WO2023284619A1 - 一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置 - Google Patents

一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置 Download PDF

Info

Publication number
WO2023284619A1
WO2023284619A1 PCT/CN2022/104368 CN2022104368W WO2023284619A1 WO 2023284619 A1 WO2023284619 A1 WO 2023284619A1 CN 2022104368 W CN2022104368 W CN 2022104368W WO 2023284619 A1 WO2023284619 A1 WO 2023284619A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
resistant coating
temperature resistant
coating
high temperature
Prior art date
Application number
PCT/CN2022/104368
Other languages
English (en)
French (fr)
Inventor
庄志
石广钦
熊磊
刘连静
晏小祥
虞少波
程跃
Original Assignee
苏州捷力新能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州捷力新能源材料有限公司 filed Critical 苏州捷力新能源材料有限公司
Publication of WO2023284619A1 publication Critical patent/WO2023284619A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to the field of battery separators, in particular to a coating slurry, a high-temperature-resistant coating film, a preparation method thereof, and an electrochemical device.
  • the diaphragm is an important part of the lithium-ion battery.
  • the diaphragm has two main functions. The first is electronic insulation, which ensures the electronic insulation between the positive and negative electrodes of the lithium-ion battery and prevents short circuits.
  • the second function is to conduct ions.
  • the electrolyte can penetrate into the porous structure of the diaphragm, so that ions can pass through the diaphragm to achieve ion conduction.
  • the separator is one of the key inner components.
  • the performance of the separator determines the interface structure and internal resistance of the battery, which directly affects the battery capacity, cycle and safety performance. It can be said that the separator with excellent performance plays a decisive role in improving the overall performance of the battery.
  • the performance requirements for separators are getting higher and higher.
  • the base film and coating are required to be light and thin, and the viscous coating is used to increase the volumetric energy density of the cell; in terms of long life, it is necessary to enhance the liquid retention and wettability of the separator, improve the lithium ion conductivity, and increase the battery capacity.
  • the temperature range from the closed cell temperature of the battery separator to the rupture temperature is a safe range for the battery to withstand high temperatures.
  • the larger the temperature range the higher the safety factor when the battery is affected by high temperature. Therefore, reducing the closed cell temperature and increasing the membrane rupture temperature are crucial to improving the overall safety performance of the battery.
  • high-safety diaphragms are generally realized by technical means such as PE/PP multilayer composite diaphragms and high heat-resistant ceramics. PP/PE multi-layer co-extrusion is used to prepare composite diaphragms.
  • a layer of ceramic coating can be formed on the surface of the diaphragm, which can effectively improve the high-temperature dimensional stability of the diaphragm, but the rupture temperature of the diaphragm depends on the coated base film, and the ceramic coating has basically no effect on the rupture temperature of the entire diaphragm.
  • ceramic coating can improve the overall high temperature resistance and dimensional stability, when the temperature is too high, even if the ceramic coating can maintain the membrane structure, the base film layer will be broken, which will lead to the disappearance of the closed cell effect.
  • Patents CN201310111465.X and CN201610786396.6 provide methods for manufacturing high-temperature-resistant diaphragms, but they are all improved by low-closed-cell temperature coatings on high-temperature-resistant non-woven fabric base films.
  • the present application expects to provide a coating slurry, a high-temperature-resistant coating film, a preparation method thereof, and an electrochemical device to improve or solve the above-mentioned technical problems.
  • the purpose of the present application is to provide a coating slurry, including the following components in mass percentage: 0.01% to 5% of ultraviolet photoinitiator, 0.01% to 5% of ultraviolet light crosslinking agent, 0% to 5% of deionized water 50%, polymer emulsion 0-90%, binder 0-10%, dispersant 0-5%, organic solvent 5-70%.
  • the coating slurry includes the following components in mass percentage: 0.01-2% of ultraviolet light initiator, 0.7-3.5% of ultraviolet light crosslinking agent, 0-50% of deionized water, and 0-83% of polymer emulsion , binder 0-4.5%, dispersant 0-1.5%, organic solvent 8-58%.
  • the organic solvent is an organic solvent that can be miscible with water in any proportion.
  • the ultraviolet photoinitiator is a cationic photoinitiator or a free radical photoinitiator.
  • the ultraviolet light crosslinking agent is an allyl auxiliary crosslinking agent.
  • allyl-based auxiliary crosslinking agent is selected from the following one or a mixture of two or more: trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, cyanuric acid Triacrylate and triallyl isocyanurate.
  • polymer emulsion is polyolefin emulsion, acrylate and its derivative emulsion.
  • the polymer emulsion has a solid content of 10% to 70%, wherein the size of the solid particles is 0.5 ⁇ m ⁇ D(50) ⁇ 5 ⁇ m.
  • the size of the solid particles is 0.5 ⁇ m ⁇ D(50) ⁇ 2.5 ⁇ m.
  • the size of the solid particles is 0.6 ⁇ m ⁇ D(50) ⁇ 1.5 ⁇ m.
  • the size of the solid particles is 1 ⁇ m ⁇ D(50) ⁇ 1.5 ⁇ m.
  • the melting point of the solid particles is 60-160°C.
  • the solid particles have a melting point of 80-135°C. More preferably, it is 80-120 degreeC, More preferably, it is 110-120 degreeC, More preferably, it is 80-90 degreeC.
  • the binding agent is selected from one or more of polyacrylate and its derivatives, polyvinyl alcohol and its derivatives, and polyvinyl acetate.
  • the dispersant is an anionic surfactant or a cationic surfactant.
  • the dispersant is a water-soluble surfactant.
  • the object of the present application is also to provide a high temperature resistant coating film, including: a substrate and a coating disposed on at least one surface of the substrate; the coating is formed from the coating slurry provided in the first aspect It is cross-linked and cured under ultraviolet light irradiation.
  • the base material is a polyolefin diaphragm or a polyolefin diaphragm containing a ceramic coating.
  • the polyolefin in the polyolefin separator or the polyolefin separator containing a ceramic coating is one or a mixture of two or more of the following crystalline polymers: polyethylene, polypropylene, poly-1-butene, poly 4-methyl-1-pentene, poly-1-hexene, poly-1-octene or polymethylmethacrylate.
  • the thickness of the high temperature resistant coating film is 9-18 ⁇ m
  • the air permeability is 144-230s/100ml
  • the acupuncture strength is 472-616gf
  • the closed cell temperature is 95-143°C
  • the membrane rupture temperature is 172-216°C
  • the safety range is 35-91°C .
  • the thickness is 9-18 ⁇ m
  • the air permeability is 176-230s/100ml
  • the acupuncture strength is 473-509gf
  • the closed cell temperature is 95-141°C
  • the membrane rupture temperature is 172-216°C
  • the safe range is 35-91°C.
  • the thickness is 9-13 ⁇ m
  • the air permeability is 176-206 s/100ml
  • the acupuncture strength is 473-509 gf
  • the closed cell temperature is 140-142°C
  • the membrane rupture temperature is 176-216°C
  • the safety range is 35-75°C.
  • the thickness is 9-18 ⁇ m
  • the air permeability is 152-230 s/100ml
  • the closed cell temperature is 95-121°C
  • the membrane rupture temperature is 172-187°C
  • the safety range is 50-91°C.
  • the purpose of the present application is also to provide a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the components of the slurry in step 1) are preferably 0.1-2% of ultraviolet light initiator, 0.7-3.5% of ultraviolet light crosslinking agent, 0-50% of deionized water, 0-83% of polymer emulsion, viscose Binder 0-4.5%, dispersant 0-1.5%, organic solvent 8-58%.
  • organic solvent is miscible with deionized water in any proportion.
  • the organic solvent is selected from one or a mixture of two or more of ethanol, acetone, isopropanol, dimethylformamide, N,N-dimethylformamide and dimethyl sulfoxide.
  • the polymer emulsion is polyolefin emulsion, acrylate and its derivative emulsion; the solid content of the polymer emulsion is 10%-70%, and the size of the solid particles is 0.5 ⁇ m ⁇ D(50) ⁇ 5 ⁇ m.
  • the melting point of the solid particles is 60-160°C.
  • the specific process of ultraviolet light irradiation includes: using ultraviolet light in the wavelength range of 254-365nm to irradiate the uncrosslinked isolation film for 6-10 minutes, so as to obtain a high-temperature resistant coating film.
  • the purpose of this application is to provide an electrochemical device, including a positive electrode, a negative electrode, an electrolyte and a coating film; the coating film includes the high temperature resistant coating film provided in the second aspect, or, according to the third aspect provided The high temperature resistant coating film prepared by the preparation method of the high temperature resistant coating film.
  • the application provides a high-temperature-resistant coating film, which is coated on at least one side of the substrate with a specially formulated coating slurry.
  • the high-temperature-resistant coating film provided by the application has comparable physical and chemical properties , and has quite or very low closed cell temperature and high membrane rupture temperature.
  • the high temperature resistant coating film of this application has excellent thermal properties and has a large safety range. When it is used in batteries, it can prevent overheating and short circuit of batteries , effectively guarantee the safety of battery machinery and high-temperature abuse scenarios, and the overall safety factor of the battery has been greatly improved.
  • the specific embodiment of the application provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the ultraviolet photoinitiator is a cationic photoinitiator or a free radical photoinitiator.
  • the ultraviolet photoinitiator is preferably selected from benzoin, benzoin dimethyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, diphenyl ethyl ketone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylphenethyl Ketone, ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone, ⁇ -aminoalkylphenone, aroylphosphine oxide, bisbenzoylphenylphosphine oxide, benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, Michler's ketone, thiopropoxythioxanthone, isopropyl A combination of one or more of thioxanthone, diaryliodonium salt, triaryliodonium salt, alkyliodonium salt
  • the ultraviolet light crosslinking agent is an allyl auxiliary crosslinking agent.
  • the allyl type co-crosslinking agent is preferably selected from the following one or a mixture of two or more: trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tripropylene cyanurate and Triallyl isocyanurate.
  • the polymer emulsion is polyolefin emulsion, acrylate emulsion (such as its related derivatives, preferably one or more of the following substances with a glass transition temperature Tg>90°C: methyl methacrylate, Acrylic acid, methacrylic acid, acrylonitrile, acrylamide, isobornyl methacrylate and other acrylate copolymers).
  • the role of the polymer emulsion is to introduce polymer microparticles whose melting point or glass transition temperature is lower than the melting point of the polyolefin-based film, and coat them on the surface of the film, but the polymer microparticles need to be prepared into an emulsion for use.
  • the solid content of the polymer emulsion is 10% to 70%, more preferably 33% to 42%, and even more preferably 35% to 42%; wherein the size of the solid particles is 0.5 ⁇ m ⁇ D(50) ⁇ 5 ⁇ m, more preferably 0.5 ⁇ m ⁇ D(50) ⁇ 2.5 ⁇ m, still more preferably 0.6 ⁇ m ⁇ D(50) ⁇ 1.5 ⁇ m, still more preferably 1 ⁇ m ⁇ D(50) ⁇ 1.5 ⁇ m.
  • the size of the particles is related to the thickness of the coating. If the size of the particles is too large (eg >2.5 ⁇ m), the coating is too thick, which will cause the overall separator to be too thick and affect the design space of the battery, eventually reducing the battery capacity.
  • the melting point of the solid particles is 60-160°C, preferably 80-135°C, more preferably 80-120°C, even more preferably 110-120°C, and even more preferably Preferably it is 80-90°C.
  • the selection of the melting point of the solid particles is related to the closed cell temperature, and the upper limit should preferably be lower than the melting points of different polyolefin separators.
  • the upper limit is preferably 135°C because the polyolefin separator is UHMWPE and its melting point is around 135°C.
  • the coating formed by the polymer emulsion with a melting point lower than 135° C. can have a closed cell temperature lower than that of the PE separator, thereby improving the overall safety performance of the battery.
  • Other temperatures depend on the different polyolefin materials and the preference when you want to further reduce the closed cell temperature of the separator.
  • the binder is selected from one or more of polyacrylates (such as its derivatives), polyvinyl alcohols (such as its derivatives), and polyvinyl acetate.
  • the dispersant is a water-soluble anionic surfactant or cationic surfactant, and further, the dispersant is a water-soluble surfactant.
  • the organic solvent is an organic solvent that can be miscible with deionized water in any proportion.
  • the organic solvent is preferably one or a mixture of two or more selected from ethanol, acetone, isopropanol, dimethylformamide, N,N-dimethylformamide and dimethyl sulfoxide.
  • the base material is a polyolefin diaphragm or a polyolefin diaphragm containing a ceramic coating.
  • the polyolefin in the polyolefin separator or the polyolefin separator containing a ceramic coating is one or a mixture of two or more of the following crystalline polymers: polyethylene, polypropylene, poly-1-butene, poly-4 - methyl-1-pentene, poly-1-hexene, poly-1-octene or polymethylmethacrylate.
  • the ceramic particles in the ceramic coating include but are not limited to alumina, boehmite, silica, magnesium hydroxide, zirconia, tin oxide, calcium carbonate, barium titanate, barium sulfate, zinc oxide and titanium oxide A mixture of one or more of them.
  • the specific process of ultraviolet light irradiation is to irradiate the non-crosslinked isolation film with ultraviolet light with a wavelength range of 254-365nm, and the irradiation time is 6-10 minutes, so as to obtain a high-temperature resistant coating film.
  • the ultraviolet light with a wavelength range of 254-365nm not only ensures the penetration of UV light, but also ensures the absorption intensity and improves the initiation efficiency, and the irradiation time of 6-10 minutes can achieve the effect of uniform ultraviolet light irradiation.
  • the process parameter range As long as the process parameter range is used, there is no need to limit it, and different process parameter values will not bring about different performances of the diaphragm.
  • the components of the slurry in step 1) are preferably 0.1-2% of ultraviolet light initiator, 0.7-3.5% of ultraviolet light crosslinking agent, 0-50% of deionized water, 0-83% of polymer emulsion, viscose Binder 0-4.5%, dispersant 0-1.5%, organic solvent 8-58%.
  • each component of the slurry in step 1) is further preferably 0.1 to 0.5% of an ultraviolet photoinitiator, 0.7 to 0.9% of an ultraviolet crosslinking agent, and 0 to 19% of deionized water, 46-83% polymer emulsion, 0-4.1% binder, 0-1.2% dispersant, and 8-29% organic solvent.
  • each component of the slurry in step 1) can be further preferably 0.3-0.5% of an ultraviolet photoinitiator, 0.7-0.9% of an ultraviolet crosslinking agent, and 4-4% of deionized water. 19%, polymer emulsion 47-81%, binder 3.5-4.1%, dispersant 0.9-1.2%, organic solvent 8-29%.
  • the high-temperature-resistant coating film prepared by the method provided in the specific embodiment of the application has a thickness of 9-18 ⁇ m, an air permeability of 144-230 s/100 ml, a needle penetration strength of 472-616 gf, a closed-cell temperature of 95-143 °C, and a membrane rupture temperature of 172-216 °C. °C, the safe range is 35 ⁇ 91°C.
  • the thickness is 9-18 ⁇ m
  • the air permeability is 176-230s/100ml
  • the acupuncture strength is 473-509gf
  • the closed-cell temperature is 95-141°C
  • the membrane rupture temperature is 172-216°C.
  • the safe range is 35-91°C.
  • the polymer emulsion in the slurry is an emulsion of acrylate and its derivatives
  • it can be further preferred to have a thickness of 9-13 ⁇ m, an air permeability of 176-206s/100ml, a needle penetration strength of 473-509gf, and a closed-cell temperature of 140-142°C.
  • the film temperature is 176-216°C, and the safe range is 35-75°C.
  • the polymer emulsion in the slurry is a polyolefin emulsion
  • it can be further preferred to have a thickness of 9-18 ⁇ m, an air permeability of 152-230 s/100ml, a closed cell temperature of 95-121 °C, a membrane rupture temperature of 172-187 °C, and a safety range of 50-100 °C. 91°C.
  • the specific embodiment of the present application also provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the coating slurry is evenly coated on one side or both sides of the substrate, and the high temperature resistant coating film is formed after being irradiated with ultraviolet light.
  • the content of the formula components and the physical properties of the high temperature resistant coating film refer to the content disclosed in the first specific embodiment.
  • the specific embodiment of the present application also provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the coating slurry is evenly coated on one side or both sides of the substrate, and the high temperature resistant coating film is formed after being irradiated with ultraviolet light.
  • the content of the formula components and the physical properties of the high temperature resistant coating film refer to the content disclosed in the first specific embodiment.
  • the specific embodiment of the present application also provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the coating slurry is evenly coated on one side or both sides of the substrate, and the high temperature resistant coating film is formed after being irradiated with ultraviolet light.
  • the content of the formula components and the physical properties of the high temperature resistant coating film refer to the content disclosed in the first specific embodiment.
  • the specific embodiment of the present application also provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • a mixed solution C containing an ultraviolet light crosslinking agent and an auxiliary crosslinking agent is obtained.
  • the coating slurry is evenly coated on one side or both sides of the substrate, and the high temperature resistant coating film is formed after being irradiated with ultraviolet light.
  • the content of the formulation components and the physical properties of the high temperature resistant coating film refer to the content disclosed in the first specific embodiment.
  • the specific embodiment of the present application also provides a method for preparing a high temperature resistant coating film, comprising the following steps:
  • the coating slurry is evenly coated on one side or both sides of the substrate, and the high temperature resistant coating film is formed after being irradiated with ultraviolet light.
  • the content of the formula components and the physical properties of the high temperature resistant coating film refer to the content disclosed in the first specific embodiment.
  • a specific embodiment of the present application provides an electrochemical device, including a positive electrode, a negative electrode, an electrolyte, and a coating film; the coating film includes the high-temperature-resistant coating film provided in the above examples.
  • the performance parameters are determined according to the following methods:
  • German Marr film thickness gauge 1216 is used for testing with reference to the national standard GB/T 36363-2018 "Polyolefin Separator for Lithium-ion Batteries”.
  • Gurley air permeability tester 4110 is used for testing with reference to the national standard GB/T 36363-2018 "Polyolefin Separator for Lithium-ion Batteries”.
  • Coating slurry 1 was obtained.
  • the coating slurry 1 was evenly coated on one side of the base material of a 9 micron wet-process PE separator, and the coated surface of the slurry 1 was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 1.
  • the physical properties of sample 1 are shown in Table 1.
  • the coating slurry 1 was evenly coated on both sides of the base material of the 9 micron wet-process PE separator, and both sides coated with the slurry 1 were cross-linked by ultraviolet light irradiation to obtain the high-temperature-resistant separator sample 2.
  • the physical properties of sample 2 are shown in Table 1.
  • the 9 micron wet-process PE separator was used as the blank sample 1 before coating, and the comparative physical properties are shown in Table 1.
  • Coating slurry 2 was obtained.
  • the coating slurry 2 was evenly coated on one side of the base material of a 12 micron wet-process PE separator, and the coated surface of the slurry 2 was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 3.
  • the physical properties of sample 3 are shown in Table 1.
  • the coating slurry 2 was uniformly coated on both sides of the base material of a 12-micron wet-process PE diaphragm, and the two sides coated with the slurry 2 were crosslinked by ultraviolet light irradiation to obtain a high-temperature-resistant diaphragm sample 4.
  • the physical properties of sample 4 are shown in Table 1.
  • the obtained slurries 3-A were added to 480 parts by weight of the acrylate polymer emulsion, wherein the solid content of the acrylate copolymer polymer emulsion was 33%, and the particle diameter D(50) of the solid particles was 0.6 ⁇ m.
  • Coating slurry 3 was obtained.
  • the coating slurry 3 was uniformly coated on one side of the base material of a 9 micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 5.
  • the physical properties of sample 5 are shown in Table 2.
  • the coating slurry 3 was uniformly coated on both sides of the base material of a 9 micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 6.
  • the physical properties of sample 6 are shown in Table 2.
  • Coating slurry 3 was uniformly coated on the base film surface of a single-sided coated ceramic (9 micron base film + 3 micron ceramic coating) diaphragm, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high temperature resistant diaphragm sample 7 .
  • the physical properties of sample 7 are shown in Table 2.
  • Coating slurry 3 is uniformly coated on the ceramic coating surface of a single-sided coated ceramic (9 micron base film + 3 micron ceramic coating) diaphragm, and the coated surface is crosslinked by ultraviolet light irradiation to obtain a high temperature resistant diaphragm sample 8.
  • the physical properties of sample 8 are shown in Table 2.
  • the 9 micron wet-process PE separator was used as the blank sample 1 before coating, and the comparative physical properties are shown in Table 1.
  • One-side coated ceramic (9 micron base film + 3 micron ceramic coating) diaphragm was used as the blank sample 3 before coating, and compared with the physical properties after coating, see Table 2 below.
  • the mixed solution of ultraviolet light crosslinking agent and co-crosslinking agent 4 ⁇ C The mixed solution of ultraviolet light crosslinking agent and co-crosslinking agent 4 ⁇ C.
  • Coating slurry 4 was obtained.
  • the coating slurry 4 was evenly coated on one side of the base material of a 9 micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 10 .
  • the physical properties of sample 10 are shown in Table 3.
  • the coating slurry 4 was uniformly coated on both sides of the base material of a 9 micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 11.
  • the physical properties of sample 11 are shown in Table 3.
  • Coating slurry 4 was uniformly coated on the base film surface of a single-side coated ceramic (9 micron base film + 3 micron ceramic coating) diaphragm, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high temperature resistant diaphragm sample 12 .
  • the physical properties of sample 12 are shown in Table 3.
  • the coating slurry 4 was uniformly coated on the ceramic surface of a single-side coated ceramic (9-micron base film + 3-micron ceramic coating) diaphragm, and the coated surface was cross-linked by ultraviolet light to obtain a high-temperature-resistant diaphragm sample 13.
  • the physical properties of sample 13 are shown in Table 3.
  • the coating slurry 4 was uniformly coated on both sides of a single-sided coated ceramic (9-micron base film + 3-micron ceramic coating) separator, and the coated surface was cross-linked by ultraviolet light to obtain a high-temperature-resistant diaphragm sample 14.
  • the physical properties of sample 14 are shown in Table 3.
  • the 9 micron wet-process PE separator was used as the blank sample 1 before coating, and the comparative physical properties are shown in Table 1.
  • One-side coated ceramic (9 micron base film + 3 micron ceramic coating) diaphragm was used as blank sample 3 before coating, and compared with the physical properties after coating, see Table 3 below.
  • Coating slurry 5 was obtained.
  • the coating slurry 5 was uniformly coated on one side of the substrate of a 12 micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 15.
  • the physical properties of sample 15 are shown in Table 4.
  • the coating slurry 5 was evenly coated on both sides of the base material of a 12-micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 16 .
  • the physical properties of sample 16 are shown in Table 4.
  • the coating slurry 6 was evenly coated on one side of the substrate of a 12-micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 17.
  • the physical properties of sample 17 are shown in Table 4.
  • the coating slurry 6 was uniformly coated on both sides of the base material of a 12-micron wet-process PE separator, and the coated surface was cross-linked by ultraviolet light irradiation to obtain a high-temperature-resistant separator sample 18.
  • the physical properties of sample 18 are shown in Table 4.
  • the 12 micron wet-process PE separator was used as the blank sample 2 before coating, and the comparative physical properties are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Paints Or Removers (AREA)

Abstract

一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置。耐高温涂布膜包括基材及设置于基材至少一个表面上的涂层。涂层由涂布浆料在紫外光辐照下交联固化而成。其中,涂布浆料包括以下质量百分比的各组分:紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%。将特殊配方的涂布浆料涂布至基材的至少一面,获得具有较高透气率、较低闭孔温度、较高破膜温度、优异热学性能和较大安全区间的耐高温涂布膜。耐高温涂布膜应用在电池中时,可以防止电池过热短路,有效保证电池高温滥用场景的安全,大幅度提升电池的安全性。

Description

一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置
本申请要求申请号为202110787905.8、申请日为2021年07月13日以及专利名称为“一种耐高温涂布膜、制备方法及其电化学装置”的专利申请文件的优先权。
技术领域
本申请涉及电池隔膜领域,具体涉及一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置。
背景技术
隔膜是锂离子电池的重要组成部分,隔膜主要具有两个功能,第一个是电子绝缘,即保证锂离子电池正负极之间实现电子绝缘,防止短路的发生。第二个功能是导通离子,电解液能够渗入隔膜的多孔结构内部,使得离子能够穿过隔膜,实现离子导通。
在锂电池结构中,隔膜是关键的内层组件之一。隔膜的性能决定了电池的界面结构、内阻值等,直接影响着电池容量、循环以及安全性能等。可以说,性能优异的隔膜对提高电池的综合性能具有决定性的作用。随着锂电池发展不断深入,对隔膜的性能要求越来越高。在高能量密度方面,要求基膜、涂层轻薄化,采用粘性涂层提升电芯体积能量密度;在长寿命方面,需要增强隔膜的保液性、浸润性,提高锂离子导电率,增加电池硬度,抑制电池循环变形;在高安全性方面,需要采用超高强度基膜,提高基膜破膜温度,降低闭孔温度,抑制枝晶形成,降低电池漏液、自燃等风险。
从电池隔膜闭孔温度到破膜温度的温度区间,是电池可承受高温的安全区间。该温度区间越大,电池受高温影响时安全系数越高。因此,降低闭孔温度,提高破膜温度对提高电池整体安全性能至关重要。现有技术中高安全性隔膜一般采用PE/PP多层复合隔膜、高耐热陶瓷等技术手段实现。采用PP/PE多层共挤制备复合隔膜的方式,由于PP/PE拉伸加工温度差异较大,导致PP/PE复合挤出拉伸加工难度较大;而采用高耐热陶瓷涂布方式,可在隔膜表面形成一层陶瓷涂层,可有效提高隔膜高温尺寸稳定性,但是隔膜破膜温度取决于涂布基膜,陶瓷涂层对整个隔膜的破膜温度基本没有影响。虽然陶瓷涂布可以提高整体耐高温尺寸稳定性,但是当温度过高时,陶瓷涂层即便是可以维持膜结构,但是基膜层 破膜,将导致闭孔效果消失。
专利CN201310111465.X和CN201610786396.6提供了耐高温隔膜的制造方法,但是均是在耐高温的无纺布基膜上进行低闭孔温度涂层的改进。
申请内容
有鉴于此,本申请期望提供一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置,来改善或解决上述技术难题。
为达到上述目的,本申请的技术方案是这样实现的:
在第一方面,本申请目的在于提供一种涂布浆料,包括以下质量百分比的各组分:紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%。
进一步地,涂布浆料包括以下质量百分比的各组分:紫外光引发剂0.01~2%,紫外光交联剂0.7~3.5%,去离子水0~50%,高分子乳液0~83%,粘结剂0~4.5%,分散剂0~1.5%,有机溶剂8~58%。
进一步地,有机溶剂为可以与水以任意比例互溶的有机溶剂。
进一步地,紫外光引发剂为阳离子光引发剂或自由基光引发剂。
进一步地,紫外光交联剂为烯丙基类助交联剂。
更进一步地,烯丙基类助交联剂选自下述的一种或两种以上的混合:三羟甲基丙烷三甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三聚氰酸三丙烯酯和三烯丙基异氰脲酸酯。
进一步地,高分子乳液为聚烯烃乳液、丙烯酸酯及其衍生物乳液。
更进一步地,高分子乳液的固含量在10%~70%,其中固态颗粒的尺寸为0.5μm≤D(50)≤5μm。
优选的,固态颗粒的尺寸为0.5μm≤D(50)≤2.5μm。
更优选的,固态颗粒的尺寸为0.6μm≤D(50)≤1.5μm。
再优选的,固态颗粒的尺寸为1μm≤D(50)≤1.5μm。
更进一步地,高分子乳液为聚烯烃乳液时,固态颗粒物熔点为60~160℃。
优选的,固态颗粒物熔点为80~135℃。进一步优选为80~120℃,更进一步优选为110~120℃,更进一步优选为80~90℃。
进一步地,粘结剂选自聚丙烯酸酯及其衍生物、聚乙烯醇及其衍生物和聚醋 酸乙烯酯中的一种或几种。
进一步地,分散剂为阴离子型表面活性剂或者阳离子型表面活性剂。
更进一步地,分散剂为水溶性的表面活性剂。
在第二方面,本申请的目的还在于提供一种耐高温涂布膜,包括:基材及设置于基材至少一个表面上的涂层;涂层由第一方面提供的涂布浆料在紫外光辐照下交联固化而成。
进一步地,基材为聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜。
更进一步地,聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜中的聚烯烃为下列结晶性聚合物中的一种或两种以上的混合物:聚乙烯、聚丙烯、聚1-丁烯、聚4-甲基-1-戊烯、聚1-己烯、聚1-辛烯或聚甲基丙烯酸甲酯。
进一步地,耐高温涂布膜厚度9~18μm,透气率144~230s/100ml,针刺强度472~616gf,闭孔温度95~143℃,破膜温度172~216℃,安全区间35~91℃。优选为厚度9~18μm,透气率176~230s/100ml,针刺强度473~509gf,闭孔温度95~141℃℃,破膜温度172~216℃,安全区间35~91℃。
可以更进一步优选为厚度9~13μm,透气率176~206s/100ml,针刺强度473~509gf,闭孔温度140~142℃,破膜温度176~216℃,安全区间35~75℃。
可以更进一步优选为厚度9~18μm,透气率152~230s/100ml,闭孔温度95~121℃,破膜温度172~187℃,安全区间50~91℃。
在第三方面,本申请目的还在于提供一种耐高温涂布膜的制备方法,包括以下步骤:
1)将紫外光引发剂、紫外光交联剂、高分子乳液、粘结剂、分散剂溶于溶剂中形成涂布浆料,该浆料的重量百分比为紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%;
2)将上述涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成耐高温涂布膜。
进一步地,步骤1)中浆料各组分优选为紫外光引发剂0.1~2%,紫外光交联剂0.7~3.5%,去离子水0~50%,高分子乳液0~83%,粘结剂0~4.5%,分散剂0~1.5%,有机溶剂8~58%。
进一步地,有机溶剂为可以与去离子水以任意比例互溶。
更进一步地,有机溶剂选自乙醇、丙酮、异丙醇、二甲基甲酰胺、N,N-二甲基甲酰胺和二甲基亚砜中的一种或两种以上的混合物。
进一步地,高分子乳液为聚烯烃乳液、丙烯酸酯及其衍生物乳液;高分子乳液的固含量在10%~70%,其中固态颗粒的尺寸为0.5μm≤D(50)≤5μm。
更进一步地,高分子乳液为聚烯烃乳液时,固态颗粒物熔点为60~160℃。
进一步地,紫外光辐照的具体工艺包括:采用波长范围介于254~365nm之间的紫外光对未交联隔离膜进行光照射处理,光照时间6~10min,从而获得耐高温涂布膜。
第四方面,本申请目的还在于提供一种电化学装置,包括正极、负极、电解质和涂布膜;涂布膜包括第二方面提供的耐高温涂布膜,或者,根据第三方面提供的耐高温涂布膜的制备方法制得的耐高温涂布膜。
本申请有益效果如下:
本申请提供一种耐高温涂布膜,其采用特殊配方的涂布浆料涂布至基材的至少一面,基材同等厚度时,本申请提供的耐高温涂布膜透气率等理化性能相当,且有相当或很低的闭孔温度及很高的破膜温度,本申请耐高温涂布膜的热学性能优异,有很大的安全区间,应用在电池中时,可以达到防止电池过热短路,有效保证电池机械及高温滥用场景的安全,电池整体安全系数得到了大幅度提升。
具体实施方式
以下对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
本申请具体实施方式提供一种耐高温涂布膜的制备方法,包括以下步骤:
1)将紫外光引发剂、紫外光交联剂、高分子乳液、粘结剂、分散剂溶于溶剂中形成涂布浆料,该浆料的重量百分比为紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%;
2)将上述涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
进一步地,紫外光引发剂为阳离子光引发剂或自由基光引发剂。
更进一步地,紫外光引发剂优选自安息香、安息香双甲醚、安息香***、安息香异丙醚、安息香丁醚、二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮、α-胺烷基苯酮、芳酰基膦氧化物、双苯甲酰基苯基氧化膦、二苯甲酮、2,4-二羟基二苯甲酮、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、米蚩酮、硫代丙氧基硫杂蒽酮、异丙基硫杂蒽酮、二芳基碘鎓盐、三芳基碘鎓盐、烷基碘鎓盐和异丙苯茂铁六氟磷酸盐中的一种或多种的组合物。
进一步地,紫外光交联剂为烯丙基类助交联剂。
烯丙基类助交联剂优选自下述的一种或两种以上的混合:三羟甲基丙烷三甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三聚氰酸三丙烯酯和三烯丙基异氰脲酸酯。
进一步地,高分子乳液为聚烯烃类乳液、丙烯酸酯类乳液(例如其相关衍生物类,优选玻璃化转变温度Tg>90℃的下列物质中的一种或几种:甲基丙烯酸甲酯、丙烯酸、甲基丙烯酸、丙烯腈、丙烯酰胺、甲基丙烯酸异冰片酯等丙烯酸酯共聚物)。
高分子乳液的作用是引入熔点或者玻璃化转变温度低于聚烯烃基膜熔点的高分子微颗粒,涂布在膜的表面,但是高分子微颗粒需制备成乳液使用。
更进一步地,高分子乳液的固含量在10%~70%,进一步优选为33%~42%,更进一步优选为35%~42%;其中固态颗粒的尺寸为0.5μm≤D(50)≤5μm,进一步优选为0.5μm≤D(50)≤2.5μm,更进一步优选为0.6μm≤D(50)≤1.5μm,再进一步优选为1μm≤D(50)≤1.5μm。
这里,当固含量>70%时,粘度过大不利于涂布;当固含量<10%时,则无法形成均匀涂层。
这里,颗粒物的尺寸和涂层的厚度相关,颗粒物尺寸过大(如>2.5μm时),涂层太厚会导致整体隔膜过厚而影响电池设计空间,最终降低电池容量。
更进一步地,聚烯烃类乳液为聚乙烯蜡乳液时,固态颗粒物熔点为60~160℃,优选为80~135℃,进一步优选为80~120℃,更进一步优选为110~120℃,更进一步优选为80~90℃。
这里,固态颗粒物熔点的选择和闭孔温度有关,上限优选应低于不同聚烯烃隔膜的熔点。例如上限优选135℃时,是因为聚烯烃隔膜为UHMWPE,其熔点 在135℃左右。此时优选熔点低于135℃的高分子乳液形成的涂层可以具有低于PE隔膜的闭孔温度,提高电池整体安全性能。其他温度取决于不同的聚烯烃材质以及想要更进一步降低隔膜闭孔温度时的优选。
进一步地,粘结剂选自聚丙烯酸酯类(例如其及其衍生物)、聚乙烯醇类(例如其及其衍生物)、聚醋酸乙烯酯中的一种或几种。
进一步地,分散剂为水溶性的阴离子型表面活性剂或者阳离子型表面活性剂,更进一步地,分散剂为水溶性的表面活性剂。
优选自直链烷基苯磺酸钠、α-一烯丙基磺酸钠、十二烷基硫酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰油酸二乙醇酰胺、十二烷基苯磺酸钠、乙氧基化烷基硫酸钠和十二烷基二甲基甜菜碱中的一种或多种的组合物。进一步地,有机溶剂为可以与去离子水水以任意比例互溶的有机溶剂。有机溶剂优选自乙醇、丙酮、异丙醇、二甲基甲酰胺、N,N-二甲基甲酰胺和二甲基亚砜中的一种或两种以上的混合物。
进一步地,基材为聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜。
更进一步地,聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜中的聚烯烃为下列结晶性聚合物中的一种或两种以上混合物:聚乙烯、聚丙烯、聚1-丁烯、聚4-甲基-1-戊烯、聚1-己烯、聚1-辛烯或聚甲基丙烯酸甲酯。
更进一步地,陶瓷涂层中的陶瓷颗粒包括但不限于氧化铝,勃姆石,氧化硅,氢氧化镁,氧化锆,氧化锡,碳酸钙,钛酸钡,硫酸钡,氧化锌和氧化钛中的一种或多种的混合物。
进一步地,紫外光辐照的具体工艺为采用波长范围介于254~365nm之间的紫外光对未交联隔离膜进行光照射处理,光照时间6~10min,从而获得耐高温涂布膜。
这里,波长范围介于254~365nm之间的紫外光既保证UV光穿透性,又保证吸收强度,提高引发效率,而光照时间6~10min可以达到进行均匀的紫外光辐照的效果。后续实施例中只要采用该工艺参数范围即可,无需限定,具体不同的工艺参数值也并不会带来不一样的隔膜性能。
进一步地,步骤1)中浆料各组分优选为紫外光引发剂0.1~2%,紫外光交联剂0.7~3.5%,去离子水0~50%,高分子乳液0~83%,粘结剂0~4.5%,分 散剂0~1.5%,有机溶剂8~58%。
当浆料中混有高分子乳液时,步骤1)中浆料各组分进一步优选为紫外光引发剂0.1~0.5%,紫外光交联剂0.7~0.9%,去离子水0~19%,高分子乳液46~83%,粘结剂0~4.1%,分散剂0~1.2%,有机溶剂8~29%。
当浆料中高分子乳液为聚烯烃乳液时,步骤1)中浆料各组分可以更进一步优选为紫外光引发剂0.3~0.5%,紫外光交联剂0.7~0.9%,去离子水4~19%,高分子乳液47~81%,粘结剂3.5~4.1%,分散剂0.9~1.2%,有机溶剂8~29%。
本申请具体实施方式提供的方法制备出来的耐高温涂布膜厚度9~18μm,透气率144~230s/100ml,针刺强度472~616gf,闭孔温度95~143℃,破膜温度172~216℃,安全区间35~91℃。
当浆料中混有高分子乳液时,进一步优选为厚度9~18μm,透气率176~230s/100ml,针刺强度473~509gf,闭孔温度95~141℃,破膜温度172~216℃,安全区间35~91℃。
当浆料中高分子乳液为丙烯酸酯及其衍生物乳液时,可以更进一步优选为厚度9~13μm,透气率176~206s/100ml,针刺强度473~509gf,闭孔温度140~142℃,破膜温度176~216℃,安全区间35~75℃。
当浆料中高分子乳液为聚烯烃乳液时,可以更进一步优选为厚度9~18μm,透气率152~230s/100ml,闭孔温度95~121℃,破膜温度172~187℃,安全区间50~91℃。
本申请具体实施方式还提供一种耐高温涂布膜的制备方法,包括以下步骤:
称取无水乙醇,称取紫外光引发剂和紫外光助交联剂加入无水乙醇中,超声震荡,待溶解完全;
向含有紫外光引发剂和紫外光助交联剂的乙醇溶液中加入去离子水,并搅拌均匀得到涂布浆料。
将该涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
这里,配方组分的含量及耐高温涂布膜的物性参照第一种具体实施方式中公开的内容。
本申请具体实施方式还提供一种耐高温涂布膜的制备方法,包括以下步骤:
称取去离子水,称取水溶性紫外光引发剂在去离子水中溶解完全,得到溶液A。
称取无水乙醇,将紫外光助交联剂加入乙醇中混合均匀待乙醇溶解,得到溶液B。
将溶液A和B混合,高速搅拌均匀,得到涂布浆料。
将该涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
这里,配方组分的含量及耐高温涂布膜的物性参照第一种具体实施方式中公开的内容。
本申请具体实施方式还提供一种耐高温涂布膜的制备方法,包括以下步骤:
称取无水乙醇;称取紫外光引发剂和紫外光助交联剂加入无水乙醇中,超声震荡,溶解完全。得到含有紫外光交联剂和助交联剂的溶液A。
将A加入到丙烯酸酯及其衍生物乳液中,将混合溶液高速搅拌均匀,得到涂布浆料。
将该涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
这里,配方组分的含量及耐高温涂布膜的物性参照第一种具体实施方式中公开的内容。
本申请具体实施方式还提供一种耐高温涂布膜的制备方法,包括以下步骤:
称去离子水,称取水溶性紫外光引发剂在去离子水中溶解完全,得到溶液A。
称取无水乙醇,将紫外光助交联剂加入无水乙醇中混合均匀,得到溶液B。
将A和B两种溶液高速搅拌均匀。得到含有紫外光交联剂和助交联剂的混合溶液C。
称取聚烯烃乳液,称取分散剂,称取丙烯酸酯粘结剂,将含有紫外光交联剂和助交联剂的混合溶液C、分散剂和粘结剂加入到聚烯烃乳液中,高速搅拌均匀,得到涂布浆料。
将该涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
这里,配方组分的含量及耐高温涂布膜的物性参照第一种具体实施方式中公 开的内容。
本申请具体实施方式还提供一种耐高温涂布膜的制备方法,包括以下步骤:
称取无水乙醇,将紫外光引发剂二苯甲酮和紫外光助交联剂加入乙醇中高速搅拌混合均匀,待紫外光交联剂和助交联剂完全溶解后,加入去离子水,搅拌均匀,得到含有紫外光交联剂和助交联剂的混合溶液A。
称取聚烯烃乳液,称取分散剂,称取粘结剂,将含有紫外光交联剂和助交联剂的混合溶液A、分散剂和粘结剂加入到聚烯烃乳液中,高速搅拌均匀,得到涂布浆料。
将该涂布浆料均匀涂覆于基材单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
这里,配方组分的含量及耐高温涂布膜的物性参照第一种具体实施方式中公开的内容。
本申请具体实施方式提供一种电化学装置,包括正极、负极、电解质和涂布膜;涂布膜包括上述示例提供的耐高温涂布膜。
以下将通过实施例对本申请进行详细描述。
在以下实施例中,性能参数按照如下方法测定:
1、厚度
采用德国马尔薄膜测厚仪1216,参考国标GB/T 36363-2018《锂离子电池用聚烯烃隔膜》进行检测。
2、透气率
采用Gurley透气度测试仪4110,参考国标GB/T 36363-2018《锂离子电池用聚烯烃隔膜》进行检测。
3、针刺强度
参考国标GB/T 36363-2018《锂离子电池用聚烯烃隔膜》进行检测。
4、闭孔温度及破膜温度
参照专利《批量测试锂电池隔膜热闭孔温度和破膜温度的测试装置》(公开号CN211825790U)的方式进行测试。裁取15.8mm隔膜样品,在电解液中充分浸润后组装为纽扣电池,逐步升温至250℃进行测试,温度精度0.01℃。采集隔膜随温度变化的内阻值。根据内阻突变的温度,得到隔膜的闭孔温度和破膜 温度。
实施例1
称取50重量份的无水乙醇,称取0.4重量份的紫外光引发剂二苯甲酮(BP)和1.4重量份的紫外光助交联剂三烯丙基异氰尿酸脂(TAIC)加入无水乙醇中溶解完全。再加入50重量份的去离子水,搅拌均匀。
得到涂布浆料1。
将涂布浆料1均匀涂覆于9微米湿法PE隔膜的基材单面,浆料1涂布面经紫外光辐照交联后得到耐高温隔膜样品1。样品1物性见表1。
将涂布浆料1均匀涂覆于9微米湿法PE隔膜的基材双面,浆料1涂布的两面均经紫外光辐照交联后得到耐高温隔膜样品2。样品2物性见表1。
9微米湿法PE隔膜作为涂布前空白样1,对比物性见表1。
实施例2
称40重量份的去离子水,称取1.6重量份的水溶性紫外光引发剂2~羟基~4'~(2~羟乙氧基)~2~甲基苯丙酮在去离子水中溶解完全,得到溶液2~A。
称取60重量份的无水乙醇,将3.4重量份的紫外光助交联剂三烯丙基异氰尿酸脂(TAIC),加入乙醇中混合均匀待乙醇溶解。得到溶液2~B。
将浆料2~A和2~B混合,高速搅拌均匀。
得到涂布浆料2。
将涂布浆料2均匀涂覆于12微米湿法PE隔膜的基材单面,浆料2涂布面经紫外光辐照交联后得到耐高温隔膜样品3。样品3物性见表1。
将涂布浆料2均匀涂覆于12微米湿法PE隔膜的基材双面,浆料2涂布的两面经紫外光辐照交联后得到耐高温隔膜样品4。样品4物性见表1。
其中,12微米湿法PE隔膜作为涂布前空白样2,对比物性见表1。
表1 涂布交联前后物性对比
Figure PCTCN2022104368-appb-000001
Figure PCTCN2022104368-appb-000002
实施例3
称取100重量份的无水乙醇;称取0.8重量份的紫外光引发剂二苯甲酮(BP)和4.2重量份的紫外光助交联剂三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)加入无水乙醇中,超声震荡5min,溶解完全。得到含有紫外光交联剂和助交联剂的溶液3~A。
将得浆料3~A加入到480重量份的丙烯酸酯高分子乳液中,其中丙烯酸酯共聚物高分子乳液的固含量为33%,固态颗粒物的粒径D(50)为0.6μm。
将混合溶液高速搅拌均匀。
得到涂布浆料3。
将涂布浆料3均匀涂覆于9微米湿法PE隔膜的基材单面,涂布面经紫外光辐照交联后得到耐高温隔膜样品5。样品5物性见表2。
将涂布浆料3均匀涂覆于9微米湿法PE隔膜的基材双面,涂布面经紫外光辐照交联后得到耐高温隔膜样品6。样品6物性见表2。
将涂布浆料3均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的基膜面,涂布面经紫外光辐照交联后得到耐高温隔膜样品7。样品7物性见表2。
将涂布浆料3均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的陶瓷涂层面,涂布面经紫外光辐照交联后得到耐高温隔膜样品8。样品8物性见表2。
将涂布浆料3均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的基膜面和陶瓷涂层面,涂布面经紫外光辐照交联后得到耐高温隔膜样品9。样品9物性见表2。
其中,9微米湿法PE隔膜作为涂布前空白样1,对比物性见表1。单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜作为涂布前空白样3,与涂布后物性作对比,见下表2。
表2 涂布交联前后物性对比
Figure PCTCN2022104368-appb-000003
Figure PCTCN2022104368-appb-000004
实施例4
称20重量份的去离子水,称取1重量份的水溶性紫外光引发剂2~羟基~4'~(2~羟乙氧基)~2~甲基苯丙酮在去离子水中溶解完全,得到溶液4~A。
称取30重量份的无水乙醇,将3重量份的紫外光助交联剂三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)加入无水乙醇中混合均匀。得到溶液4~B。
将4~A和4~B两种溶液高速搅拌均匀。得到含有
紫外光交联剂和助交联剂的混合溶液4~C。
称取266重量份的聚烯烃蜡乳液中,其中聚烯烃类乳液中固态聚烯烃颗粒具有110~120℃之间的熔点,聚烯烃颗粒的粒径D(50)为1.5μm,聚烯烃类乳液中固态聚烯烃颗粒的固含量为42%。
称取3重量份的分散剂十二烷基二甲基甜菜碱。
称取12重量份的丙烯酸酯粘结剂。
将含有紫外光交联剂和助交联剂的混合溶液4~C、分散剂十二烷基二甲基甜菜碱和丙烯酸酯类粘结剂加入到聚烯烃蜡乳液中,高速搅拌均匀。
得到涂布浆料4。
将涂布浆料4均匀涂覆于9微米湿法PE隔膜的基材单面,涂布面经紫外光辐照交联后得到耐高温隔膜样品10。样品10物性见表3。
将涂布浆料4均匀涂覆于9微米湿法PE隔膜的基材双面,涂布面经紫外光辐照交联后得到耐高温隔膜样品11。样品11物性见表3。
将涂布浆料4均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的基膜面,涂布面经紫外光辐照交联后得到耐高温隔膜样品12。样品12物性见表3。
将涂布浆料4均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的陶瓷面,涂布面经紫外光辐照交联后得到耐高温隔膜样品13。样品13物性见表3。
将涂布浆料4均匀涂覆于单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜的两面,涂布面经紫外光辐照交联后得到耐高温隔膜样品14。样品14物性见表3。
其中,9微米湿法PE隔膜作为涂布前空白样1,对比物性见表1。单面涂敷陶瓷(9微米基膜+3微米陶瓷涂层)隔膜作为涂布前空白样3,与涂布后物性做对比,见下表3。
表3 涂布交联前后物性对比
Figure PCTCN2022104368-appb-000005
实施例5
称取35重量份的无水乙醇,将1.5重量份的紫外光引发剂二苯甲酮和3重量份的紫外光助交联剂三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)加入乙醇中高速搅拌混合均匀,待紫外光交联剂和助交联剂完全溶解后,加入15重量份得去离子水,搅拌均匀。得到含有紫外光交联剂和助交联剂的混合溶液5~A。
称取300重量份的水性聚烯烃蜡乳液中,其中聚烯烃类乳液中固态聚烯烃颗粒具有80~90℃℃之间的熔点,聚烯烃颗粒的粒径D(50)为1.0μm,聚烯烃类乳液中固态聚烯烃颗粒的固含量为35%。
称取3.5重量份的分散剂直链烷基苯磺酸钠。
称取15重量份的丙烯酸酯粘结剂。
将含有紫外光交联剂和助交联剂的混合溶液5~A、分散剂直链烷基苯磺酸钠和丙烯酸酯类粘结剂加入到聚烯烃蜡乳液中,高速搅拌均匀。
得到涂布浆料5。
将涂布浆料5均匀涂覆于12微米湿法PE隔膜的基材单面,涂布面经紫外光辐照交联后得到耐高温隔膜样品15。样品15物性见表4。
将涂布浆料5均匀涂覆于12微米湿法PE隔膜的基材两面,涂布面经紫外光辐照交联后得到耐高温隔膜样品16。样品16物性见表4。
其中,12微米湿法PE隔膜作为涂布前空白样2,对比物性见表4。
表4 涂布交联前后物性对比
Figure PCTCN2022104368-appb-000006
实施例6
称取60重量份的无水乙醇,称取1重量份的紫外光引发剂二苯甲酮(BP)和1.5重量份的紫外光助交联剂三烯丙基异氰尿酸脂(TAIC)加入无水乙醇中溶解完全。再加入40重量份的去离子水,搅拌混合均匀,得到含有紫外光交联剂和助交联剂的混合溶液6~A。
称取100重量份的水性聚烯烃蜡乳液中,其中聚烯烃类乳液中固态聚烯烃颗粒具有110~120℃℃之间的熔点,聚烯烃颗粒的粒径D(50)为1.2μm,聚烯烃类乳液中固态聚烯烃颗粒的固含量为65%。
称取2.5重量份的分散剂直链烷基苯磺酸钠。
称取8重量份的丙烯酸酯粘结剂。
将含有紫外光交联剂和助交联剂的混合溶液6~A、分散剂直链烷基苯磺酸钠和丙烯酸酯类粘结剂加入到聚烯烃蜡乳液中,高速搅拌均匀。
得到涂布浆料6。
将涂布浆料6均匀涂覆于12微米湿法PE隔膜的基材单面,涂布面经紫外光辐照交联后得到耐高温隔膜样品17。样品17物性见表4。
将涂布浆料6均匀涂覆于12微米湿法PE隔膜的基材两面,涂布面经紫外光辐照交联后得到耐高温隔膜样品18。样品18物性见表4。
其中,12微米湿法PE隔膜作为涂布前空白样2,对比物性见表5。
表5 涂布交联前后物性对比
Figure PCTCN2022104368-appb-000007
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本申请的一些具体实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (24)

  1. 一种涂布浆料,用于制备耐高温涂布膜,其包括以下质量百分比的各组分:紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%。
  2. 根据权利要求1所述的涂布浆料,其中,所述有机溶剂为可以与水以任意比例互溶的有机溶剂。
  3. 根据权利要求1所述的涂布浆料,其中,所述紫外光引发剂为阳离子光引发剂或自由基光引发剂。
  4. 根据权利要求1所述的涂布浆料,其中,所述紫外光交联剂为烯丙基类助交联剂。
  5. 根据权利要求4所述的涂布浆料,其中,所述烯丙基类助交联剂选自下述的一种或两种以上的混合:三羟甲基丙烷三甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三聚氰酸三丙烯酯和三烯丙基异氰脲酸酯。
  6. 根据权利要求1所述的涂布浆料,其中,所述高分子乳液为聚烯烃乳液、丙烯酸酯及其衍生物乳液。
  7. 根据权利要求6所述的涂布浆料,其中,所述高分子乳液的固含量在10%~70%,固态颗粒的尺寸为0.5μm≤D(50)≤5μm。
  8. 根据权利要求6所述的涂布浆料,其中,所述高分子乳液为聚烯烃乳液时,固态颗粒物熔点为60~160℃。
  9. 根据权利要求8所述的涂布浆料,其中,所述固态颗粒物熔点为80~135℃。
  10. 根据权利要求1所述的涂布浆料,其中,所述粘结剂选自聚丙烯酸酯及其衍生物、聚乙烯醇及其衍生物和聚醋酸乙烯酯中的一种或几种。
  11. 根据权利要求1所述的涂布浆料,其中,所述分散剂为阴离子型表面活性剂或者阳离子型表面活性剂。
  12. 根据权利要求11所述的涂布浆料,其中,所述分散剂为水溶性的表面活性剂。
  13. 一种耐高温涂布膜,其包括:基材及设置于所述基材至少一个表面上的涂层;所述涂层由权利要求1~12任一项所述的涂布浆料在紫外光辐照下交联固 化而成。
  14. 根据权利要求13所述的耐高温涂布膜,其中,所述基材为聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜。
  15. 根据权利要求14所述的耐高温涂布膜,其中,所述聚烯烃隔膜或含有陶瓷涂层的聚烯烃隔膜中的聚烯烃为下列结晶性聚合物中的一种或两种以上的混合物:聚乙烯、聚丙烯、聚1-丁烯、聚4-甲基-1-戊烯、聚1-己烯、聚1-辛烯或聚甲基丙烯酸甲酯。
  16. 一种耐高温涂布膜的制备方法,其包括以下步骤:
    1)将紫外光引发剂、紫外光交联剂、高分子乳液、粘结剂、分散剂溶于溶剂中形成涂布浆料,该浆料的重量百分比为紫外光引发剂0.01~5%,紫外光交联剂0.01~5%,去离子水0~50%,高分子乳液0~90%,粘结剂0~10%,分散剂0~5%,有机溶剂5~70%;
    2)将上述涂布浆料均匀涂覆于基材的单面或者双面,经紫外光辐照后形成所述耐高温涂布膜。
  17. 根据权利要求16所述的耐高温涂布膜的制备方法,其中,所述有机溶剂为可以与去离子水以任意比例互溶。
  18. 根据权利要求17所述的耐高温涂布膜的制备方法,其中,所述有机溶剂选自乙醇、丙酮、异丙醇、二甲基甲酰胺、N,N-二甲基甲酰胺和二甲基亚砜中的一种或两种以上的混合物。
  19. 根据权利要求16所述的耐高温涂布膜的制备方法,其中,所述高分子乳液为聚烯烃乳液、丙烯酸酯及其衍生物乳液。
  20. 根据权利要求19所述的耐高温涂布膜的制备方法,其中,所述高分子乳液的固含量在10%~70%,固态颗粒的尺寸为0.5μm≤D(50)≤5μm。
  21. 根据权利要求19所述的耐高温涂布膜的制备方法,其中,所述高分子乳液为聚烯烃乳液时,固态颗粒物熔点为60~160℃。
  22. 根据权利要求21所述的耐高温涂布膜的制备方法,其中,所述固态颗粒物熔点为80~135℃。
  23. 根据权利要求16所述的耐高温涂布膜的制备方法,其中,所述紫外光辐照的具体工艺包括:采用波长范围介于254~365nm之间的紫外光对未交联隔 离膜进行光照射处理,光照时间6~10min,从而获得所述耐高温涂布膜。
  24. 一种电化学装置,其包括:正极、负极、电解质和涂布膜;所述涂布膜包括:权利要求14或15所述的耐高温涂布膜,或者根据权利要求16~23任一项所述的耐高温涂布膜的制备方法制得的所述耐高温涂布膜。
PCT/CN2022/104368 2021-07-13 2022-07-07 一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置 WO2023284619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110787905.8 2021-07-13
CN202110787905.8A CN113594629B (zh) 2021-07-13 2021-07-13 一种耐高温涂布膜、制备方法及其电化学装置

Publications (1)

Publication Number Publication Date
WO2023284619A1 true WO2023284619A1 (zh) 2023-01-19

Family

ID=78247068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104368 WO2023284619A1 (zh) 2021-07-13 2022-07-07 一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置

Country Status (2)

Country Link
CN (1) CN113594629B (zh)
WO (1) WO2023284619A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926195A (zh) * 2023-01-29 2023-04-07 广东碳语新材料有限公司 一种低分散剂含量聚烯烃微球乳液的制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594629B (zh) * 2021-07-13 2024-06-07 苏州捷力新能源材料有限公司 一种耐高温涂布膜、制备方法及其电化学装置
CN114094284B (zh) * 2021-11-16 2024-05-10 苏州捷力新能源材料有限公司 一种新型交联隔膜及其制备方法,电池及电子设备
CN114243221B (zh) * 2021-12-23 2022-10-11 中材锂膜有限公司 高弹性形变量隔膜及其制备方法
CN114678656A (zh) * 2022-03-31 2022-06-28 苏州捷力新能源材料有限公司 一种小孔径锂电池隔膜及其制备方法和应用
CN115498365A (zh) * 2022-08-18 2022-12-20 江西省通瑞新能源科技发展有限公司 高耐热性隔膜及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421208A (zh) * 2013-05-23 2013-12-04 浙江大学 一种辐照交联锂离子电池隔膜及其制备方法
CN105304850A (zh) * 2015-09-17 2016-02-03 中航锂电(洛阳)有限公司 锂离子电池复合隔膜用混合涂料、复合隔膜及其制备方法、锂离子电池
JP2016124926A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 光重合性組成物、非水電解質二次電池用のセパレータとその製造方法、および非水電解質二次電池
CN106233499A (zh) * 2014-05-01 2016-12-14 积水化学工业株式会社 耐热性合成树脂微多孔膜及其制造方法、非水电解液二次电池用隔膜及非水电解液二次电池
CN107155329A (zh) * 2014-11-05 2017-09-12 积水化学工业株式会社 耐热性合成树脂微多孔膜及其制造方法
CN111224045A (zh) * 2018-11-27 2020-06-02 佛山市盈博莱科技股份有限公司 一种具有热关断功能的陶瓷复合隔膜及其制备方法
CN113594629A (zh) * 2021-07-13 2021-11-02 上海恩捷新材料科技有限公司 一种耐高温涂布膜、制备方法及其电化学装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533647B1 (ko) * 2002-09-30 2005-12-06 한국과학기술연구원 자외선 경화형 다성분계 고분자 블렌드 전해질 및리튬이차전지, 그의 제조방법
JP2005347048A (ja) * 2004-06-02 2005-12-15 Nissan Motor Co Ltd 架橋高分子電解質を用いた電池
JP2008066193A (ja) * 2006-09-08 2008-03-21 Nitto Denko Corp 架橋微多孔質膜
JP2009070620A (ja) * 2007-09-11 2009-04-02 Nitto Denko Corp 架橋微多孔質膜
KR101125013B1 (ko) * 2009-07-29 2012-03-27 한양대학교 산학협력단 이온성 고분자를 포함하는 가교형 세라믹 코팅 분리막의 제조 방법, 이로부터 제조된 세라믹 코팅 분리막 및 이를 채용한 리튬이차전지
CN104157811A (zh) * 2013-12-11 2014-11-19 中航锂电(洛阳)有限公司 一种锂离子电池复合隔膜、制备方法和应用
KR101536062B1 (ko) * 2013-12-18 2015-07-10 한화토탈 주식회사 수지 조성물과, 이를 이용하여 제조된 이차전지용 분리막 및 상기 분리막을 적용한 이차전지
CN105206777B (zh) * 2015-10-26 2017-11-03 武汉惠强新能源材料科技有限公司 含锂离子传导多孔无机氧化物的锂电池隔膜及其制备方法
CN106953050B (zh) * 2017-02-13 2019-08-06 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN109524595A (zh) * 2018-10-30 2019-03-26 东莞理工学院 一种具有自粘性涂层的复合锂电隔膜及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421208A (zh) * 2013-05-23 2013-12-04 浙江大学 一种辐照交联锂离子电池隔膜及其制备方法
CN106233499A (zh) * 2014-05-01 2016-12-14 积水化学工业株式会社 耐热性合成树脂微多孔膜及其制造方法、非水电解液二次电池用隔膜及非水电解液二次电池
CN107155329A (zh) * 2014-11-05 2017-09-12 积水化学工业株式会社 耐热性合成树脂微多孔膜及其制造方法
JP2016124926A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 光重合性組成物、非水電解質二次電池用のセパレータとその製造方法、および非水電解質二次電池
CN105304850A (zh) * 2015-09-17 2016-02-03 中航锂电(洛阳)有限公司 锂离子电池复合隔膜用混合涂料、复合隔膜及其制备方法、锂离子电池
CN111224045A (zh) * 2018-11-27 2020-06-02 佛山市盈博莱科技股份有限公司 一种具有热关断功能的陶瓷复合隔膜及其制备方法
CN113594629A (zh) * 2021-07-13 2021-11-02 上海恩捷新材料科技有限公司 一种耐高温涂布膜、制备方法及其电化学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926195A (zh) * 2023-01-29 2023-04-07 广东碳语新材料有限公司 一种低分散剂含量聚烯烃微球乳液的制备方法和应用
CN115926195B (zh) * 2023-01-29 2023-08-08 广东碳语新材料有限公司 一种低分散剂含量聚烯烃微球乳液的制备方法和应用

Also Published As

Publication number Publication date
CN113594629A (zh) 2021-11-02
CN113594629B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2023284619A1 (zh) 一种涂布浆料、耐高温涂布膜及其制备方法和电化学装置
CN111326697B (zh) 一种涂覆的隔膜及其制备方法
WO2020000164A1 (zh) 一种复合锂电池隔膜及其制备方法
CN102437303B (zh) 复合多孔膜及其制备方法
KR101587514B1 (ko) 전지용 세퍼레이터 및 그 제조 방법
KR101806598B1 (ko) 도포액, 적층 다공질 필름 및 적층 다공질 필름의 제조 방법
CN109192902B (zh) 一种多级安全防护锂电池隔膜的制备方法及锂电池隔膜
CN104157819A (zh) 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
CN202534721U (zh) 复合多孔膜
CN103078075B (zh) 具有耐高温层的复合膜、制备方法和电池
CN108305972A (zh) 一种陶瓷涂层隔膜及制备方法和应用
CN103618059A (zh) 一种高分子无机涂层锂离子电池隔膜及其制备方法
CN103531736A (zh) 一种高耐热锂离子电池隔膜及其制备方法
JP2015501523A (ja) 耐熱性及び安定性に優れたポリオレフィン系複合微多孔膜及びその製造方法
CN105895844A (zh) 一种粘性陶瓷隔膜及其制备方法
CN108690416A (zh) 高分子-陶瓷杂化涂布组合物以及使用上述组合物的蓄电池分离膜制造方法
CN106898720B (zh) 一种锂离子电池隔膜及其制备方法
CN103102717A (zh) 一种锂离子电池用水性陶瓷涂料及其应用
CN111129393A (zh) 一种混合涂覆的锂电池隔膜及其制备方法
CN104638217A (zh) 一种复合改性隔膜及其制备方法
CN105585732A (zh) 一种紫外交联聚芳醚酮多孔膜、制备方法及其应用
CN109841785A (zh) 一种电池隔膜及其制备方法及包含该隔膜的锂离子电池
CN108598342A (zh) 一种电池隔膜、锂离子电池及其制备方法
CN113054324A (zh) 一种高安全性隔膜及电池
CN108155324A (zh) 一种锂离子电池用双功能涂覆型隔膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE