和感知接收者)发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤。感知测量阶段包括感知发送者向感知接收者发送带有TRN字段的BRP帧以及感知接收者向感知发送者发送带有Report的BRP帧的步骤。上报阶段包括感知发送者向感知发起者发送感知测量报告帧的步骤。
可选地,感知发起者的轮询触发基于如下至少一种帧实现:
·感知请求帧(DMG Sensing Request帧);
·感知测量轮询帧(DMG Sensing Measurement Poll帧);
·感知上报轮询帧(DMG Sensing Report Poll帧);
其中,感知测量轮询帧为触发帧,具体是用于触发用于感知测量的PPDU发送的触发帧。感知上报轮询帧为触发帧,具体是用于触发感知测量结果上报的触发帧。
可选地,感知请求帧用于触发感知响应者执行感知测量流程中的全部阶段,感知测量轮询帧用于触发 感知响应者执行感知测量流程中的感知测量阶段以及上报阶段,感知上报轮询帧用于触发感知响应者执行感知测量流程中的上报阶段。
可选地,感知测量轮询帧是用于触发感知响应者发送用于感知测量的PPDU的触发帧,例如用于触发感知响应者发送单基感知测量帧。感知响应者在接收到感知测量轮询帧后,会依次执行感知测量以及感知测量之后的感知测量结果上报。感知上报轮询帧是用于触发感知响应者进行感知测量结果上报的触发帧,例如用于触发感知响应者发送感知测量报告帧。感知响应者在接收到感知上报轮询帧后,会执行感知测量结果上报。
可选地,在协作单基感知测量的顺序模式或协作双基感知测量中,感知发起者通过感知请求帧,触发感知响应者执行感知测量流程中的全部阶段。在协作单基感知测量的顺序模式或协作双基感知测量中,感知发起者通过感知测量轮询帧,触发感知响应者执行感知测量流程中的感知测量阶段以及上报阶段。在协作单基感知测量的并行模式中,感知发起者通过感知上报轮询帧,触发感知响应者执行感知测量流程中的上报阶段。
综上所述,本实施例提供的方法,通过由感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,从而能够使得参与协作的各个或各组感知响应者能够根据感知发起者的触发来执行感知测量流程中的相关阶段。可实现无需根据感知发起者发送的ACK帧来确定启动感知测量的时机,以及无需判断前一个感知响应者的感知测量流程是否结束,能够避免多个感知设备的协作感知无法正常进行的问题。
图12是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可由感知响应者执行,该方法包括:
步骤1202:在协作感知测量的过程中,每组或每个参与协作的感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
该协作感知测量可分为协作单基的顺序模式类型、协作单基的并行模式类型以及协作双基类型。在协作单基感知测量的流程中,感知发起者会触发每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。在协作双基感知测量的流程中,感知发起者会触发每组参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。可选地,每组参与协作的感知响应者包括一个感知发送者和一个感知接收者,在该协作双基感知测量中,存在至少两组感知响应者。
示例地,在协作单基感知测量的顺序模式的流程中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤;在协作单基感知测量的并行模式的流程中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤,感知测量阶段包括感知响应者发送单基感知测量帧的步骤,上报阶段包括感知响应者向感知发起者发送感知测量报告帧的步骤;在协作双基感知测量的流程中,请求阶段包括感知发起者向感知响应者发送感知请求帧和感知响应者向感知发起者发送感知响应帧的步骤。感知测量阶段包括感知发送者向感知接收者发送带有TRN字段的BRP帧以及感知接收者向感知发送者发送带有Report的BRP帧的步骤。上报阶段包括感知发送者向感知发起者发送感知测量报告帧的步骤。
可选地,感知发起者的轮询触发基于如下至少一种帧实现:
·感知请求帧;
·感知测量轮询帧;
·感知上报轮询帧;
其中,感知测量轮询帧为触发帧,具体是用于触发用于感知测量的PPDU发送的触发帧。感知上报轮询帧为触发帧,具体是用于触发感知测量结果上报的触发帧。可选地,感知请求帧用于触发感知响应者执行感知测量流程中的全部阶段,感知测量轮询帧用于触发感知响应者执行感知测量流程中的感知测量阶段以及上报阶段,感知上报轮询帧用于触发感知响应者执行感知测量流程中的上报阶段。
可选地,感知测量轮询帧是用于触发感知响应者发送用于感知测量的PPDU的触发帧,例如用于触发感知响应者发送单基感知测量帧。感知响应者在接收到感知测量轮询帧后,会依次执行感知测量以及感知测量之后的感知测量结果上报。感知上报轮询帧是用于触发感知响应者进行感知测量结果上报的触发帧,例如用于触发感知响应者发送感知测量报告帧。感知响应者在接收到感知上报轮询帧后,会执行感知测量结果上报。
可选地,在协作单基感知测量的顺序模式或协作双基感知测量中,感知发起者通过感知请求帧,触发感知响应者执行感知测量流程中的全部阶段。在协作单基感知测量的顺序模式或协作双基感知测量中,感知发起者通过感知测量轮询帧,触发感知响应者执行感知测量流程中的感知测量阶段以及上报阶段。在协 作单基感知测量的并行模式中,感知发起者通过感知上报轮询帧,触发感知响应者执行感知测量流程中的上报阶段。
综上所述,本实施例提供的方法,通过由感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,从而能够使得参与协作的各个或各组感知响应者能够根据感知发起者的触发来执行感知测量流程中的相关阶段。可实现无需根据感知发起者发送的ACK帧来确定启动感知测量的时机,以及无需判断前一个感知响应者的感知测量流程是否结束,能够避免多个感知设备的协作感知无法正常进行的问题。
本申请实施例提供的方法,通过由感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,从而能够使得参与协作的各个或各组感知响应者能够根据感知发起者的触发来执行感知测量流程中的相关阶段,能够避免多个感知设备的协作感知无法正常进行的问题。可选地,感知发起者的轮询触发基于如下至少一种帧实现:
·感知请求帧;
·感知测量轮询帧;
·感知上报轮询帧。
对上述3种帧的格式进行介绍:
针对感知测量轮询帧的介绍:
本申请实施例中,对于感知测量轮询帧的设计存在以下两种方案:
(1)新定义的感知测量轮询帧:
在该方案中,感知测量轮询帧为TDD波束赋形帧的一种,其不为TDD波束赋形帧中的感知请求帧、感知响应帧、感知轮询帧任一种类型。
示例地,图13是本申请一个示例性实施例提供的感知测量轮询帧的格式的示意图。如图13所示,感知测量轮询帧帧(TDD波束赋形帧)的MAC帧头中的字段的含义如下:
·帧控制(Frame Control):指示该MAC帧的类型等信息,其中包括指示该帧为TDD波束赋形帧的信息。
·时长(Duration):指示该帧的发送时间长度。
·TA:指示帧发送者的MAC地址。
·RA:指示帧接收者的MAC地址。
该TDD波束赋形帧的MAC帧体包括TDD波束赋形控制字段,该TDD波束赋形控制字段包括TDD群组波束赋形字段和TDD波束测量字段。感知测量轮询帧(TDD波束赋形帧)的MAC帧体中的字段的含义如下:
·TDD群组波束赋形(TDD Group Beamforming)和TDD波束测量(TDD Beam Measurement)一起指示了一个TDD波束赋形帧的用途,具体取值及其含义可参见表4。
表4
Figure PCTCN2022107539-appb-000002
如表4所示,在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为感知请求帧;在TDD群组波束赋形字段取值为0,且TDD波束测量字段取值为1时,指示该TDD波束赋形帧为感知响应帧;在TDD群组波束赋形字段取值为1且TDD波束测量字段取值为0时,指示该TDD波束赋形帧为感知轮询帧。在TDD群组波束赋形字段取值为1,且TDD波束测量字段取值为1的情况下,指示该TDD波束赋形帧为感知测量轮询帧。
·TDD波束赋形帧类型(TDD Beamforming Frame Type):指示TDD波束赋形帧的类型,取值为3指示该帧为用于DMG感知的TDD波束赋形帧。
·训练结束(End of Training):指示波束训练是否结束。
·测量设置ID(Measurement Setup ID):指示与该感知测量轮询帧相关的感知测量设置的标识符。
·测量猝发ID(Measurement Burst ID):指示与该感知测量轮询帧相关的感知测量猝发的标识符。
·感知实例SN(Sensing Instance Sequential Number):指示与该感知测量轮询帧相关的感知测量实例的标识符。
(2)基于现有的感知轮询帧修改:
在该方案中,感知测量轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧(DMG Sensing Poll帧),轮询类型字段用于指示增加轮询类型字段的感知轮询帧为感知测量轮询帧。可选地,该感知轮询帧定义在IEEE 802.11bf D0.1标准中。
示例地,图14是本申请一个示例性实施例提供的感知测量轮询帧的格式的示意图。如图14所示,感知测量轮询帧(增加轮询类型字段的感知轮询帧)的MAC帧头中的字段的含义可参照上述新定义的感知测量轮询帧,本申请实施例对此不作赘述。感知测量轮询帧的MAC帧体中的TDD群组波束赋形(TDD Group Beamforming)字段和TDD波束测量(TDD Beam Measurement)字段的取值分别为1和0,TDD波束赋形帧类型(TDD Beamforming Frame Type)取值为3,指示该帧为用于DMG感知的TDD波束赋形帧中的感知轮询帧。
轮询类型(Poll Type):指示该感知轮询帧的类型,具体取值及其含义可参见表5。
表5
取值 含义
0 DMG感知上报轮询
1 DMG感知测量轮询
如表5所示,在轮询类型字段的取值为1的情况下,增加轮询类型字段的感知轮询帧为感知测量轮询帧。在轮询类型字段的取值为0的情况下,增加轮询类型字段的感知轮询帧为感知上报轮询帧。
其中,DMG感知上报轮询指示该触发帧为用于触发感知测量结果上报的触发帧,DMG感知测量轮询指示该触发帧为用于触发用于感知测量的PPDU发送的触发帧。这两种触发帧在帧格式上的唯一区别仅在于“轮询类型”字段的取值不同,其他字段及其含义均相同。
需要说明的是,上述取值仅用作示例,不作为对本申请实施例提供的方法的限制。例如,在轮询类型字段的取值为0的情况下,增加轮询类型字段的感知轮询帧为感知测量轮询帧。在轮询类型字段的取值为1的情况下,增加轮询类型字段的感知轮询帧为感知上报轮询帧。也即是,在轮询类型字段的取值为0或1的情况下,增加轮询类型字段的感知轮询帧均可能为感知测量轮询帧。但感知测量轮询帧和感知上报轮询帧的轮询类型字段的取值不同,例如感知测量轮询帧的轮询类型字段的取值还能够为2,感知上报轮询帧的轮询类型字段的取值还能够为3。并且,“轮询类型”这一名称也仅用作示例,该名称也可以使用其它名称来替代。
需要说明的是,本申请实施例提供的方案在使用感知测量轮询帧时,对于上述感知测量轮询帧的两种帧格式的使用方法是相同的。
针对感知上报轮询帧的介绍:
对于感知上报轮询帧,可参照上述基于现有的感知轮询帧修改得到感知测量轮询帧的介绍。示例地,感知上报轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,轮询类型字段用于指示增加轮询类型字段的感知轮询帧为感知上报轮询帧。与上述说明类似,在轮询类型字段的取值为0或1的情况下,增加轮询类型字段的感知轮询帧均可能为感知上报轮询帧。但需保证感知测量轮询帧和感知上报轮询帧的轮询类型字段的取值不同。
针对感知请求帧的介绍:
对于该感知请求帧的介绍,可参照图8以及表3相关的内容,本申请实施例对此不作赘述。本申请实施例提供的方法,在使用感知请求帧的方案中,与相关技术的区别主要在于本申请实施例提供的方法通过感知请求帧触发了各个(各组)感知响应者执行感知测量的整个流程,因此能够解决上述定时问题。对于使用感知请求帧的方案的详细介绍,可参照后续的实施例。
对基于上述3种帧实现的感知测量实例流程的设计进行介绍:
感知发起者通过上述3种帧中的一个,能够触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段,具体可分为以下8种情况:
(1)在协作单基感知测量的顺序模式中,通过感知测量轮询帧触发每个感知执行者执行感知测量流程中的感知测量阶段以及上报阶段;
(2)在协作单基感知测量的顺序模式中,通过感知测量轮询帧触发除第一个感知执行者以外的每个感知执行者执行感知测量流程中的感知测量阶段以及上报阶段;
(3)在协作单基感知测量的顺序模式中,通过感知请求帧触发每个感知执行者执行感知测量流程中的全部阶段;
(4)在协作单基感知测量的并行模式中,通过感知上报轮询帧触发每个感知执行者执行感知测量流程中的上报阶段;
(5)在协作单基感知测量的并行模式中,通过感知上报轮询帧触发除第一个感知执行者以外的每个感知执行者执行感知测量流程中的上报阶段;
(6)在协作双基感知测量中,通过感知测量轮询帧触发每组感知执行者执行感知测量流程中的感知测量阶段以及上报阶段;
(7)在协作双基感知测量中,通过感知测量轮询帧触发除第一组感知执行者以外的每组感知执行者执行感知测量流程中的感知测量阶段以及上报阶段;
(8)在协作双基感知测量中,通过感知请求帧触发每组感知执行者执行感知测量流程中的全部阶段。
以下通过8个实施例对上述方案进行介绍:
针对上述第一种情况:
图15是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤1502:在接收到全部感知响应者发送的感知响应帧后,感知发起者向第一个感知响应者发送感知测量轮询帧。
本实施例中的协作感知测量的类型为协作单基的顺序模式,每个感知响应者对应一个感知测量轮询帧。该感知测量轮询帧用于触发感知响应者发送单基感知测量帧。
第一个感知响应者在接收到感知测量轮询帧后,会自行发送以及接收单基感知测量帧,从而实现对环境的感知,并向感知发起者发送感知测量报告帧。
可选地,最后一个感知响应者对应的感知响应帧与第一个感知响应者对应的感知测量轮询帧之间,相差SIFS时间。
步骤1504:在接收到第i个感知响应者发送的感知测量报告帧,或向第i个感知响应者发送ACK帧后,感知发起者向第i+1个感知响应者发送感知测量轮询帧。
可选地,感知发起者会向第i个感知响应者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i个感知响应者发送ACK帧后,会向第i+1个感知响应者发送感知测量轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i个感知响应者发送的感知测量报告帧后,会向第i+1个感知响应者发送感知测量轮询帧。
可选地,第i个感知响应者对应的感知测量报告帧或第i个感知响应者对应的ACK帧,与第i+1个感知响应者对应的感知测量轮询帧之间,相差SIFS时间。
第i+1个感知响应者在接收到感知测量轮询帧后,会自行发送以及接收单基感知测量帧,从而实现对环境的感知,并向感知响应者发送感知测量报告帧。其中,i为正整数。
在一个具体的例子中,图16是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图。如图16所示,该流程由一个Initiator(STA)和两个Responder(STA A,STA B)参与,包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA A,触发STA A开始进行感知测量;
(6)SIFS时间后,STA A自发自收1个单基感知测量帧从而感知环境;
(7)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(8)SIFS时间后,Initiator回复ACK帧至STA A;
(9)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA B,触发STA B开始进行感知测量;
(10)SIFS时间后,STA B自发自收1个单基感知测量帧从而感知环境;
(11)SIFS时间后,STA B发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(12)SIFS时间后,Initiator回复ACK帧至STA B。
需要说明的是,上述(8)和(12)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder发送单基感知测量帧。上述DMG感知测量报告帧为图13所示的格式或者为图14所示的格式。相较于图4所示的流程,不同的是Initiator需要依次发送DMG感知测量轮询帧至每个Responder来触发其发送和接收单基感知测量帧,每个Responder在收到DMG感知测量轮询帧后的SIFS时间内开始单基感知测量帧的自发自收,其他流程均相同。
综上所述,本实施例提供的方法,通过由感知发起者通过感知测量轮询帧触发每个参与协作的感知响 应者执行感知测量流程中的测量阶段和上报阶段,可实现使每个感知响应者发送和接收单基感知测量帧的时刻仅仅与其收到感知测量轮询帧的时刻有关,而与其他感知响应者发送接收单基感知测量帧的时长无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知测量轮询帧定向地分别发送给每个感知响应者,保证每个感知响应者都可以可靠地收到触发信号。
针对上述第二种情况:
图17是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤1702:在接收到第i个感知响应者发送的感知测量报告帧,或向第i个感知响应者发送ACK帧后,感知发起者向第i+1个感知响应者发送感知测量轮询帧。
本实施例中的协作感知测量的类型为协作单基的顺序模式,除第一个以外的每个感知响应者对应一个感知测量轮询帧。该感知测量轮询帧用于触发感知响应者发送单基感知测量帧。其中,i为正整数。
在全部的感知响应者接收到感知发起者发送的感知请求帧并回复感知响应帧后,第一个感知响应者会自行发送以及接收单基感知测量帧,从而实现对环境的感知,并向感知发起者发送感知测量报告帧。
可选地,感知发起者会向第i个感知响应者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i个感知响应者发送ACK帧后,会向第i+1个感知响应者发送感知测量轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i个感知响应者发送的感知测量报告帧后,会向第i+1个感知响应者发送感知测量轮询帧。
第i+1个感知响应者在接收到感知测量轮询帧后,会自行发送以及接收单基感知测量帧,从而实现对环境的感知,并向感知响应者发送感知测量报告帧。
可选地,第i个感知响应者对应的感知测量报告帧或第i个感知响应者对应的ACK帧,与第i+1个感知响应者对应的感知测量轮询帧之间,相差SIFS时间。
在一个具体的例子中,图18是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图。如图18所示,该流程由一个Initiator(STA)和两个Responder(STA A,STA B)参与,包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,STA A自发自收1个单基感知测量帧从而感知环境;
(6)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(7)SIFS时间后,Initiator回复ACK帧至STA A;
(8)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA B,触发STA B开始进行感知测量;
(9)SIFS时间后,STA B自发自收1个单基感知测量帧从而感知环境;
(10)SIFS时间后,STA B发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(11)SIFS时间后,Initiator回复ACK帧至STA B。
需要说明的是,上述(7)和(11)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder发送单基感知测量帧。上述DMG感知测量报告帧为图13所示的格式或者为图14所示的格式。相较于图16所示的流程,不同的是在最后一个Responder(STA B)回复DMG感知响应帧至Initiator之后,经过SIFS时间,第一个Responder(STA A)就主动开始自发自收单基感知测量帧来感知环境,无需等待Initiator发送DMG感知测量轮询帧,其他流程相同。
综上所述,本实施例提供的方法,通过由感知发起者通过感知测量轮询帧触发第一个之后的每个参与协作的感知响应者执行感知测量流程中的测量阶段和上报阶段,可实现使除第一个以外的每个感知响应者发送和接收单基感知测量帧的时刻仅仅与其收到感知测量轮询帧的时刻有关,而与其他感知响应者发送接收单基感知测量帧的时长无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知测量轮询帧定向地分别发送给除第一个以外的每个感知响应者,保证除第一个以外的每个感知响应者都可以可靠地收到触发信号。
针对上述第三种情况:
图19是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤1902:感知发起者向第一个感知响应者发送感知请求帧。
本实施例中的协作感知测量的类型为协作单基的顺序模式,每个感知响应者对应一个感知请求帧。该感知请求帧用于触发一个感知响应者执行感知测量流程中的全部阶段。
第一个感知响应者在接收到感知请求帧后,会向感知发起者发送感知响应帧,之后会自行发送以及接收单基感知测量帧,从而实现对环境的感知,以及向感知响应者发送感知测量报告帧。
步骤1904:在接收到第i个感知响应者发送的感知测量报告帧,或向第i个感知响应者发送ACK帧后,感知发起者向第i+1个感知响应者发送感知请求帧。
可选地,感知发起者会向第i个感知响应者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i个感知响应者发送ACK帧后,会向第i+1个感知响应者发送感知请求帧。在不发送ACK帧的情况下,感知发起者在接收到第i个感知响应者发送的感知测量报告帧后,会向第i+1个感知响应者发送感知测量轮询帧。
第i+1个感知响应者在接收到感知请求帧后,会向感知发起者发送感知响应帧,之后会自行发送以及接收单基感知测量帧,从而实现对环境的感知,以及向感知响应者发送感知测量报告帧。其中,i为正整数。
可选地,第i个感知响应者对应的感知测量报告帧或第i个感知响应者对应的ACK帧,与第i+1个感知响应者对应的感知请求帧之间,相差SIFS时间。
在一个具体的例子中,图20是本申请一个示例性实施例提供的协作单基感知测量的顺序模式的流程示意图。如图20所示,该流程由一个Initiator(STA)和两个Responder(STA A,STA B)参与,包括以下过程(从左至右):
(1)Initiator首先发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,STA A自发自收1个单基感知测量帧从而感知环境;
(4)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(5)SIFS时间后,Initiator回复ACK帧至STA A;
(6)SIFS时间后,Initiator其次发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(7)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(8)SIFS时间后,STA B自发自收1个单基感知测量帧从而感知环境;
(9)SIFS时间后,STA B发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(10)SIFS时间后,Initiator回复ACK帧至STA B。
需要说明的是,上述(5)和(10)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder执行整个感知测量的流程。上述DMG感知请求帧为图8所示的格式。相较于图4所示的流程,不同的是Initiator与STA A交互完所有帧之后才开始与STA B交互。也即是Responder执行完成整个感知测量的流程后,Initiator才会通过DMG感知请求帧触发下一个Responder执行整个感知测量的流程。
综上所述,本实施例提供的方法,通过由感知发起者通过感知请求帧触发每个参与协作的感知响应者执行感知测量的整个流程,可实现使每个感知响应者开始执行感知测量的流程的时刻仅仅与其收到感知请求帧的时刻有关,能够避免多个感知设备的协作感知无法正常进行的问题。
针对上述第四种情况:
图21是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤2102:在第一个感知响应者发送并接收单基感知测量帧后,感知发起者向第一个感知响应者发送感知上报轮询帧。
本实施例中的协作感知测量的类型为协作单基的并行模式,每个感知响应者对应一个感知上报轮询帧。该感知上报轮询帧用于触发感知响应者发送感知测量报告帧。
第一个感知响应者在接收到感知上报轮询帧后,向感知发起者发送感知测量报告帧。在此之前,第一个感知响应者已自行发送以及接收单基感知测量帧,从而实现对环境的感知。
示例性的,在协作单基的并行模式下,不同感知响应者同时自行发送以及接收单基感知测量帧,从而 实现对环境的感知。
可选地,第一个感知响应者对应的单基感知测量帧,与第一个感知响应者对应的感知上报轮询帧之间,相差SIFS时间。
步骤2104:在接收到第i个感知响应者发送的感知测量报告帧,或向第i个感知响应者发送ACK帧后,感知发起者向第i+1个感知响应者发送感知上报轮询帧。
可选地,感知发起者会向第i个感知响应者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i个感知响应者发送ACK帧后,会向第i+1个感知响应者发送感知上报轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i个感知响应者发送的感知测量报告帧后,会向第i+1个感知响应者发送感知上报轮询帧。
第i+1个感知响应者在接收到感知上报轮询帧后,会向感知响应者发送感知测量报告帧。其中,i为正整数。
可选地,第i个感知响应者对应的感知测量报告帧或第i个感知响应者对应的ACK帧,与第i+1个感知响应者对应的感知上报轮询帧之间,相差SIFS时间。
在一个具体的例子中,图22是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图。如图22所示,该流程由一个Initiator(STA)和两个Responder(STA A,STA B)参与,包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,STA A和STA B同时分别自发自收1个单基感知测量帧从而感知环境;
(6)一定时间后,Initiator发送DMG感知上报轮询帧至STA A,触发STA A上报感知测量结果;
(7)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(8)SIFS时间后,Initiator回复ACK帧至STA A;
(9)SIFS时间后,Initiator发送DMG感知上报轮询帧至STA B,触发STA B上报感知测量结果;
(10)SIFS时间后,STA B发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(11)SIFS时间后,Initiator回复ACK帧至STA B。
需要说明的是,上述(8)和(11)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder发送DMG感知测量报告帧。上述DMG感知上报轮询帧为图14所示的格式。另外,本申请实施例中使用的DMG感知上报轮询帧,可由DMG感知轮询帧替换,该DMG感知轮询帧为图10所示的格式。也即是该DMG感知轮询帧也能够触发Responder发送DMG感知测量报告帧,Initiator通过向Responder发送该DMG感知轮询帧,从而触发Responder发送DMG感知测量报告帧。
相较于图5所示的流程,不同的是Initiator需要依次发送DMG感知上报轮询帧至每个Responder来触发其发送DMG感知测量报告帧,每个Responder在收到DMG感知上报轮询帧后的SIFS时间内反馈DMG感知测量报告帧至Initiator,其他流程均相同。
综上所述,本实施例提供的方法,通过由感知发起者通过感知上报轮询帧触发每个参与协作的感知响应者执行感知测量流程中的上报阶段,可实现使每个感知响应者发送感知测量上报帧的时刻仅仅与其收到感知上报轮询帧的时刻有关,而与其他感知响应者发送感知测量上报帧的时刻无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知上报轮询帧定向地分别发送给每个感知响应者,保证每个感知响应者都可以可靠地收到触发信号。
针对上述第五种情况:
图23是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤2302:在接收到第i个感知响应者发送的感知测量报告帧,或向第i个感知响应者发送ACK帧后,感知发起者向第i+1个感知响应者发送感知上报轮询帧。
本实施例中的协作感知测量的类型为协作单基的并行模式,除第一个以外的每个感知响应者对应一个感知上报轮询帧。该感知上报轮询帧用于触发感知响应者发送感知测量报告帧,i为正整数。
在全部的感知响应者接收到感知发起者发送的感知请求帧并回复感知响应帧后,每个感知响应者会同 时分别自行发送以及接收单基感知测量帧,从而实现对环境的感知。之后第一个感知响应者会向感知发起者发送感知测量报告帧。
可选地,感知发起者会向第i个感知响应者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i个感知响应者发送ACK帧后,会向第i+1个感知响应者发送感知上报轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i个感知响应者发送的感知测量报告帧后,会向第i+1个感知响应者发送感知上报轮询帧。
第i+1个感知响应者在接收到感知上报轮询帧后,会向感知响应者发送感知测量报告帧。
可选地,第i个感知响应者对应的感知测量报告帧或第i个感知响应者对应的ACK帧,与第i+1个感知响应者对应的感知上报轮询帧之间,相差SIFS时间。
在一个具体的例子中,图24是本申请一个示例性实施例提供的协作单基感知测量的并行模式的流程示意图。如图24所示,该流程由一个Initiator(STA)和两个Responder(STA A,STA B)参与,包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,STA A和STA B同时分别自发自收1个单基感知测量帧从而感知环境;
(6)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(7)SIFS时间后,Initiator回复ACK帧至STA A;
(8)SIFS时间后,Initiator发送DMG感知上报轮询帧至STA B,触发STA B上报感知测量结果;
(9)SIFS时间后,STA B发送DMG感知测量报告帧至Initiator,上报感知测量的结果;
(10)SIFS时间后,Initiator回复ACK帧至STA B。
需要说明的是,上述(7)和(10)为可选步骤。上述示例中仅存在2个Responder,对于存在更多Responder的情况,可通过上述方法继续触发后续的Responder发送DMG感知测量报告帧。上述DMG感知上报轮询帧为图14所示的格式。另外,本申请实施例中使用的DMG感知上报轮询帧,可由DMG感知轮询帧替换,该DMG感知轮询帧为图10所示的格式。也即是该DMG感知轮询帧也能够触发Responder发送DMG感知测量报告帧,Initiator通过向Responder发送该DMG感知轮询帧,从而触发Responder发送DMG感知测量报告帧。
相较于图22所示的流程,区别在于第一个Responder(STA A)在自发自收单基感知测量帧之后的SIFS时间即可主动发送DMG感知测量报告帧至Initiator,而无需等待Initiator发送的DMG感知上报轮询帧。
综上所述,本实施例提供的方法,通过由感知发起者通过感知上报轮询帧触发除第一个以外的每个参与协作的感知响应者执行感知测量流程中的上报阶段,可实现使除第一个以外的每个感知响应者发送感知测量上报帧的时刻仅仅与其收到感知上报轮询帧的时刻有关,而与其他感知响应者发送感知测量上报帧的时刻无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知上报轮询帧定向地分别发送给除第一个以外的每个感知响应者,保证除第一个以外的每个感知响应者都可以可靠地收到触发信号。
针对上述第六种情况:
图25是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤2502:在接收到全部感知响应者发送的感知响应帧后,感知发起者向第一组感知响应者中的感知发送者发送感知测量轮询帧。
本实施例中的协作感知测量的类型为协作双基,每组感知响应者包括一个感知发送者和一个感知接收者。每组感知响应者对应一个感知测量轮询帧,感知测量轮询帧用于触发感知发送者发送携带有TRN字段的BRP帧。
第一组感知响应者中的感知发送者在接收到感知测量轮询帧后,会向第一组中的感知接收者发送带有TRN字段的BRP帧,并接收该感知接收者发送的带有报告的BRP帧,从而实现对环境的感知,之后向感知发起者发送感知测量报告帧。
可选地,最后一组感知响应者中的感知接收者对应的感知响应帧,与第一组感知响应者中的感知发送者对应的感知测量轮询帧之间,相差SIFS时间。
步骤2504:在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧,或向第i组感知响应者中的感知发送者发送ACK帧后,感知发起者向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。
可选地,感知发起者会向第i组感知响应者中的感知发送者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i组感知响应者中的感知发送者发送ACK帧后,会向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧后,会向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。
第i+1组感知响应者中的感知发送者在接收到感知测量轮询帧后,会向第i组中的感知接收者发送带有TRN字段的BRP帧,并接收该感知接收者发送的带有报告的BRP帧,从而实现对环境的感知,之后向感知发起者发送感知测量报告帧。其中,i为正整数。
可选地,第i组感知响应者中的感知发送者对应的感知测量报告帧或第i组感知响应者中的感知发送者对应的ACK帧,与第i+1组感知响应者中的感知发送者对应的感知测量轮询帧之间,相差SIFS时间。
在一个具体的例子中,图26是本申请一个示例性实施例提供的协作双基感知测量的流程示意图。如图26所示,该流程由一个Initiator(STA)和四个Responder(STA A,STA B,STA C,STA D)参与。其中,STA A和STA B为一组,STA C和STA D为一组。STA A和STA C为感知发送者,STA B和STA D为感知接收者(Initiator在感知测量设置阶段完成的角色设置)。包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)Initiator发送DMG感知请求帧至STA C,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=2;
(6)SIFS时间后,STA C回复DMG感知响应帧至Initiator;
(7)SIFS时间后,Initiator发送DMG感知请求帧至STA D,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=3;
(8)SIFS时间后,STA D回复DMG感知响应帧至Initiator;
(9)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA A,触发STA A开始进行与STA B的双基感知测量;
(10)SIFS时间后,STA A发送1个带有TRN字段的BRP帧至STA B从而感知环境;
(11)BRP帧间隔(BRP Interframe Space,BRPIFS)时间后,STA B回复带有Report的BRP帧至STA A;
(12)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(13)SIFS时间后,Initiator回复ACK帧至STA A;
(14)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA C,触发STA C开始进行感知测量;
(15)SIFS时间后,STA C发送1个带有TRN字段的BRP帧至STA D从而感知环境;
(16)BRPIFS时间后,STA D回复带有Report的BRP帧至STA C;
(17)SIFS时间后,STA C发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(18)SIFS时间后,Initiator回复ACK帧至STA C。
需要说明的是,上述(13)和(18)为可选步骤。上述示例中仅存在2组Responder,对于存在更多组Responder的情况,可通过上述方法继续触发后续组的Responder进行双基感知测量。上述DMG感知测量报告帧为图13所示的格式或者为图14所示的格式。相较于图6所示的流程,不同的是Initiator需要依次发送DMG感知测量轮询帧至每组Responder中的Tx来触发进行双基感知测量,每组Responder中的Tx在收到DMG感知测量轮询帧后的SIFS时间后,开始与Rx进行双基感知测量,其他流程均相同。
综上所述,本实施例提供的方法,通过由感知发起者通过感知测量轮询帧触发每组参与协作的感知响应者执行感知测量流程中的测量阶段和上报阶段,可实现使每组感知响应者执行双基感知测量的时刻仅仅与其收到感知测量轮询帧的时刻有关,而与其他组感知响应者执行双基感知测量的时刻无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知测量轮询帧定向地分别发送给每组感知响应者中的感知发送者,保证每个感知发送者都可以可靠地收到触发信号。
针对上述第七种情况:
图27是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤2702:在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧,或向第i组感知响应者中的感知发送者发送ACK帧后,感知发起者向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。
本实施例中的协作感知测量的类型为协作双基,每组感知响应者包括一个感知发送者和一个感知接收者。除第一组以外的每组感知响应者对应一个感知测量轮询帧。该感知测量轮询帧用于触发感知发送者发送携带有TRN字段的BRP帧。其中,i为正整数。
在全部的感知响应者接收到感知发起者发送的感知请求帧并回复感知响应帧后,第一组感知响应者会进行双基感知测量,从而实现对环境的感知,并由第一组感知响应者中的感知发送者向感知发起者发送感知测量报告帧。
可选地,感知发起者会向第i组感知响应者中的感知发送者发送ACK帧或不发送ACK帧。
在发送ACK帧的情况下,感知发起者在向第i组感知响应者中的感知发送者发送ACK帧后,会向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。在不发送ACK帧的情况下,感知发起者在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧后,会向第i+1组感知响应者中的感知发送者发送感知测量轮询帧。
第i+1组感知响应者中的感知发送者在接收到感知测量轮询帧后,会向第i组中的感知接收者发送带有TRN字段的BRP帧,并接收该感知接收者发送的带有报告的BRP帧,从而实现对环境的感知,之后向感知发起者发送感知测量报告帧。
可选地,第i组感知响应者中的感知发送者对应的感知测量报告帧或第i组感知响应者中的感知发送者对应的ACK帧,与第i+1组感知响应者中的感知发送者对应的感知测量轮询帧之间,相差SIFS时间。
在一个具体的例子中,图28是本申请一个示例性实施例提供的协作双基感知测量的流程示意图。如图28所示,该流程由一个Initiator(STA)和四个Responder(STA A,STA B,STA C,STA D)参与。其中,STA A和STA B为一组,STA C和STA D为一组。STA A和STA C为感知发送者,STA B和STA D为感知接收者(Initiator在感知测量设置阶段完成的角色设置)。包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)Initiator发送DMG感知请求帧至STA C,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=2;
(6)SIFS时间后,STA C回复DMG感知响应帧至Initiator;
(7)SIFS时间后,Initiator发送DMG感知请求帧至STA D,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=3;
(8)SIFS时间后,STA D回复DMG感知响应帧至Initiator;
(9)SIFS时间后,STA A发送1个带有TRN字段的BRP帧至STA B从而感知环境;
(10)BRPIFS时间后,STA B回复带有Report的BRP帧至STA A;
(11)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(12)SIFS时间后,Initiator回复ACK帧至STA A;
(13)SIFS时间后,Initiator发送DMG感知测量轮询帧至STA C,触发STA C开始进行感知测量;
(14)SIFS时间后,STA C发送1个带有TRN字段的BRP帧至STA D从而感知环境;
(15)BRPIFS时间后,STA D回复带有Report的BRP帧至STA C;
(16)SIFS时间后,STA C发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(17)SIFS时间后,Initiator回复ACK帧至STA C。
需要说明的是,上述(12)和(17)为可选步骤。上述示例中仅存在2组Responder,对于存在更多组Responder的情况,可通过上述方法继续触发后续组的Responder进行双基感知测量。上述DMG感知测量报告帧为图13所示的格式或者为图14所示的格式。相较于图26所示的流程,区别在于在最后一个Responder(STA D)回复DMG感知响应帧至Initiator之后,经过SIFS时间,第一个Responder(STA A)就主动开始发送BRP帧至STA B来感知环境,无需等待Initiator发送DMG感知测量轮询帧。
综上所述,本实施例提供的方法,通过由感知发起者通过感知测量轮询帧触发除第一组以外的每组参与协作的感知响应者执行感知测量流程中的测量阶段和上报阶段,可实现使除第一组以外的每组感知响应者执行双基感知测量的时刻仅仅与其收到感知测量轮询帧的时刻有关,而与其他组感知响应者执行双基感知测量的时刻无关,能够避免多个感知设备的协作感知无法正常进行的问题。另外,感知发起者可实现将感知测量轮询帧定向地分别发送给除第一组以外的每组感知响应者中的感知发送者,保证每个感知发送者都可以可靠地收到触发信号。
针对上述第八种情况:
图29是本申请一个示例性实施例提供的协作感知测量方法的流程图。该方法可应用于如图1所示的***,该方法包括:
步骤2902:感知发起者向第一组感知响应者中的感知发送者和感知接收者分别发送感知请求帧。
本实施例中的协作感知测量的类型为协作双基,一组感知响应者中的每个感知响应者对应一个感知请求帧。每组感知响应者包括一个感知发送者和一个感知接收者。感知请求帧用于触发一组感知响应者执行感知测量流程中的全部阶段。
第一组感知响应者中的感知发送者和感知接收者在依次接收到感知请求帧后,会依次向感知发起者发送感知响应帧,之后第一组感知响应者会进行双基感知测量(包括第一组中的感知发送者向感知接收者发送带有TRN字段的BRP帧,以及接收该感知接收者发送的带有报告的BRP帧),从而实现对环境的感知,以及由第一组中的感知发送者向感知响应者发送感知测量报告帧。
步骤2904:在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧,或向第i组感知响应者中的感知发送者发送ACK帧后,感知发起者向第i+1组感知响应者中的感知发送者和感知接收者分别发送感知请求帧。
可选地,感知发起者会向第i组感知响应者中的感知发送者发送ACK帧或不发送ACK帧。在发送ACK帧的情况下,感知发起者在向第i组感知响应者中的感知发送者发送ACK帧后,会向第i+1组感知响应者中的感知发送者和感知接收者分别发送感知请求帧。在不发送ACK帧的情况下,感知发起者在接收到第i组感知响应者中的感知发送者发送的感知测量报告帧后,会向第i+1组感知响应者中的感知发送者和感知接收者分别发送感知请求帧。
第i+1组感知响应者中的感知发送者和感知接收者在分别接收到感知请求帧后,会分别向感知发起者发送感知响应帧,之后第i+1组感知响应者会进行双基感知测量,从而实现对环境的感知,以及由第i+1组中的感知发送者向感知响应者发送感知测量报告帧。其中,i为正整数。
可选地,第i组感知响应者中的感知发送者对应的感知测量报告帧或第i组感知响应者中的感知发送者对应的ACK帧,与第i+1组感知响应者中的感知发送者对应的感知请求帧之间,相差SIFS时间。
在一个具体的例子中,图30是本申请一个示例性实施例提供的协作双基感知测量的流程示意图。如图30所示,该流程由一个Initiator(STA)和四个Responder(STA A,STA B,STA C,STA D)参与。其中,STA A和STA B为一组,STA C和STA D为一组。STA A和STA C为感知发送者,STA B和STA D为感知接收者(Initiator在感知测量设置阶段完成的角色设置)。包括以下过程(从左至右):
(1)Initiator发送DMG感知请求帧至STA A,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=0;
(2)SIFS时间后,STA A回复DMG感知响应帧至Initiator;
(3)SIFS时间后,Initiator发送DMG感知请求帧至STA B,其中设置“实例中STA数量”=2,“PPDU数量”=1,“STA ID”=1;
(4)SIFS时间后,STA B回复DMG感知响应帧至Initiator;
(5)SIFS时间后,STA A发送1个带有TRN字段的BRP帧至STA B从而感知环境;
(6)BRPIFS时间后,STA B回复带有Report的BRP帧至STA A;
(7)SIFS时间后,STA A发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(8)SIFS时间后,Initiator回复ACK帧至STA A;
(9)Initiator发送DMG感知请求帧至STA C,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=2;
(10)SIFS时间后,STA C回复DMG感知响应帧至Initiator;
(11)SIFS时间后,Initiator发送DMG感知请求帧至STA D,其中设置“实例中STA数量”=4,“PPDU数量”=1,“STA ID”=3;
(12)SIFS时间后,STA D回复DMG感知响应帧至Initiator;
(13)SIFS时间后,STA C发送1个带有TRN字段的BRP帧至STA D从而感知环境;
(14)BRPIFS时间后,STA D回复带有Report的BRP帧至STA C;
(15)SIFS时间后,STA C发送DMG感知测量报告帧至Initiator,上报感知测量结果;
(16)SIFS时间后,Initiator回复ACK帧至STA C。
需要说明的是,上述(8)和(16)为可选步骤。上述示例中仅存在2组Responder,对于存在更多组Responder的情况,可通过上述方法继续触发后续组的Responder执行整个感知测量的流程。上述DMG感知请求帧为图8所示的格式。相较于图6所示的流程,不同的是Initiator与第一组Responder交互完所有帧之后才开始与第二组Responder交互。也即是一组Responder执行完成整个感知测量的流程后,Initiator才会通过DMG感知请求帧触发下一组Responder执行整个感知测量的流程。
综上所述,本实施例提供的方法,通过由感知发起者通过感知请求帧触发每组参与协作的感知响应者执行感知测量的整个流程,可实现使每组感知响应者开始执行感知测量的流程的时刻仅仅与其收到感知请求帧的时刻有关,能够避免多个感知设备的协作感知无法正常进行的问题。
需要说明的是,上述不同情况的先后顺序,不具有优选含义,只是为了方便表述。
图31是本申请一个示例性实施例提供的协作感知测量装置的框图。如图31所示,该装置包括:
触发模块3101,用于在协作感知测量的过程中,所述装置采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
在一个可选的设计中,所述轮询触发基于如下至少一种帧实现:
感知请求帧;
感知测量轮询帧;
感知上报轮询帧;
其中,所述感知请求帧用于触发所述感知响应者执行所述感知测量流程中的全部阶段,所述感知测量轮询帧用于触发所述感知响应者执行所述感知测量流程中的感知测量阶段以及上报阶段,所述感知上报轮询帧用于触发所述感知响应者执行所述感知测量流程中的所述上报阶段。
在一个可选的设计中,每组或每个所述感知响应者对应一个所述感知测量轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括发送模块3102,所述发送模块3102,用于:
在接收到全部所述感知响应者发送的感知响应帧后,向第一个所述感知响应者发送所述感知测量轮询帧;
在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;所述装置还包括发送模块3102,所述发送模块3102,用于:
在接收到全部所述感知响应者发送的感知响应帧后,向第一组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
在一个可选的设计中,除第一组以外的每组所述感知响应者或除第一个以外的每个所述感知响应者对应一个所述感知测量轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括发送模块3102,所述发送模块3102,用于:
在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;所述装置还包括发送模块3102,所述发送模块3102,用于:
在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
在一个可选的设计中,一组所述感知响应者中的每个所述感知响应者对应一个所述感知请求帧,或每个所述感知响应者对应一个所述感知请求帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括发送模块3102,所述发送模块3102,用于:
向第一个所述感知响应者发送所述感知请求帧;
在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知请求帧;
其中,所述感知请求帧用于触发一个所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;所述装置还包括发送模块3102,所述发送模块3102,用于:
向第一组所述感知响应者中的所述感知发送者和所述感知接收者分别发送所述感知请求帧;
在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者和所述感知接收者分别发送所述感知请求帧;
其中,所述感知请求帧用于触发一组所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
在一个可选的设计中,每个所述感知响应者对应一个感知上报轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的并行模式;所述装置还包括发送模块3102,所述发送模块3102,用于:
在第一个所述感知响应者发送并接收单基感知测量帧后,向第一个所述感知响应者发送所述感知上报轮询帧;
在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知上报轮询帧;
其中,所述感知上报轮询帧用于触发所述感知响应者发送所述感知测量报告帧,i为正整数。
在一个可选的设计中,除第一个以外的每个所述感知响应者对应一个所述感知上报轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的并行模式;所述装置还包括发送模块3102,所述发送模块3102,用于:
在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知上报轮询帧;
其中,所述感知上报轮询帧用于触发所述感知响应者发送所述感知测量报告帧,i为正整数。
在一个可选的设计中,所述感知测量轮询帧为TDD波束赋形帧的一种。
在一个可选的设计中,所述TDD波束赋形帧的MAC帧体包括TDD波束赋形控制字段,所述TDD波束赋形控制字段包括TDD群组波束赋形字段和TDD波束测量字段;
在所述TDD群组波束赋形字段取值为1,且所述TDD波束测量字段取值为1的情况下,所述TDD波束赋形帧为所述感知测量轮询帧。
在一个可选的设计中,所述感知测量轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
在一个可选的设计中,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
在一个可选的设计中,所述感知上报轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
在一个可选的设计中,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
图32是本申请一个示例性实施例提供的协作感知测量装置的框图。如图32所示,该装置包括:
执行模块3201,用于在协作感知测量的过程中,每组或每个参与协作的所述装置根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
在一个可选的设计中,所述轮询触发基于如下至少一种帧实现:
感知请求帧;
感知测量轮询帧;
感知上报轮询帧;
其中,所述感知请求帧用于触发所述装置执行所述感知测量流程中的全部阶段,所述感知测量轮询帧用于触发所述装置执行所述感知测量流程中的感知测量阶段以及上报阶段,所述感知上报轮询帧用于触发所述装置执行所述感知测量流程中的所述上报阶段。
在一个可选的设计中,每组或每个所述装置对应一个所述感知测量轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括接收模块3202,所述接收模块3202,用于:
在所述感知发起者接收到全部所述装置发送的感知响应帧后,第一个所述装置接收所述感知发起者发送的所述感知测量轮询帧;
在所述感知发起者接收到第i个所述装置发送的感知测量报告帧,或向第i个所述装置发送ACK帧后,第i+1个所述装置接收所述感知发起者发送的所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述装置发送单基感知测量帧,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述装置包括一个感知发送者和一个感知接收者;所述装置还包括接收模块3202,所述接收模块3202,用于:
在所述感知发起者接收到全部所述装置发送的感知响应帧后,第一组所述装置中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
在所述感知发起者接收到第i组所述装置中的所述感知发送者发送的感知测量报告帧,或向第i组所述装置中的所述感知发送者发送ACK帧后,第i+1组所述装置中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
在一个可选的设计中,除第一组以外的每组所述装置或除第一个以外的每个所述装置对应一个所述感知测量轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括接收模块3202,所述接收模块3202,用于:
在所述感知发起者接收到第i个所述装置发送的感知测量报告帧,或向第i个所述装置发送ACK帧后,第i+1个所述装置接收所述感知发起者发送的所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述装置发送单基感知测量帧,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述装置包括一个感知发送者和一个感知接收者;所述装置还包括接收模块3202,所述接收模块3202,用于:
在所述感知发起者接收到第i组所述装置中的所述感知发送者发送的感知测量报告帧,或向第i组所述装置中的所述感知发送者发送ACK帧后,第i+1组所述装置中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
在一个可选的设计中,一组所述装置中的每个所述装置对应一个所述感知请求帧,或每个所述装置对应一个所述感知请求帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的顺序模式;所述装置还包括接收模块3202,所述接收模块3202,用于:
第一个所述装置接收所述感知发起者发送的所述感知请求帧;
在所述感知发起者接收到第i个所述装置发送的感知测量报告帧,或向第i个所述装置发送ACK帧后,第i+1个所述装置接收所述感知发起者发送的所述感知请求帧;
其中,所述感知请求帧用于触发一个所述装置执行所述感知测量流程中的全部阶段,i为正整数。
在一个可选的设计中,所述协作感知测量的类型为协作双基,每组所述装置包括一个感知发送者和一个感知接收者;所述装置还包括接收模块3202,所述接收模块3202,用于:
第一组所述装置中的所述感知发送者和所述感知接收者分别接收所述感知发起者发送的所述感知请求帧;
在所述感知发起者接收到第i组所述装置中的所述感知发送者发送的感知测量报告帧,或向第i组所述装置中的所述感知发送者发送ACK帧后,第i+1组所述装置中的所述感知发送者和所述感知接收者分别接收所述感知发起者发送的所述感知请求帧;
其中,所述感知请求帧用于触发一组所述装置执行所述感知测量流程中的全部阶段,i为正整数。
在一个可选的设计中,每个所述装置对应一个感知上报轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的并行模式;所述装置还包括接收模块 3202,所述接收模块3202,用于:
在第一个所述装置发送并接收单基感知测量帧后,第一个所述装置接收所述感知发起者发送的所述感知上报轮询帧;
在所述感知发起者接收到第i个所述装置发送的感知测量报告帧,或向第i个所述装置发送ACK帧后,第i+1个所述装置接收所述感知发起者发送的所述感知上报轮询帧;
其中,所述感知上报轮询帧用于触发所述装置发送所述感知测量报告帧,i为正整数。
在一个可选的设计中,除第一个以外的每个所述装置对应一个所述感知上报轮询帧。
在一个可选的设计中,所述协作感知测量的类型为协作单基的并行模式;所述装置还包括接收模块3202,所述接收模块3202,用于:
在所述感知发起者接收到第i个所述装置发送的感知测量报告帧,或向第i个所述装置发送ACK帧后,第i+1个所述装置接收所述感知发起者发送的所述感知上报轮询帧;
其中,所述感知上报轮询帧用于触发所述装置发送所述的感知测量报告帧,i为正整数。
在一个可选的设计中,所述感知测量轮询帧为TDD波束赋形帧的一种。
在一个可选的设计中,所述TDD波束赋形帧的MAC帧体包括TDD波束赋形控制字段,所述TDD波束赋形控制字段包括TDD群组波束赋形字段和TDD波束测量字段;
在所述TDD群组波束赋形字段取值为1,且所述TDD波束测量字段取值为1的情况下,所述TDD波束赋形帧为所述感知测量轮询帧。
在一个可选的设计中,所述感知测量轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
在一个可选的设计中,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
在一个可选的设计中,所述感知上报轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
在一个可选的设计中,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图33是本申请一个示例性实施例提供的感知测量设备(感知发起者和/或感知响应者)的结构示意图,该感知测量设备3300包括:处理器3301、接收器3302、发射器3303、存储器3304和总线3305。
处理器3301包括一个或者一个以上处理核心,处理器3301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器3302和发射器3303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器3304通过总线3305与处理器3301相连。存储器3304可用于存储至少一个指令,处理器3301用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器3304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现上述感知测量设备(感知发起者和/或感知响应者)的协作感知测量方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现上述感知测量设备的协作感知测量方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述感知测量设备的协作感知测量方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (49)

  1. 一种协作感知测量方法,其特征在于,所述方法由感知发起者执行,所述方法包括:
    在协作感知测量的过程中,所述感知发起者采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
  2. 根据权利要求1所述的方法,其特征在于,所述轮询触发基于如下至少一种帧实现:
    感知请求帧;
    感知测量轮询帧;
    感知上报轮询帧;
    其中,所述感知请求帧用于触发所述感知响应者执行所述感知测量流程中的全部阶段,所述感知测量轮询帧用于触发所述感知响应者执行所述感知测量流程中的感知测量阶段以及上报阶段,所述感知上报轮询帧用于触发所述感知响应者执行所述感知测量流程中的所述上报阶段。
  3. 根据权利要求2所述的方法,其特征在于,每组或每个所述感知响应者对应一个所述感知测量轮询帧。
  4. 根据权利要求3所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述感知发起者采用轮询触发方式触发每个参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在接收到全部所述感知响应者发送的感知响应帧后,向第一个所述感知响应者发送所述感知测量轮询帧;
    在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送确认ACK帧后,向第i+1个所述感知响应者发送所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
  5. 根据权利要求3所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述感知发起者采用轮询触发方式触发每组参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在接收到全部所述感知响应者发送的感知响应帧后,向第一组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
    在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有训练TRN字段的波束优化协议BRP帧,i为正整数。
  6. 根据权利要求2所述的方法,其特征在于,除第一组以外的每组所述感知响应者或除第一个以外的每个所述感知响应者对应一个所述感知测量轮询帧。
  7. 根据权利要求6所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述感知发起者采用轮询触发方式触发每个参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
  8. 根据权利要求6所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述感知发起者采用轮询触发方式触发每组参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者发送所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
  9. 根据权利要求2所述的方法,其特征在于,一组所述感知响应者中的每个所述感知响应者对应一个 所述感知请求帧,或每个所述感知响应者对应一个所述感知请求帧。
  10. 根据权利要求9所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述感知发起者采用轮询触发方式触发每个参与协作的感知响应者执行感知测量流程中的全部阶段,包括:
    向第一个所述感知响应者发送所述感知请求帧;
    在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知请求帧;
    其中,所述感知请求帧用于触发一个所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
  11. 根据权利要求9所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述感知发起者采用轮询触发方式触发每组参与协作的感知响应者执行感知测量流程中的全部阶段,包括:
    向第一组所述感知响应者中的所述感知发送者和所述感知接收者分别发送所述感知请求帧;
    在接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,向第i+1组所述感知响应者中的所述感知发送者和所述感知接收者分别发送所述感知请求帧;
    其中,所述感知请求帧用于触发一组所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
  12. 根据权利要求2所述的方法,其特征在于,每个所述感知响应者对应一个感知上报轮询帧。
  13. 根据权利要求12所述的方法,其特征在于,所述协作感知测量的类型为协作单基的并行模式;
    所述感知发起者采用轮询触发方式触发每个参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在第一个所述感知响应者发送并接收单基感知测量帧后,向第一个所述感知响应者发送所述感知上报轮询帧;
    在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知上报轮询帧;
    其中,所述感知上报轮询帧用于触发所述感知响应者发送所述感知测量报告帧,i为正整数。
  14. 根据权利要求2所述的方法,其特征在于,除第一个以外的每个所述感知响应者对应一个所述感知上报轮询帧。
  15. 根据权利要求14所述的方法,其特征在于,所述协作感知测量的类型为协作单基的并行模式;
    所述感知发起者采用轮询触发方式触发每个参与协作的感知响应者执行感知测量流程中的部分阶段,包括:
    在接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,向第i+1个所述感知响应者发送所述感知上报轮询帧;
    其中,所述感知上报轮询帧用于触发所述感知响应者发送所述感知测量报告帧,i为正整数。
  16. 根据权利要求2至15任一所述的方法,其特征在于,所述感知测量轮询帧为时分双工TDD波束赋形帧的一种。
  17. 根据权利要求16所述的方法,其特征在于,所述TDD波束赋形帧的媒体接入控制MAC帧体包括TDD波束赋形控制字段,所述TDD波束赋形控制字段包括TDD群组波束赋形字段和TDD波束测量字段;
    在所述TDD群组波束赋形字段取值为1,且所述TDD波束测量字段取值为1的情况下,所述TDD波束赋形帧为所述感知测量轮询帧。
  18. 根据权利要求2至15任一所述的方法,其特征在于,所述感知测量轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
  19. 根据权利要求18所述的方法,其特征在于,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
  20. 根据权利要求2至15任一所述的方法,其特征在于,所述感知上报轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
  21. 根据权利要求20所述的方法,其特征在于,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
  22. 一种协作感知测量方法,其特征在于,所述方法由感知响应者执行,所述方法包括:
    在协作感知测量的过程中,每组或每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
  23. 根据权利要求22所述的方法,其特征在于,所述轮询触发基于如下至少一种帧实现:
    感知请求帧;
    感知测量轮询帧;
    感知上报轮询帧;
    其中,所述感知请求帧用于触发所述感知响应者执行所述感知测量流程中的全部阶段,所述感知测量轮询帧用于触发所述感知响应者执行所述感知测量流程中的感知测量阶段以及上报阶段,所述感知上报轮询帧用于触发所述感知响应者执行所述感知测量流程中的所述上报阶段。
  24. 根据权利要求23所述的方法,其特征在于,每组或每个所述感知响应者对应一个所述感知测量轮询帧。
  25. 根据权利要求24所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在所述感知发起者接收到全部所述感知响应者发送的感知响应帧后,第一个所述感知响应者接收所述感知发起者发送的所述感知测量轮询帧;
    在所述感知发起者接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,第i+1个所述感知响应者接收所述感知发起者发送的所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
  26. 根据权利要求25所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述每组参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在所述感知发起者接收到全部所述感知响应者发送的感知响应帧后,第一组所述感知响应者中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
    在所述感知发起者接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,第i+1组所述感知响应者中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
  27. 根据权利要求23所述的方法,其特征在于,除第一组以外的每组所述感知响应者或除第一个以外的每个所述感知响应者对应一个所述感知测量轮询帧。
  28. 根据权利要求27所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在所述感知发起者接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,第i+1个所述感知响应者接收所述感知发起者发送的所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知响应者发送单基感知测量帧,i为正整数。
  29. 根据权利要求27所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述每组参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在所述感知发起者接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,第i+1组所述感知响应者中的所述感知发送者接收所述感知发起者发送的所述感知测量轮询帧;
    其中,所述感知测量轮询帧用于触发所述感知发送者发送携带有TRN字段的BRP帧,i为正整数。
  30. 根据权利要求23所述的方法,其特征在于,一组所述感知响应者中的每个所述感知响应者对应一个所述感知请求帧,或每个所述感知响应者对应一个所述感知请求帧。
  31. 根据权利要求30所述的方法,其特征在于,所述协作感知测量的类型为协作单基的顺序模式;
    所述每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段,包括:
    第一个所述感知响应者接收所述感知发起者发送的所述感知请求帧;
    在所述感知发起者接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,第i+1个所述感知响应者接收所述感知发起者发送的所述感知请求帧;
    其中,所述感知请求帧用于触发一个所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
  32. 根据权利要求30所述的方法,其特征在于,所述协作感知测量的类型为协作双基,每组所述感知响应者包括一个感知发送者和一个感知接收者;
    所述每组参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段,包括:
    第一组所述感知响应者中的所述感知发送者和所述感知接收者分别接收所述感知发起者发送的所述感知请求帧;
    在所述感知发起者接收到第i组所述感知响应者中的所述感知发送者发送的感知测量报告帧,或向第i组所述感知响应者中的所述感知发送者发送ACK帧后,第i+1组所述感知响应者中的所述感知发送者和所述感知接收者分别接收所述感知发起者发送的所述感知请求帧;
    其中,所述感知请求帧用于触发一组所述感知响应者执行所述感知测量流程中的全部阶段,i为正整数。
  33. 根据权利要求23所述的方法,其特征在于,每个所述感知响应者对应一个感知上报轮询帧。
  34. 根据权利要求33所述的方法,其特征在于,所述协作感知测量的类型为协作单基的并行模式;
    所述每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在第一个所述感知响应者发送并接收单基感知测量帧后,第一个所述感知响应者接收所述感知发起者发送的所述感知上报轮询帧;
    在所述感知发起者接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,第i+1个所述感知响应者接收所述感知发起者发送的所述感知上报轮询帧;
    其中,所述感知上报轮询帧用于触发所述感知响应者发送所述感知测量报告帧,i为正整数。
  35. 根据权利要求23所述的方法,其特征在于,除第一个以外的每个所述感知响应者对应一个所述感知上报轮询帧。
  36. 根据权利要求35所述的方法,其特征在于,所述协作感知测量的类型为协作单基的并行模式;
    所述每个参与协作的所述感知响应者根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的部分阶段,包括:
    在所述感知发起者接收到第i个所述感知响应者发送的感知测量报告帧,或向第i个所述感知响应者发送ACK帧后,第i+1个所述感知响应者接收所述感知发起者发送的所述感知上报轮询帧;
    其中,所述感知上报轮询帧用于触发所述感知响应者发送所述的感知测量报告帧,i为正整数。
  37. 根据权利要求23至36任一所述的方法,其特征在于,所述感知测量轮询帧为TDD波束赋形帧的一种。
  38. 根据权利要求37所述的方法,其特征在于,所述TDD波束赋形帧的MAC帧体包括TDD波束赋形控制字段,所述TDD波束赋形控制字段包括TDD群组波束赋形字段和TDD波束测量字段;
    在所述TDD群组波束赋形字段取值为1,且所述TDD波束测量字段取值为1的情况下,所述TDD波束赋形帧为所述感知测量轮询帧。
  39. 根据权利要求23至36任一所述的方法,其特征在于,所述感知测量轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
  40. 根据权利要求39所述的方法,其特征在于,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知测量轮询帧。
  41. 根据权利要求23至36任一所述的方法,其特征在于,所述感知上报轮询帧是MAC帧体中的TDD波束赋形控制字段中增加轮询类型字段的感知轮询帧,所述轮询类型字段用于指示增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
  42. 根据权利要求41所述的方法,其特征在于,在所述轮询类型字段的取值为0或1的情况下,增加所述轮询类型字段的所述感知轮询帧为所述感知上报轮询帧。
  43. 一种协作感知测量装置,其特征在于,所述装置包括:
    触发模块,用于在协作感知测量的过程中,所述装置采用轮询触发方式触发每组或每个参与协作的感知响应者执行感知测量流程中的全部阶段或部分阶段。
  44. 一种协作感知测量装置,其特征在于,所述装置包括:
    执行模块,用于在协作感知测量的过程中,每组或每个参与协作的所述装置根据感知发起者采用轮询触发方式的触发,执行感知测量流程中的全部阶段或部分阶段。
  45. 一种感知发起设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述感知发起设备实现如权利要求1至21中任一所述的协作感知测量方法。
  46. 一种感知响应设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述感知响应设备实现如权利要求22至42中任一所述的协作感知测量方法。
  47. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序,所述计算机程序用于被感知测量设备执行,以实现权利要求1至42中任一所述的协作感知测量方法。
  48. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,安装有所述芯片的感知测量设备运行时,用于实现权利要求1至42中任一所述的协作感知测量方法。
  49. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,感知测量设备从所述计算机可读存储介质读取并执行所述计算机指令,以实现权利要求1至42中任一所述的协作感知测量方法。
PCT/CN2022/107539 2022-07-22 2022-07-22 协作感知测量方法、装置、设备及存储介质 WO2024016365A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107539 WO2024016365A1 (zh) 2022-07-22 2022-07-22 协作感知测量方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107539 WO2024016365A1 (zh) 2022-07-22 2022-07-22 协作感知测量方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024016365A1 true WO2024016365A1 (zh) 2024-01-25

Family

ID=89616865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107539 WO2024016365A1 (zh) 2022-07-22 2022-07-22 协作感知测量方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024016365A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170188300A1 (en) * 2015-12-23 2017-06-29 Intel IP Corporation System, method and apparatus for sharing access data for FTM responders
WO2020228619A1 (zh) * 2019-05-10 2020-11-19 华为技术有限公司 雷达测试方法及装置
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170188300A1 (en) * 2015-12-23 2017-06-29 Intel IP Corporation System, method and apparatus for sharing access data for FTM responders
WO2020228619A1 (zh) * 2019-05-10 2020-11-19 华为技术有限公司 雷达测试方法及装置
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置

Similar Documents

Publication Publication Date Title
JP2023538286A (ja) 無線ローカルエリアネットワークセンシングのための通信装置および通信方法
CN112771397B (zh) 无线网络中基于定时测量的位置信息确定
US20220039058A1 (en) Methods and apparatus for wi-fi ranging protocol enhancement with reduced throughput impact
EP3972331A1 (en) Positioning method and device
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2023016441A1 (zh) 通信方法以及装置
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024040612A1 (zh) 无线通信的方法和设备
WO2023245664A1 (zh) 无线通信的方法和设备
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023130384A1 (zh) 感知上报方法和设备
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2023206111A1 (zh) 感知结果的上报方法、装置、设备及存储介质
WO2023123000A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
CN106817193B (zh) 一种接入点通信的方法及接入点
WO2023130388A1 (zh) 无线通信的方法及设备
WO2023130383A1 (zh) 感知方法和设备
EP4387308A1 (en) Wireless communication method and device
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备
WO2024011391A1 (zh) 代理感知测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951634

Country of ref document: EP

Kind code of ref document: A1