WO2023104141A1 - N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用 - Google Patents

N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023104141A1
WO2023104141A1 PCT/CN2022/137491 CN2022137491W WO2023104141A1 WO 2023104141 A1 WO2023104141 A1 WO 2023104141A1 CN 2022137491 W CN2022137491 W CN 2022137491W WO 2023104141 A1 WO2023104141 A1 WO 2023104141A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
porous carbon
preparation
molybdenum sulfide
carbon composite
Prior art date
Application number
PCT/CN2022/137491
Other languages
English (en)
French (fr)
Inventor
李明
贾文汉
Original Assignee
桂林理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林理工大学 filed Critical 桂林理工大学
Priority to GB2404167.5A priority Critical patent/GB2625474A/en
Publication of WO2023104141A1 publication Critical patent/WO2023104141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the technical field of supercapacitor electrode materials, and in particular relates to N/O co-doped molybdenum sulfide@porous carbon composite electrode materials and their preparation methods, negative electrode materials and their preparation methods and applications.
  • CPHs conductive polymer hydrogels
  • Chlorinated paraffin is usually composed of a hydrophilic polymer matrix and a conductive filler.
  • a large number of hydrophilic polymers such as polyacrylic acid (PAA), polyacrylamide (PAAM), polyvinyl alcohol (PVA), cellulose , chitosan, gelatin, agarose, dextran, etc. can all be used as scaffolds for chlorinated paraffins to provide adjustable mechanical properties.
  • Natural polymer products are characterized by low cost, good processability, safety, renewability, and biodegradability, and have become promising candidates for the preparation of chlorinated paraffins for future environmentally friendly and renewable electronics.
  • sodium alginate as a natural water-soluble anionic polysaccharide, is widely used to synthesize high-strength hydrogels under very mild conditions.
  • the hydrogel prepared from salicylic acid can achieve self-healing ability through dynamic covalent bonds without additional stimulation, which enables flexible devices to self-recover when damaged and prolong lifespan.
  • Electrochemical capacitors have the attractive characteristics of ultra-high power density and long life, and are currently considered to be the most efficient energy storage and conversion devices. According to the storage mechanism, electrochemical capacitors can be divided into electric double layer capacitors and pseudo capacitors; among them, double Electric layer capacitors are more competitive in terms of energy storage due to their higher power density and excellent electrochemical stability. chemical properties etc. So far, a variety of carbon-based electrode materials including graphene, carbon nanotubes, carbon fibers, and porous carbons have been widely used due to their unique properties such as high specific surface area, tunable pore structure, easy functionalization, and low production cost. for the preparation of electric double layer capacitors.
  • the present invention provides N/O co-doped molybdenum sulfide@porous carbon composite electrode material and its preparation method and application; Compounding, nitrogen atoms provide more electron active sites, improving the electron transport speed of porous carbon, oxygen atoms improve the pseudocapacitance of electrodes through oxidation/reduction, porous carbon provides a cross-linked pore structure with a large specific surface area, two The attachment of molybdenum sulfide to porous carbon improves the synergistic effect between itself and porous carbon, and then further improves the conductivity.
  • porous carbon By doping and modifying porous carbon with heteroatoms, it is compounded with transition metal sulfides to make it play a porous role.
  • transition metal sulfides By doping and modifying porous carbon with heteroatoms, it is compounded with transition metal sulfides to make it play a porous role.
  • the advantages of carbon's high-efficiency cycle stability and its own huge power density; and the material prepared by the invention is environmentally friendly and green, easy to obtain, and simple and effective to operate.
  • a preparation method of N/O co-doped molybdenum sulfide@porous carbon composite electrode material comprising the following steps:
  • the ratio of the molybdate to the sulfur source substance is 1:2-4;
  • the mass ratio of the carbon source to the nitrogen source is 1:2-3; the mass ratio of the carbon source to the molybdenum disulfide is 1:1;
  • step (3) freeze-drying the mixed solution in step (2) until the solvent is completely evaporated to obtain carbon source/ MoS aerogel;
  • step (3) In a nitrogen atmosphere, at a heating rate of 3-5°C/min, heat the carbon source/MoS 2 airgel in step (3) at 500-600°C for 2-3h, and then at 800°C After further carbonization for 1 h, cooling to room temperature, washing and vacuum drying, the N/O co-doped molybdenum sulfide@porous carbon composite electrode material was obtained.
  • the molybdate in the step (1) is selected from one of sodium molybdate, potassium molybdate, and ammonium molybdate tetrahydrate.
  • the sulfur source in the step (1) is selected from one of thiourea, L-cysteine and thioacetamide.
  • the solvothermal reaction in the step (1) is carried out in a reactor, and the deionized water accounts for 60% of the volume of the Teflon lining of the reactor, and then is incubated at 190-220° C. for 20- 36h.
  • the carbon source in the step (2) is selected from one of sodium alginate, potassium alginate and lignin.
  • the nitrogen source in the step (2) is selected from one of urea, melamine and ammonia water.
  • the invention also protects the N/O co-doped molybdenum sulfide@porous carbon composite electrode material prepared by the preparation method.
  • the invention also protects the negative electrode material prepared by N/O co-doped molybdenum sulfide@porous carbon composite electrode material.
  • the preparation method of the negative electrode material comprises the steps of:
  • the mass ratio of N/O co-doped molybdenum sulfide@porous carbon composite electrode material, conductive acetylene black and polyvinylidene fluoride is 0.75-0.85:0.1-0.15:0.1-0.15.
  • the invention also protects the application of the negative electrode material in preparing the supercapacitor negative electrode material.
  • the present invention provides a simple, green and effective preparation method of N/O co-doped molybdenum sulfide@porous carbon composite electrode material.
  • the small molecule nitrogen source is uniformly dispersed in the carbon source by freeze drying, the carbon source and molybdenum sulfide are uniformly mixed together under mechanical stirring, and the nitrogen source serves as both a nitrogen source and a carcinogen during the carbonization process. Pore agent.
  • the advantages are reflected in: rich raw materials, high cost performance, and the pyrolysis process does not require any other activators such as KOH, ZnCl 2 , etc., and only one-step carbonization can realize pore reforming and nitrogen doping; in addition, it can be adjusted by adjusting the amount of nitrogen source and The carbonization temperature is used to adjust the porous structure and nitrogen content of the material.
  • the present invention adopts nitrogen and oxygen atom co-doping and compounding with molybdenum sulfide.
  • Nitrogen atom provides more electron active sites, which improves the electron transport speed of porous carbon; Pseudo-capacitance; porous carbon provides a cross-linked pore structure with a large specific surface area.
  • the attachment of molybdenum disulfide to porous carbon improves the synergy between itself and porous carbon, and then further improves the conductivity.
  • the elements doped in the present invention not only do not affect the performance of the material itself, but also have an obvious promotion effect on the performance of the entire supercapacitor.
  • the preparation method of the present invention is simple and low in preparation cost, can be well degraded in nature, and is more environmentally friendly.
  • the present invention adopts the technology of heteroatom doping.
  • the unique properties associated with hierarchical porous structures are their fast ion diffusion and transport, which helps to enhance rate capability and improve cycle life;
  • heteroatoms Atom doping can adjust the electronic and chemical properties of porous carbon, which is beneficial to increase the capacity through faradaic reactions; thus heteroatom-doped hierarchical porous carbon will produce excellent electrochemical performance; nitrogen atoms due to its abundant nitrogen source and excellent functional Nitrogen is considered the most promising candidate because the nitrogen atoms introduced in the carbon framework can create structural defects, impart acid/basic properties, and increase the available active sites.
  • Fig. 1 is the preparation flowchart of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) of Example 1 of the present invention
  • Fig. 2 is the scanning electron microscope picture of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) obtained in Example 1 of the present invention;
  • Figure 3 shows the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention and the N/O co-doped porous carbon prepared in Comparative Example 1 XRD control chart of composite electrode material (SA/C) material;
  • Figure 4 shows the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention and the N/O co-doped porous carbon prepared in Comparative Example 1 Raman spectrum comparison chart of composite electrode material (SA/C);
  • Figure 5 shows the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention, and the N/O co-doped porous carbon prepared in Comparative Example 1 Composite electrode material (SA/C) and the cyclic voltammetry comparison diagram of molybdenum disulfide (MoS 2 ) prepared in Comparative Example 2;
  • Fig. 6 is a cyclic voltammetry control diagram under different scan rates of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention;
  • Fig. 7 is the charge-discharge curve diagram of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention;
  • Example 8 is an impedance diagram of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention;
  • Fig. 9 is a cycle efficiency diagram of the N/O co-doped molybdenum sulfide@porous carbon composite electrode material (MoS 2 -SA/C) prepared in Example 1 of the present invention.
  • a preparation method of N/O co-doped molybdenum sulfide@porous carbon composite electrode material comprising the following steps:
  • step (1) Take 3g of sodium alginate and 1g of urea and evenly disperse it in the aqueous solution, stir it at a high speed by mechanical stirring (300rpm/12h) to better disperse the sodium alginate evenly, and then add the solution of step (1)
  • the molybdenum disulfide was stirred for another 1 hour to fully mix the molybdenum disulfide and sodium alginate solution.
  • the color of the solution changed from light yellow to black, and then the mixed solution was put into an ultrasonic machine with a power of 100W. Ultrasound for 30 minutes under the condition to fully remove the residual bubbles in the solution to obtain a mixed solution;
  • step (3) Transfer the mixed solution of step (2) to a freeze dryer, freeze-dry at -60°C for 48 hours to obtain SA/MoS 2 airgel;
  • step (3) In a nitrogen atmosphere, at a heating rate of 5°C/min, the SA/MoS 2 airgel in step (3) was first heated at 550°C for 2h, then carbonized at 800°C for 1h and then cooled to room temperature, The black powder was obtained, and then washed several times in an orderly manner with ethanol and deionized water, and dried in vacuum at 80 °C for 24 h to obtain a N/O co-doped molybdenum sulfide@porous carbon composite electrode material (denoted as MoS 2 -SA/C ).
  • a preparation method of N/O co-doped molybdenum sulfide@porous carbon composite electrode material comprising the steps:
  • step (1) Take 1g of potassium alginate and 2.5g of melamine and evenly disperse it in the aqueous solution, stir it at a high speed by mechanical stirring (300rpm/12h) to better disperse the sodium alginate evenly, and then add step (1)
  • the molybdenum disulfide was stirred for another 1 hour to fully mix the molybdenum disulfide and sodium alginate solution. At this time, the color of the solution changed from light yellow to black. Ultrasound at 100W for 30min to fully remove residual bubbles in the solution to obtain a mixed solution;
  • step (3) Transfer the mixed solution of step (2) to a freeze dryer, freeze-dry at -60°C for 36 hours to obtain potassium alginate/MoS 2 airgel;
  • the potassium alginate/MoS 2 airgel in step (3) was first heated at 500°C for 3h, then carbonized at 800°C for 1h and then cooled to At room temperature, the black powder was obtained, and then washed several times in an orderly manner with ethanol and deionized water, and dried in vacuum at 80 °C for 24 hours to obtain the N/O co-doped molybdenum sulfide@porous carbon composite electrode material.
  • a preparation method of N/O co-doped molybdenum sulfide@porous carbon composite electrode material comprising the following steps:
  • step (1) Take 1g of lignin and 2g of melamine and evenly disperse them in the aqueous solution, stir them at a high speed by mechanical stirring (300rpm/12h) to better disperse the sodium alginate evenly, and then add the two components of step (1) Stir the molybdenum sulfide for another 1 hour to fully mix the molybdenum disulfide and sodium alginate solution. At this time, the color of the solution changes from light yellow to black, and then put the mixed solution into the ultrasonic machine, and the power is 100W. Ultrasound for 30 minutes to fully remove the residual bubbles in the solution to obtain a mixed solution;
  • step (3) Transfer the mixed solution of step (2) to a freeze dryer, freeze-dry at -60°C for 24 hours to obtain lignin/MoS 2 airgel;
  • the lignin/MoS 2 airgel in step (3) was first heated at 600°C for 2h, then carbonized at 800°C for 1h and then cooled to room temperature , the black powder was obtained, and then washed several times in an orderly manner with ethanol and deionized water, and dried in vacuum at 80 °C for 24 h to obtain the N/O co-doped molybdenum sulfide@porous carbon composite electrode material.
  • a preparation method of an N/O co-doped porous carbon composite electrode material comprising the steps of:
  • step (3) Transfer the mixed solution of step (2) to a freeze dryer, freeze-dry at -60°C for 48 hours to obtain SA airgel;
  • the SA airgel in step (3) was first heated at 550°C for 2h, then carbonized at 800°C for 1h and then cooled to room temperature to obtain a black powder , and then washed several times sequentially with ethanol and deionized water, and dried in vacuum at 80 °C for 24 h to obtain N/O co-doped molybdenum sulfide@porous carbon composite electrode material (denoted as SA/C).
  • MoS 2 Molybdenum disulfide
  • Example 1 The performance effects of the N/O co-doped molybdenum sulfide@porous carbon composite electrode materials obtained in Examples 1-Example 3 of the present invention are parallel, and the N/O co-doped molybdenum sulfide@porous carbon composite electrode materials obtained in Example 1 are as follows Taking carbon composite electrode material as an example, and making it into a negative electrode material, and then comparing the constructed three-electrode system with the comparative example;
  • Preparation of negative electrode material Mix the N/O co-doped molybdenum sulfide@porous carbon composite electrode material prepared in Example 1, conductive acetylene black and polyvinylidene fluoride, add N-methylpyrrolidone and grind until a homogeneous Phase black slurry, the black slurry is evenly laid on the nickel foam, dried and pressed to obtain the negative electrode material; among them, N/O co-doped molybdenum sulfide@porous carbon composite electrode material, conductive acetylene black and polyvinylidene fluoride The mass ratio of dilute is 8:1:1;
  • composition of the three-electrode system is as follows: using a CHI760E electrochemical workstation (CHI760E), using platinum (Pt) foil as a counter electrode, and using a Hg/Hg 2 Cl 2 electrode as a reference electrode, respectively using Example 1, Comparative Example 1 and The electrode material of Comparative Example 2 was used as a working electrode to test its electrochemical performance, and the electrolyte was 1mol/L Na SO 4 solution ;
  • the XRD pattern in Figure 3 shows that the synthesized material not only retains the crystal forms of molybdenum disulfide (002), (100) and (200), but also shows the XRD peak of C after carbonization, indicating that Molybdenum disulfide is well preserved under high-temperature carbonization, and the crystal form of the compounded molybdenum disulfide is smoother, indicating that the compounding of molybdenum disulfide can promote better crystallization of the carbonized sodium alginate.
  • Fig. 4 show that the A 1 g and E 2 g energy levels that can be observed at MoS 2 are expressed as out-of-plane and in-plane vibration moduli; the Raman spectra of porous carbon are at 1336 cm -1 and 1588 cm -1 There are two distinct peaks, belonging to the D band and the G band, respectively. The former represents structural defects, and the latter refers to the in-phase vibration of sp hybridized carbon.
  • ID / IG can describe the degree of graphitic disorder of the material.
  • the ratios of ID / IG bands of SA-C to MoS 2 -SA/C are 0.964 and 1.08, respectively, and higher ID /
  • the IG value indicates that the sample has a low degree of graphitization with abundant disordered structures and defects due to NO co-doping; these abundant defects can provide high pseudocapacitance for good capacitive performance.
  • Figure 5 is a comparison of the cyclic voltammetry curves of the three in the case of 10mV ⁇ m - 1 , which shows that the capacity of a single molybdenum disulfide or SA/C is significantly different from that of the two composites, which is exactly It shows that the composite material is not the sum of the two, but shows a better synergy.
  • the cycle test results in Figure 9 show that the capacity retention is 97% after 5000 cycles at a current density of 10 mA cm -2 , which indicates that the material is well crystalline and can be used as a flexible application material, its cycle stability is very good; the higher current also shows its high-speed ion transport and excellent rate performance; the shape of the cycle GCD curve of the first four cycles and one of the last four cycles basically remains the same after 5000 cycles changes, indicating that the cycle performance of the electrode is excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及超级电容器电极材料技术领域,具体涉及N/O共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用。本发明采用了氮氧原子共掺杂以及与硫化钼进行复合,氮原子提供了更多的电子活性位点,改善了多孔碳的电子传输速度,氧原子通过氧化/还原来提高电极的假电容,多孔碳提供了大比表面积的交联孔洞结构,二硫化钼附着在多孔碳上提高了自身与多孔碳的协同作用,继而进一步提高了导电能力,通过将多孔碳与杂原子进行掺杂改性,与过渡金属硫化物进行复合,使其发挥出多孔碳自身高效的循环稳定性和自身庞大的功率密度的优势;且采用本发明制得的材料环保绿色,简单易得,操作简单有效。

Description

N/O共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用
本申请要求于2021年12月09日提交中国专利局、申请号为CN202111502666.3、发明名称为“N/O共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于超级电容器电极材料技术领域,具体涉及N/O共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用。
背景技术
近年来,导电聚合物水凝胶(CPHs)因其优异的离子和电导率、可变形的机械性能而在可穿戴电子设备(例如运动传感器、人造皮肤、能量存储设备和软机器人)中引起了广泛的科学兴趣。对于大多数可穿戴电子设备,机械行为是获得具有接触能力的人性化界面不可或缺的方面,因此在柔性电子器件的材料选择和功能设计中,结合柔性、可拉伸性和可压缩性是非常重要的。
氯化石蜡通常由亲水性聚合物基质和导电性填料组合而成,大量的亲水性聚合物,如聚丙烯酸(PAA)、聚丙烯酰胺(PAAM)、聚乙烯醇(PVA)、纤维素、壳聚糖、凝胶化物、琼脂糖、葡聚糖等均可用作氯化石蜡的支架,以提供可调节的机械性能。天然高分子产品具有低成本、良好的加工性能、安全性、可再生性和生物降解性的特点,已成为未来环保和可再生电子产品制备氯化石蜡的有前途的候选材料。在众多的天然高分子产品中,海藻酸钠作为一种天然水溶性阴离子多糖被广泛用于在非常温和的条件下合成高强度水凝胶。此外,由水杨酸制备的水凝胶可以通过动态共价键实现自修复能力,而无需额外的刺激,这使得柔性器件能够在损伤时自恢复并延长寿命。
电化学电容器具有超高功率密度和长寿命的诱人特性,目前被认为是最有效的能量存储和转换设备,根据存储机制,电化学电容器可分为双电层电容器和伪电容器;其中,双电层电容器由于其更高的功率密度和优异的电化学稳定性,在储能方面更具竞争力,双电层电容器的电容性能主要取决于电极材料的性质,如比表面积、孔径分布和表面化学性质等。迄今为止,包括石墨烯、碳 纳米管、碳纤维和多孔碳在内的多种碳基电极材料因其高比表面积、可调节的孔结构、易于功能化和低生产成本等独特性能而被广泛用于制备双电层电容器。
尽管目前在改善碳材料的电容特性方面取得了显著进展,但不足的倍率容量和低能量密度仍然阻碍了它们在制备先进超级电容器中的应用。
发明内容
针对上述现有技术存在的不足,本发明提供了N/O共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用;本发明采用了氮氧原子共掺杂以及与硫化钼进行复合,氮原子提供了更多的电子活性位点,改善了多孔碳的电子传输速度,氧原子通过氧化/还原来提高电极的假电容,多孔碳提供了大比表面积的交联孔洞结构,二硫化钼附着在多孔碳上提高了自身与多孔碳的协同作用,继而进一步提高了导电能力,通过将多孔碳与杂原子进行掺杂改性,与过渡金属硫化物进行复合,使其发挥出多孔碳自身高效的循环稳定性和自身庞大的功率密度的优势;且采用本发明制得的材料环保绿色,简单易得,并且操作简单有效。
为实现上述目的,本发明的技术方案如下:
一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,包括以下步骤:
(1)将钼酸盐和硫源超声分散于去离子水中并进行溶剂热反应,经洗涤、干燥,得到二硫化钼;
其中,所述钼酸盐与所述硫源物质的量之比为1:2-4;
(2)将碳源和氮源混合均匀,然后向其中加入步骤(1)制得的二硫化钼,经充分混合后超声去除溶液中的残留气泡,得到混合液;
其中,所述碳源与所述氮源的质量比为1:2-3;所述碳源与所述二硫化钼的质量比为1:1;
(3)将步骤(2)的混合液冷冻干燥至溶剂彻底蒸发,得到碳源/MoS 2气凝胶;
(4)于氮气气氛中,以3-5℃/min的升温速率,将步骤(3)的碳源/MoS 2气凝胶先于500-600℃下加热2-3h,再于800℃下进一步碳化1h后冷却至室温,再经过洗涤、真空干燥后,得到N/O共掺杂的硫化钼@多孔碳复合电极材料。
优选的,所述步骤(1)的钼酸盐选自钼酸钠、钼酸钾、四水合钼酸铵中的一种。
优选的,所述步骤(1)的硫源选自硫脲、L-半胱氨酸、硫代乙酰胺中的一种。
优选的,所述步骤(1)中溶剂热反应于反应釜中进行,所述去离子水占所述反应釜特氟龙内衬容积的60%,然后于190-220℃下保温反应20-36h。
优选的,所述步骤(2)的碳源选自海藻酸钠、海藻酸钾、木质素中的一种。
优选的,所述步骤(2)的氮源选自尿素、三聚氰胺、氨水中的一种。
本发明还保护了制备方法制得的N/O共掺杂的硫化钼@多孔碳复合电极材料。
本发明还保护了N/O共掺杂的硫化钼@多孔碳复合电极材料制备的负极材料。
优选的,所述负极材料的制备方法,包括如下步骤:
将N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟乙稀混合,加入N-甲基吡咯烷酮后研磨至得到均相的黑色泥浆,将黑色泥浆均匀铺设于泡沫镍上,经干燥、压制,得到负极材料;
其中,N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟乙稀的质量比为0.75-0.85:0.1-0.15:0.1-0.15。
本发明还保护了负极材料在制备超级电容器负极材料中的应用。
与现有技术相比,本发明的有益效果:
1、本发明提供了一种简单、绿色而又有效的N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法。在本申请的方法中,小分子氮源通过冷冻干燥均匀地分散在碳源中,碳源与硫化钼在机械搅拌下均匀的混合在一起,在碳化过程中氮源既充当氮源又作为致孔剂。优势体现在:原料丰富、性价比高且热解过程不需要任何其它活化剂如KOH、ZnCl 2等,只需一步碳化即可实现孔道重整和氮掺杂;另外,能够通过调节氮源用量和碳化温度来调节材料的多孔结构和含氮量。
2、本发明采用了氮氧原子共掺杂以及与硫化钼进行复合,氮原子提供了更多的电子活性位点,改善了多孔碳的电子传输速度;氧原子通过氧化/还原来提高电极的假电容;多孔碳提供了大比表面积的交联孔洞结构,二硫化钼附着在多孔碳上提高了自身与多孔碳的协同作用,继而进一步提高了导电能力,通过将多孔碳与杂原子进行掺杂改性,与过渡金属硫化物进行复合,使其发挥出多孔碳自身高效的循环稳定性和自身庞大的功率密度的优势。
3、本发明掺杂的元素不仅不会影响材料本身的性能,而且对整个超级电容器的性能有明显促进作用。另外,本发明制备方法简便,且制备成本低廉,可以在自然中得到很好的降解,更加的绿色环保。
4、本发明采用了杂原子掺杂的技术,一方面,与分级多孔结构相关的独特性质是它们的快速离子扩散和传输,这有助于增强速率能力和提高循环寿命;另一方面,杂原子掺杂可以调节多孔碳的电子和化学性质,有利于通过法拉第反应增加容量;因此杂原子掺杂的分级多孔碳将产生优异的电化学性能;氮原子由于其丰富的氮源和优异的功能性被认为是最有前途的候选物,因为碳框架中引入的氮原子可以产生结构缺陷,赋予酸/碱性质,并增加可用的活性位点。
附图说明
图1为本发明实施例1的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的制备流程图;
图2为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的电镜扫描图;
图3为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)和对比例1制得的N/O共掺杂的多孔碳复合电极材料(SA/C)材料的XRD对照图;
图4为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)和对比例1制得的N/O共掺杂的多孔碳复合电极材料(SA/C)的拉曼光谱对照图;
图5为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)、对比例1制得的N/O共掺杂的多孔碳复合电极材料(SA/C)以及对比例2制得的二硫化钼(MoS 2)的循环伏安对照图;
图6为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的不同扫速下的循环伏安对照图;
图7为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的充放电曲线图;
图8为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的阻抗图;
图9为本发明实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料(MoS 2-SA/C)的循环效率图。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
下述实验方法和检测方法,如没有特殊说明,均为常规方法;下述试剂和原料,如没有特殊说明,均为市售。
实施例1
一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,包括如下步骤:
(1)取0.242g钼酸钠(1mmol),0.228g硫脲(3mmol),倒于容积为100mL的聚四氟乙烯内套筒中,加入去离子水后使得体积占聚四氟乙烯内套筒总体积的60%,然后将其于100W下超声10min使其混合均匀,再将内套筒置于不锈钢外套筒中并密封,于200℃保温24h后,使用乙醇、去离子水反复清洗3次,得到黑色物质,然后在80℃的真空干燥箱中干燥过夜,得到二硫化钼;
(2)取3g海藻酸钠和1g尿素均匀的分散在水溶液中,通过机械搅拌(300rpm/12h)对其进行高速搅拌,以更好的使海藻酸钠分散均匀,然后加入步骤(1)的二硫化钼再搅拌1h,以使其二硫化钼与海藻酸钠溶液进行充分的混合,此时该溶液颜色由淡黄色转变为黑色,随后将混合好的溶液放到超声器里,于功率100W条件下超声30min以充分的去除溶液中的残留气泡,得到混合液;
(3)将步骤(2)的混合液转移到冷冻干燥器中,于-60℃下冷冻干燥48h得到SA/MoS 2气凝胶;
(4)于氮气气氛中,以5℃/min的升温速率,将步骤(3)的SA/MoS 2气凝胶先于550℃下加热2h,再于800℃下碳化1h后冷却至室温,得到黑色粉末,再经过乙醇和去离子水有序洗涤多次,在80℃下真空干燥24h,得到N/O共掺杂的硫化钼@多孔碳复合电极材料(记为MoS 2-SA/C)。
实施例2
一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,包括如下步 骤:
(1)取0.238g钼酸钾(1mmol),0.3g的L-半胱氨酸(2.5mmol),倒于容积为100mL的聚四氟乙烯内套筒中,加入去离子水后使得体积占聚四氟乙烯内套筒总体积的60%,然后将其于100W下超声10min使其混合均匀,再将内套筒置于不锈钢外套筒中并密封,于190℃保温36h后,使用乙醇、去离子水反复清洗3次,得到黑色物质,然后在80℃的真空干燥箱中干燥过夜,得到二硫化钼;
(2)取1g海藻酸钾和2.5g三聚氰胺均匀的分散在水溶液中,通过机械搅拌(300rpm/12h)对其进行高速搅拌,以更好的使海藻酸钠分散均匀,然后加入步骤(1)的二硫化钼再搅拌1h,以使其二硫化钼与海藻酸钠溶液进行充分的混合,此时该溶液颜色由淡黄色转变为黑色,随后将混合好的溶液放到超声器里,于功率100W条件下超声30min以充分的去除溶液中的残留气泡,得到混合液;
(3)将步骤(2)的混合液转移到冷冻干燥器中,于-60℃下冷冻干燥36h得到海藻酸钾/MoS 2气凝胶;
(4)于氮气气氛中,以5℃/min的升温速率,将步骤(3)的海藻酸钾/MoS 2气凝胶先于500℃下加热3h,再于800℃下碳化1h后冷却至室温,得到黑色粉末,再经过乙醇和去离子水有序洗涤多次,在80℃下真空干燥24h,得到N/O共掺杂的硫化钼@多孔碳复合电极材料。
实施例3
一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,包括如下步骤:
(1)取1.236g四水合钼酸铵(1mmol),0.225g的硫代乙酰胺(3mmol),倒于容积为100mL的聚四氟乙烯内套筒中,加入去离子水后使得体积占聚四氟乙烯内套筒总体积的60%,然后将其于100W下超声10min使其混合均匀,再将内套筒置于不锈钢外套筒中并密封,于220℃保温20h后,使用乙醇、去离子水反复清洗3次,得到黑色物质,然后在80℃的真空干燥箱中干燥过夜,得到二硫化钼;
(2)取1g木质素和2g三聚氰胺均匀的分散在水溶液中,通过机械搅拌(300rpm/12h)对其进行高速搅拌,以更好的使海藻酸钠分散均匀,然后加入步骤(1)的二硫化钼再搅拌1h,以使其二硫化钼与海藻酸钠溶液进行充分的混合,此时该溶液颜色由淡黄色转变为黑色,随后将混合好的溶液放到超声器里,于功 率100W条件下超声30min以充分的去除溶液中的残留气泡,得到混合液;
(3)将步骤(2)的混合液转移到冷冻干燥器中,于-60℃下冷冻干燥24h得到木质素/MoS 2气凝胶;
(4)于氮气气氛中,以5℃/min的升温速率,将步骤(3)的木质素/MoS 2气凝胶先于600℃下加热2h,再于800℃下碳化1h后冷却至室温,得到黑色粉末,再经过乙醇和去离子水有序洗涤多次,在80℃下真空干燥24h,得到N/O共掺杂的硫化钼@多孔碳复合电极材料。
对比例1
一种N/O共掺杂的多孔碳复合电极材料的制备方法,包括如下步骤:
(1)取3g海藻酸钠和1g尿素均匀的分散在水溶液中,通过机械搅拌(300rpm/12h)对其进行高速搅拌,以更好的使海藻酸钠分散均匀,随后将混合好的溶液放到超声器里,于功率100W条件下超声30min以充分的去除溶液中的残留气泡,得到混合液;
(3)将步骤(2)的混合液转移到冷冻干燥器中,于-60℃下冷冻干燥48h得到SA气凝胶;
(4)于氮气气氛中,以5℃/min的升温速率,将步骤(3)的SA气凝胶先于550℃下加热2h,再于800℃下碳化1h后冷却至室温,得到黑色粉末,再经过乙醇和去离子水有序洗涤多次,在80℃下真空干燥24h,得到N/O共掺杂的硫化钼@多孔碳复合电极材料(记为SA/C)。
对比例2
实施例1步骤(1)制得的二硫化钼(记为MoS 2)。
结果和讨论
本发明实施例1-实施例3制得的N/O共掺杂的硫化钼@多孔碳复合电极材料性能效果平行,下面以实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料为例,并将其制成负极材料,再通过构建的三电极体系与对比例进行对比;
负极材料的制备:将实施例1制得的N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟乙稀混合,加入N-甲基吡咯烷酮后研磨至得到均相的黑色泥浆,将黑色泥浆均匀铺设于泡沫镍上,经干燥、压制,得到负极材料;其中,N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟 乙稀的质量比为8:1:1;
再将对比例1的SA/C及对比例2的MoS 2按照上述同样的方法制成负极材料。
三电极体系的组成具体为:采用CHI760E电化学工作站(CHI760E),使用铂(Pt)箔作为对电极,使用Hg/Hg 2Cl 2电极作为参比电极,分别以实施例1、对比例1及对比例2的电极材料作为工作电极,测试其电化学性能,电解质为1mol/L的Na 2SO 4溶液;
从图2的电镜图中可以看出,材料整体呈现多孔层状排列,在500nm电镜下可以清晰的看出一个个的孔洞结构,说明了该材料自身通过碳化后很成功的合成了3D结构的层状多孔碳形貌,这种结构不仅提供了更大的比表面积而且同样提供了更为广阔的电子传输通道。
从图3的XRD图谱说明了该合成的材料不仅保留了二硫化钼(002)、(100)和(200)的晶型,也同样表现出了在碳化后显现出的C的XRD峰值,说明了二硫化钼在高温碳化下得以很好的保留,而且复合的二硫化钼之后的晶型更为平滑,说明二硫化钼的复合对于碳化的海藻酸钠有着促进二者更好结晶的作用。
图4结果表明,MoS 2处可以观察到的A 1g和E 2g能级,分别表示为面外和面内的震动模量;多孔碳的拉曼光谱在1336cm -1和1588cm -1处有两个明显的峰,分别属于D带和G带。前者代表结构缺陷,后者指的是sp 2杂化碳的同相振动。I D/I G的值可以描述材料的石墨无序化程度,此外,SA-C的I D/I G带与MoS 2-SA/C的比值分别为0.964和1.08,较高的I D/I G值表明样品的石墨化程度较低,具有丰富的无序结构和缺陷,这是由于N-O共掺杂所致;这些丰富的缺陷可以提供高的伪电容,以获得良好的电容性能。
图5为对比了三者在10mV·m - 1的情形下的循环伏安曲线,图中表明单一的二硫化钼或是SA/C的容量与二者复合的有着明显的差别,也正是说明了复合后的材料并非二者之间的加和,而是表现出更好的协同作用。
图6结果表明,该材料在逐渐增大的扫描速率下仍能保持原本的双层电容的性质,说明该材料有着良好的循环性。
图7结果表明,在1mA·cm -2的电流下可以看出,该材料的比容量有着1.8F/cm -2的高面积比电容,说明了该材料在二者复合下有着十分显著的电容优势。
图8结果表明,Rs值为的2.6,较小的电阻值说明了该材料的电子传输情形下有着更小的阻力和更优质的电子迁移能力,这同样也印证了在电镜图下所看到多孔结构,说明了该结构确实对于该电化学性能有着优化的性质。
图9的循环测试结果显示,在电流密度为10mA·cm -2的情况下,经过5000次循环后,容量保持率为97%,这表明该材料的结晶性很好,作为一种灵活的应用材料,其循环稳定性很好;较高的电流也表明其高速离子传输和卓越的速率性能;前四圈和后四圈中的一圈的循环GCD曲线的形状在5000次循环后基本保持不变,表明该电极的循环性能极佳。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,包括以下步骤:
    (1)将钼酸盐和硫源超声分散于去离子水中并进行溶剂热反应,经洗涤、干燥,得到二硫化钼;
    其中,所述钼酸盐与所述硫源的物质的量之比为1:2-4;
    (2)将碳源和氮源混合均匀,然后向其中加入步骤(1)制得的二硫化钼,经充分混合后去除溶液中的残留气泡,得到混合液;
    其中,所述碳源与所述氮源的质量比为1:2-3;所述碳源与所述二硫化钼的质量比为1:1;
    (3)将步骤(2)的混合液的溶剂彻底蒸发,得到碳源/MoS 2气凝胶;
    (4)于氮气气氛中,以3-5℃/min的升温速率,将步骤(3)的碳源/MoS 2气凝胶先于500-600℃下加热2-3h,再于800℃下进一步碳化1h后冷却至室温,再经过洗涤、真空干燥后,得到N/O共掺杂的硫化钼@多孔碳复合电极材料。
  2. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(1)的钼酸盐选自钼酸钠、钼酸钾和四水合钼酸铵中的一种。
  3. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(1)的硫源选自硫脲、L-半胱氨酸和硫代乙酰胺中的一种。
  4. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(1)中溶剂热反应于反应釜中进行,所述去离子水占所述反应釜中特氟龙内衬容积的60%,然后于190-220℃下保温反应20-36h。
  5. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(1)中超声的条件参数为:在功率为100W下超声10min。
  6. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(2)的碳源选自海藻酸钠、海藻酸钾和木质 素中的一种。
  7. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(2)的氮源选自尿素、三聚氰胺和氨水中的一种。
  8. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(2)中,所述碳源和氮源的混合为:
    将所述碳源和氮源分散在水中,通过机械搅拌进行混合;
    所述机械搅拌的转速为300rpm,时间为12h。
  9. 根据权利要求1或8所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述去除溶液中的残留气泡为将溶液放到超声器中,于功率为100W条件下超声30min。
  10. 根据权利要求1所述的一种N/O共掺杂的硫化钼@多孔碳复合电极材料的制备方法,其特征在于,所述步骤(3)中溶剂彻底蒸发的方式为冷冻干燥;
    所述冷冻干燥的温度为-60℃;时间为24h、36h或48h。
  11. 一种权利要求1-10任一项所述的制备方法制得的N/O共掺杂的硫化钼@多孔碳复合电极材料。
  12. 一种利用权利要求11所述的N/O共掺杂的硫化钼@多孔碳复合电极材料制备的负极材料。
  13. 一种权利要求12所述的负极材料的制备方法,其特征在于,包括如下步骤:
    将N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟乙稀混合,加入N-甲基吡咯烷酮后研磨至得到均相的黑色泥浆,将黑色泥浆均匀铺设于泡沫镍上,经干燥、压制,得到负极材料;
    其中,N/O共掺杂的硫化钼@多孔碳复合电极材料、导电乙炔黑和聚偏氟乙稀的质量比为0.75-0.85:0.1-0.15:0.1-0.15。
  14. 一种权利要求12所述的负极材料或权利要求13所述制备方法得到的负极材料在制备超级电容器负极材料中的应用。
PCT/CN2022/137491 2021-12-09 2022-12-08 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用 WO2023104141A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2404167.5A GB2625474A (en) 2021-12-09 2022-12-08 N/O co-doped molybdenum sulfide@porous carbon composite electrode material and preparation method therefor, negative electrode material and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111502666.3A CN114156093B (zh) 2021-12-09 2021-12-09 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用
CN202111502666.3 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023104141A1 true WO2023104141A1 (zh) 2023-06-15

Family

ID=80453914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137491 WO2023104141A1 (zh) 2021-12-09 2022-12-08 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN114156093B (zh)
GB (1) GB2625474A (zh)
WO (1) WO2023104141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153576A (zh) * 2023-07-26 2023-12-01 哈尔滨理工大学 一种基于双掺杂活性炭的固态锂离子电容器的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156093B (zh) * 2021-12-09 2023-06-20 桂林理工大学 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用
CN114920301B (zh) * 2022-06-14 2023-03-31 西安交通大学 一种基于多金属钼酸盐簇的电极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044110A1 (ko) * 2016-08-31 2018-03-08 성균관대학교산학협력단 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체
CN108889326A (zh) * 2018-07-02 2018-11-27 北京理工大学 一种二硫化钼与石墨相氮化碳的三维网络框架的制备方法
CN109775710A (zh) * 2019-03-16 2019-05-21 南昌大学 一种氮掺杂多孔碳材料的制备方法及在超级电容器中的应用
CN110676068A (zh) * 2019-10-28 2020-01-10 熊洪涛 一种聚多巴胺包覆MoS2-多孔碳超级电容器材料及其制法
CN111106321A (zh) * 2018-10-27 2020-05-05 中国石油化工股份有限公司 一种氮掺杂二硫化钼/三维石墨烯复合材料
CN112522726A (zh) * 2020-10-30 2021-03-19 徐州瑞鑫新材料研究院有限公司 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
CN112919446A (zh) * 2021-01-22 2021-06-08 益诺鑫电气(深圳)有限公司 一种氮掺杂多孔碳负载MoS2纳米花的电极材料及制法
CN114156093A (zh) * 2021-12-09 2022-03-08 桂林理工大学 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570738B1 (ko) * 2014-05-30 2015-11-20 서강대학교산학협력단 질소-도핑된 3 차원 다공성 탄소 구조체, 이의 제조 방법, 및 이를 포함하는 수퍼커패시터 전극
CN111111700B (zh) * 2020-01-22 2022-01-14 复旦大学 少层二硫化钼/氮掺杂多孔碳复合催化剂及其制备方法
CN112158838B (zh) * 2020-10-25 2022-05-17 福州大学 一种氮氧共掺杂分级多孔碳材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044110A1 (ko) * 2016-08-31 2018-03-08 성균관대학교산학협력단 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체
CN108889326A (zh) * 2018-07-02 2018-11-27 北京理工大学 一种二硫化钼与石墨相氮化碳的三维网络框架的制备方法
CN111106321A (zh) * 2018-10-27 2020-05-05 中国石油化工股份有限公司 一种氮掺杂二硫化钼/三维石墨烯复合材料
CN109775710A (zh) * 2019-03-16 2019-05-21 南昌大学 一种氮掺杂多孔碳材料的制备方法及在超级电容器中的应用
CN110676068A (zh) * 2019-10-28 2020-01-10 熊洪涛 一种聚多巴胺包覆MoS2-多孔碳超级电容器材料及其制法
CN112522726A (zh) * 2020-10-30 2021-03-19 徐州瑞鑫新材料研究院有限公司 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
CN112919446A (zh) * 2021-01-22 2021-06-08 益诺鑫电气(深圳)有限公司 一种氮掺杂多孔碳负载MoS2纳米花的电极材料及制法
CN114156093A (zh) * 2021-12-09 2022-03-08 桂林理工大学 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153576A (zh) * 2023-07-26 2023-12-01 哈尔滨理工大学 一种基于双掺杂活性炭的固态锂离子电容器的制备方法
CN117153576B (zh) * 2023-07-26 2024-04-05 哈尔滨理工大学 一种基于双掺杂活性炭的固态锂离子电容器的制备方法

Also Published As

Publication number Publication date
GB2625474A (en) 2024-06-19
CN114156093B (zh) 2023-06-20
CN114156093A (zh) 2022-03-08
GB202404167D0 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2023104141A1 (zh) N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用
WO2022036878A1 (zh) 一种高氮生物炭复合材料及其制备方法和用途
WO2021027100A1 (zh) 一种氮掺杂多孔炭材料及其制备方法与应用
CN106365163B (zh) 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用
WO2018188422A1 (zh) 一种用于超级电容器的蒜皮基活性炭电极材料及制备方法
CN105633372A (zh) 硫化镍纳米颗粒/氮掺杂纤维基碳气凝胶复合材料及其制备方法
Zhang et al. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor
CN110526243A (zh) 一种超级电容器用生物质多孔碳的制备方法及其应用
CN111276679A (zh) 用于钠离子电池负极材料的双碳复合硫化钼复合材料及制备方法
CN105236406A (zh) 一种超级电容器用球形活性炭的制备方法
CN108878167A (zh) 一种超级电容器用CoNi2S4/石墨烯复合材料及其制备方法
CN109637843A (zh) 一种以芹菜为电极原料制备超级电容器的方法
CN112133572A (zh) 用作超级电容器的三维多孔生物质碳材料及其制备方法
CN111977651A (zh) 碳酸钾化学活化低阶碳源基多孔碳的制备方法
Hao et al. Facile fabrication of N-self-doped porous carbons from green solid waste for supercapacitors with high cycling stability and flexibility
CN108975328B (zh) 一种两步预碳化制备氮氧共掺杂生物质多孔碳材料的方法
Li et al. A new synthesis of O/N-doped porous carbon material for supercapacitors
CN107680826B (zh) 一种用于超级电容器的分层多孔活性炭电极材料的制备方法
CN113072066B (zh) 一种多孔碳材料及其制备方法与超级电容器
CN106058254B (zh) 一种钠离子电池负极材料用生物碳/碳纳米管的制备方法
Wu et al. Porous carbons derived from potato for high-performancesupercapacitors
CN110610812B (zh) 基于甲基纤维素的b,n双掺杂碳气凝胶及其制备方法和应用
CN104538199A (zh) 一种锰的氧化物/多孔炭纳米纤维复合材料的制备方法及其产品和应用
CN115285991A (zh) 基于生物质衍生物自组装生成分级多孔碳的方法及其应用
CN110648856B (zh) 一种石墨烯材料及其制备方法和超级电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903560

Country of ref document: EP

Kind code of ref document: A1