WO2023053617A1 - 実装機 - Google Patents

実装機 Download PDF

Info

Publication number
WO2023053617A1
WO2023053617A1 PCT/JP2022/024724 JP2022024724W WO2023053617A1 WO 2023053617 A1 WO2023053617 A1 WO 2023053617A1 JP 2022024724 W JP2022024724 W JP 2022024724W WO 2023053617 A1 WO2023053617 A1 WO 2023053617A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
light beam
suction nozzle
light
suction nozzles
Prior art date
Application number
PCT/JP2022/024724
Other languages
English (en)
French (fr)
Inventor
悟 柴田
貴司 北田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023550367A priority Critical patent/JPWO2023053617A1/ja
Priority to CN202280064010.4A priority patent/CN117981487A/zh
Publication of WO2023053617A1 publication Critical patent/WO2023053617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This disclosure relates to mounters.
  • a rotary head equipped with a plurality of suction nozzles is intermittently rotated to sequentially move each suction nozzle from a component suction position to a component mounting position. lowers the suction nozzle moved to the above position, mounts the electronic component held on the circuit board whose mounting position has been moved to directly below the component mounting position, releases the electronic component held by the suction nozzle, and raises the suction nozzle.
  • a component placement apparatus is disclosed. The component mounting device determines the position of the suction nozzle based on the elapsed time from the start of descent of the suction nozzle from the component mounting position to the time when the suction nozzle or the component passes through a predetermined height position. Determining whether the holding state and/or mounting state of the component is good or bad.
  • the present disclosure has been devised in view of the conventional circumstances described above, and an object thereof is to provide a mounter that more accurately detects a component sucked by each of a plurality of suction nozzles provided in a rotary head. do.
  • a mounting machine has a plurality of suction nozzles arranged in a circular shape, and a rotary head that picks up a component at the tip of one of the plurality of suction nozzles and mounts it on a substrate.
  • a sensor having a light source for irradiating a tip portion of the suction nozzle with a light beam and a light receiving element for receiving the light beam irradiated from the light source, the sensor for outputting the light intensity of the light beam received by the light receiving element; Based on the light intensity of the light beam output from the sensor, the rotary head rotates the plurality of suction nozzles in the circumferential direction so that the suction nozzles can detect the parts when the suction nozzles pass the light beams. and a control unit that determines whether or not the is sucked.
  • the plurality of suction nozzles are arranged around the circumference of the circle. rotate in the direction
  • the mounting machine has a plurality of suction nozzles arranged in a circular shape, and a rotary nozzle that picks up a component at a tip portion of one of the plurality of suction nozzles and mounts it on a substrate.
  • a head a transmitted illumination for irradiating a light beam onto the tip of the suction nozzle, and an image sensor for receiving the light beam irradiated from the transmitted illumination; a sensor for generating a captured image of the suction nozzles when the suction nozzles pass through the light beam as the head rotates the plurality of suction nozzles in the circumferential direction; a control unit that acquires a shadow of the suction nozzle captured in the captured image and determines whether or not the suction nozzle is picking up the component based on the shadow.
  • the plurality of suction nozzles are arranged in the circular direction. Rotate in the circumferential direction.
  • FIG. 1 is a block diagram showing an internal configuration example of a mounter according to Embodiment 1;
  • FIG. FIG. 3 is a diagram for explaining a partial configuration example of the mounting machine according to the first embodiment;
  • Enlarged view of main part of mounter Diagram explaining component detection by the measurement system A diagram for explaining the positional relationship between a light beam and each of a plurality of suction nozzles.
  • 4A and 4B are diagrams for explaining an example of part detection determination processing according to the first embodiment;
  • FIG. 4 is a block diagram showing an internal configuration example of a mounting machine according to a modification of Embodiment 1;
  • FIG. 5 is a diagram for explaining an example of part detection determination processing in a modification of the first embodiment;
  • FIG. 11 is a diagram for explaining an example of component detection determination processing according to the second embodiment;
  • a mounter that uses an optical sensor to detect an electronic component (hereinafter referred to as a "component”) sucked at the tip of a suction nozzle and judges whether the component is sucked.
  • a component mounting apparatus (hereinafter referred to as a "mounter”) disclosed in Patent Document 1 includes a rotary head arranged on a circuit board (hereinafter referred to as a "board") and a plurality of suction nozzles included in the rotary head.
  • a suction nozzle for mounting a component thereon and an optical sensor arranged corresponding to each component mounting position are provided.
  • the mounter detects the suction nozzle that moves up and down at a position corresponding to the component mounting position at a predetermined height, and determines whether the component is normally picked up based on the elapsed time when the suction nozzle descends and/or rises. determine whether
  • the rotary head is rotated to move each suction nozzle. Since it is not possible to sequentially move from the component supply position to the component mounting position, there is a possibility that the component mounting efficiency is lowered.
  • a light source of the optical sensor is provided at the center of rotation of each of a plurality of suction nozzles arranged in a circular shape, and the light emitted from this light source is emitted.
  • the optical sensor is provided on the rotating shaft of the rotor, and rotates together with the rotation of each of the plurality of suction nozzles in the circumferential direction.
  • the X direction and the Y direction are directions orthogonal to each other in the horizontal plane.
  • the Z direction is the height direction (vertical direction) orthogonal to the X and Y directions.
  • FIG. 1 is a diagram for explaining an internal configuration example of a mounter 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a partial configuration example of the mounter 100 according to the first embodiment.
  • FIG. 3 is an enlarged view of a main part of the mounter 100. As shown in FIG.
  • suction nozzle 15 is shown in FIG. 1, and illustration of the other suction nozzles is omitted. Further, in FIG. 1, illustration of each of the X-axis rail 10A, the Y-axis rail 10B, the component supply unit 12, the substrate 13, and the substrate rail 16 is omitted.
  • the mounting machine 100 drives each of the pair of board rails 16 to carry in the board 13 .
  • the mounting machine 100 drives the head 11 each having one or more suction nozzles 15 to suck the component P (see FIG. 3) supplied by the component supply unit 12 by each of the suction nozzles 15 .
  • the mounting machine 100 picks up the component P with the suction nozzle 15 , moves the head 11 above the board 13 , conveys the component P onto the board 13 , and then mounts the component P on each component mounting position on the board 13 .
  • Implement. After producing a mounted board by mounting (mounting) all the components P to be mounted on the board 13, the mounting machine 100 drives each of the pair of board rails 16 and unloads the produced mounted board. do.
  • the mounting machine 100 includes a head 11, a component supply unit 12, a measurement system 14, one or more suction nozzles 15, a pair of substrate rails 16, a timing generation unit 17A, a processor 18, a memory 19, an output and a part 20 .
  • Each of the pair of X-axis rails 10A is coupled with the Y-axis rail 10B and supports the Y-axis rail 10B so as to be movable in the X direction and the -X direction.
  • the Y-axis rail 10B is coupled with the head 11 and supports the head 11 movably in the Y direction and the -Y direction.
  • Each of the pair of X-axis rails 10A and the Y-axis rail 10B constitute a moving mechanism for moving the head 11. As shown in FIG.
  • a head 11 which is an example of a rotary head, is configured integrally with the measurement system 14, is controlled by a moving mechanism, and drives (moves) in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the head 11 is coupled to the Y-axis rail 10B and conveys the component P between the component supply section 12 and a predetermined component mounting position on the substrate 13.
  • the head 11 is a so-called rotary head, and includes an encoder 11A, a rotor 11B, a rotary table 11C, and a plurality of suction nozzles 15, respectively.
  • the rotary table 11C includes a plurality of suction nozzles 15 arranged concentrically.
  • the rotor 11B rotates the rotary table 11C in a predetermined rotational direction R (see FIG. 5), thereby rotating each of the plurality of suction nozzles 15 mounted on the rotary table 11C in the predetermined rotational direction R.
  • the encoder 11A detects the rotation angle of the rotor 11B with a sensor (not shown) and outputs the detected rotation angle to the timing generator 17A.
  • the head 11 uses the processor 18 to suck and release the component P by each of the suction nozzles 15 .
  • the head 11 sucks the component P supplied from the component supply unit 12 with the tip of the suction nozzle 15, transports it to a predetermined component mounting position on the board 13, and then releases the component P from the suction to remove the component P from the board 13. implement above.
  • the head 11 does not have to be configured integrally with the measurement system 14 .
  • the head 11 picks up the component P by the moving mechanism, moves the rotary table 11C to a position above the light source 14A, and then rotates the rotary table 11C by the rotor 11B above the light source 14A.
  • the head 11 rotates the rotary table 11 ⁇ /b>C so that the measurement system 14 can detect the component P sucked by each of the suction nozzles 15 .
  • the component supply unit 12 is controlled by the processor 18 to supply the components P to be mounted on the board 13 .
  • the component supply unit 12 may be capable of supplying a plurality of different types of components P at the same time.
  • the arrangement of the component supply unit 12 shown in FIG. 2 is an example and is not limited to this.
  • a measurement system 14 as an example of a sensor includes a light source 14A, a slit 14C, a photoelectric conversion element 14D, and a current-voltage converter 14E, and is integrally configured with the head 11.
  • the slit 14C is arranged on the surface facing the light source 14A.
  • the light source 14A and the slit 14C are arranged apart from each other by a distance (specifically, the diameter of the rotary table 11C) or more through which the head 11 having each of the plurality of suction nozzles 15 can pass. Note that the arrangement position of the measurement system 14 shown in each of FIGS. 1 to 3 is an example and is not limited to this.
  • the photoelectric conversion element 14D which is an example of a light receiving element, converts light (light beam 14B) emitted from a light source 14A such as an LED (Light Emitting Diode), an LD (Laser Diode), or a laser into an electric signal after passing through the slit 14C. It is converted and output to the current-voltage converter 14E.
  • the current-voltage converter 14E converts the electric signal (current) output from the photoelectric conversion element 14D into a voltage, and outputs the converted output value (hereinafter referred to as “IV conversion value”) to the processor 18 .
  • the timing generator 17A which is an example of a determination unit, generates an electrical signal for causing the processor 18 to detect and determine the part P based on the rotation angle of the rotor 11B output from the encoder 11A of the head 11.
  • the timing generation section 17A outputs the generated electrical signal to the processor 18 .
  • the timing generating unit 17A identifies one suction nozzle 15 that is a detection determination target for the component P based on the rotation angle of the rotor 11B, and generates identification information that can identify the identified suction nozzle 15. , and the generated electrical signal may be output to the processor 18 .
  • the processor 18 as an example of the control unit is configured using, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array), and controls the operation of each unit of the processor 18.
  • the processor 18 cooperates with the memory 19 to collectively perform various processes and controls.
  • the processor 18 refers to the programs and data held in the memory 19 and executes the programs, thereby implementing the functions of the respective units.
  • the timing generator 17A is also configured using, for example, a CPU, DSP, FPGA, etc., like the processor 18 .
  • the processor 18 in the first embodiment selects the suction nozzle 15 corresponding to the output period of the electrical signal based on the IV conversion value output from the current-voltage converter 14E and the electrical signal output from the timing generator 17A. It is determined whether or not the part P is picked up. Specifically, the processor 18 determines whether or not the IV conversion value during the output period of the electrical signal by the timing generator 17A is less than the threshold. When the processor 18 determines that the component P has not been picked up by the suction nozzle 15 , the processor 18 generates a notification to the effect that the component P has not been picked up, and outputs the notification to the output unit 20 .
  • the memory 19 includes, for example, a RAM (Random Access Memory) as a work memory used when executing each process of the processor 18, and a ROM (Read Only Memory) for storing programs and data that define the operation of the processor 18. have. Data or information generated or obtained by the processor 18 is temporarily stored in the RAM. A program that defines the operation of the processor 18 is written in the ROM.
  • the memory 19 stores thresholds used in the part P detection determination process executed by the processor 18 . In addition, the memory 19 stores production data for producing the mounting substrates to be produced.
  • the production data referred to here is information used by the mounting machine 100 to produce mounting boards.
  • the production data includes, for example, the size of the substrate 13, the size and shape of the component P, information on the suction nozzle, the number of substrates to be produced, and the like. Note that the production data need not be limited to the data of the items described above.
  • the production data may include threshold information for each part P, which will be described later.
  • the output unit 20 is configured using a display such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence).
  • the output unit 20 outputs the notification output from the processor 18 .
  • FIG. 4 is a diagram for explaining component detection by the measurement system.
  • the head 11 rotates the rotary table 11C with the rotor 11B on the light beam 14B of the measurement system 14, so that any one of the plurality of suction nozzles 15 is moved to the measurement system. 14 passes over the ray 14B.
  • the mounter 100 can detect only the component P sucked by the tip of any one of the suction nozzles 15 using the measurement system 14 .
  • FIG. 5 is a diagram for explaining the positional relationship between the light beam 14B and each of the suction nozzles 15.
  • FIG. 6 is a diagram illustrating the positional relationship between the light beam 14B and each of the suction nozzles 15.
  • the head 11 shown in FIGS. 5 and 6 is viewed from the bottom side (that is, from the ⁇ Z direction), and shows the head 11 in the bottom view.
  • suction nozzles 15 shown in FIGS. 5 and 6 is an example, and is not limited to this. Also, in the head 11 shown in FIGS. 5 and 6, illustration of the component P is omitted in order to facilitate understanding of the positional relationship between the suction nozzle 15 and the light beam 14B.
  • the rotary table 11C When the head 11 detects and determines the part P, the rotary table 11C is positioned between the light source 14A and the slit 14C by the movement mechanism. 14B and the rotation center Ps0 of the rotary table 11C do not match. Specifically, the head 11 at the detection determination position of the component P is aligned with a diagonal line (see FIG. ) and the rotation center Ps0 of the rotary table 11C in a bottom view (when the head 11 and the measurement system 14 are viewed from the -Z direction) do not match the light beam 14B. After the head 11 has moved to the detection determination position of the component P described above, the rotor 11B rotates the rotary table 11C in a predetermined rotation direction R by 360° or more. As a result, the mounter 100 according to the first embodiment can execute detection determination processing of the component P for each suction nozzle 15 because each suction nozzle 15 passes through the light beam 14B one by one.
  • the measurement system 14 can detect only the suction nozzle 15A among the plurality of suction nozzles 15 and the component P (not shown) sucked by the suction nozzle 15A.
  • the measurement system 14 at time t2 only the suction nozzle 15B and the component P (not shown) sucked by the suction nozzle 15B are positioned on the light beam 14B. Thereby, the measurement system 14 can detect only the suction nozzle 15A among the plurality of suction nozzles 15 and the component P (not shown) sucked by the suction nozzle 15A.
  • the mounter 100 detects the component P from the suction nozzle 15 that passes through the slit 14C side on the light beam 14B. For example, in the example shown in FIG. 5, the mounter 100 sequentially performs the detection determination of the component P for each of the plurality of suction nozzles 15 rotated in the predetermined rotation direction R clockwise. Mounting machine 100 performs detection determination of component P for suction nozzle 15A at time t1, and then performs detection determination of component P for suction nozzle 15C. Note that the detection target of the component P need not be limited to the above example. For example, the mounter 100 may set the suction nozzle 15 passing through the light source 14A side on the light ray 14B as the component P detection determination target.
  • the mounter 100 according to the first embodiment can perform any one of the suction nozzles 15 by the measurement system 14 and the component sucked by the one suction nozzle 15 even if the head 11 is of a rotary type. Only P can be detected. Therefore, the mounter 100 according to the first embodiment can detect and determine the component P with higher accuracy.
  • FIG. 7 is a diagram illustrating an example of the correspondence relationship between the positions of the suction nozzle 15 and the component P and the IV conversion values. It goes without saying that the suction nozzle 15 and the component P shown in FIG. 7 are examples, and the present invention is not limited to this.
  • the IV conversion graph Op1 is a graph showing time-series changes in IV conversion values output from the current-voltage conversion unit 14E.
  • the IV conversion value decreases as the amount of light 14B blocked by the suction nozzle 15 and the component P increases.
  • the IV conversion graph Op1 shown in FIG. 7 is, as an example, an IV conversion graph when the suction nozzle 15 and the component P shown in FIG. 7 are detected.
  • a portion of the light beam 14B is blocked by the suction nozzle 15 from time t11 to time t12, and the light blocking range by the suction nozzle 15 and the component P is expanded from time t12 to time t13.
  • Light ray 14B has the maximum light shielded range by suction nozzle 15 and component P from time t13 to time t14, the light shielded range by suction nozzle 15 and component P decreases from time t14 to time t15, and is light ray 14B from time t15 to time t16. Only part of the light is blocked by the suction nozzles 15 during this period, and the light is not blocked by the suction nozzles 15 after time t16. That is, the light ray 14B is blocked by the maximum amount between time t13 and time t14.
  • the IV conversion value becomes the maximum value.
  • the IV conversion value continues to decrease as the amount of light 14B blocked increases.
  • the IV conversion value becomes the minimum pw12 between time t13 and time t14 when the light shielding amount of the light ray 14B is maximum, and continues to increase between time t14 and time t16.
  • the IV conversion value becomes maximum again after time t16.
  • the processor 18 determines that the IV conversion value output from the current-voltage converter 14E is pw11 or less, the processor 18 determines that the component P sucked by the suction nozzle 15 has been detected. .
  • FIG. 8 is a diagram for explaining an example of detection determination processing of the part P according to the first embodiment. Note that in FIG. 8, an example of detection determination processing for the component P will be described with reference to the positional relationship between each of the suction nozzles 15A to 15D and the measurement system 14 shown in FIG. 5 as an example.
  • the timing output graph Tm2 is a graph showing time-series changes in the electrical signal output from the timing generator 17A.
  • the IV conversion graph Op2 is a graph showing time-series changes in the IV conversion values output from the current-voltage converter 14E.
  • the timing generation unit 17A generates an electrical signal that causes the processor 18 to execute detection determination processing for the part P based on the rotation angle of the rotor 11B, and outputs the electrical signal to the processor 18. Specifically, based on the position of the head 11 with respect to the measurement system 14 and the rotation angle of the rotor 11B, the timing generation unit 17A detects (specifies) one suction nozzle 15 passing through the slit 14C side of the light beam 14B. )do. For example, at time t2 shown in FIG. 5, the timing generator 17A detects (identifies) the suction nozzle 15C as one suction nozzle 15 that will pass through the slit 14C side of the light ray 14B.
  • the rotor 11B continues to accelerate the rotational speed of the turntable 11C from time t21 when the detection determination of the component P is started to the timing (time t22) when the suction nozzle 15A is positioned on the light beam 14B. .
  • the rotor 11B reduces the rotational speed of the turntable 11C from time t22, and controls the rotational speed of the turntable 11C to be 0 (zero) at time t23 when the suction nozzle 15A finishes passing over the light beam 14B.
  • the timing generation unit 17A generates an electrical signal for causing the processor 18 to execute detection determination processing of the part P based on the rotation speed of the rotor 11B, and outputs the generated control command to the processor 18. Specifically, the timing generation unit 17A outputs to the processor 18 an electrical signal for detecting and judging the part P based on information on the rotation angle of the rotor 11B and the position of the head 11 with respect to the measurement system 14 .
  • the rotor 11B rotates in a time period Tm21 from time t21 to time t23 and a time period Tm22 from time t25 to time t27.
  • the timing generation unit 17A determines that the rotation speed>0 (zero) in each of the time periods Tm21 and Tm22, and outputs electrical signals to the processor 18 in these time periods Tm21 and Tm22. continues to output
  • the processor 18 determines whether or not the IV conversion value output from the current-voltage conversion unit 14E is equal to or greater than the threshold value pw2 while the electrical signal is being output from the timing generation unit 17A (each of the time periods Tm21 and Tm22). do.
  • the processor 18 calculates the IV conversion value output from the current-voltage conversion unit 14E while the electrical signal is being output from the timing generation unit 17A, the preset threshold value pw2, , it is determined whether or not the component P is being sucked by the suction nozzle 15 .
  • the threshold value pw2 used for detection determination of the component P may be set to a different value for each component P.
  • the processor 18 determines whether the IV conversion value output from the current-voltage converter 14E during each of the time periods Tm21 and Tm22 is equal to or greater than the threshold pw2. When the processor 18 determines that the IV conversion value output from the current-voltage converter 14E is equal to or greater than the threshold value pw2 in the time period Tm21, it determines that the component P is being picked up by the suction nozzle 15A. On the other hand, when the processor 18 determines that the IV conversion value output from the current-voltage converter 14E is not equal to or greater than the threshold value pw2, it determines that the component P is not adsorbed by the adsorption nozzle 15A, and the component P is not adsorbed. A notification to that effect is generated and output to the output unit 20 .
  • the processor 18 determines that the IV conversion value output from the current-voltage converter 14E is equal to or greater than the threshold value pw2 in time period Tm22, it determines that the component P is being picked up by the suction nozzle 15C.
  • the processor 18 determines that the IV conversion value output from the current-voltage converter 14E is not equal to or greater than the threshold value pw2
  • the processor 18 determines that the component P is not adsorbed by the adsorption nozzle 15C, and the component P is not adsorbed. A notification to that effect is generated and output to the output unit 20 .
  • the processor 18 when the processor 18 acquires the identification information of the suction nozzle 15, which is the object of detection determination of the component P, from the timing generation unit 17A, the identification information of the suction nozzle 15 and the notification are output to the output unit 20 in association with each other. You can Also, the processor 18 may store the generated notification or the notification associated with the identification information of the suction nozzle 15 in the memory 19 .
  • the mounter 100 can perform the operation of the component P only while the electrical signal is being output from the timing generator 17A (for example, the time periods Tm21 and Tm22) even if the head 11 is of the rotary type.
  • the detection determination process it is possible to execute the detection determination of the component P with respect to one suction nozzle 15 (for example, the suction nozzles 15A and 15C shown in FIG. 5) that passes through the slit 14C side of the light beam 14B.
  • Mounting machine 100 according to Embodiment 1 selects one of An example of executing the detection determination process for the component P of one suction nozzle 15 has been shown.
  • the mounting machine 100A according to the modification of the first embodiment executes ON/OFF control of the light source 14A based on the rotational speed of the rotor 11B of the head 11, and converts the IV conversion value output from the current-voltage converter 14E into Based on this, an example of executing the detection determination process for the component P of any one of the suction nozzles 15 will be described.
  • FIG. 9 is a block diagram showing an internal configuration example of the mounter 100A according to the modification of the first embodiment.
  • the mounting machine 100A according to the modification of the first embodiment has substantially the same configuration as the mounting machine 100 according to the first embodiment. Therefore, the same reference numerals are used for the same components as in the first embodiment, and the description thereof is omitted.
  • the encoder 11A detects the rotation angle of the rotor 11B using a sensor, and outputs information on the detected rotation angle of the rotor 11B to the timing generator 17B.
  • the encoder 11A may output information on the rotation angle of the rotor 11B to the processor 18A.
  • the processor 18 ⁇ /b>A can specify one suction nozzle 15 that is a detection determination target of the component P among each of the plurality of suction nozzles 15 provided in the head 11 .
  • the timing generation unit 17B determines whether the rotor 11B is rotating (that is, the rotation speed of the rotor 11B>0 ( zero) or not). When determining that the rotor 11B is rotating, the timing generator 17B generates an electric signal for turning on the light source 14AA (that is, irradiates the light beam 14B) and outputs the electric signal to the light source 14AA.
  • the light source 14AA is controlled by the timing generator 17B.
  • the light source 14AA is turned on while the electrical signal is being output from the timing generator 17B, and emits the light beam 14B.
  • the light source 14AA is turned off and does not irradiate the light beam 14B while the electrical signal is not output from the timing generator 17B.
  • the processor 18A which is an example of a control unit, identifies the suction nozzle 15, which is the detection determination target of the component P, based on the rotation angle of the rotor 11B output from the encoder 11A. Further, the processor 18A determines whether or not the IV conversion value output from the current-voltage converter 14E is less than the threshold pw3 (see FIG. 10) corresponding to the part P to be detected and greater than the threshold pw4. . When the processor 18A determines that the IV conversion value is less than the threshold pw3 and greater than the threshold pw4, the processor 18A determines that the suction nozzle 15 has picked up the component P. On the other hand, when the processor 18A determines that the IV conversion value is equal to or greater than the threshold pw3 or equal to or less than the threshold pw4, the processor 18A determines that the suction nozzle 15 has not picked up the component P.
  • the part P is determined based on the rotational speed of the rotor 11B, the output timing of the electrical signal output from the timing generator 17B, and the IV conversion value output from the current-voltage converter 14E.
  • Detection determination processing will be described.
  • 10A and 10B are diagrams for explaining an example of detection determination processing of the part P in the modification of the first embodiment. Note that in FIG. 10, an example of detection determination processing for the component P will be described with reference to the positional relationship between each of the suction nozzles 15A to 15D and the measurement system 14 shown in FIG. 5 as an example.
  • the rotor rotation speed graph Vg3 is a graph showing the rotation speed of the rotor 11B based on the rotation angle information of the rotor 11B.
  • the timing output graph Tm3 is a graph showing time-series changes in the electrical signal output from the timing generator 17B.
  • the IV conversion graph Op3 is a graph showing time-series changes in the IV conversion values output from the current-voltage converter 14E.
  • the rotor 11B continues to accelerate the rotational speed of the rotary table 11C until the center of the tip of the suction nozzle 15, which is the component P to be detected, is positioned on the light beam 14B.
  • the rotor 11B decelerates the rotational speed of the rotary table 11C at the timing when the approximate center of the tip of the suction nozzle 15 is positioned on the light beam 14B, so that the suction nozzle 15 (for example, the suction nozzle shown in FIG. 15A) and the suction nozzle 15 (for example, the suction nozzle 15C shown in FIG. 5), which is the detection target of the next component P, is located on the light beam 14B, and the rotational speed of the rotary table 11C is reduced to 0 ( zero).
  • the rotor 11B continues to accelerate the rotational speed of the turntable 11C from time t31 when the detection determination of the component P is started to the timing (time t32) when the suction nozzle 15A is positioned on the light beam 14B. .
  • the rotor 11B reduces the rotational speed of the turntable 11C from time t32, and controls the rotational speed of the turntable 11C to be 0 (zero) at time t33 when the suction nozzle 15A finishes passing over the light beam 14B.
  • the timing generator 17B generates an electrical signal for executing ON/OFF control of the irradiation of the light beam 14B based on the rotation speed of the rotor 11B, and outputs it to the light source 14AA. Specifically, based on information on the rotation angle of the rotor 11B and the position of the head 11 with respect to the measurement system 14, the timing generation unit 17B selects one suction nozzle 15 from which the light beam 14B passes through the slit 14C side. To detect (identify).
  • the timing generator 17B continues to output electrical signals to the light source 14AA based on the information on the rotation angle of the rotor 11B. For example, in the example shown in FIG. 10, the rotor 11B rotates in a time period Tm31 from time t31 to time t33 and a time period Tm32 from time t34 to time t36. Based on the rotation angle of the rotor 11B, the timing generator 17B determines that the rotation speed>0 (zero) in each of the time periods Tm31 and Tm32, and turns on the light source 14AA in these time periods Tm31 and Tm32. It continues to output an electrical signal to
  • the light source 14AA continues to irradiate the light beam 14B while the electrical signal is being output from the timing generator 17B (time periods Tm31 and Tm32).
  • the photoelectric conversion element 14D receives the light beam 14B that has passed through the slit 14C and converts it into an electrical signal (current) corresponding to the intensity of the received light beam 14B.
  • the photoelectric conversion element 14D outputs the converted electrical signal to the current-voltage converter 14E.
  • the current-voltage converter 14E converts the electrical signal output from the photoelectric conversion element 14D into an IV conversion value, and outputs the converted value to the processor 18A.
  • the processor 18A determines whether or not the component P is picked up by the pickup nozzle 15 based on the IV conversion value output from the current-voltage converter 14E and the preset threshold values pw3 and pw4. do.
  • the threshold pw4 is a value smaller than the threshold pw3, and is the IV conversion value when the light source 14AA is in the OFF state, that is, the IV conversion value when the intensity of the light beam 14B output from the photoelectric conversion element 14D is 0 (zero). indicates Note that the threshold value pw3 used for detection determination of the component P may be set to a different value for each component P.
  • the processor 18A identifies one suction nozzle 15 that is a detection determination target for the component P based on the information about the rotation angle of the rotor 11B that is output from the encoder 11A.
  • the processor 18A outputs IV conversion values from the current-voltage conversion unit 14E in each time period Tm31 and Tm32.
  • the processor 18A determines whether or not the IV conversion value output from the current-voltage converter 14E is greater than or equal to the threshold pw3. If the processor 18A determines that the IV conversion value output from the current-voltage converter 14E is less than the threshold pw3 and greater than the threshold pw4 in the time period Tm31, it determines that the component P is being picked up by the suction nozzle 15A. .
  • the processor 18A determines that the IV conversion value output from the current-voltage conversion unit 14E is equal to or greater than the threshold pw3 or equal to or less than the threshold pw4 in the time period Tm31, the part P is picked up by the pickup nozzle 15A. It determines that the part P is not picked up, generates a notification to the effect that the part P is not picked up, and outputs it to the output unit 20 .
  • the processor 18A determines that the IV conversion value output from the current-voltage converter 14E in the time period Tm32 is less than the threshold pw3 and greater than the threshold pw4, and determines that the component P is being sucked by the suction nozzle 15C. judge.
  • the processor 18A determines that the IV conversion value output from the current-voltage converter 14E is equal to or greater than the threshold value pw3 or equal to or less than the threshold value pw4, it determines that the component P is not adsorbed by the adsorption nozzle 15C. A notification to the effect that the part P is not picked up is generated and output to the output unit 20 .
  • the identification information of the suction nozzle 15 and the notification may be associated with each other and output to the output unit 20. Also, the processor 18A may store the generated notification or the notification associated with the identification information of the suction nozzle 15 in the memory 19 .
  • the mounting machine 100A according to the modification of the first embodiment emits the light beam 14B only while the suction nozzle 15, which is the object of detection and determination of the component P, passes over the light beam 14B. Can be irradiated.
  • the mounter 100A according to the modification of the first embodiment can more effectively acquire the IV conversion value of the suction nozzle 15, which is the object of detection and determination of the component P, in the component P detection determination process. The accuracy of P detection determination can be further improved.
  • the mounters 100 and 100A pick up the component P with the tips of the plurality of suction nozzles 15 arranged in a circular shape, and place the component P on the substrate 13. It has a mounting head 11 (an example of a rotary head), light sources 14A and 14AA, and a photoelectric conversion element 14D (an example of a light receiving element) that receives a light beam 14B emitted from the light sources 14A and 14AA.
  • a mounting head 11 an example of a rotary head
  • light sources 14A and 14AA and a photoelectric conversion element 14D (an example of a light receiving element) that receives a light beam 14B emitted from the light sources 14A and 14AA.
  • a measurement system 14 (an example of the measurement system 14) that irradiates the light ray 14B on the part and outputs an IV conversion value (an example of the light intensity) of the light ray 14B received by the photoelectric conversion element 14D, and an output from the measurement system 14 and processors 18 and 18A for determining whether or not the suction nozzle 15, which is rotated in the circumferential direction by the head 11 and passes through the light ray 14B, is picking up the component P, based on the IV conversion value of the light ray 14B.
  • the head 11 rotates the plurality of suction nozzles 15 in the circumferential direction (for example, at positions where the light beam 14B and the rotation center Ps0 of the head 11 do not match in bottom view) between the light sources 14A and 14AA and the photoelectric conversion element 14D. Rotate in the direction of rotation R) shown in FIGS.
  • the processors 18 and 18A determine whether or not the suction nozzle 15 passing through the light ray 14B is picking up the component P based on the output IV conversion value of the light ray 14B.
  • the head 11 is positioned so that the center position (rotational center Ps0) of the circumference, which is the detection determination position of the component P, is aligned with the light beam 14B and the head.
  • the mounters 100 and 100A can execute the component P detection determination process for each suction nozzle 15 .
  • mounters 100 and 100A according to the first embodiment and the modification of the first embodiment determine whether component P is being sucked by suction nozzle 15 based on the IV conversion value of output light beam 14B. I can judge.
  • the processors 18 and 18A in the mounting machines 100 and 100A according to the first embodiment and the modification of the first embodiment can set the IV conversion value of the output light beam 14B to a threshold value (for example, the threshold values pw1, pw2, pw3, etc.), it is determined that the suction nozzle 15 through which the light beam 14B passes is picking up the component P.
  • mounters 100 and 100A according to the first embodiment and the modified example of the first embodiment have suction nozzle 15 and suction nozzle It can be determined that the light ray 14B is blocked by the part P sucked by the part 15 .
  • the processors 18 and 18A in the mounting machines 100 and 100A according to the first embodiment and the modification of the first embodiment can set the IV conversion value of the output light beam 14B to a threshold value (for example, the threshold values pw1, pw2, pw3, etc.), it is determined that the suction nozzle 15 passing through the light beam 14B has not picked up the component P, and a notification to the effect that the suction nozzle 15 has not picked up the component P is generated and output. . Accordingly, mounters 100 and 100A according to the first embodiment and the modified example of the first embodiment are sucked by the suction nozzle 15 and the suction nozzle 15 when the IV conversion value of the output light beam 14B is not less than the threshold value. It can be determined that the light ray 14B is not blocked by the part P that is attached.
  • a threshold value for example, the threshold values pw1, pw2, pw3, etc.
  • the mounting machine 100 provides the timing generator 17A (decide an example of the part) and .
  • the head 11 measures the rotational speeds of the plurality of suction nozzles 15 in the circumferential direction and outputs them to the timing generator 17A.
  • the timing generator 17A determines, based on the output rotational speed, whether or not the pickup nozzle 15 passing through the light beam 14B is picking up the component P at a first timing (for example, a time period Tm21 shown in FIG. 8). , Tm22, etc.).
  • the processor 18 determines whether the suction nozzle 15 passing through the light beam 14B is picking up the component P. determine whether or not As a result, the mounter 100 according to the first embodiment executes the component P detection determination process only while the electrical signal is being output from the timing generation unit 17A (for example, time periods Tm21 and Tm22).
  • the IV conversion value corresponding to the suction nozzle 15, which is the detection determination target of P (that is, the light beam 14B is passing through) can be obtained more effectively, and the detection determination of the component P can be performed with higher accuracy.
  • the timing generation unit 17A in the mounting machine 100 according to the first embodiment sets the time period (for example, time periods Tm21 and Tm22) in which it is determined that the rotation speed>0 (zero) to the first timing. decide.
  • the head 11 rotates the pickup nozzle 15, which is the detection determination target of the component P, and the IV conversion value output during the time period in which the light beam 14B passes through Based on this, the part P detection determination process can be executed. Therefore, the mounter 100 can more effectively acquire the IV conversion value corresponding to the suction nozzle 15 that is the detection determination target of the component P (that is, the light beam 14B is passing through), and the detection determination of the component P can be performed more effectively. It can be executed with high accuracy.
  • the mounting machine 100A generates timing for determining the second timing (for example, the time periods Tm31 and Tm32 shown in FIG. 10) for irradiating the light source 14AA with the light beam 14B. and a portion 17B.
  • the head 11 measures the rotational speeds of the plurality of suction nozzles 15 in the circumferential direction and outputs them to the timing generator 17B.
  • the timing generator 17B determines the second timing for irradiating the light beam 14B based on the output rotation speed.
  • the measurement system 14 irradiates the light beam 14B at the second timing determined by the timing generator 17B.
  • the mounter 100A irradiates the light beam 14B only while the electrical signal is being output from the timing generator 17B (for example, during the time periods Tm21 and Tm22). It is possible to acquire the IV conversion value of the time period during which the suction nozzle 15, which is the object of detection determination, passes through the light beam 14B. In other words, the mounter 100A can more effectively acquire the IV conversion value corresponding to the suction nozzle 15 that is the object of detection/determination of the component P (that is, the light beam 14B is passing through), so that the detection/determination of the component P can be performed more effectively. It can be executed with high accuracy.
  • the timing generation unit 17B in the mounting machine 100A according to the modification of the first embodiment determines that the rotation speed > 0 (zero) (for example, the time periods Tm31 and Tm32 shown in FIG. 10). etc.) is determined at the second timing.
  • the mounter 100A according to the modification of the first embodiment irradiates the light beam 14B only while the suction nozzle 15, which is the detection determination target of the component P, is being rotated by the head 11, thereby detecting the component P.
  • the IV conversion value corresponding to the suction nozzle 15 to be determined (that is, the light ray 14B is passing through) can be obtained more effectively, and the detection determination of the component P can be performed with higher accuracy.
  • the measurement system 14 in the mounting machines 100 and 100A according to the first embodiment and the modification of the first embodiment has the slit 14C between the light sources 14A and 14AA and the photoelectric conversion element 14D. It outputs the IV conversion value of the light ray 14B that has passed through 14C.
  • mounters 100 and 100A according to the first embodiment and the modification of the first embodiment can detect the IV corresponding to suction nozzle 15, which is the object of detection determination of component P (that is, through which light beam 14B passes). Transformed values can be obtained more efficiently.
  • the ON/OFF control of the light source 14AA is executed by the timing generation unit 17B, and the component P is controlled based on the light intensity of the light beam 14B emitted from the light source 14AA.
  • An example of executing the detection determination process has been shown.
  • ON/OFF control of the transmitted illumination 14G is executed by the timing generation unit 17B, and the image of the suction nozzle 15 passing through the light beam 14H is captured using the transmitted illumination 14G.
  • Transmitted illumination 14G of the present embodiment may include a light source similar to light source 14A of the first embodiment.
  • FIG. 11 is a block diagram showing an example internal configuration of a mounter 100B according to the second embodiment.
  • the mounting machine 100B according to the second embodiment has substantially the same configuration as the mounting machine 100A according to the modified example of the first embodiment. Therefore, the same reference numerals are used for the same components as those of the modified example of the first embodiment, and the description thereof is omitted.
  • a mounting machine 100B according to Embodiment 2 includes an imaging system 140 (an example of a sensor) in place of the measurement system 14 .
  • the imaging system 140 includes a transmitted illumination 14G and an image sensor 14I.
  • the imaging system 140 captures an image of the suction nozzle 15 passing through the light beam 14H irradiated by the transmitted illumination 14G, and outputs the captured image to the processor 18B.
  • the processor 18B executes detection determination processing of the component P based on the captured image output from the image sensor 14I.
  • the timing generation unit 17B determines whether the rotor 11B is rotating (that is, the rotation speed of the rotor 11B>0 ( zero) or not). When determining that the rotor 11B is rotating, the timing generation unit 17B generates an electric signal for turning on the transmission illumination 14G (that is, illuminating the light beam 14H), and outputs it to the transmission illumination 14G.
  • the transmitted illumination 14G is controlled by the timing generator 17B.
  • the transmitted illumination 14G is turned on while the electrical signal is being output from the timing generator 17B, and irradiates the light ray 14H toward the opposing image sensor 14I. Further, the transmitted illumination 14G is turned off while no electrical signal is output from the timing generator 17B, and does not irradiate the light beam 14B.
  • the image sensor 14I is, for example, a CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device, and converts an optical image formed on an imaging surface into an electrical signal.
  • the image sensor 14I outputs the captured image Img1 (see FIG. 12) to the processor 18B.
  • the processor 18B which is an example of a control unit, executes image recognition processing on the captured image (see FIG. 11) output from the image sensor 14I, and detects the component P from the tip of the suction nozzle 15, which is the detection determination target of the component P. To detect.
  • the processor 18B determines that the component P is being sucked by the suction nozzle 15 when the component P is detected from the tip of the suction nozzle 15 as a result of the image processing.
  • the processor 18 ⁇ /b>B determines that the component P is not picked up by the suction nozzle 15 when the part P is not detected from the tip of the suction nozzle 15 as a result of the image processing.
  • FIG. 12A and 12B are diagrams for explaining an example of detection determination processing of the part P according to the second embodiment. Note that in FIG. 12, an example of detection determination processing of the component P will be described with reference to the positional relationship between each of the suction nozzles 15A to 15D and the measurement system 14 (an example of the imaging system 140) shown in FIG. 5 as an example.
  • the captured image Img1 is located on the opposite side of the shadow Sh1 of the suction nozzle 15 (for example, the suction nozzle 15A shown in FIG. 5), which is the detection determination target of the component P, and the suction nozzle 15 via the rotation center Ps0. It is a captured image including a shadow Sh2 of the suction nozzle 15 (for example, the suction nozzle 15B shown in FIG. 5).
  • the processor 18B performs image recognition processing on the captured image Img1 output from the image sensor 14I, and recognizes the shadows Sh1 and Sh2 based on the density of the shadows of the two suction nozzles 15 reflected in the captured image Img1. To detect.
  • the processor 18B selects the shadow Sh1 corresponding to the suction nozzle 15, which is the detection determination target of the part P, based on the density of each of the two detected shadows Sh1 and Sh2, and extracts the suction nozzle 15 from the shadow Sh1. and a shadow Sh12 of the part P are detected by image recognition processing.
  • the processor 18B detects the shadow Sh12 of the component P from the shadow Sh1 by image recognition processing, and determines that the component P is picked up by the suction nozzle 15A.
  • the processor 18B determines that the shadow Sh12 of the component P cannot be detected from the shadow Sh1 by the image recognition processing, the processor 18B determines that the component P has not been picked up by the suction nozzle 15A, and indicates that the component P has not been picked up. A notification is generated and output to the output unit 20 .
  • the identification information of the suction nozzle 15 and the notification may be associated with each other and output to the output unit 20 . Also, the processor 18B may store the generated notification or the notification associated with the identification information of the suction nozzle 15 in the memory 19 .
  • the mounter 100B uses the transmitted illumination 14G to illuminate the light beam 14H only while the suction nozzle 15, which is the detection determination target of the component P, passes over the light beam 14H, even if the head 11 is of the rotary type.
  • the shadow Sh1 of the suction nozzle 15, which is the part P detection determination target can be imaged.
  • the mounter 100B uses the transmitted illumination 14G so that the shadows Sh1 and Sh2 of the two suction nozzles 15 have different shades.
  • the shadow Sh1 of the suction nozzle 15, which is the part P detection determination target, and the shadow Sh12 of the part P sucked by the suction nozzle 15 can be detected more accurately.
  • the mounter 100B has the head 11 (an example of the rotary head) that picks up the component P with the tips of the plurality of pick-up nozzles 15 arranged in a circular shape and mounts it on the board 13. and an image sensor 14I for receiving the light beam 14B emitted from the transmission illumination 14G and the transmission illumination 14G.
  • an imaging system 140 (an example of a sensor) that generates a captured image Img1 in which the suction nozzle 15, which is rotated in the circumferential direction by the head 11 and passes through the light beam 14H, is captured, and a captured image output from the imaging system 140.
  • a processor 18B (an example of a control unit) that acquires the shadow Sh1 of the suction nozzle 15 reflected in Img1 and determines whether or not the suction nozzle 15 is picking up the component P based on the shadow Sh1.
  • the head 11 rotates the plurality of suction nozzles 15 in the circumferential direction (for example, FIG. 5) between the transmitted illumination 14G and the image sensor 14I and at a position where the light ray 14H and the rotation center Ps0 of the head 11 do not match when viewed from the bottom. and in the direction of rotation R) shown in FIG.
  • the center position (rotation center Ps0) of the circumference where the head 11 is the detection determination position of the component P is a position where the light beam 14H and the rotation center Ps0 of the head 11 do not coincide.
  • the mounter 100B can execute detection determination processing of the component P for each suction nozzle 15 . Therefore, the mounter 100B can determine whether or not the component P is being sucked by the suction nozzle 15 based on the shadow Sh1 appearing in the picked-up image Img1 (see FIG. 12).
  • the present disclosure is useful as a mounter capable of more accurately detecting components sucked by each of a plurality of suction nozzles provided on a rotary head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

実装機は、円周状に配置された複数の吸着ノズルを有し、複数の吸着ノズルのうちの吸着ノズルの先端部で部品を吸着し、基板上に実装するロータリーヘッドと、吸着ノズルの先端部に光線を照射する光源と光源から照射された光線を受光する受光素子とを有し、受光素子により受光された光線の光強度を出力するセンサと、センサから出力された光線の光強度に基づいて、ロータリーヘッドが円周方向に複数の吸着ノズルを回転させることによって吸着ノズルが光線を通過するときに吸着ノズルが部品を吸着しているか否かを判定する制御部と、を備える。ロータリーヘッドは、ロータリーヘッドが光源と受光素子との間にあり、かつ、底面視において光線がロータリーヘッドの回転中心と一致しないときに、複数の吸着ノズルを円周方向に回転させる。

Description

実装機
 本開示は、実装機に関する。
 特許文献1には、複数の吸着ノズルを搭載したロータリーヘッドを間欠回転させて、各吸着ノズルを部品吸着位置から部品装着位置に順次移動させ、部品供給位置で電子部品を保持して部品装着位置に移動した吸着ノズルを下降させ、部品装着位置の直下に装着位置を移動させた回路基板に対して保持した電子部品を装着し、吸着ノズルによる電子部品の保持を解除して吸着ノズルを上昇させる部品装着装置が開示されている。部品装着装置は、部品装着位置から吸着ノズルの下降開始から、吸着ノズル又は部品が所定高さ位置を通過するまでの吸着ノズルの下降時及び/又は上昇時の時間経過に基づいて、吸着ノズルによる部品の保持状態及び/又は装着状態の良否を判定する。
特開2002-208800号公報
 本開示は、上述した従来の事情に鑑みて案出され、ロータリー方式のヘッドに備えられた複数の吸着ノズルのそれぞれに吸着された部品をより的確に検出する実装機を提供することを目的とする。
 本開示にかかる実装機は、円周状に配置された複数の吸着ノズルを有し、前記複数の吸着ノズルのうちの吸着ノズルの先端部で部品を吸着し、基板上に実装するロータリーヘッドと、前記吸着ノズルの先端部に光線を照射する光源と前記光源から照射された光線を受光する受光素子とを有し、前記受光素子により受光された前記光線の光強度を出力するセンサと、前記センサから出力された前記光線の前記光強度に基づいて、前記ロータリーヘッドが前記円周方向に前記複数の吸着ノズルを回転させることによって前記吸着ノズルが前記光線を通過するときに前記吸着ノズルが部品を吸着しているか否かを判定する制御部と、を備える。前記ロータリーヘッドは、前記ロータリーヘッドが前記光源と前記受光素子との間にあり、かつ、底面視において前記光線が前記ロータリーヘッドの回転中心と一致しないときに、前記複数の吸着ノズルを前記円周方向に回転させる。
 また、本開示にかかる実装機は、円周状に配置された複数の吸着ノズルを有し、前記複数の吸着ノズルのうちの吸着ノズルの先端部で部品を吸着し、基板上に実装するロータリーヘッドと、前記吸着ノズルの先端部に光線を照射する透過照明と前記透過照明から照射された光線を受光するイメージセンサとを有し、前記イメージセンサにより受光された前記光線に基づいて、前記ロータリーヘッドが前記円周方向に前記複数の吸着ノズルを回転させることによって前記吸着ノズルが前記光線を通過するときの前記吸着ノズルが撮像された撮像画像を生成するセンサと、前記センサから出力された前記撮像画像に撮像された前記吸着ノズルの陰影を取得し、前記陰影に基づいて、前記吸着ノズルが前記部品を吸着しているか否かを判定する制御部と、を備える。前記ロータリーヘッドは、前記ロータリーヘッドが前記透過照明と前記イメージセンサとの間にあり、かつ、底面視において前記光線が前記ロータリーヘッドの回転中心と一致しないときに、前記複数の吸着ノズルを前記円周方向に回転させる。
 本開示によれば、ロータリー方式のヘッドに備えられた複数の吸着ノズルのそれぞれに吸着された部品をより的確に検出できる。
実施の形態1に係る実装機の内部構成例を示すブロック図 実施の形態1に係る実装機の部分構成例を説明する図 実装機の要部拡大図 測定系による部品検出を説明する図 光線と複数の吸着ノズルのそれぞれとの位置関係を説明する図 光線と複数の吸着ノズルのそれぞれとの位置関係を説明する図 吸着ノズルおよび部品の位置と、IV変換値との対応関係の一例について説明する図 実施の形態1における部品の検出判定処理例を説明する図 実施の形態1の変形例に係る実装機の内部構成例を示すブロック図 実施の形態1の変形例における部品の検出判定処理例を説明する図 実施の形態2に係る実装機の内部構成例を示すブロック図 実施の形態2における部品の検出判定処理例を説明する図
 (本開示に至る経緯)
 従来、光センサを用いて吸着ノズルの先端部に吸着された電子部品(以降、「部品」と表記)を検出して、部品の吸着状態の良否判定を行う実装機がある。特許文献1の部品装着装置(以降、「実装機」と表記)は、回路基板(以降、「基板」と表記)上に配置されたロータリーヘッドと、ロータリーヘッドが備える複数の吸着ノズルのうち基板上に部品を実装する吸着ノズルおよび部品装着位置のそれぞれに対応した配置された光センサとを備える。実装機は、部品装着位置に対応する位置で昇降する吸着ノズルを所定高さで検出し、吸着ノズルの下降時および/または上昇時の時間経過に基づいて、部品が正常に吸着されているか否かを判定する。
 しかし、上述した部品装着方法では、部品装着位置に対応してXYテーブルを位置決めするため、基板上に装着済みの部品がXYテーブルによる基板の位置決め動作によりずれる可能性があった。また、部品装着方法は、部品吸着位置と部品装着位置との間が十分離れており、部品吸着位置から部品装着位置まで部品の搬送がある場合には、ロータリーヘッドを回転させて各吸着ノズルを部品供給位置から部品装着位置に順次移動させることができないため、部品装着効率が低下する可能性があった。
 また、光センサを用いて部品の吸着状態の良否判定を行う他の方法として、円周状に配置された複数の吸着ノズルのそれぞれの回転中心に光センサの光源を設け、この光源から照射される光線を、吸着ノズルよりも半径外側に配置された受光素子により受光することで各吸着ノズルに部品が吸着されているか否かを判定する方法がある。しかし、このような場合、光センサはロータの回転軸に設けられて、複数の吸着ノズルのそれぞれの円周方向の回転に伴って共に回転してしまい、各吸着ノズルに部品が吸着されているか否かを判定できないことがあった。
 以下、適宜図面を参照しながら、本開示に係る実装機の構成および作用を具体的に開示した各実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。
 また、以下、各図において、X方向およびY方向は、水平面内で互いに直交する方向である。Z方向は、X方向およびY方向に直交する高さ方向(上下方向)である。
 (実施の形態1)
 まず、図1~図3を参照して、実施の形態1に係る実装機100の内部構成について説明する。図1が、実施の形態1に係る実装機100の内部構成例を説明する図である。図2は、実施の形態1に係る実装機100の部分構成例を説明する図である。図3は、実装機100の要部拡大図である。
 なお、図1では吸着ノズル15を1本のみ図示し、他の吸着ノズルの図示を省略している。また、図1では、X軸レール10A、Y軸レール10B、部品供給部12、基板13および基板レール16のそれぞれの図示を省略している。
 実施の形態1に係る実装機100は、一対の基板レール16のそれぞれを駆動させて基板13を搬入する。実装機100は、1以上の吸着ノズル15のそれぞれを備えるヘッド11を駆動させて、部品供給部12により供給された部品P(図3参照)を吸着ノズル15のそれぞれにより吸着する。実装機100は、吸着ノズル15により部品Pを吸着した後、基板13上にヘッド11を移動させて、基板13上まで部品Pを搬送した後、基板13上の各部品実装位置に部品Pを実装する。実装機100は、基板13上に実装対象であるすべての部品Pを実装(装着)することで実装基板を生産した後、一対の基板レール16のそれぞれを駆動させ、生産された実装基板を搬出する。
 実装機100は、ヘッド11と、部品供給部12と、測定系14と、1以上の吸着ノズル15と、一対の基板レール16と、タイミング生成部17Aと、プロセッサ18と、メモリ19と、出力部20と、を含んで構成される。
 一対のX軸レール10Aのそれぞれは、Y軸レール10Bと結合され、Y軸レール10BをX方向,-X方向に移動自在に支持する。Y軸レール10Bは、ヘッド11と結合され、ヘッド11をY方向,-Y方向に移動自在に支持する。一対のX軸レール10Aのそれぞれと、Y軸レール10Bとは、ヘッド11を移動させる移動機構を構成する。
 ロータリーヘッドの一例としてのヘッド11は、測定系14と一体的に構成され、移動機構により制御されて、X軸方向、Y軸方向およびZ軸方向のそれぞれに駆動(移動)する。ヘッド11は、Y軸レール10Bに結合されて、部品供給部12と基板13上の所定の部品実装位置との間で部品Pを搬送する。
 ヘッド11は、所謂ロータリーヘッドであって、エンコーダ11Aと、ロータ11Bと、回転テーブル11Cと、複数の吸着ノズル15のそれぞれを備える。回転テーブル11Cは、同心円状に配置された複数の吸着ノズル15のそれぞれを備える。ロータ11Bは、回転テーブル11Cを所定の回転方向R(図5参照)に回転させることで、回転テーブル11Cに装着された複数の吸着ノズル15のそれぞれを所定の回転方向Rに回転させる。エンコーダ11Aは、ロータ11Bの回転角度をセンサ(不図示)で検出し、検出された回転角度をタイミング生成部17Aに出力する。
 ヘッド11は、プロセッサ18により吸着ノズル15のそれぞれによる部品Pの吸着、および吸着解除をそれぞれ実行する。ヘッド11は、部品供給部12により供給された部品Pを吸着ノズル15の先端部で吸着し、基板13上の所定の部品実装位置まで搬送した後、部品Pの吸着を解除することで基板13上に実装する。
 なお、ヘッド11は、測定系14と一体的に構成されなくてもよい。このような場合、ヘッド11は、移動機構により部品Pを吸着した後、回転テーブル11Cが光源14A上に位置する位置まで移動した後、光源14A上でロータ11Bにより回転テーブル11Cを回転させる。ヘッド11は、すべての吸着ノズル15のそれぞれに吸着された部品Pが測定系14により検出可能に回転テーブル11Cを回転させる。
 部品供給部12は、プロセッサ18により制御されて、基板13に実装される部品Pを供給する。なお、部品供給部12は、同時に異なる種類の部品Pのそれぞれを複数供給可能であってよい。また、図2に示す部品供給部12の配置は一例であってこれに限定されない。
 センサの一例としての測定系14は、光源14Aと、スリット14Cと、光電変換素子14Dと、電流電圧変換部14Eと、を備え、ヘッド11と一体的に構成される。スリット14Cは、光源14Aと対向する側の面に配置される。光源14Aとスリット14Cとは、複数の吸着ノズル15のそれぞれを備えるヘッド11が通過可能な距離(具体的には、回転テーブル11Cの直径)以上離間して配置される。なお、図1~図3のそれぞれに示す測定系14の配置位置は一例であってこれに限定されない。
 受光素子の一例としての光電変換素子14Dは、例えば、LED(Light Emitting Diode),LD(Laser Diode),レーザ等の光源14Aから照射され、スリット14Cを通過した光(光線14B)を電気信号に変換して、電流電圧変換部14Eに出力する。電流電圧変換部14Eは、光電変換素子14Dから出力された電気信号(電流)を電圧に変換し、変換後の出力値(以降、「IV変換値」と表記)をプロセッサ18に出力する。
 決定部の一例としてのタイミング生成部17Aは、ヘッド11のエンコーダ11Aから出力されたロータ11Bの回転角度に基づいて、プロセッサ18に部品Pの検出判定を実行させるための電気信号を生成する。タイミング生成部17Aは、生成された電気信号をプロセッサ18に出力する。なお、ここでタイミング生成部17Aは、ロータ11Bの回転角度に基づいて、部品Pの検出判定対象である1本の吸着ノズル15を特定し、特定された吸着ノズル15を識別可能な識別情報と、生成された電気信号とを対応付けてプロセッサ18に出力してよい。
 制御部の一例としてのプロセッサ18は、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)またはFPGA(Field Programmable Gate Array)を用いて構成され、プロセッサ18の各部の動作を制御する。プロセッサ18は、メモリ19と協働して、各種の処理および制御を統括的に行う。具体的には、プロセッサ18は、メモリ19に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。なお、タイミング生成部17Aも、プロセッサ18と同様に、例えばCPU、DSP、FPGAなどを用いて構成される。
 実施の形態1におけるプロセッサ18は、電流電圧変換部14Eから出力されたIV変換値と、タイミング生成部17Aから出力された電気信号とに基づいて、電気信号の出力期間に対応する吸着ノズル15に部品Pが吸着されているか否かを判定する。具体的に、プロセッサ18は、タイミング生成部17Aによる電気信号の出力期間中のIV変換値が閾値未満であるか否かを判定する。プロセッサ18は、吸着ノズル15に部品Pが吸着されていないと判定した場合、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 メモリ19は、例えばプロセッサ18の各処理を実行する際に用いられるワークメモリとしてのRAM(Random Access Memory)と、プロセッサ18の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサ18により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ18の動作を規定するプログラムが書き込まれている。メモリ19は、プロセッサ18により実行される部品Pの検出判定処理に用いられる閾値を記憶する。また、メモリ19は、生産対象である実装基板を生産するための生産データを記憶する。
 ここでいう生産データは、実装機100により実装基板を生産するために用いられる情報である。生産データは、例えば基板13のサイズ、部品Pの大きさ,形状、吸着ノズルに関する情報、基板の生産枚数等を含む。なお、生産データは、上述した項目のデータに限定されなくてよい。生産データは、後述する部品Pごとの閾値の情報を含んでもよい。
 出力部20は、例えばLCD(Liquid Crystal Display)または有機EL(Electroluminescence)等のディスプレイを用いて構成される。出力部20は、プロセッサ18から出力された通知を出力する。
 ここで、図4を参照して、測定系14による部品Pの検出の様子を説明する。図4は、測定系による部品検出を説明する図である。
 図4に示すように、ヘッド11は、測定系14の光線14B上でロータ11Bにより回転テーブル11Cを回転させて、複数の吸着ノズル15のそれぞれのうちいずれか1本の吸着ノズル15に測定系14の光線14B上を通過させる。これにより、実装機100は、いずれか1本の吸着ノズル15の先端部に吸着された部品Pのみを、測定系14により検出可能となる。
 次に、図5および図6を参照して、光線14Bと複数の吸着ノズル15のそれぞれとの位置関係を説明する。図5は、光線14Bと複数の吸着ノズル15のそれぞれとの位置関係を説明する図である。図6は、光線14Bと複数の吸着ノズル15のそれぞれとの位置関係を説明する図である。図5および図6に示すヘッド11は、底面側(つまり、-Z方向)から見た図であり、底面視におけるヘッド11を示している。
 なお、図5および図6に示す吸着ノズル15の本数は一例であって、これに限定されない。また、図5および図6に示すヘッド11は、吸着ノズル15と光線14Bとの位置関係を分かり易くするために部品Pの図示を省略している。
 部品Pの検出判定時におけるヘッド11は、移動機構により回転テーブル11Cが光源14Aとスリット14Cとの間であって、光源14Aから照射されスリット14Cを通過して光電変換素子14Dにより受光される光線14Bと、回転テーブル11Cの回転中心Ps0とが一致しない位置まで移動する。具体的に、部品Pの検出判定位置におけるヘッド11は、光源14Aから照射されスリット14Cを通過して光電変換素子14Dにより受光される光線14Bと、吸着ノズル15のそれぞれを結ぶ対角線(図6に示す破線)とが不一致となる位置、かつ、底面視(ヘッド11および測定系14を-Z方向から見た場合)における回転テーブル11Cの回転中心Ps0と、光線14Bとが不一致となる。ヘッド11は、上述した部品Pの検出判定位置まで移動した後、ロータ11Bにより所定の回転方向Rに回転テーブル11Cを360°以上回転させる。これにより、実施の形態1に係る実装機100は、各吸着ノズル15が1本ずつ光線14Bを通過するため、各吸着ノズル15に対して部品Pの検出判定処理を実行できる。
 例えば、図5に示す時間t1における測定系14は、吸着ノズル15Aと、吸着ノズル15Aにより吸着された部品P(不図示)のみが光線14B上に位置する。これにより、測定系14は、複数の吸着ノズル15のそれぞれのうち吸着ノズル15Aと、吸着ノズル15Aにより吸着された部品P(不図示)のみを検出できる。同様に、時間t2における測定系14は、吸着ノズル15Bと、吸着ノズル15Bにより吸着された部品P(不図示)のみが光線14B上に位置する。これにより、測定系14は、複数の吸着ノズル15のそれぞれのうち吸着ノズル15Aと、吸着ノズル15Aにより吸着された部品P(不図示)のみを検出できる。
 以降で説明する部品Pの検出判定処理では、実装機100は、光線14B上においてスリット14C側を通過する吸着ノズル15を部品Pの検出対象とする。例えば、図5に示す例において実装機100は、所定の回転方向Rにより回転される複数の吸着ノズル15のそれぞれに対する部品Pの検出判定を、時計回りに順次実行する。実装機100は、時間t1で吸着ノズル15Aに対する部品Pの検出判定を実行し、次に吸着ノズル15Cに対する部品Pの検出判定を実行する。なお、部品Pの検出対象は、上述の例に限定されなくてよい。例えば、実装機100は、光線14B上において光源14A側を通過する吸着ノズル15を部品Pの検出判定対象としてもよい。
 以上により、実施の形態1に係る実装機100は、ヘッド11がロータリー方式であっても、測定系14によりいずれか1本の吸着ノズル15と、この1本の吸着ノズル15により吸着された部品Pのみを検出できる。よって、実施の形態1に係る実装機100は、部品Pの検出判定をより高精度に実行できる。
 図7を参照して、光線14Bを遮光する吸着ノズル15および部品Pの位置と、電流電圧変換部14Eから出力されるIV変換値との対応関係の一例について説明する。図7は、吸着ノズル15および部品Pの位置と、IV変換値との対応関係の一例について説明する図である。なお、図7に示す吸着ノズル15および部品Pは一例であって、これに限定されないことは言うまでもない。
 IV変換グラフOp1は、電流電圧変換部14Eから出力されたIV変換値の時系列変化を示すグラフである。IV変換値は、吸着ノズル15および部品Pによる光線14Bの遮光量が大きいほど小さくなる。なお、図7に示すIV変換グラフOp1は、一例として、図7に示す吸着ノズル15および部品Pを検出した場合のIV変換グラフである。
 光線14Bは、時間t11から時間t12の間で吸着ノズル15により一部が遮光され、時間t12から時間t13にかけて吸着ノズル15および部品Pによる遮光範囲が拡大する。光線14Bは、時間t13から時間t14の間で吸着ノズル15および部品Pによる遮光範囲が最大となり、時間t14から時間t15にかけて吸着ノズル15および部品Pによる遮光範囲が減少し、時間t15から時間t16の間で吸着ノズル15により一部が遮光されるのみとなり、時間t16以降では吸着ノズル15による遮光がなくなる。つまり、光線14Bが遮光される遮光量は、時間t13から時間t14の間で最大となる。
 時間t11以前では光線14Bが遮光されず、IV変換値は、最大値となる。時間t11から時間t13の間で光線14Bの遮光量の増加に伴ってIV変換値は減少し続ける。IV変換値は、光線14Bの遮光量が最大となる時間t13から時間t14の間で最小pw12となり、時間t14から時間t16の間で増加し続ける。IV変換値は、時間t16以降で再度最大となる。
 また、図7に示す例において、プロセッサ18は、電流電圧変換部14Eから出力されたIV変換値がpw11以下であると判定した場合、吸着ノズル15に吸着された部品Pを検出したと判定する。
 次に、図8を参照して、タイミング生成部17Aにより出力された電気信号の出力タイミングと、電流電圧変換部14Eから出力されたIV変換値とに基づく部品Pの検出判定処理について説明する。図8は、実施の形態1における部品Pの検出判定処理例を説明する図である。なお、図8では、一例として図5に示す吸着ノズル15A~15Dのそれぞれと測定系14との位置関係を参照し、部品Pの検出判定処理例について説明する。
 タイミング出力グラフTm2は、タイミング生成部17Aから出力された電気信号の時系列変化を示すグラフである。IV変換グラフOp2は、電流電圧変換部14Eから出力されたIV変換値の時系列変化を示すグラフである。
 タイミング生成部17Aは、ロータ11Bの回転角度に基づいて、プロセッサ18に部品Pの検出判定処理を実行させる電気信号を生成し、プロセッサ18に出力する。具体的に、タイミング生成部17Aは、測定系14に対するヘッド11の位置と、ロータ11Bの回転角度とに基づいて、これから光線14Bのスリット14C側を通過する1本の吸着ノズル15を検出(特定)する。例えば、タイミング生成部17Aは、図5に示す時間t2において、これから光線14Bのスリット14C側を通過する1本の吸着ノズル15として吸着ノズル15Cを検出(特定)する。
 例えば、図8に示すように、ロータ11Bは、部品Pの検出判定を開始した時間t21から吸着ノズル15Aが光線14B上に位置するタイミング(時間t22)まで回転テーブル11Cの回転速度を加速し続ける。ロータ11Bは、時間t22から回転テーブル11Cの回転速度を減速させ、吸着ノズル15Aが光線14B上を通過し終える時間t23に回転テーブル11Cの回転速度が0(ゼロ)となるように制御する。
 タイミング生成部17Aは、ロータ11Bの回転速度に基づいて、プロセッサ18に部品Pの検出判定処理を実行させるための電気信号を生成し、生成された制御指令をプロセッサ18に出力する。具体的に、タイミング生成部17Aは、ロータ11Bの回転角度の情報と、測定系14に対するヘッド11の位置と、に基づいて、部品Pの検出判定を実行させる電気信号をプロセッサ18に出力する。
 例えば、図8に示す例において、ロータ11Bは、時間t21から時間t23までの時間帯Tm21と、時間t25から時間t27までの時間帯Tm22とで回転する。タイミング生成部17Aは、ロータ11Bの回転角度に基づいて、時間帯Tm21,Tm22のそれぞれで回転速度>0(ゼロ)であると判定するとともに、これらの時間帯Tm21,Tm22でプロセッサ18に電気信号を出力し続ける。
 プロセッサ18は、タイミング生成部17Aから電気信号が出力されている間(時間帯Tm21,Tm22のそれぞれ)、電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上であるか否かを判定する。
 プロセッサ18は、時間帯Tm21,Tm22のそれぞれにおいて、タイミング生成部17Aから電気信号が出力されている間に電流電圧変換部14Eから出力されたIV変換値と、事前に設定された閾値pw2と、に基づいて、吸着ノズル15により部品Pが吸着されているか否かを判定する。なお、ここで部品Pの検出判定に用いられる閾値pw2は、部品Pごとに異なる値が設定されてよい。
 図8に示す例において、プロセッサ18は、時間帯Tm21,Tm22のそれぞれの間に電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上であるか否かを判定する。プロセッサ18は、時間帯Tm21において電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上であると判定した場合、吸着ノズル15Aにより部品Pが吸着されていると判定する。一方、プロセッサ18は、電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上でないと判定した場合、吸着ノズル15Aにより部品Pが吸着されていないと判定し、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 同様に、プロセッサ18は、時間帯Tm22において電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上であると判定した場合、吸着ノズル15Cにより部品Pが吸着されていると判定する。一方、プロセッサ18は、電流電圧変換部14Eから出力されたIV変換値が閾値pw2以上でないと判定した場合、吸着ノズル15Cにより部品Pが吸着されていないと判定し、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 なお、プロセッサ18は、タイミング生成部17Aから部品Pの検出判定対象である吸着ノズル15の識別情報を取得した場合、この吸着ノズル15の識別情報と、通知とを対応付けて出力部20に出力してよい。また、プロセッサ18は、生成された通知、あるいは吸着ノズル15の識別情報と対応付けられた通知をメモリ19に記憶してよい。
 以上により、実施の形態1に係る実装機100は、ヘッド11がロータリー方式であっても、タイミング生成部17Aから電気信号が出力されている間(例えば、時間帯Tm21,Tm22)だけ部品Pの検出判定処理を実行することで、光線14Bのスリット14C側を通過する1本の吸着ノズル15(例えば、図5に示す吸着ノズル15A,15C)に対する部品Pの検出判定を実行できる。
 (実施の形態1の変形例)
 実施の形態1に係る実装機100は、ヘッド11のロータ11Bの回転角度に基づく所定のタイミング(例えば、図8に示す時間帯Tm21,Tm22)で出力されたIV変換値に基づいて、いずれか1本の吸着ノズル15の部品Pの検出判定処理を実行する例を示した。実施の形態1の変形例に係る実装機100Aは、ヘッド11のロータ11Bの回転速度に基づいて、光源14AのON/OFF制御を実行し、電流電圧変換部14Eから出力されたIV変換値に基づいて、いずれか1本の吸着ノズル15の部品Pの検出判定処理を実行する例について説明する。
 図9を参照して、実施の形態1の変形例に係る実装機100Aの内部構成例について説明する。図9は、実施の形態1の変形例に係る実装機100Aの内部構成例を示すブロック図である。なお、実施の形態1の変形例に係る実装機100Aは、実施の形態1に係る実装機100の構成とほぼ同一の構成を有する。よって、実施の形態1と同一の構成要素については同一の符号を用いることで、その説明を省略する。
 実施の形態1の変形例に係るエンコーダ11Aは、センサによりロータ11Bの回転角度を検出し、検出されたロータ11Bの回転角度の情報をタイミング生成部17Bに出力する。なお、エンコーダ11Aは、ロータ11Bの回転角度の情報をプロセッサ18Aに出力してもよい。これにより、プロセッサ18Aは、ヘッド11が備える複数の吸着ノズル15のそれぞれのうち部品Pの検出判定対象である1本の吸着ノズル15を特定できる。
 決定部の一例としてのタイミング生成部17Bは、エンコーダ11Aから出力されたロータ11Bの回転角度の情報に基づいて、ロータ11Bが回転中であるか否か(つまり、ロータ11Bの回転速度>0(ゼロ)であるか否か)を判定する。タイミング生成部17Bは、ロータ11Bが回転中であると判定した場合、光源14AAをON(つまり、光線14Bを照射)させる電気信号を生成して、光源14AAに出力する。
 光源14AAは、タイミング生成部17Bにより制御される。光源14AAは、タイミング生成部17Bから電気信号が出力されている間、ONとなり、光線14Bを照射する。また、光源14AAは、タイミング生成部17Bから電気信号が出力されていない間、OFFとなり、光線14Bを照射しない。
 制御部の一例としてのプロセッサ18Aは、エンコーダ11Aから出力されたロータ11Bの回転角度に基づいて、部品Pの検出判定対象である吸着ノズル15を特定する。また、プロセッサ18Aは、電流電圧変換部14Eから出力されたIV変換値が、検出対象である部品Pに対応する閾値pw3(図10参照)未満、かつ、閾値pw4より大きいか否かを判定する。プロセッサ18Aは、IV変換値が閾値pw3未満、かつ、閾値pw4より大きいと判定した場合、吸着ノズル15により部品Pが吸着されていると判定する。一方、プロセッサ18Aは、IV変換値が閾値pw3以上、または、閾値pw4以下であると判定した場合、吸着ノズル15により部品Pが吸着されていないと判定する。
 次に、図10を参照して、ロータ11Bの回転速度と、タイミング生成部17Bにより出力された電気信号の出力タイミングと、電流電圧変換部14Eから出力されたIV変換値とに基づく部品Pの検出判定処理について説明する。図10は、実施の形態1の変形例における部品Pの検出判定処理例を説明する図である。なお、図10では、一例として図5に示す吸着ノズル15A~15Dのそれぞれと測定系14との位置関係を参照し、部品Pの検出判定処理例について説明する。
 ロータ回転速度グラフVg3は、ロータ11Bの回転角度の情報に基づくロータ11Bの回転速度を示すグラフである。タイミング出力グラフTm3は、タイミング生成部17Bから出力された電気信号の時系列変化を示すグラフである。IV変換グラフOp3は、電流電圧変換部14Eから出力されたIV変換値の時系列変化を示すグラフである。
 ここで、ロータ11Bによる回転テーブル11Cの回転制御について説明する。ロータ11Bは、部品Pの検出対象である吸着ノズル15の先端中心が光線14B上に位置するまでの間、回転テーブル11Cの回転速度を加速し続ける。ロータ11Bは、吸着ノズル15の略先端中心が光線14B上に位置するタイミングで回転テーブル11Cの回転速度を減速させて、部品Pの検出対象である吸着ノズル15(例えば、図5に示す吸着ノズル15A)と、次の部品Pの検出対象である吸着ノズル15(例えば、図5に示す吸着ノズル15C)との略中間位置が光線14B上に位置するタイミングで回転テーブル11Cの回転速度が0(ゼロ)となるように制御する。
 例えば、図10に示すように、ロータ11Bは、部品Pの検出判定を開始した時間t31から吸着ノズル15Aが光線14B上に位置するタイミング(時間t32)まで回転テーブル11Cの回転速度を加速し続ける。ロータ11Bは、時間t32から回転テーブル11Cの回転速度を減速させ、吸着ノズル15Aが光線14B上を通過し終える時間t33に回転テーブル11Cの回転速度が0(ゼロ)となるように制御する。
 タイミング生成部17Bは、ロータ11Bの回転速度に基づいて、光線14Bの照射のON/OFF制御を実行させる電気信号を生成し、光源14AAに出力する。具体的に、タイミング生成部17Bは、ロータ11Bの回転角度の情報と、測定系14に対するヘッド11の位置と、に基づいて、これから光線14Bのスリット14C側を通過する1本の吸着ノズル15を検出(特定)する。
 タイミング生成部17Bは、ロータ11Bの回転角度の情報に基づいて、光源14AAに電気信号を出力し続ける。例えば、図10に示す例において、ロータ11Bは、時間t31から時間t33までの時間帯Tm31と、時間t34から時間t36までの時間帯Tm32とで回転する。タイミング生成部17Bは、ロータ11Bの回転角度に基づいて、時間帯Tm31,Tm32のそれぞれで回転速度>0(ゼロ)であると判定するとともに、これらの時間帯Tm31,Tm32で光源14AAにON制御するための電気信号を出力し続ける。
 光源14AAは、タイミング生成部17Bから電気信号が出力されている間(時間帯Tm31,Tm32)、光線14Bを照射し続ける。
 光電変換素子14Dは、スリット14Cを通過した光線14Bを受光し、受光された光線14Bの強度に対応する電気信号(電流)に変換する。光電変換素子14Dは、変換された電気信号を電流電圧変換部14Eに出力する。
 電流電圧変換部14Eは、光電変換素子14Dから出力された電気信号をIV変換値に変換し、プロセッサ18Aに出力する。
 プロセッサ18Aは、電流電圧変換部14Eから出力されたIV変換値と、事前に設定された閾値pw3,pw4のそれぞれと、に基づいて、吸着ノズル15により部品Pが吸着されているか否かを判定する。閾値pw4は、閾値pw3よりも小さい値であって、光源14AAがOFF状態の時のIV変換値、つまり光電変換素子14Dから出力される光線14Bの強度=0(ゼロ)の時のIV変換値を示す。なお、ここで部品Pの検出判定に用いられる閾値pw3は、部品Pごとに異なる値が設定されてよい。また、プロセッサ18Aは、エンコーダ11Aから出力されたロータ11Bの回転角度の情報に基づいて、部品Pの検出判定対象である1本の吸着ノズル15を特定する。
 図10に示す例において、プロセッサ18Aは、各時間帯Tm31,Tm32に電流電圧変換部14EからIV変換値が出力される。プロセッサ18Aは、電流電圧変換部14Eから出力されたIV変換値が閾値pw3以上であるか否かを判定する。プロセッサ18Aは、時間帯Tm31において電流電圧変換部14Eから出力されたIV変換値が閾値pw3未満、かつ、閾値pw4より大きいと判定した場合、吸着ノズル15Aにより部品Pが吸着されていると判定する。なお、プロセッサ18Aは、時間帯Tm31において電流電圧変換部14Eから出力されたIV変換値が閾値pw3以上、または、閾値pw4以下であると判定した場合には、吸着ノズル15Aにより部品Pが吸着されていないと判定し、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 同様に、プロセッサ18Aは、時間帯Tm32において電流電圧変換部14Eから出力されたIV変換値が閾値pw3未満、かつ、閾値pw4より大きいと判定し、吸着ノズル15Cにより部品Pが吸着されていると判定する。
 なお、プロセッサ18Aは、電流電圧変換部14Eから出力されたIV変換値が閾値pw3以上、または、閾値pw4以下であると判定した場合、吸着ノズル15Cにより部品Pが吸着されていないと判定し、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 また、プロセッサ18Aは、吸着ノズル15Cにより部品Pが吸着されていないと判定した場合、この吸着ノズル15の識別情報と、通知とを対応付けて出力部20に出力してよい。また、プロセッサ18Aは、生成された通知、あるいは吸着ノズル15の識別情報と対応付けられた通知をメモリ19に記憶してよい。
 以上により、実施の形態1の変形例に係る実装機100Aは、ヘッド11がロータリー方式であっても、部品Pの検出判定対象である吸着ノズル15が光線14B上を通過する間のみ光線14Bを照射することができる。これにより、実施の形態1の変形例に係る実装機100Aは、部品Pの検出判定処理において、部品Pの検出判定対象である吸着ノズル15のIV変換値をより効果的に取得できるため、部品Pの検出判定精度をより向上させることができる。
 以上により、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、円周状に配置された複数の吸着ノズル15の先端部で部品Pを吸着し、基板13上に実装するヘッド11(ロータリーヘッドの一例)と、光源14A,14AAと光源14A,14AAから照射された光線14Bを受光する光電変換素子14D(受光素子の一例)とを有し、吸着ノズル15の先端部に光線14Bを照射して、光電変換素子14Dにより受光された光線14BのIV変換値(光強度の一例)を出力する測定系14(測定系14の一例)と、測定系14から出力された光線14BのIV変換値に基づいて、ヘッド11により円周方向に回転され、光線14Bを通過する吸着ノズル15が部品Pを吸着しているか否かを判定するプロセッサ18,18Aと、を備える。ヘッド11は、光源14A,14AAと光電変換素子14Dとの間、かつ、底面視において光線14Bとヘッド11の回転中心Ps0とが一致しない位置で、複数の吸着ノズル15を円周方向(例えば、図5,図6に示す回転方向R)に回転させる。プロセッサ18,18Aは、出力された光線14BのIV変換値に基づいて、光線14Bを通過する吸着ノズル15が部品Pを吸着しているか否かを判定する。
 これにより、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、ヘッド11が部品Pの検出判定位置である円周の中心位置(回転中心Ps0)が光線14Bとヘッド11の回転中心Ps0とが一致しない位置で回転テーブル11Cを360°以上回転させることにより、同時に2本以上の吸着ノズル15が光線14B上を通過することを抑制できる。つまり、実装機100,100Aは、各吸着ノズル15に対して部品Pの検出判定処理を実行できる。また、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、出力された光線14BのIV変換値に基づいて、吸着ノズル15により部品Pが吸着されているか否かを判定できる。
 また、以上により、実施の形態1および実施の形態1の変形例に係る実装機100,100Aにおけるプロセッサ18,18Aは、出力された光線14BのIV変換値が閾値(例えば、閾値pw1,pw2,pw3等)未満であると判定した場合、光線14Bを通過する吸着ノズル15が部品Pを吸着していると判定する。これにより、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、出力された光線14BのIV変換値(光量)が閾値未満である場合、吸着ノズル15と、吸着ノズル15により吸着された部品Pとにより光線14Bが遮光されていると判定できる。
 また、以上により、実施の形態1および実施の形態1の変形例に係る実装機100,100Aにおけるプロセッサ18,18Aは、出力された光線14BのIV変換値が閾値(例えば、閾値pw1,pw2,pw3等)未満でないと判定した場合、光線14Bを通過する吸着ノズル15が部品Pを吸着していないと判定し、吸着ノズル15が部品Pを吸着していない旨の通知を生成して出力する。これにより、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、出力された光線14BのIV変換値が閾値未満でない場合、吸着ノズル15と、吸着ノズル15により吸着された部品Pとにより光線14Bが遮光されていないと判定できる。
 また、以上により、実施の形態1に係る実装機100は、光線14Bを通過する吸着ノズル15が部品Pを吸着しているか否かを判定する第1のタイミングを決定するタイミング生成部17A(決定部の一例)と、をさらに備える。ヘッド11は、複数の吸着ノズル15の円周方向の回転速度を測定して、タイミング生成部17Aに出力する。タイミング生成部17Aは、出力された回転速度に基づいて、光線14Bを通過する吸着ノズル15が部品Pを吸着しているか否かを判定する第1のタイミング(例えば、図8に示す時間帯Tm21,Tm22等)を決定する。プロセッサ18は、タイミング生成部17Aにより決定された第1のタイミングで測定系14から出力された光線14BのIV変換値に基づいて、光線14Bを通過する吸着ノズル15が部品Pを吸着しているか否かを判定する。これにより、実施の形態1に係る実装機100は、タイミング生成部17Aから電気信号が出力されている間(例えば、時間帯Tm21,Tm22)だけ部品Pの検出判定処理を実行することで、部品Pの検出判定対象である(つまり、光線14Bを通過している)吸着ノズル15に対応するIV変換値をより効果的に取得でき、部品Pの検出判定をより高精度に実行できる。
 また、以上により、実施の形態1に係る実装機100におけるタイミング生成部17Aは、回転速度>0(ゼロ)であると判定した時間帯(例えば、時間帯Tm21,Tm22)を第1のタイミングに決定する。これにより、実施の形態1に係る実装機100は、ヘッド11により部品Pの検出判定対象である吸着ノズル15が回転されて、光線14Bを通過している時間帯に出力されたIV変換値に基づいて、部品Pの検出判定処理を実行できる。したがって、実装機100は、部品Pの検出判定対象である(つまり、光線14Bを通過している)吸着ノズル15に対応するIV変換値をより効果的に取得でき、部品Pの検出判定をより高精度に実行できる。
 また、以上により、実施の形態1の変形例に係る実装機100Aは、光源14AAに光線14Bを照射させる第2のタイミング(例えば、図10に示す時間帯Tm31,Tm32等)を決定するタイミング生成部17Bと、をさらに備える。ヘッド11は、複数の吸着ノズル15の円周方向の回転速度を測定して、タイミング生成部17Bに出力する。タイミング生成部17Bは、出力された回転速度に基づいて、光線14Bを照射する第2のタイミングを決定する。測定系14は、タイミング生成部17Bにより決定された第2のタイミングで光線14Bを照射する。これにより、実施の形態1の変形例に係る実装機100Aは、タイミング生成部17Bから電気信号が出力されている間(例えば、時間帯Tm21,Tm22)だけ光線14Bを照射することで、部品Pの検出判定対象である吸着ノズル15が光線14Bを通過している時間帯のIV変換値を取得できる。つまり、実装機100Aは、部品Pの検出判定対象である(つまり、光線14Bを通過している)吸着ノズル15に対応するIV変換値をより効果的に取得でき、部品Pの検出判定をより高精度に実行できる。
 また、以上により、実施の形態1の変形例に係る実装機100Aにおけるタイミング生成部17Bは、回転速度>0(ゼロ)であると判定した時間帯(例えば、図10に示す時間帯Tm31,Tm32等)を第2のタイミングに決定する。これにより、実施の形態1の変形例に係る実装機100Aは、ヘッド11により部品Pの検出判定対象である吸着ノズル15が回転されている間だけ光線14Bを照射することで、部品Pの検出判定対象である(つまり、光線14Bを通過している)吸着ノズル15に対応するIV変換値をより効果的に取得でき、部品Pの検出判定をより高精度に実行できる。
 また、以上により、実施の形態1および実施の形態1の変形例に係る実装機100,100Aにおける測定系14は、光源14A,14AAと光電変換素子14Dとの間にスリット14Cを有し、スリット14Cを通過した光線14BのIV変換値を出力する。これにより、実施の形態1および実施の形態1の変形例に係る実装機100,100Aは、部品Pの検出判定対象である(つまり、光線14Bを通過している)吸着ノズル15に対応するIV変換値をより効果的に取得できる。
 (実施の形態2)
 実施の形態1の変形例に係る実装機100Aは、タイミング生成部17Bにより光源14AAのON/OFF制御が実行され、この光源14AAから照射された光線14Bの光の強度に基づいて、部品Pの検出判定処理を実行する例を示した。実施の形態2に係る実装機100Bは、タイミング生成部17Bにより透過照明14GのON/OFF制御が実行され、この透過照明14Gを用いて光線14Hを通過する吸着ノズル15を撮像し、撮像された撮像画像を用いて部品Pの検出判定処理を実行する例について説明する。本実施の形態の透過照明14Gは、実施の形態1の光源14Aと同様の光源を含んでいてもよい。
 図11を参照して、実施の形態2に係る実装機100Bの内部構成例について説明する。図11は、実施の形態2に係る実装機100Bの内部構成例を示すブロック図である。なお、実施の形態2に係る実装機100Bは、実施の形態1の変形例に係る実装機100Aの構成とほぼ同一の構成を有する。よって、実施の形態1の変形例と同一の構成要素については同一の符号を用いることで、その説明を省略する。
 実施の形態2に係る実装機100Bは、測定系14の代わりに撮像系140(センサの一例)を含んで構成される。撮像系140は、透過照明14Gと、イメージセンサ14Iと、を含んで構成される。撮像系140は、透過照明14Gにより照射される光線14Hを通過する吸着ノズル15を撮像し、撮像された撮像画像をプロセッサ18Bに出力する。プロセッサ18Bは、イメージセンサ14Iから出力された撮像画像に基づいて、部品Pの検出判定処理を実行する。
 決定部の一例としてのタイミング生成部17Bは、エンコーダ11Aから出力されたロータ11Bの回転角度の情報に基づいて、ロータ11Bが回転中であるか否か(つまり、ロータ11Bの回転速度>0(ゼロ)であるか否か)を判定する。タイミング生成部17Bは、ロータ11Bが回転中であると判定した場合、透過照明14GをON(つまり、光線14Hを照射)させる電気信号を生成して、透過照明14Gに出力する。
 透過照明14Gは、タイミング生成部17Bにより制御される。透過照明14Gは、タイミング生成部17Bから電気信号が出力されている間、ONとなり、対向するイメージセンサ14Iに向かって光線14Hを照射する。また、透過照明14Gは、タイミング生成部17Bから電気信号が出力されていない間、OFFとなり、光線14Bを照射しない。
 イメージセンサ14Iは、例えばCMOS(Complementary Metal Oxide Semiconductor)の固体撮像素子であり、撮像面に結像した光学像を電気信号に変換する。イメージセンサ14Iは、撮像された撮像画像Img1(図12参照)をプロセッサ18Bに出力する。
 制御部の一例としてのプロセッサ18Bは、イメージセンサ14Iから出力された撮像画像(図11参照)に画像認識処理を実行し、部品Pの検出判定対象である吸着ノズル15の先端部から部品Pを検出する。プロセッサ18Bは、画像処理の結果、吸着ノズル15の先端部から部品Pが検出された場合、吸着ノズル15により部品Pが吸着されていると判定する。プロセッサ18Bは、画像処理の結果、吸着ノズル15の先端部から部品Pが検出されなかった場合、吸着ノズル15により部品Pが吸着されていないと判定する。
 次に、図12を参照して、撮像系140により撮像される撮像画像Img1を用いた部品Pの検出判定処理について説明する。図12は、実施の形態2における部品Pの検出判定処理例を説明する図である。なお、図12では、一例として図5に示す吸着ノズル15A~15Dのそれぞれと測定系14(撮像系140の一例)との位置関係を参照し、部品Pの検出判定処理例について説明する。
 例えば、撮像画像Img1は、部品Pの検出判定対象である吸着ノズル15(例えば、図5に示す吸着ノズル15A)の陰影Sh1と、この吸着ノズル15と回転中心Ps0を介して反対側に位置する吸着ノズル15(例えば、図5に示す吸着ノズル15B)の陰影Sh2とが映る撮像画像である。
 プロセッサ18Bは、イメージセンサ14Iから出力された撮像画像Img1に画像認識処理を実行し、撮像画像Img1に映る2本の吸着ノズル15のそれぞれの陰影の濃淡に基づいて、陰影Sh1,Sh2のそれぞれを検出する。プロセッサ18Bは、検出された2つの陰影Sh1,Sh2のそれぞれのうち陰影の濃淡に基づいて、部品Pの検出判定対象である吸着ノズル15に対応する陰影Sh1を選定し、陰影Sh1から吸着ノズル15の陰影Sh11と、部品Pの陰影Sh12とをそれぞれ画像認識処理により検出する。
 図12に示す例において、プロセッサ18Bは、画像認識処理により陰影Sh1から部品Pの陰影Sh12を検出し、吸着ノズル15Aにより部品Pが吸着されていると判定する。
 なお、プロセッサ18Bは、画像認識処理により陰影Sh1から部品Pの陰影Sh12を検出できないと判定した場合、吸着ノズル15Aにより部品Pが吸着されていないと判定し、部品Pが吸着されていない旨の通知を生成して、出力部20に出力する。
 また、プロセッサ18Bは、吸着ノズル15Aにより部品Pが吸着されていないと判定した場合、この吸着ノズル15の識別情報と、通知とを対応付けて出力部20に出力してよい。また、プロセッサ18Bは、生成された通知、あるいは吸着ノズル15の識別情報と対応付けられた通知をメモリ19に記憶してよい。
 以上により、実施の形態2に係る実装機100Bは、ヘッド11がロータリー方式であっても、部品Pの検出判定対象である吸着ノズル15が光線14H上を通過する間のみ透過照明14Gにより光線14Hを照射することで、部品Pの検出判定対象である吸着ノズル15の陰影Sh1を撮像することができる。また、実装機100Bは、撮像画像Img1に2本の吸着ノズル15のそれぞれが映る場合でも、透過照明14Gを用いることで、2本の吸着ノズル15のそれぞれの陰影Sh1,Sh2の濃淡が異なるため、画像認識処理を実行することで部品Pの検出判定対象である吸着ノズル15の陰影Sh1と、この吸着ノズル15に吸着された部品Pの陰影Sh12とをより的確に検出できる。
 以上により、実施の形態2に係る実装機100Bは、円周状に配置された複数の吸着ノズル15の先端部で部品Pを吸着し、基板13上に実装するヘッド11(ロータリーヘッドの一例)と、透過照明14Gと透過照明14Gから照射された光線14Bを受光するイメージセンサ14Iとを有し、吸着ノズル15の先端部に光線14Hを照射して、イメージセンサ14Iにより受光された光線14Hに基づいて、ヘッド11により円周方向に回転され、光線14Hを通過する吸着ノズル15が撮像された撮像画像Img1を生成する撮像系140(センサの一例)と、撮像系140から出力された撮像画像Img1に映る吸着ノズル15の陰影Sh1を取得し、陰影Sh1に基づいて、吸着ノズル15が部品Pを吸着しているか否かを判定するプロセッサ18B(制御部の一例)と、を備える。ヘッド11は、透過照明14Gとイメージセンサ14Iとの間、かつ、底面視において光線14Hとヘッド11の回転中心Ps0とが一致しない位置で、複数の吸着ノズル15を円周方向(例えば、図5および図6に示す回転方向R)に回転させる。
 これにより、実施の形態2に係る実装機100Bは、ヘッド11が部品Pの検出判定位置である円周の中心位置(回転中心Ps0)が光線14Hとヘッド11の回転中心Ps0とが一致しない位置で回転テーブル11Cを360°以上回転させることにより、同時に2本以上の吸着ノズル15が光線14H上を通過することを抑制して、部品Pの検出判定対象である吸着ノズル15のみを撮像できる。つまり、実装機100Bは、各吸着ノズル15に対して部品Pの検出判定処理を実行できる。よって、実装機100Bは、撮像された撮像画像Img1(図12参照)に映る陰影Sh1に基づいて、吸着ノズル15により部品Pが吸着されているか否かを判定できる。
 以上、添付図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。
 本開示は、ロータリー方式のヘッドに備えられた複数の吸着ノズルのそれぞれに吸着された部品をより的確に検出できる実装機の提示として有用である。
11 ヘッド
13 基板
14 測定系
14A,14AA 光源
14B,14H 光線
14C スリット
14D 光電変換素子
14E 電流電圧変換部
14G 透過照明
14I イメージセンサ
15 吸着ノズル
17A,17B タイミング生成部
18,18A,18B プロセッサ
20 出力部
100,100A,100B 実装機
140 撮像系
P 部品
Ps0 回転中心
Img1 撮像画像
Sh1,Sh11,Sh12,Sh2 陰影

Claims (9)

  1.  円周状に配置された複数の吸着ノズルを有し、前記複数の吸着ノズルのうちの吸着ノズルの先端部で部品を吸着し、基板上に実装するロータリーヘッドと、
     前記吸着ノズルの先端部に光線を照射する光源と、前記光源から照射された光線を受光する受光素子とを有し、前記受光素子により受光された前記光線の光強度を出力するセンサと、
     前記センサから出力された前記光線の前記光強度に基づいて、前記ロータリーヘッドが前記円周方向に前記複数の吸着ノズルを回転させることによって前記吸着ノズルが前記光線を通過するときに前記吸着ノズルが部品を吸着しているか否かを判定する制御部と、を備え、
     前記ロータリーヘッドは、前記ロータリーヘッドが前記光源と前記受光素子との間にあり、かつ、底面視において前記光線が前記ロータリーヘッドの回転中心と一致しないときに、前記複数の吸着ノズルを前記円周方向に回転させる、
     実装機。
  2.  前記制御部は、出力された前記光線の前記光強度が閾値未満であると判定した場合、前記吸着ノズルが前記部品を吸着していると判定する、
     請求項1に記載の実装機。
  3.  前記制御部は、出力された前記光線の前記光強度が閾値未満でないと判定した場合、前記吸着ノズルが前記部品を吸着していないと判定し、前記吸着ノズルが前記部品を吸着していない旨の通知を生成して出力する、
     請求項1に記載の実装機。
  4.  前記ロータリーヘッドは、前記複数の吸着ノズルが前記円周方向に回転する回転速度を測定して、前記回転速度を出力し、
     前記実装機は、出力された前記回転速度に基づいて、第1のタイミングを決定する決定部をさらに備え、
     前記センサは、前記決定部により決定された第1のタイミングで前記光線の光強度を出力し、
     前記制御部は、前記第1のタイミングで前記センサから出力された前記光線の前記光強度に基づいて、前記吸着ノズルが前記部品を吸着しているか否かを判定する、
     請求項1に記載の実装機。
  5.  前記決定部は、前記回転速度がゼロより大きい時間帯を前記第1のタイミングとして決定する、
     請求項4に記載の実装機。
  6.  前記ロータリーヘッドは、前記複数の吸着ノズルが前記円周方向に回転する回転速度を測定して、前記回転速度を出力し、
     前記実装機は、出力された前記回転速度に基づいて、第2のタイミングを決定する決定部をさらに備え、
     前記センサは、前記決定部により決定された前記第2のタイミングで前記光線を照射する、
     請求項1に記載の実装機。
  7.  前記決定部は、前記回転速度がゼロより大きい時間帯を前記第2のタイミングとして決定する、
     請求項6に記載の実装機。
  8.  前記センサは、前記光源と前記受光素子との間に配置されたスリットを有し、前記スリットを通過した前記光線の前記光強度を出力する、
     請求項1に記載の実装機。
  9.  円周状に配置された複数の吸着ノズルを有し、前記複数の吸着ノズルのうちの吸着ノズルの先端部で部品を吸着し、基板上に実装するロータリーヘッドと、
     前記吸着ノズルの先端部に光線を照射する透過照明と、前記透過照明から照射された光線を受光するイメージセンサとを有し、前記イメージセンサにより受光された前記光線に基づいて、前記ロータリーヘッドが前記円周方向に前記複数の吸着ノズルを回転させることによって前記吸着ノズルが前記光線を通過するときの前記吸着ノズルが撮像された撮像画像を生成するセンサと、
     前記センサから出力された前記撮像画像に撮像された前記吸着ノズルの陰影を取得し、前記陰影に基づいて、前記吸着ノズルが前記部品を吸着しているか否かを判定する制御部と、を備え、
     前記ロータリーヘッドは、前記ロータリーヘッドが前記透過照明と前記イメージセンサとの間にあり、かつ、底面視において前記光線が前記ロータリーヘッドの回転中心と一致しないときに、前記複数の吸着ノズルを前記円周方向に回転させる、
     実装機。
PCT/JP2022/024724 2021-09-30 2022-06-21 実装機 WO2023053617A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023550367A JPWO2023053617A1 (ja) 2021-09-30 2022-06-21
CN202280064010.4A CN117981487A (zh) 2021-09-30 2022-06-21 安装机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161403 2021-09-30
JP2021161403 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/621,612 Continuation US20240244816A1 (en) 2021-09-30 2024-03-29 Mounting machine

Publications (1)

Publication Number Publication Date
WO2023053617A1 true WO2023053617A1 (ja) 2023-04-06

Family

ID=85780590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024724 WO2023053617A1 (ja) 2021-09-30 2022-06-21 実装機

Country Status (3)

Country Link
JP (1) JPWO2023053617A1 (ja)
CN (1) CN117981487A (ja)
WO (1) WO2023053617A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637497A (ja) * 1992-07-13 1994-02-10 Sanyo Electric Co Ltd 電子部品の組立装置
JP2002208800A (ja) 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd 部品装着方法及びその装置
JP2002217595A (ja) * 2001-01-22 2002-08-02 Matsushita Electric Ind Co Ltd 非保持部材検出装置、部品実装装置、及び非保持部材検出方法
JP2015023176A (ja) * 2013-07-19 2015-02-02 パナソニック株式会社 部品実装装置および部品実装方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637497A (ja) * 1992-07-13 1994-02-10 Sanyo Electric Co Ltd 電子部品の組立装置
JP2002208800A (ja) 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd 部品装着方法及びその装置
JP2002217595A (ja) * 2001-01-22 2002-08-02 Matsushita Electric Ind Co Ltd 非保持部材検出装置、部品実装装置、及び非保持部材検出方法
JP2015023176A (ja) * 2013-07-19 2015-02-02 パナソニック株式会社 部品実装装置および部品実装方法

Also Published As

Publication number Publication date
CN117981487A (zh) 2024-05-03
JPWO2023053617A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
JP2937785B2 (ja) 実装機の部品状態検出装置
JP2002280799A (ja) リード位置検出方法,電気部品装着方法およびリード位置検出装置
JP2000124700A (ja) 部品搭載装置用の照明装置とその照明装置を備える部品搭載装置
JP4804295B2 (ja) 部品認識方法、部品認識装置、表面実装機及び部品検査装置
WO2023053617A1 (ja) 実装機
JP6714729B2 (ja) 表面実装機、部品認識装置、部品認識方法
JP2011155050A (ja) 電子部品装着装置
KR20210095991A (ko) 가공 장치에 있어서의 조명기의 밝기의 조정 방법
JP5296749B2 (ja) 部品認識装置および表面実装機
WO2004021760A1 (ja) 電子回路部品装着機およびそれの装着位置精度検査方法
JPWO2019064609A1 (ja) 部品装着機
JP4011228B2 (ja) 電子部品装着方法
WO2018134862A1 (ja) 撮像装置及びこれを用いた表面実装機
US20240244816A1 (en) Mounting machine
JP2019168238A (ja) 画像認識装置
JP2005340648A (ja) 部品認識方法、部品認識装置、表面実装機および部品検査装置
JP2008294072A (ja) 部品認識装置、表面実装機、及び部品試験装置
JP2000277999A5 (ja)
JP5977579B2 (ja) 基板作業装置
JP4011589B2 (ja) 電子部品装着方法
JP7266945B2 (ja) ワーク吸着装置
JP2007263868A (ja) 自動外観検査装置及び自動外観検査方法
JP2020136361A (ja) 実装装置および半導体装置の製造方法
JP2000208998A (ja) 部品認識装置及び部品認識方法、並びに部品装着装置
JP4386419B2 (ja) 部品認識装置及び同装置を搭載した表面実装機並びに部品試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550367

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280064010.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875496

Country of ref document: EP

Effective date: 20240430