WO2023050212A1 - 一种cg资源的harq反馈的方法及其装置 - Google Patents

一种cg资源的harq反馈的方法及其装置 Download PDF

Info

Publication number
WO2023050212A1
WO2023050212A1 PCT/CN2021/121922 CN2021121922W WO2023050212A1 WO 2023050212 A1 WO2023050212 A1 WO 2023050212A1 CN 2021121922 W CN2021121922 W CN 2021121922W WO 2023050212 A1 WO2023050212 A1 WO 2023050212A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
harq process
harq
feedback
time unit
Prior art date
Application number
PCT/CN2021/121922
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002921.XA priority Critical patent/CN114051763A/zh
Priority to PCT/CN2021/121922 priority patent/WO2023050212A1/zh
Publication of WO2023050212A1 publication Critical patent/WO2023050212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method and device for HARQ feedback of CG resources.
  • Non-terrestrial Network NTN
  • SPS Semi-Persistent Scheduling
  • PDSCH Physical Downlink Shared Channel
  • HARQ Hybrid Automatic Repeat request
  • the embodiment of the present application provides a method and device for HARQ feedback of CG resources, which can be applied in the field of communication technology, so as to coordinate the contradiction between the SPS PDSCH period and the HARQ process ID, and improve the quality of data transmission.
  • the embodiment of the present application provides a method for HARQ feedback of CG resources, which is performed by a terminal device, and the method includes:
  • the HARQ feedback period it is determined whether to perform HARQ feedback on the information transmitted on the CG resource.
  • the method further includes: in response to configuring a HARQ process identifier for the CG resource of the terminal device, determining the HARQ process identifier corresponding to the CG resource in different time units according to the HARQ feedback period and other RRC parameters; Based on the feedback enabling information of the HARQ process identifier, it is determined whether to perform HARQ feedback on the information transmitted in the time unit corresponding to the CG resource.
  • the method further includes: in response to the feedback enabling information indicating that the HARQ process identifier is in the feedback enabled state, then, on the HARQ process identified by the HARQ process identifier, on the time unit corresponding to the CG resource HARQ feedback is performed on the transmitted information; in response to the feedback enabling information indicating that the HARQ process identifier is in a feedback disabled state, no HARQ feedback is performed on the information transmitted in the time unit corresponding to the CG resource.
  • the method further includes: receiving radio resource control RRC configuration information sent by the network device, where the configuration information includes the HARQ process identifier configured for the terminal device and/or the feedback enabling information of the HARQ process identifier .
  • the method further includes: determining the HARQ process identifiers corresponding to the CG resources in different time units according to the HARQ feedback period from the HARQ process identifiers configured for the CG resources of the terminal device.
  • the method further includes: determining the time unit where the currently received CG resource is located; determining the value of the selection factor based on the time unit and the HARQ feedback cycle; based on the value of the selection factor, from the terminal In the HARQ process ID of the CG resource configuration of the device, determine the HARQ process ID corresponding to the CG resource in different time units.
  • the method further includes: in response to the value of the selection factor being a set value, determining that the time unit is an integer multiple of the HARQ feedback period, and selecting the HARQ process identifier configured for the CG resource of the terminal device , determining the HARQ process identifier corresponding to the time unit as the first HARQ process identifier in the feedback enabled state.
  • the method further includes: in response to the value of the selection factor being a non-set value, determining a time unit that is not an integer multiple of the HARQ feedback period, and selecting the HARQ process identifier configured for the CG resource of the terminal device , determining that the HARQ process identifier corresponding to the time unit is the second HARQ process identifier in the feedback disabled state.
  • the method further includes: in response to the fact that the CG resource is a downlink CG resource, and the time unit is the time slot where the currently received CG resource is located, determining the first parameter based on the time unit; The number and the HARQ feedback period are used to determine the second parameter; and the remainder between the first parameter and the second parameter is obtained as the value of the selection factor.
  • the method further includes: in response to the fact that the CG resource is an uplink CG resource, and the time unit is the symbol where the currently received CG resource is located, obtaining the remainder between the time unit and the feedback cycle as the selection factor value.
  • the method further includes: in response to no HARQ process identifier being configured for the CG resource of the terminal device, reporting a HARQ feedback to the network device at a set time interval.
  • the HARQ feedback period is a time interval between two adjacent CG resources used by the same HARQ process in the feedback enabled state and corresponding to the HARQ process identifier.
  • the method further includes: in response to the fact that the CG resource is not configured with a HARQ feedback period, based on the period of the CG resource and other RRC parameters, determining the HARQ process identifier corresponding to the CG resource.
  • the hybrid automatic repeat request HARQ feedback period corresponding to the configured authorized CG resource is determined, and according to the HARQ feedback period, it is determined whether to perform HARQ feedback on the information transmitted on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • the embodiment of the present application provides another HARQ feedback method for CG resources, which is performed by a network device, and the method includes:
  • the HARQ feedback period it is determined whether to receive the HARQ feedback of the terminal equipment on the information transmitted on the CG resource.
  • the method further includes: according to the HARQ feedback cycle, determining the HARQ process identifiers corresponding to the CG resources on different time slots; based on the feedback enabling information of the HARQ process identifiers, determining whether to A resource corresponds to HARQ feedback of information transmitted over time units.
  • the method further includes: in response to the feedback enablement information indicating that the HARQ process identifier is in the feedback enabled state, then based on the HARQ process identified by the HARQ process identifier, the receiving terminal device is at the time corresponding to the CG resource HARQ feedback of the information transmitted on the unit; in response to the feedback enabling information indicating that the HARQ process identifier is in the feedback disabled state, the HARQ feedback of the information transmitted on the time unit corresponding to the CG resource cannot be received.
  • the method further includes: sending radio resource control RRC configuration information to the terminal device, where the configuration information configures the terminal device with the HARQ process ID and/or the feedback enabling information of the HARQ process ID.
  • the method further includes: determining the HARQ process identifiers corresponding to the CG resources in different time units according to the HARQ feedback period from the HARQ process identifiers configured for the CG resources of the terminal device.
  • the method further includes: determining the time unit of the currently transmitted CG resource; determining the value of the selection factor based on the time unit and the HARQ feedback cycle; In the HARQ process identification of the CG resource configuration, determine the HARQ process identification corresponding to the CG resource in different time units.
  • the method for using CG resources further includes: in response to the value of the selection factor being a set value, determining that the time unit is an integer multiple of the HARQ feedback cycle, and starting from the HARQ process configured for the CG resource of the terminal device In the identification, it is determined that the HARQ process identification corresponding to the time unit is the first HARQ process identification in the feedback enabled state.
  • the method for using CG resources further includes: in response to the value of the selection factor being a non-set value, determining a time unit that is not an integer multiple of the HARQ feedback period, and starting from the HARQ configured for the CG resource of the terminal device.
  • the process identifier the HARQ process identifier corresponding to the time unit is determined to be the second HARQ process identifier in the feedback disabled state.
  • the method further includes: in response to the fact that the CG resource is a downlink CG resource, and the time unit is the time slot where the currently sent CG resource is located, determining the first parameter based on the time unit; based on the number of consecutive time slots per frame and the HARQ feedback period, to determine the second parameter; to acquire the remainder between the first parameter and the second parameter as the value of the selection factor.
  • the method further includes: in response to the fact that the CG resource is an uplink CG resource, and the time unit is the symbol where the currently sent CG resource is located, obtaining the remainder between the time unit and the feedback cycle as the selection factor value.
  • the method further includes: in response to no HARQ process identifier being configured for the CG resource of the terminal device, receiving the HARQ feedback reported by the terminal device once at a set interval.
  • the HARQ feedback period is a time interval between two adjacent CG resources used by the same HARQ process in the feedback enabled state and corresponding to the HARQ process identifier.
  • the method further includes: in response to the fact that the CG resource is not configured with a HARQ feedback period, based on the period of the CG resource and other RRC parameters, determining the HARQ process identifier corresponding to the CG resource.
  • the HARQ feedback period corresponding to the CG resource is configured, and according to the HARQ feedback period, it is determined whether to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • the embodiment of this application provides a communication device, which has some or all functions of the terminal equipment in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in this application
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides another communication device, which can implement some or all of the functions of the network equipment in the method example described in the second aspect above, for example, the functions of the communication device can have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a HARQ feedback method for a CG resource provided in an embodiment of the present application
  • FIG. 3 is a schematic flow chart of a HARQ feedback method for CG resources provided in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a HARQ feedback method for a CG resource provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a HARQ feedback method for CG resources provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a HARQ feedback method for CG resources provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • HARQ is a technology that combines forward error correction coding (forward error correction, FEC) and automatic repeat request (Automatic Repeat-request, ARQ).
  • FEC forward error correction
  • ARQ Automatic Repeat-request
  • DCI Downlink Control Information
  • DCI is the control information related to the physical downlink shared channel (PUSCH, PDSCH) transmitted on the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • DCI information include information such as resource block (resource block, RB) allocation , Modulation method and so on. Only when the terminal correctly decodes the DCI information, can it correctly process PDSCH data or PUSCH data.
  • CG resources do not require DCI dynamic scheduling, and are resources pre-configured by Radio Resource Control (RRC), sometimes called semi-persistent scheduling.
  • RRC Radio Resource Control
  • DG dynamic scheduling
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • side link in this embodiment of the present application may also be referred to as a side link or a through link.
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step S201 determine the HARQ feedback period corresponding to the CG resource.
  • the CG resource does not require DCI dynamic scheduling, and is a resource pre-configured by RRC, sometimes also called semi-static scheduling.
  • the CG resources may be uplink CG resources or downlink CG resources.
  • the downlink CG resources are generally called SPS PDSCH.
  • SPS PDSCH For the downlink SPS PDSCH, after the RRC configuration is completed, it is necessary to receive the activation signal set for the SPS PDSCH sent by the network device, that is, sps activation.
  • the activation signal is a scrambled special DCI, and the terminal The device can receive the SPS PDSCH at a specific time unit as indicated by the activation signal.
  • HARQ is usually used for error control to ensure transmission quality.
  • the HARQ feedback period corresponding to the CG resource may be confirmed according to the agreement, and in some implementations, the HARQ feedback period corresponding to the CG resource may be confirmed according to the configuration information sent by the network device.
  • the HARQ feedback period may be the time interval between two adjacent HARQ processes being used by CG resources corresponding to the same HARQ process ID in the feedback enabled state. It should be noted that, in order to determine the HARQ process ID, the HARQ feedback cycle parameter is newly introduced in this application, and the HARQ process ID is determined based on the HARQ feedback cycle parameter.
  • Step S202 determine whether to perform HARQ feedback on the information transmitted on the CG resource.
  • the HARQ process ID corresponding to the CG resource may be determined based on the HARQ feedback period. Further, based on the HARQ process ID corresponding to the CG resource, it is determined whether to perform HARQ feedback on the information transmitted on the CG resource.
  • the HARQ process ID corresponding to the CG resource is in the feedback enabled state, it is determined that HARQ feedback is required for the information transmitted on the CG resource.
  • the HARQ process ID corresponding to the CG resource is in the feedback prohibited state, it is determined that HARQ feedback does not need to be performed on the information transmitted on the CG resource.
  • the hybrid automatic repeat request HARQ feedback period corresponding to the configured authorized CG resource is determined, and according to the HARQ feedback period, it is determined whether to perform HARQ feedback on the information transmitted on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • FIG. 3 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step S301 determine the HARQ feedback period corresponding to the CG resource.
  • step S301 reference may be made to any implementation manner in the embodiments of the present application, which will not be repeated this time.
  • Step S302 in response to the HARQ process identifier being configured for the CG resource of the terminal device, according to the HARQ feedback cycle, determine the HARQ process identifier corresponding to the CG resource in different time units.
  • the network device or the protocol stipulates that the CG resource of the terminal device is configured with a HARQ process ID (HARQ process ID).
  • the HARQ process ID corresponding to the CG resource is configured through RRC signaling.
  • the network device is configured with a HARQ process ID for the CG resource of the terminal device, and the terminal device may receive RRC configuration information sent by the network device, and determine the HARQ process ID corresponding to the CG resource based on the configuration information.
  • the configuration information includes the feedback enabling information of the HARQ process ID configured for the terminal device and/or the HARQ process identifier.
  • the configuration information includes the HARQ process identifier configured for the terminal device, and the feedback enabling information of the HARQ process identifier can be confirmed according to the HARQ process identifier.
  • the network device can determine the indicated The maximum number of HARQ process IDs. If the capability of the terminal device is 32, the maximum number of HARQ process IDs that can be indicated in the DCI is 32. That is to say, the network device configures 32 HARQ process IDs through RRC, wherein the feedback enabling information of HARQ process ID#0 ⁇ 15 indicates that the HARQ process ID is in the feedback disabled state, and the feedback enabling information of HARQ process ID#16 ⁇ 31 indicates The HARQ process identifier is in the feedback enabled state.
  • the configuration information includes the HARQ process ID configured for the terminal device and the feedback enabling information of the HARQ process ID. In some implementations, the configuration information includes the feedback enabling information of the HARQ process ID configured for the terminal device.
  • the HARQ process ID corresponding to the CG resource can be determined based on the HARQ feedback period and based on a preset strategy.
  • the network device may not directly configure the HARQ process identifier of the CG resource to the terminal device, but configure the number of HARQ processes that the CG resource can use, which is determined by the terminal device according to the time unit where the CG resource is located and other RRC parameters HARQ process identifiers corresponding to CG resources in different time units. Since the HARQ process ID of the CG resource can be calculated by RRC parameters, for the sake of simplicity, the following descriptions are represented by the HARQ process ID of the CG resource configuration. However, it is understandable that configuring the HARQ process ID for the CG resource does not exclude Configure the total number of HARQ processes to calculate the HARQ process ID of the CG resource.
  • Step S303 based on the feedback enabling information of the HARQ process identifier, determine whether to perform HARQ feedback on the information transmitted in the time unit corresponding to the CG resource.
  • the terminal device can receive the information transmitted by the network device on the CG resource.
  • the terminal device determines whether to perform HARQ feedback on the information transmitted in the time unit corresponding to the CG resource based on the HARQ process ID corresponding to the CG resource.
  • the terminal device can be on the HARQ process identified by the HARQ process ID, on the time unit corresponding to the CG resource.
  • the transmitted information performs HARQ feedback, that is, the network device can receive HARQ feedback from the terminal device for the information received from the CG resource. For example, if the determined HARQ process IDs corresponding to the CG resource are #16 and #17, then the information transmitted in the corresponding time unit of the CG resource needs to be fed back by HARQ.
  • the terminal device may not be on the HARQ process identified by the HARQ process ID, but on the time unit corresponding to the CG resource
  • the transmitted information performs HARQ feedback, that is, the network device cannot receive the HARQ feedback of the terminal device for the information received from the CG resource. For example, if the determined HARQ process IDs corresponding to the CG resource are #0 and #1, then the information transmitted in the time unit corresponding to the CG resource does not need to be HARQ fed back.
  • the HARQ process IDs corresponding to the determined CG resources are #15 and #16, then part of the information transmitted on the corresponding time unit of the CG resource needs to be HARQ feedback, and part of the information does not need to be HARQ feedback. That is to say, the determined CG
  • the HARQ process ID corresponding to the resource is #15, and the information part transmitted on the time unit corresponding to the CG resource does not need HARQ feedback.
  • the determined HARQ process ID corresponding to the CG resource is #16, and the information part transmitted on the time unit corresponding to the CG resource HARQ feedback is required.
  • the HARQ process identifiers corresponding to the CG resources in different time units are determined from the configured HARQ process identifiers. Based on the feedback enabling information of the HARQ process identifier, it is determined whether to perform HARQ feedback on the information transmitted in the time unit corresponding to the CG resource.
  • the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID is unbound with the SPS PDSCH cycle, and the contradiction between the SPS PDSCH cycle and the HARQ process ID can be coordinated, and the speed of data transmission can be improved. and quality, improve the flexibility of data transmission, and avoid data transmission errors.
  • FIG. 4 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step S401 determine the HARQ feedback period corresponding to the CG resource.
  • step S401 reference may be made to any implementation manner in the various embodiments of the present application, which will not be repeated this time.
  • Step S402 determine the time unit where the currently received CG resource is located.
  • the CG resource is a downlink CG resource, that is, the SPS PDSCH, and the time unit is the time slot where the currently received CG resource is located.
  • the CG resources are uplink CG resources, namely Type-1 CG and Type-2 CG, and the time unit is the symbol where the currently received CG resource is located.
  • Step S403 based on the time unit and the HARQ feedback cycle, determine the value of the selection factor.
  • the CG resource is a downlink CG resource
  • determine the first parameter based on the time unit determine the second parameter based on the number of continuous time slots per frame and the HARQ feedback cycle, and obtain the remainder between the first parameter and the second parameter as a selection
  • the value of the factor For example, the product of the time slot number of the CG resource currently received by the terminal device and the preset threshold is used as the first parameter, and the product of the number of continuous time slots per frame and the HARQ feedback period is used as the second parameter, and the selection factor is:
  • X is the selection factor
  • modulo(...) is the operation of taking the remainder
  • CURRENT slot is the number of the time slot where the CG resource received by the terminal device is located
  • N is the preset threshold
  • periodicity ID is the HARQ feedback cycle .
  • N may be 10.
  • CURRENT slot (SFN ⁇ SPF)+slot number in the frame
  • SPF is the number of continuous time slots per frame
  • SFN is the system frame number
  • slot number in the frame is the time slot where the SPS PDSCH is currently received Number.
  • the selection factor is:
  • CURRENT symbol is the number of the symbol of the CG resource currently received by the terminal device.
  • Step S404 based on the value of the selection factor, from the HARQ process identifiers configured for the CG resources of the terminal device, determine the HARQ process identifiers corresponding to the CG resources in different time units.
  • the set value can be 0, that is, if the time unit is determined to be an integer multiple of the HARQ feedback cycle, then the information transmitted on the corresponding time unit of the CG resource needs to be HARQ feedback, From the HARQ process identifier configured for the CG resource of the terminal device, determine that the HARQ process identifier corresponding to the time unit is the first HARQ process identifier in the feedback enabled state.
  • the information transmitted in the corresponding time unit of the CG resource does not need to be HARQ fed back, and the CG of the terminal device does not need to perform HARQ feedback.
  • the HARQ process identifier corresponding to the determined time unit is the second HARQ process identifier in the feedback disabled state.
  • HARQ process ID#0 has no feedback
  • HARQ ID#1 has feedback
  • SPS PDSCH set is configured to use two HARQ process IDs, which are used by SPS PDSCH after activation
  • the HARQ process IDs are #0 and #1.
  • the calculation method of HARQ process ID is:
  • harq-ProcID-Offset is the HARQ process ID offset value configured by RRC, and does not appear if RRC is not configured.
  • the HARQ Process ID of the CG resource in different time units determined by formula (3), as shown in Table 1, in Table 1 from slot 20 Start the first SPS PDSCH transmission.
  • the HARQ feedback period is 100 slots, and the time unit where the CG resource is located is an integer multiple of the HARQ feedback period, that is, the HARQ Process IDs of the CG resources corresponding to slot (slot) 100 and slot 200 are both 1#.
  • the value of the selection factor obtained by slot 100 and slot 200 according to formula (1) is 0, it means that the time unit where the CG resource is located is an integer multiple of the HARQ feedback cycle, and the HARQ Process ID corresponding to the CG resource is 1#. Since HARQ Process ID#1 is configured to be in the feedback enable state, the terminal device can perform HARQ feedback on the information transmitted on the corresponding CG resource.
  • the HARQ feedback period is 100 slots, and the time unit where the CG resource is located is not an integer multiple of the HARQ feedback period, that is, slot 20, slot 40, slot 60, slot 80, slot 120, slot 140, slot 160, slot
  • the HARQ Process IDs of the CG resources corresponding to 180 are all 0#.
  • the values of the selection factors obtained by slot 20, slot 40, slot 60, slot 80, slot 120, slot 140, slot 160, and slot 180 according to the formula (1) are other values, it means that the CG resources
  • the time unit is not an integer multiple of the HARQ feedback period
  • the HARQ Process ID corresponding to the CG resource is 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the terminal device does not perform HARQ feedback on the information transmitted on the CG resource.
  • the first SPS PDSCH transmission can start from slot 100.
  • harq-ProcID-Offset is not configured , using formula (3) to determine the HARQ Process ID of the CG resource in different time units, as shown in Table 2.
  • the HARQ process ID is empty.
  • the first SPS PDSCH transmission starts from slot 100.
  • the value of the selection factor obtained by slot 100 and slot 200 according to formula (1) is 0, that is, slot 100 and slot 200 are integer multiples of the HARQ feedback cycle, and the slot can be determined 100.
  • the HARQ process ID corresponding to slot 200 is 1#. Since HARQ Process ID#1 is configured to be in the feedback enable state, the terminal device can perform HARQ feedback on the information transmitted on the corresponding CG resource.
  • slot 120, slot 140, slot 160, and slot 180 are integer multiples of the non-HARQ feedback cycle. It can be determined that the HARQ process ID corresponding to slot 120, slot 140, slot 160, and slot 180 is 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the terminal device does not perform HARQ feedback on the information transmitted on the CG resource.
  • the contradiction between the SPS PDSCH cycle and the HARQ process ID can be coordinated, thereby improving the speed and quality of data transmission, improving the flexibility of data transmission, and avoiding data transmission errors.
  • FIG. 5 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 501 determine the HARQ feedback period corresponding to the CG resource.
  • step S501 reference may be made to any implementation manner in the various embodiments of the present application, which will not be repeated this time.
  • Step 502 in response to no HARQ process identifier configured for the CG resource of the terminal device, report a HARQ feedback to the network device at a set time interval.
  • the set duration is longer than the minimum RTT duration.
  • the terminal device by reporting HARQ feedback to the network device once at a set time interval, the terminal device can perform error control on the transmission data within the set time range, thereby increasing data transmission reliability and improving data transmission efficiency.
  • FIG. 6 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step S601 in response to the fact that the HARQ feedback period is not configured for the CG resource, determine the HARQ process identifier corresponding to the CG resource based on the period of the CG resource and other RRC parameters.
  • HARQ Process ID [floor(CURRENT slot ⁇ N/(SPF ⁇ periodicity))]modulo(nrofHARQ-Processes)+harq-ProcID-Offset (4)
  • periodicity is the cycle of CG resources configured by RRC
  • nrofHARQ-Processes is the number of HARQ processes configured by SPS PDSCH
  • floor is the largest integer returned less than or equal to a preset value
  • harq-ProcID-Offset is the HARQ process ID configured by RRC Offset value, if RRC is not configured, it will not appear.
  • CURRENT slot (SFN ⁇ SPF)+slot number in the frame
  • SPF is the number of continuous time slots per frame
  • SFN is the system frame number
  • slot number in the frame is the time slot where the SPS PDSCH is currently received Number.
  • the HARQ feedback period is 20, and the time unit where the CG resource is located is the same as the HARQ feedback period, that is, the CG resources corresponding to slot 20, slot 60, slot 100, slot 140, and slot 180
  • the HARQ Process IDs are all 1#.
  • slot 100 and slot 200 obtain the HARQ Process ID corresponding to the CG resource according to formula (4) to be 1#. Since HARQ Process ID#1 is configured to be in the feedback enable state, the terminal device can perform HARQ feedback on the information transmitted on the corresponding CG resource.
  • the HARQ Process IDs of the CG resources corresponding to slot 40, slot 80, slot 120, slot 160, and slot 200 are all 0#.
  • slot 100 and slot 200 obtain the HARQ Process ID corresponding to the CG resource according to formula (4) to be 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the terminal device does not perform HARQ feedback on the information transmitted on the CG resource.
  • the terminal device can perform error control on the transmission data within the set time range, improve the flexibility of data transmission, avoid data transmission errors, thereby increasing the reliability of data transmission and improving the efficiency of data transmission.
  • FIG. 7 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 701 configure the HARQ feedback period corresponding to the CG resource.
  • the HARQ feedback cycle corresponding to the CG resource can be configured according to the agreement. In some implementations, the HARQ feedback cycle corresponding to the CG resource can be configured based on the service characteristics supported by the terminal device. In this application, the HARQ feedback period may be the time interval between two adjacent HARQ processes being used by CG resources corresponding to the same HARQ process ID in the feedback enabled state. It should be noted that, in order to determine the HARQ process ID, the HARQ feedback cycle parameter is newly introduced in this application, and the HARQ process ID is determined based on the HARQ feedback cycle parameter.
  • Step 702 determine whether to receive the HARQ feedback of the terminal equipment on the information transmitted on the CG resource.
  • the HARQ process ID corresponding to the CG resource may be determined based on the HARQ feedback period and based on a preset strategy. Further, based on the HARQ process ID corresponding to the CG resource, it is determined whether to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource.
  • the HARQ process ID corresponding to the CG resource is in the feedback enabled state, it is determined to receive the HARQ feedback of the terminal device on the information transmitted on the CG resource.
  • the HARQ process ID corresponding to the CG resource is in the feedback prohibited state, it is determined not to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource.
  • the HARQ feedback period corresponding to the CG resource is configured, and according to the HARQ feedback period, it is determined whether to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • FIG. 8 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 801 configure the HARQ feedback period corresponding to the CG resource.
  • step S801 reference may be made to any implementation manner in the embodiments of the present application, which will not be repeated this time.
  • Step 802 according to the HARQ feedback cycle, determine the HARQ process identifiers corresponding to the CG resources on different time slots.
  • the network device configures the CG resource of the terminal device with a HARQ process ID (HARQ process ID) based on the protocol agreement or the service characteristics supported by the terminal device.
  • HARQ process ID a HARQ process ID
  • the HARQ process ID corresponding to the CG resource is configured through RRC signaling .
  • the network device is configured with a HARQ process ID for the CG resource of the terminal device, and the network device may send RRC configuration information to the terminal device.
  • the configuration information includes the feedback enabling information of the HARQ process ID configured for the terminal device and/or the HARQ process identifier.
  • the configuration information includes the HARQ process identifier configured for the CG resource of the terminal device, and the feedback enabling information of the HARQ process identifier can be confirmed according to the HARQ process identifier.
  • the network device can determine the The maximum number of HARQ process IDs that can be indicated. If the capability of the terminal device is 32, the maximum number of HARQ process IDs that can be indicated in the DCI is 32.
  • the network device configures 32 HARQ process IDs through RRC, wherein the feedback enabling information of HARQ process ID#0 ⁇ 15 indicates that the HARQ process ID is in the feedback disabled state, and the feedback enabling information of HARQ process ID#16 ⁇ 31 indicates The HARQ process identifier is in the feedback enabled state.
  • the configuration information includes the HARQ process identifier configured for the CG resource of the terminal device and the feedback enablement information of the HARQ process identifier. In some implementations, the configuration information includes the feedback enablement information of the HARQ process identifier configured for the terminal device. able information.
  • the HARQ process ID corresponding to the CG resource can be determined based on the HARQ feedback period and a preset policy.
  • Step 803 based on the feedback enabling information identified by the HARQ process, determine whether to receive HARQ feedback from the terminal device on the information transmitted in the time unit corresponding to the CG resource.
  • the network device can send the information transmitted on the CG resource to the terminal device.
  • the network device determines whether to receive the HARQ feedback of the information transmitted by the terminal device on the time unit corresponding to the CG resource based on the HARQ process ID corresponding to the CG resource.
  • the terminal device can be on the HARQ process identified by the HARQ process ID, on the time unit corresponding to the CG resource.
  • the transmitted information performs HARQ feedback, that is, the network device receives the HARQ feedback of the terminal device on the information received from the CG resource. For example, if the determined HARQ process IDs corresponding to the CG resource are #16 and #17, then the network device receives the HARQ feedback from the terminal device on the information transmitted in the time unit corresponding to the CG resource.
  • the terminal device if the feedback enabling information of the HARQ process ID corresponding to the CG resource indicates that the HARQ process ID is in the feedback disabled state, the terminal device is not on the HARQ process identified by the HARQ process ID, but on the time unit corresponding to the CG resource
  • the transmitted information performs HARQ feedback, and the network device does not receive the HARQ feedback of the terminal device for the information received from the CG resource. For example, if the determined HARQ process IDs corresponding to the CG resource are #0 and #1, then the network device does not receive the HARQ feedback from the terminal device on the information transmitted in the time unit corresponding to the CG resource.
  • the network device receives part of the HARQ feedback of the information transmitted by the terminal device on the time unit corresponding to the CG resource, and part does not receive it, that is to say,
  • the determined CG resource corresponding to the HARQ process ID is #15
  • the network device does not receive the HARQ feedback from the terminal device on the information transmitted in the time unit corresponding to the CG resource
  • the determined CG resource corresponds to the HARQ process ID is #16
  • the network device Receiving the HARQ feedback of the terminal device on the information transmitted in the time unit corresponding to the CG resource.
  • the HARQ process identifiers corresponding to the CG resources on different time slots are determined, and based on the feedback enabling information of the HARQ process identifiers, it is determined whether to receive the terminal device's response to the time unit corresponding to the CG resource.
  • HARQ feedback of information is determined.
  • the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID is unbound with the SPS PDSCH cycle, and the contradiction between the SPS PDSCH cycle and the HARQ process ID can be coordinated, and the speed of data transmission can be improved. and quality, improve the flexibility of data transmission, and avoid data transmission errors.
  • FIG. 9 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 901 configure the HARQ feedback period corresponding to the CG resource.
  • step S901 reference may be made to any implementation manner in the embodiments of the present application, and details will not be repeated this time.
  • Step 902 determine the time unit where the currently sent CG resource is located.
  • the CG resource is a downlink CG resource, that is, the SPS PDSCH, and the time unit is the time slot where the currently transmitted CG resource is located.
  • the CG resource is an uplink CG resource, namely Type-1 CG and Type-2 CG, and the time unit is the symbol where the currently sent CG resource is located.
  • Step 903 based on the time unit and the HARQ feedback cycle, determine the value of the selection factor.
  • the CG resource is a downlink CG resource
  • determine the first parameter based on the time unit determine the second parameter based on the number of continuous time slots per frame and the HARQ feedback cycle, and obtain the remainder between the first parameter and the second parameter as a selection
  • the value of the factor For example, the product of the time slot number of the CG resource sent by the network device and the preset threshold is used as the first parameter, and the product of the number of consecutive time slots per frame and the HARQ feedback period is used as the second parameter, based on the formula in the above embodiment (1) Confirm the selection factor.
  • the selection factor is confirmed based on formula (2) in the above-mentioned embodiment.
  • Step 904 based on the value of the selection factor, determine the HARQ process identifiers corresponding to the CG resources in different time units from the HARQ process identifiers configured for the CG resources of the terminal device.
  • the set value can be 0, that is, if the time unit is determined to be an integer multiple of the HARQ feedback period, then the HARQ feedback of the information transmitted by the receiving terminal device on the CG resource , from the HARQ process identifier configured for the CG resource of the terminal device, determine that the HARQ process identifier corresponding to the time unit is the first HARQ process identifier in the feedback enabled state.
  • the HARQ process identifier corresponding to the determined time unit is the second HARQ process identifier in the feedback disabled state.
  • the terminal device does not receive the HARQ feedback of the information transmitted on the CG resource;
  • the HARQ feedback of the information transmitted on the SPS PDSCH set is configured to use two HARQ process IDs, and the HARQ process IDs used by the SPS PDSCH after activation are #0 and #1.
  • the calculation method of the HARQ process ID may be the formula (3) in the above embodiment.
  • the HARQ feedback period is 100 slots, and the time unit where the CG resource is located is an integer multiple of the HARQ feedback period, that is, the HARQ Process IDs of the CG resources corresponding to slot (slot) 100 and slot 200 are both 1#.
  • the value of the selection factor obtained by slot 100 and slot 200 according to formula (1) is 0, it means that the time unit where the CG resource is located is an integer multiple of the HARQ feedback cycle, and the HARQ Process ID corresponding to the CG resource is 1#. Since the HARQ Process ID#1 is configured to be in the feedback enabled state, the network device can receive the HARQ feedback of the terminal device on the information transmitted on the CG resource.
  • the HARQ feedback period is 100 slots, and the time unit where the CG resource is located is not an integer multiple of the HARQ feedback period, that is, slot 20, slot 40, slot 60, slot 80, slot 120, slot 140, slot 160, slot
  • the HARQ Process IDs of the CG resources corresponding to 180 are all 0#.
  • the HARQ Process ID corresponding to the CG resource is 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the network device does not receive the HARQ feedback of the terminal device on the information transmitted on the CG resource.
  • the first SPS PDSCH transmission can start from slot 100.
  • harq-ProcID-Offset is not configured , using the formula (3) to determine the HARQ Process ID of the CG resource in different time units.
  • the HARQ process ID is empty.
  • the first SPS PDSCH transmission starts from slot 100.
  • the value of the selection factor obtained by slot 100 and slot 200 according to formula (1) is 0, that is, slot 100 and slot 200 are integer multiples of the HARQ feedback cycle, and the slot can be determined 100.
  • the HARQ process ID corresponding to slot 200 is 1#. Since the HARQ Process ID#1 is configured to be in the feedback enable state, the network device receives the HARQ feedback of the information transmitted by the terminal device on the CG resource.
  • slot 120, slot 140, slot 160, and slot 180 are integer multiples of the non-HARQ feedback cycle
  • the HARQ process ID corresponding to slot 120, slot 140, slot 160, and slot 180 is 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the network device does not receive the information transmitted by the terminal device on the CG resource. HARQ feedback of information.
  • the contradiction between the SPS PDSCH cycle and the HARQ process ID can be coordinated, thereby improving the speed and quality of data transmission, improving the flexibility of data transmission, and avoiding data transmission errors.
  • FIG. 10 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 1001 configure the HARQ feedback period corresponding to the CG resource.
  • step S1001 reference may be made to any implementation manner in the various embodiments of the present application, which will not be repeated this time.
  • Step 1002 in response to no HARQ process identifier configured for the CG resource of the terminal device, receiving a HARQ feedback from the terminal device at a set time interval.
  • each The receiving terminal device reports a HARQ feedback once at an interval set time. Wherein, the set duration is longer than the minimum RTT duration.
  • the network device by receiving a HARQ feedback from a terminal device at a set time interval, the network device can perform error control on the transmission data within the set time range, thereby increasing data transmission reliability and improving data transmission efficiency.
  • FIG. 11 is a schematic flowchart of a method for HARQ feedback of CG resources provided by an embodiment of the present application, and the method is executed by a network device. As shown in Figure 11, the method may include but not limited to the following steps:
  • Step 1101 in response to the fact that the HARQ feedback period is not configured for the CG resource, determine the HARQ process identifier corresponding to the CG resource based on the period of the CG resource and other RRC parameters.
  • the formula (4) in the above facts can be used for calculation, as shown in Table 3 in the above embodiments.
  • the HARQ feedback cycle is 20, and the time unit where the CG resource is located is the same as The HARQ feedback cycle is the same, that is, the HARQ Process IDs of the CG resources corresponding to slot 20, slot 60, slot 100, slot 140, and slot 180 are all 1#.
  • slot 100 and slot 200 obtain the HARQ Process ID corresponding to the CG resource according to formula (4) to be 1#. Since HARQ Process ID#1 is configured to be in the feedback enabled state, the network device receives the HARQ feedback of the terminal device on the information transmitted on the CG resource.
  • the HARQ Process IDs of the CG resources corresponding to slot 40, slot 80, slot 120, slot 160, and slot 200 are all 0#.
  • slot 100 and slot 200 obtain the HARQ Process ID corresponding to the CG resource according to formula (4) to be 0#. Since HARQ Process ID#0 is configured to be in the feedback disabled state, the network device does not receive the HARQ feedback of the terminal device on the information transmitted on the CG resource.
  • the terminal device can perform error control on the transmission data within the set time range, improve the flexibility of data transmission, avoid data transmission errors, thereby increasing the reliability of data transmission and improving the efficiency of data transmission.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the network device and the first terminal device respectively.
  • the network device and the first terminal device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided in an embodiment of the present application.
  • the communication device 1200 shown in FIG. 12 may include a transceiver module 1201 and a processing module 1202 .
  • the transceiver module 1201 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1201 can realize the sending function and/or the receiving function.
  • the communication device 1200 may be a terminal device (such as the first terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device 1200 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication apparatus 1200 is a terminal device (such as the first terminal device in the foregoing method embodiment) including:
  • the processing module is configured to determine the hybrid automatic repeat request HARQ feedback cycle corresponding to the configured authorized CG resource, and determine whether to perform HARQ feedback on the information transmitted on the CG resource according to the HARQ feedback cycle.
  • the processing module is further configured to: in response to configuring a HARQ process identifier for the CG resource of the terminal device, determine the HARQ process identifier corresponding to the CG resource on a different time unit according to the HARQ feedback period; based on HARQ The feedback enabling information of the process identifier determines whether to perform HARQ feedback on the information transmitted in the time unit corresponding to the CG resource.
  • the processing module is further configured to: respond to the feedback enablement information indicating that the HARQ process identifier is in the feedback enabled state, then, on the HARQ process identified by the HARQ process identifier, for the time corresponding to the CG resource HARQ feedback is performed on the information transmitted on the unit; in response to the feedback enabling information indicating that the HARQ process identifier is in the feedback disabled state, no HARQ feedback is performed on the information transmitted on the time unit corresponding to the CG resource.
  • the communication apparatus 1200 further includes a processing module, configured to: receive radio resource control RRC configuration information sent by the network device, where the configuration information includes the HARQ process identifier and/or the HARQ process configured for the terminal device Identified feedback enable information.
  • the processing module is further configured to: determine the HARQ process identifiers corresponding to the CG resources in different time units according to the HARQ feedback cycle from the HARQ process identifiers configured for the CG resources of the terminal device.
  • the processing module is also used to: determine the time unit where the currently received CG resource is located; determine the value of the selection factor based on the time unit and the HARQ feedback cycle; based on the value of the selection factor, from Among the HARQ process identifiers configured for the CG resources of the terminal device, the HARQ process identifiers corresponding to the CG resources in different time units are determined.
  • the processing module is further configured to: respond to the value of the selection factor as a set value, determine that the time unit is an integer multiple of the HARQ feedback cycle, and configure the HARQ process for the CG resource of the terminal device In the identification, it is determined that the HARQ process identification corresponding to the time unit is the first HARQ process identification in the feedback enabled state.
  • the processing module is further configured to: in response to the value of the selection factor being other than the set value, determine a time unit that is not an integer multiple of the HARQ feedback period, and configure the HARQ process for the CG resource of the terminal device In the identification, it is determined that the HARQ process identification corresponding to the time unit is the second HARQ process identification in the feedback disabled state.
  • the processing module is further configured to: in response to the fact that the CG resource is a downlink CG resource, and the time unit is the time slot where the currently received CG resource is located, determine the first parameter based on the time unit; The number of time slots and the HARQ feedback period are used to determine the second parameter; and the remainder between the first parameter and the second parameter is obtained as the value of the selection factor.
  • the processing module is further configured to: respond to the fact that the CG resource is an uplink CG resource, and the time unit is the symbol where the currently received CG resource is located, and obtain the remainder between the time unit and the feedback period as a selection The value of the factor.
  • the processing module is further configured to: report a HARQ feedback to the network device at a set interval in response to no HARQ process identifier being configured for the CG resource of the terminal device.
  • the HARQ feedback period is a time interval between two adjacent CG resources used by the same HARQ process in the feedback enabled state and corresponding to the HARQ process identifier.
  • the processing module is further configured to: determine the HARQ process identifier corresponding to the CG resource based on the period of the CG resource and other RRC parameters in response to the fact that the HARQ feedback period is not configured for the CG resource.
  • the hybrid automatic repeat request HARQ feedback period corresponding to the configured authorized CG resource is determined, and according to the HARQ feedback period, it is determined whether to perform HARQ feedback on the information transmitted on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • the communication device 1200 is a network device, including:
  • the processing module is configured to configure the HARQ feedback period of the HARQ corresponding to the CG resource, and determine whether to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource according to the HARQ feedback period.
  • the processing module is further configured to: according to the HARQ feedback period, determine the HARQ process identification corresponding to the CG resource on different time slots; HARQ feedback of information transmitted in time units corresponding to CG resources.
  • the processing module is further configured to: in response to the feedback enabling information indicating that the HARQ process identifier is in the feedback enabled state, based on the HARQ process identified by the HARQ process identifier, the receiving terminal device The HARQ feedback of the information transmitted on the corresponding time unit; in response to the feedback enabling information indicating that the HARQ process identifier is in the feedback disabled state, the HARQ feedback of the information transmitted on the corresponding time unit of the CG resource cannot be received.
  • the communication apparatus 1200 further includes a processing module, configured to: send radio resource control RRC configuration information to the terminal device, where the configuration information configures the terminal device with the HARQ process identifier and/or the feedback of the HARQ process identifier enable information.
  • the processing module is further configured to: determine the HARQ process identifiers corresponding to the CG resources in different time units according to the HARQ feedback cycle from the HARQ process identifiers configured for the CG resources of the terminal device.
  • the processing module is also used to: determine the time unit of the currently sent CG resource; determine the value of the selection factor based on the time unit and the HARQ feedback cycle; based on the value of the selection factor, from Among the HARQ process identifiers configured in the CG resource of the terminal device, the HARQ process identifiers corresponding to the CG resources in different time units are determined.
  • the processing module is further configured to: respond to the value of the selection factor as a set value, determine that the time unit is an integer multiple of the HARQ feedback cycle, and configure the HARQ process for the CG resource of the terminal device In the identification, it is determined that the HARQ process identification corresponding to the time unit is the first HARQ process identification in the feedback enabled state.
  • the processing module is further configured to: in response to the value of the selection factor being other than the set value, determine a time unit that is not an integer multiple of the HARQ feedback period, and configure the HARQ process for the CG resource of the terminal device In the identification, it is determined that the HARQ process identification corresponding to the time unit is the second HARQ process identification in the feedback disabled state.
  • the processing module is further configured to: determine the first parameter based on the time unit in response to the fact that the CG resource is a downlink CG resource and the time unit is the time slot where the currently sent CG resource is located; The number of slots and the HARQ feedback period are used to determine the second parameter; and the remainder between the first parameter and the second parameter is obtained as the value of the selection factor.
  • the processing module is further configured to: respond to the fact that the CG resource is an uplink CG resource, and the time unit is the symbol of the currently sent CG resource, and acquire the remainder between the time unit and the feedback period as the selection The value of the factor.
  • the processing module is further configured to: in response to no HARQ process identifier being configured for the CG resource of the terminal device, receive the HARQ feedback reported by the terminal device at a set time interval.
  • the HARQ feedback period is a time interval between two adjacent CG resources used by the same HARQ process in the feedback enabled state and corresponding to the HARQ process identifier.
  • the processing module is further configured to: determine the HARQ process identifier corresponding to the CG resource based on the period of the CG resource and other RRC parameters in response to the fact that the HARQ feedback period is not configured for the CG resource.
  • the HARQ feedback period corresponding to the CG resource is configured, and according to the HARQ feedback period, it is determined whether to receive the HARQ feedback of the information transmitted by the terminal device on the CG resource. Therefore, the HARQ process ID is determined through the introduced HARQ feedback cycle, so that the determination of the HARQ process ID and the unbundling of the SPS PDSCH cycle can coordinate the contradiction between the SPS PDSCH cycle and the HARQ process ID, thereby improving the speed and quality of data transmission , improve the flexibility of data transmission, and avoid data transmission errors.
  • FIG. 13 is a schematic structural diagram of another communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be a network device, or a terminal device (such as the first terminal device in the foregoing method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be A chip, chip system, or processor that supports the terminal device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 1300 may include one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1300 may further include one or more memories 1302, on which a computer program 1304 may be stored, and the processor 1301 executes the computer program 1304, so that the communication device 130 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1302 .
  • the communication device 1300 and the memory 1302 can be set separately or integrated together.
  • the communication device 1300 may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1305 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1300 may further include one or more interface circuits 1307 .
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 runs the code instructions to enable the communication device 1300 to execute the methods described in the foregoing method embodiments.
  • the communication device 1300 is a terminal device (such as the first terminal device in the aforementioned method embodiment): the processor 1301 is used to execute steps S201, S202 in FIG. 2, and steps S301, S302, and S303 in FIG. Step S401, Step S402, Step S403, Step S404 in 4, Step S501, Step S502 in FIG. 5, Step S601 in FIG. 6.
  • the communication device 1300 is a network device: the processor 1301 is configured to execute steps S701, S702 in FIG. 7, steps S801, S802, and S803 in FIG. 8, and steps S901, S902, S903, and S904, step S1001 and step S1002 in FIG. 10 , step S1101 in FIG. 11 .
  • the processor 1301 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1301 may store a computer program 1303 , and the computer program 1303 runs on the processor 1301 to enable the communication device 1300 to execute the methods described in the foregoing method embodiments.
  • the computer program 1303 may be solidified in the processor 1301, and in this case, the processor 1301 may be implemented by hardware.
  • the communication device 1300 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Fig. 13 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 14 includes a processor 1401 and an interface 1402 .
  • the number of processors 1401 may be one or more, and the number of interfaces 1402 may be more than one.
  • the chip is used to implement the functions of the terminal device in the embodiment of the present application (such as the first terminal device in the foregoing method embodiment):
  • step S201 for step S201, step S202 in Fig. 2, step S301, step S302, step S303 in Fig. 3, step S401, step S402, step S403, step S404 in Fig. 4, step S501 in Fig. 5 , step S502, step S601 in FIG. 6 .
  • Interface 1402 for executing step S701, step S702 in Fig. 7, step S801, step S802, step S803 in Fig. 8, step S901, step S902, step S903, step S904 in Fig. 9, step in Fig. 10 S1001, step S1002, step S1101 in FIG. 11 .
  • the chip further includes a memory 1403 for storing necessary computer programs and data.
  • the embodiment of the present application also provides a system for determining the duration of the side link.
  • the system includes the communication device as the terminal device (such as the first terminal device in the method embodiment above) in the embodiment of FIG. 7 and the communication device as the network device.
  • the system includes a communication device serving as a terminal device (such as the first terminal device in the foregoing method embodiment) and a communication device serving as a network device in the foregoing embodiment in FIG. 12 .
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种CG资源的HARQ反馈的方法及其装置,可以应用于通信技术领域,该方法包括:确定CG资源对应的HARQ反馈周期,根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。

Description

一种CG资源的HARQ反馈的方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种CG资源的HARQ反馈的方法及其装置。
背景技术
一般地,由于非地面网络(Non-terrestrial Network,NTN)中往返时延(Round-Trip Time,RTT)时间过长,为了保证重传调度的时间,半静态调度(Semi-Persistent Scheduling,SPS)物理下行共享信道(Physical Downlink Shared Channel,PDSCH)需要使能反馈feedback-enabled时,需要为SPS PDSCH配置多个混合自动重传请求(Hybrid Automatic Repeat request,HARQ)进程process标识(Identity document,ID)。
为了保证重传调度的时间,需要配置较多的HARQ process ID,但是SPS PDSCH周期、RTT周期、最大重传次数影响HARQ process ID的数量,可能会在NTN网络中出现SPS PDSCH周期和HARQ process ID配置之间的矛盾。
发明内容
本申请实施例提供一种CG资源的HARQ反馈的方法及其装置,可以应用通信技术领域,从而协调SPS PDSCH周期和HARQ process ID的矛盾,提高数据传输质量。
第一方面,本申请实施例提供一种CG资源的HARQ反馈方法,由终端设备执行,该方法包括:
确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期;
根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。
在一种可能的实现方式中,该方法还包括:响应于为终端设备的CG资源配置有HARQ进程标识,根据HARQ反馈周期及其他RRC参数,确定不同时间单元上CG资源对应的HARQ进程标识;基于HARQ进程标识的反馈使能信息,确定是否对在CG资源对应时间单元上所传输的信息进行HARQ反馈。
在一种可能的实现方式中,该方法还包括:响应于反馈使能信息指示HARQ进程标识处于反馈使能状态,则在HARQ进程标识所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈;响应于反馈使能信息指示HARQ进程标识处于反馈禁用状态,则对在CG资源对应时间单元上所传输的信息不进行HARQ反馈。
在一种可能的实现方式中,该方法还包括:接收网络设备发送的无线资源控制RRC配置信息,其中配置信息中包括为终端设备配置的HARQ进程标识和/或HARQ进程标识的反馈使能信息。
在一种可能的实现方式中,该方法还包括:从为终端设备的CG资源配置的HARQ进程标识中,根据HARQ反馈周期确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,该方法还包括:确定当前接收到的CG资源所在时间单元;基于时间单元和HARQ反馈周期,确定选取因子的取值;基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,该方法还包括:响应于选取因子的取值为设定值,确定时间单元为HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
在一种可能的实现方式中,该方法还包括:响应于选取因子的取值非设定值,确定时间单元非HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
在一种可能的实现方式中,该方法还包括:响应于CG资源为下行CG资源,时间单元为当前接收到的CG资源所在时隙,基于时间单元确定第一参数;基于每帧连续时隙数和HARQ反馈周期,确定第二参数;获取第一参数和第二参数之间的余数,作为选取因子的取值。
在一种可能的实现方式中,该方法还包括:响应于CG资源为上行CG资源,时间单元为当前接收到的CG资源所在符号,获取时间单元和反馈周期之间的余数,作为选取因子的取值。
在一种可能的实现方式中,该方法还包括:响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长向网络设备上报一次HARQ反馈。
在一种可能的实现方式中,HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
在一种可能的实现方式中,该方法还包括:响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
本申请实施例中,确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期,根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
第二方面,本申请实施例提供另一种CG资源的HARQ反馈方法,由网络设备执行,该方法包括:
配置CG资源对应的混合自动重传请求HARQ反馈周期;
根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。
在一种可能的实现方式中,该方法还包括:根据HARQ反馈周期,确定不同时隙上CG资源对应的HARQ进程标识;基于HARQ进程标识的反馈使能信息,确定是否接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。
在一种可能的实现方式中,该方法还包括:响应于反馈使能信息指示HARQ进程标识处于反馈使能状态,则基于HARQ进程标识所标识的HARQ进程上,接收终端设备在CG资源对应时间单元上所传输的信息的HARQ反馈;响应于反馈使能信息指示HARQ进程标识处于反馈禁用状态,则无法接收在CG资源对应时间单元上所传输的信息的HARQ反馈。
在一种可能的实现方式中,该方法还包括:向终端设备发送无线资源控制RRC配置信息,其中配置信息中为终端设备配置HARQ进程标识和/或HARQ进程标识的反馈使能信息。
在一种可能的实现方式中,该方法还包括:从为终端设备的CG资源配置的HARQ进程标识中,根据HARQ反馈周期确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,该方法还包括:确定当前发送的CG资源所在时间单元;基于时间单元和HARQ反馈周期,确定选取因子的取值;基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,CG资源使用方法还包括:响应于选取因子的取值为设定值,确定时间 单元为HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
在一种可能的实现方式中,CG资源使用该方法还包括:响应于选取因子的取值非设定值,确定时间单元非HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
在一种可能的实现方式中,该方法还包括:响应于CG资源为下行CG资源,时间单元为当前发送的CG资源所在时隙,基于时间单元确定第一参数;基于每帧连续时隙数和HARQ反馈周期,确定第二参数;获取第一参数和第二参数之间的余数,作为选取因子的取值。
在一种可能的实现方式中,该方法还包括:响应于CG资源为上行CG资源,时间单元为当前发送到的CG资源所在符号,获取时间单元和反馈周期之间的余数,作为选取因子的取值。
在一种可能的实现方式中,该方法还包括:响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长接收终端设备上报一次HARQ反馈。
在一种可能的实现方式中,HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
在一种可能的实现方式中,该方法还包括:响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
本申请实施例中,配置CG资源对应的HARQ反馈周期,根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方 面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信***的架构示意图;
图2是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图3是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图4是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图5是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图6是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图7是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图8是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图9是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图10是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图11是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图;
图12为本申请一实施例的通信装置的结构示意图;
图13是本申请一实施例的通信装置的结构示意图;
图14是本申请一实施例的芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、混合自动重传请求(Hybrid Automatic Repeat request,HARQ)
HARQ是一种将前向纠错编码(forward error correction,FEC)和自动重传请求(Automatic Repeat-request,ARQ)相结合而形成的技术。
2、下行控制信息(Downlink Control Information,DCI)
DCI为在物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输的、与物理上下行共享信道(PUSCH、PDSCH)相关的控制信息,这些DCI信息包含了诸如资源块(resource block,RB)分配信息、调制方式等等若干相关内容。终端只有正确的解码到了DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
3、配置授权(Configured grant,CG)资源
CG资源不需要DCI动态调度,是一种无线资源控制(Radio Resource Control,RRC)预先配置的资源,有时也称为半静态调度。与之相对的是需要DCI动态调度的动态调度(dynamic scheduling,DG)资源。
为了更好的理解本申请实施例公开的一种确定侧链路时长的方法,下面首先对本申请实施例适用的通信***进行描述。
请参见图1,图1为本申请实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的一种CG资源的HARQ反馈方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201,确定CG资源对应的HARQ反馈周期。
CG资源不需要DCI动态调度,是一种RRC预先配置的资源,有时也称为半静态调度。CG资源可以为上行CG资源,也可以为下行CG资源。
下行CG资源一般称作SPS PDSCH,对于下行的SPS PDSCH,RRC配置完成后,还需接收网络 设备发送的针对SPS PDSCH设置的激活信号,即sps activation,激活信号是一个加扰的特殊DCI,终端设备可以按照激活信号的指示在特定的时间单元上接收SPS PDSCH。上行CG资源有两种类型Type,即Type-1 CG和Type-2 CG,Type-1 CG和Type-2 CG都需要RRC配置,其中,Type-1 CG与SPS PDSCH的传输方式相同,需要DCI激活后才能传输信息,而Type-2 CG不需要激活就可以传输信息。
在通信***中,由于无线信道时变特性和多径衰落对信号传输带来的影响,以及一些不可预测的干扰会导致信号传输的失败,通常采用HARQ来进行差错控制,从而确保传输质量。
在一些实现中,可以根据协议约定确认CG资源对应的HARQ反馈周期,在一些实现中,可以根据网络设备发送的配置信息确认CG资源对应的HARQ反馈周期。本申请中,HARQ反馈周期可以为处于反馈使能状态的同一HARQ process ID对应HARQ进程相邻两次被CG资源使用的时间间隔。需要说明的是,为了确定HARQ process ID,本申请中新引入了HARQ反馈周期这一参数,基于该HARQ反馈周期这一参数来确定HARQ process ID。
步骤S202,根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。
在一些实现中,在获取到HARQ反馈周期后,可以基于该HARQ反馈周期,进而确定CG资源对应的HARQ process ID。进一步基于CG资源对应的HARQ process ID,确定是否对在CG资源上所传输的信息进行HARQ反馈。
可选地,响应于CG资源对应的HARQ process ID处于反馈使能状态,则确定对在CG资源上所传输的信息需要进行HARQ反馈。
可选地,响应于CG资源对应的HARQ process ID处于反馈禁止状态,则确定对在CG资源上所传输的信息不需要进行HARQ反馈。
本申请实施例中,确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期,根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图3,图3是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤S301,确定CG资源对应的HARQ反馈周期。
关于步骤S301的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤S302,响应于为终端设备的CG资源配置有HARQ进程标识,根据HARQ反馈周期,确定不同时间单元上CG资源对应的HARQ进程标识。
在一些实现中,网络设备或协议约定为终端设备的CG资源配置有HARQ进程标识(HARQ process ID),通常,CG资源对应的HARQ process ID通过RRC信令进行配置。可选地,网络设备为终端设备的CG资源配置有HARQ process ID,终端设备可以接收网络设备发送的RRC配置信息,基于该配置信息确定CG资源对应的HARQ process ID。在一些实现中,配置信息中包括为终端设备配置的HARQ process ID和/或HARQ进程标识的反馈使能信息。
在一些实现中,配置信息中包括为终端设备配置的HARQ进程标识,可以根据HARQ进程标识确认HARQ进程标识的反馈使能信息,例如,网络设备可以根据终端设备的能力,确定DCI中可指 示的最大HARQ process ID数量。若终端设备的能力为32,则DCI中可指示的最大HARQ process ID数量为32。也就是说,网络设备通过RRC配置32个HARQ process ID,其中HARQ process ID#0~15的反馈使能信息指示HARQ进程标识处于反馈禁用状态,HARQ process ID#16~31的反馈使能信息指示HARQ进程标识处于反馈使能状态。
在一些实现中,配置信息中包括为终端设备配置的HARQ进程标识和HARQ进程标识的反馈使能信息,在一些实现中,配置信息中包括为终端设备配置的HARQ进程标识的反馈使能信息。
在获取到HARQ反馈周期后,可以基于该HARQ反馈周期,基于预设策略确定CG资源对应的HARQ process ID。
需要说明的是,网络设备可以不直接将CG资源的HARQ进程标识配置给终端设备,而是配置CG资源可使用的HARQ进程个数,由终端设备根据CG资源所在的时间单元和其他RRC参数确定不同时间单元上CG资源对应的HARQ进程标识。由于CG资源的HARQ进程标识可以通过RRC参数计算出来,为了简便,以下描述均用CG资源配置的HARQ进程标识来表示,但是可以理解的,为CG资源配置HARQ进程标识并不排除通过为CG资源配置HARQ进程总数计算CG资源的HARQ进程标识的情况。
步骤S303,基于HARQ进程标识的反馈使能信息,确定是否对在CG资源对应时间单元上所传输的信息进行HARQ反馈。
终端设备可以接收网络设备在CG资源上传输的信息。本申请实施例中,终端设备在接收到信息后,基于CG资源对应的HARQ process ID,确定是否在CG资源对应时间单元上所传输的信息进行HARQ反馈。在一些实现中,若CG资源对应的HARQ process ID的反馈使能信息指示HARQ process ID处于反馈使能状态,终端设备可以在HARQ process ID所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈,也就是说,网络设备可以收到终端设备针对于从CG资源上接收到的信息的HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#16、#17,那么CG资源对应时间单元上所传输的信息都需要进行HARQ反馈。
在一些实现中,若CG资源对应的HARQ process ID的反馈使能信息指示HARQ process ID处于处于反馈禁用状态,终端设备可以不在HARQ process ID所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈,也就是说,网络设备不能收到终端设备针对于从CG资源上接收到的信息的HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#0、#1,那么CG资源对应时间单元上所传输的信息都不需要进行HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#15、#16,那么CG资源对应时间单元上所传输的信息部分需要进行HARQ反馈,部分不需要进行HARQ反馈,也就是说,确定出的CG资源对应HARQ process ID为#15,CG资源对应时间单元上所传输的信息部分不需要进行HARQ反馈,确定出的CG资源对应HARQ process ID为#16,CG资源对应时间单元上所传输的信息部分需要进行HARQ反馈。
本申请实施例中,根据HARQ反馈周期,从配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。基于HARQ进程标识的反馈使能信息,确定是否对在CG资源对应时间单元上所传输的信息进行HARQ反馈。本申请实施例,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,可以提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误 差。
请参见图4,图4是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤S401,确定CG资源对应的HARQ反馈周期。
关于步骤S401的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤S402,确定当前接收到的CG资源所在时间单元。
在一些实现中,CG资源为下行CG资源,即SPS PDSCH,时间单元为当前接收到的CG资源所在时隙。
在一些实现中,CG资源为上行CG资源,即Type-1 CG和Type-2 CG,时间单元为当前接收到的CG资源所在符号。
步骤S403,基于时间单元和HARQ反馈周期,确定选取因子的取值。
响应于CG资源为下行CG资源,基于时间单元确定第一参数,基于每帧连续时隙数和HARQ反馈周期,确定第二参数,并获取第一参数和第二参数之间的余数,作为选取因子的取值。例如,以终端设备当前接收到的CG资源所在时隙号与预设阈值之积,作为第一参数,以每帧连续时隙数和HARQ反馈周期之积作为第二参数,则选取因子为:
X=modulo(CURRENT slot×N/(periodicity ID×SPF))   (1)
其中,X为选取因子,modulo(......)为取余数的运算,CURRENT slot为终端设备接收到的CG资源所在时隙的编号,N为预设阈值,periodicity ID为HARQ反馈周期。可选地,本申请实施例中,N可以取10。本申请实施例中,CURRENT slot=(SFN×SPF)+slot number in the frame,SPF为每帧连续时隙数,SFN为***帧号,slot number in the frame为当前接收SPS PDSCH所在的时隙号。
响应于CG资源为上行CG资源,获取时间单元和反馈周期之间的余数,作为选取因子的取值。则选取因子为:
X=modulo(CURRENT symbol/periodicity ID)  (2)
其中,CURRENT symbol为终端设备当前接收到的CG资源所在符号的编号。
步骤S404,基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
响应于选取因子的取值为设定值,设定值可以为0,也就是说,确定时间单元为HARQ反馈周期的整数倍,则CG资源对应时间单元上所传输的信息需要进行HARQ反馈,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
响应于选取因子的取值非设定值,也就是说,确定时间单元非HARQ反馈周期的整数倍,则CG资源对应时间单元上所传输的信息不需要进行HARQ反馈,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
举例说明,若RRC配置的HARQ process ID为两个,如HARQ process ID#0无反馈,HARQ ID#1有反馈;SPS PDSCH set被配置为可以使用两个HARQ process ID,激活后SPS PDSCH所使用的HARQ process ID是#0和#1。
本申请实施例中,HARQ process ID的计算方法为:
Figure PCTCN2021121922-appb-000001
其中,harq-ProcID-Offset为RRC配置的HARQ进程ID偏移值,若RRC未配置,则不出现。
在上述例子的基础上,harq-ProcID-Offset未配置的情况下,采用公式(3)确定出的不同时间单元上CG资源的HARQ Process ID,如表1所示,在表1中从slot 20开始第一次SPS PDSCH传输。
表1
slot 20 40 60 80 100 120 140 160 180 200
HARQ process ID 0 0 0 0 1 0 0 0 0 1
本申请实施例中,HARQ反馈周期为100个slot,CG资源所在时间单元为HARQ反馈周期的整数倍,即时隙(slot)100、slot 200对应的CG资源的HARQ Process ID均为1#。本申请实施例中slot100、slot 200按照公式(1)获取到的选取因子的取值为0时,说明CG资源所在时间单元为HARQ反馈周期的整数倍,则CG资源所对应的HARQ Process ID为1#。由于HARQ Process ID#1被配置为处于反馈使能状态,终端设备可以对应的CG资源上传输的信息进行HARQ反馈。
本申请实施例中,HARQ反馈周期为100个slot,CG资源所在时间单元非HARQ反馈周期的整数倍,即slot 20、slot 40、slot 60、slot 80、slot 120、slot 140、slot 160、slot 180对应的CG资源的HARQ Process ID均为0#。本申请实施例中slot 20、slot 40、slot 60、slot 80、slot 120、slot 140、slot 160、slot 180按照公式(1)获取到的选取因子的取值为其他值others时,说明CG资源所在时间单元非HARQ反馈周期的整数倍,则CG资源所对应的HARQ Process ID为0#。由于HARQ Process ID#0被配置为处于反馈禁用状态,终端设备不对CG资源上传输的信息进行HARQ反馈。
在一些实现中,与表1中从slot 20开始第一次SPS PDSCH传输不同,可以从slot 100开始第一次SPS PDSCH传输,在上述例子的基础上,harq-ProcID-Offset未配置的情况下,采用公式(3)确定出的不同时间单元上CG资源的HARQ Process ID,如表2所示。
表2
slot 20 40 60 80 100 120 140 160 180 200
HARQ process ID NA NA NA NA 1 0 0 0 0 1
在slot 20、slot 40、slot 60、slot 80由于没有开始第一SPS PDSCH传输,HARQ process ID为空。从slot 100开始第一次SPS PDSCH传输,slot 100、slot 200按照公式(1)获取到的选取因子的取值为0时,即slot 100、slot 200为HARQ反馈周期的整数倍,可以确定slot 100、slot 200对应的HARQ process ID为1#,由于HARQ Process ID#1被配置为处于反馈使能状态,终端设备可以对应的CG资源上传输的信息进行HARQ反馈。slot 120、slot 140、slot 160、slot 180按照公式(1)获取到的选取因子的取值为其他值others时,即slot 120、slot 140、slot 160、slot 180非HARQ反馈周期的整数倍,可以确定slot 120、slot 140、slot 160、slot 180对应的HARQ process ID为0#,由于HARQ Process ID#0被配置为处于反馈禁用状态,终端设备不对CG资源上传输的信息进行HARQ反馈。
本申请实施例中,通过引入HARQ反馈周期,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图5,图5是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,确定CG资源对应的HARQ反馈周期。
关于步骤S501的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤502,响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长向网络设备上报一次HARQ反馈。
响应于为终端设备的CG资源未配置HARQ进程标识,因此无法根据HARQ进程标识的反馈使能信息,确定是否对在CG资源对应时间单元上所传输的信息进行HARQ反馈,可选地,可以每间隔设定时长向网络设备上报一次HARQ反馈。其中,设定时长大于最小RTT的时长。
本申请实施例中,通过间隔设定时长向网络设备上报一次HARQ反馈的方式,终端设备可以对设定时长范围内的传输数据进行差错控制,从而增加数据传输可靠性,提高数据的传输效率。
请参见图6,图6是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图。如图6所示,该方法可以包括但不限于如下步骤:
步骤S601,响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
HARQ Process ID=[floor(CURRENT slot×N/(SPF×periodicity))]modulo(nrofHARQ-Processes)+harq-ProcID-Offset  (4)
其中,periodicity为RRC配置的CG资源的周期,nrofHARQ-Processes为SPS PDSCH配置的HARQ进程数,floor为返回小于或等于一个预设值的最大整数,harq-ProcID-Offset为RRC配置的HARQ进程ID偏移值,若RRC未配置,则不出现。本申请实施例中,CURRENT slot=(SFN×SPF)+slot number in the frame,SPF为每帧连续时隙数,SFN为***帧号,slot number in the frame为当前接收SPS PDSCH所在的时隙号。
表3
slot 20 40 60 80 100 120 140 160 180 200
HARQ process ID 1 0 1 0 1 0 1 0 1 0
如表3所示,例如,本申请实施例中,HARQ反馈周期为20,CG资源所在时间单元与HARQ反馈周期相同,即slot 20、slot 60、slot 100、slot 140、slot 180对应的CG资源的HARQ Process ID均为1#。本申请实施例中slot 100、slot 200按照公式(4)获取到CG资源所对应的HARQ Process ID为1#。由于HARQ Process ID#1被配置为处于反馈使能状态,终端设备可以对应的CG资源上传输的信息进行HARQ反馈。slot 40、slot 80、slot 120、slot 160、slot 200对应的CG资源的HARQ Process ID均为0#。本申请实施例中slot 100、slot 200按照公式(4)获取到CG资源所对应的HARQ Process ID为0#。由于HARQ Process ID#0被配置为处于反馈禁用状态,终端设备不对CG资源上传输的信息进行HARQ反馈。
本申请实施例中,终端设备可以对设定时长范围内的传输数据进行差错控制,提高数据传输的灵活性,避免数据传输误差,从而增加数据传输可靠性,提高数据的传输效率。
请参见图7,图7是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,配置CG资源对应的HARQ反馈周期。
在一些实现中,可以根据协议约定配置CG资源对应的HARQ反馈周期,在一些实现中,可以基 于终端设备所支持的业务特性配置CG资源对应的HARQ反馈周期。本申请中,HARQ反馈周期可以为处于反馈使能状态的同一HARQ process ID对应HARQ进程相邻两次被CG资源使用的时间间隔。需要说明的是,为了确定HARQ process ID,本申请中新引入了HARQ反馈周期这一参数,基于该HARQ反馈周期这一参数来确定HARQ process ID。
步骤702,根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。
在一些实现中,在配置CG资源对应的HARQ反馈周期后,可以基于该HARQ反馈周期,基于预设策略确定CG资源对应的HARQ process ID。进一步基于CG资源对应的HARQ process ID,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。
可选地,响应于CG资源对应的HARQ process ID处于反馈使能状态,则确定接收终端设备对在CG资源上所传输的信息的HARQ反馈。
可选地,响应于CG资源对应的HARQ process ID处于反馈禁止状态,则确定不接收终端设备对在CG资源上所传输的信息的HARQ反馈。
本申请实施例中,配置CG资源对应的HARQ反馈周期,根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图8,图8是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由网络设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,配置CG资源对应的HARQ反馈周期。
关于步骤S801的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤802,根据HARQ反馈周期,确定不同时隙上CG资源对应的HARQ进程标识。
在一些实现中,网络设备基于协议约定或终端设备所支持的业务特性为终端设备的CG资源配置有HARQ进程标识(HARQ process ID),通常,CG资源对应的HARQ process ID通过RRC信令进行配置。可选地,网络设备为终端设备的CG资源配置有HARQ process ID,网络设备可以向终端设备发送RRC配置信息。在一些实现中,配置信息中包括为终端设备配置的HARQ process ID和/或HARQ进程标识的反馈使能信息。
在一些实现中,配置信息中包括为终端设备的CG资源配置的HARQ进程标识,可以根据HARQ进程标识确认HARQ进程标识的反馈使能信息,例如,网络设备可以根据终端设备的能力,确定DCI中可指示的最大HARQ process ID数量。若终端设备的能力为32,则DCI中可指示的最大HARQ process ID数量为32。也就是说,网络设备通过RRC配置32个HARQ process ID,其中HARQ process ID#0~15的反馈使能信息指示HARQ进程标识处于反馈禁用状态,HARQ process ID#16~31的反馈使能信息指示HARQ进程标识处于反馈使能状态。
在一些实现中,配置信息中包括为终端设备的CG资源配置的HARQ进程标识和HARQ进程标识的反馈使能信息,在一些实现中,配置信息中包括为终端设备配置的HARQ进程标识的反馈使能信息。
在配置HARQ反馈周期后,可以基于该HARQ反馈周期,基于预设策略确定CG资源对应的HARQ process ID。
步骤803,基于HARQ进程标识的反馈使能信息,确定是否接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。
网络设备可以把CG资源上传输的信息发送给终端设备。本申请实施例中,网络设备设备在发送信息后,基于CG资源对应的HARQ process ID,确定是否接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。在一些实现中,若CG资源对应的HARQ process ID的反馈使能信息指示HARQ process ID处于反馈使能状态,终端设备可以在HARQ process ID所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈,也就是说,网络设备接收终端设备针对于从CG资源上接收到的信息的HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#16、#17,那么网络设备接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。
在一些实现中,若CG资源对应的HARQ process ID的反馈使能信息指示HARQ process ID处于处于反馈禁用状态,终端设备未在HARQ process ID所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈,网络设备不接收终端设备针对于从CG资源上接收到的信息的HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#0、#1,那么网络设备不接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。例如,确定出的CG资源对应HARQ process ID为#15、#16,那么网络设备对于终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈部分接收,部分不接收,也就是说,确定出的CG资源对应HARQ process ID为#15,网络设备不接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈,确定出的CG资源对应HARQ process ID为#16,网络设备接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。
本申请实施例中,根据HARQ反馈周期,确定不同时隙上CG资源对应的HARQ进程标识,基于HARQ进程标识的反馈使能信息,确定是否接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。本申请实施例,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,可以提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图9,图9是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,配置CG资源对应的HARQ反馈周期。
关于步骤S901的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤902,确定当前发送的CG资源所在时间单元。
在一些实现中,CG资源为下行CG资源,即SPS PDSCH,时间单元为当前发送的CG资源所在时隙。
在一些实现中,CG资源为上行CG资源,即Type-1 CG和Type-2 CG,时间单元为当前发送的CG资源所在符号。
步骤903,基于时间单元和HARQ反馈周期,确定选取因子的取值。
响应于CG资源为下行CG资源,基于时间单元确定第一参数,基于每帧连续时隙数和HARQ反 馈周期,确定第二参数,并获取第一参数和第二参数之间的余数,作为选取因子的取值。例如,以网络设备发送的CG资源所在时隙号与预设阈值之积,作为第一参数,以每帧连续时隙数和HARQ反馈周期之积作为第二参数,基于上述实施例中的公式(1)确认选取因子。
响应于CG资源为上行CG资源,获取时间单元和反馈周期之间的余数,作为选取因子的取值。例如,基于上述实施例中的公式(2)确认选取因子。
步骤904,基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
响应于选取因子的取值为设定值,设定值可以为0,也就是说,确定时间单元为HARQ反馈周期的整数倍,则接收终端设备对在CG资源上所传输的信息的HARQ反馈,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
响应于选取因子的取值非设定值,也就是说,确定时间单元非HARQ反馈周期的整数倍,则不接收终端设备对在CG资源上所传输的信息的HARQ反馈,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
举例说明,若RRC配置的HARQ process ID为两个,如对于HARQ process ID#0不接收终端设备对在CG资源上所传输的信息的HARQ反馈,对于HARQ ID#1接收终端设备对在CG资源上所传输的信息的HARQ反馈;SPS PDSCH set被配置为可以使用两个HARQ process ID,激活后SPS PDSCH所使用的HARQ process ID是#0和#1。
本申请实施例中,HARQ process ID的计算方法可以为上述实施例中的公式(3)。
在上述例子的基础上,harq-ProcID-Offset未配置的情况下,采用公式(3)确定出的不同时间单元上CG资源的HARQ Process ID,如上述实施例中的表1所示,在表1中从slot 20开始第一次SPS PDSCH传输。
本申请实施例中,HARQ反馈周期为100个slot,CG资源所在时间单元为HARQ反馈周期的整数倍,即时隙(slot)100、slot 200对应的CG资源的HARQ Process ID均为1#。本申请实施例中slot100、slot 200按照公式(1)获取到的选取因子的取值为0时,说明CG资源所在时间单元为HARQ反馈周期的整数倍,则CG资源所对应的HARQ Process ID为1#。由于HARQ Process ID#1被配置为处于反馈使能状态,网络设备可以接收终端设备对在CG资源上所传输的信息的HARQ反馈。
本申请实施例中,HARQ反馈周期为100个slot,CG资源所在时间单元非HARQ反馈周期的整数倍,即slot 20、slot 40、slot 60、slot 80、slot 120、slot 140、slot 160、slot 180对应的CG资源的HARQ Process ID均为0#。本申请实施例中slot 20、slot 40、slot 60、slot 80、slot 120、slot 140、slot 160、slot180按照公式(1)获取到的选取因子的取值为其他值others时,说明CG资源所在时间单元非HARQ反馈周期的整数倍,则CG资源所对应的HARQ Process ID为0#。由于HARQ Process ID#0被配置为处于反馈禁用状态,网络设备不接收终端设备对在CG资源上所传输的信息的HARQ反馈。
在一些实现中,与表1中从slot 20开始第一次SPS PDSCH传输不同,可以从slot 100开始第一次SPS PDSCH传输,在上述例子的基础上,harq-ProcID-Offset未配置的情况下,采用公式(3)确定出的不同时间单元上CG资源的HARQ Process ID.
如上述实施例中的表2所示,在slot 20、slot 40、slot 60、slot 80由于没有开始第一SPS PDSCH传 输,HARQ process ID为空。从slot 100开始第一次SPS PDSCH传输,slot 100、slot 200按照公式(1)获取到的选取因子的取值为0时,即slot 100、slot 200为HARQ反馈周期的整数倍,可以确定slot 100、slot 200对应的HARQ process ID为1#,由于HARQ Process ID#1被配置为处于反馈使能状态,网络设备接收终端设备对在CG资源上所传输的信息的HARQ反馈。slot 120、slot 140、slot 160、slot 180按照公式(1)获取到的选取因子的取值为其他值others时,即slot 120、slot 140、slot 160、slot 180非HARQ反馈周期的整数倍,可以确定slot 120、slot 140、slot 160、slot 180对应的HARQ process ID为0#,由于HARQ Process ID#0被配置为处于反馈禁用状态,网络设备不接收终端设备对在CG资源上所传输的信息的HARQ反馈。
本申请实施例中,通过引入HARQ反馈周期,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图10,图10是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,配置CG资源对应的HARQ反馈周期。
关于步骤S1001的实现方式,可参见本申请各实施例中的任一实现方式,此次不再赘述。
步骤1002,响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长接收终端设备上报一次HARQ反馈。
响应于为终端设备的CG资源未配置HARQ进程标识,因此无法根据HARQ进程标识的反馈使能信息,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈,可选地,可以每间隔设定时长接收终端设备上报一次HARQ反馈。其中,设定时长大于最小RTT的时长。
本申请实施例中,通过间隔设定时长接收终端设备上报一次HARQ反馈,网络设备可以对设定时长范围内的传输数据进行差错控制,从而增加数据传输可靠性,提高数据的传输效率。
请参见图11,图11是本申请实施例提供的一种CG资源的HARQ反馈方法的流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
在一些实现中,可以利用上述事实里中的公式(4)进行计算,如上述实施例中的表3所示,例如,本申请实施例中,HARQ反馈周期为20,CG资源所在时间单元与HARQ反馈周期相同,即slot 20、slot 60、slot 100、slot 140、slot 180对应的CG资源的HARQ Process ID均为1#。本申请实施例中slot 100、slot 200按照公式(4)获取到CG资源所对应的HARQ Process ID为1#。由于HARQ Process ID#1被配置为处于反馈使能状态,网络设备接收终端设备对在CG资源上所传输的信息的HARQ反馈。slot 40、slot 80、slot 120、slot 160、slot 200对应的CG资源的HARQ Process ID均为0#。本申请实施例中slot 100、slot 200按照公式(4)获取到CG资源所对应的HARQ Process ID为0#。由于HARQ Process ID#0被配置为处于反馈禁用状态,网络设备不接收终端设备对在CG资源上所传输的信息的HARQ反馈。
本申请实施例中,终端设备可以对设定时长范围内的传输数据进行差错控制,提高数据传输的灵活性,避免数据传输误差,从而增加数据传输可靠性,提高数据的传输效率。
上述本申请提供的实施例中,分别从网络设备、第一终端设备的角度对本申请实施例提供的方法 进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和第一终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图12,为本申请实施例提供的一种通信装置1200的结构示意图。图12所示的通信装置1200可包括收发模块1201和处理模块1202。收发模块1201可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1201可以实现发送功能和/或接收功能。
通信装置1200可以是终端设备(如前述方法实施例中的第一终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置1200可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1200为终端设备(如前述方法实施例中的第一终端设备)包括:
处理模块,用于确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期,并根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。
在一种可能的实现方式中,处理模块,还用于:响应于为终端设备的CG资源配置有HARQ进程标识,根据HARQ反馈周期,确定不同时间单元上CG资源对应的HARQ进程标识;基于HARQ进程标识的反馈使能信息,确定是否对在CG资源对应时间单元上所传输的信息进行HARQ反馈。
在一种可能的实现方式中,处理模块,还用于:响应于反馈使能信息指示HARQ进程标识处于反馈使能状态,则在HARQ进程标识所标识的HARQ进程上,对在CG资源对应时间单元上所传输的信息进行HARQ反馈;响应于反馈使能信息指示HARQ进程标识处于反馈禁用状态,则对在CG资源对应时间单元上所传输的信息不进行HARQ反馈。
在一种可能的实现方式中,通信装置1200还包括处理模块,用于:接收网络设备发送的无线资源控制RRC配置信息,其中配置信息中包括为终端设备配置的HARQ进程标识和/或HARQ进程标识的反馈使能信息。
在一种可能的实现方式中,处理模块,还用于:从为终端设备的CG资源配置的HARQ进程标识中,根据HARQ反馈周期确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:确定当前接收到的CG资源所在时间单元;基于时间单元和HARQ反馈周期,确定选取因子的取值;基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于选取因子的取值为设定值,确定时间单元为HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于选取因子的取值非设定值,确定时间单元非HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源为下行CG资源,时间单元为当前接收到的CG资源所在时隙,基于时间单元确定第一参数;基于每帧连续时隙数和HARQ反馈周期,确定第二参数;获取第一参数和第二参数之间的余数,作为选取因子的取值。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源为上行CG资源,时间单元为当 前接收到的CG资源所在符号,获取时间单元和反馈周期之间的余数,作为选取因子的取值。
在一种可能的实现方式中,处理模块,还用于:响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长向网络设备上报一次HARQ反馈。
在一种可能的实现方式中,HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
本申请实施例中,确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期,根据HARQ反馈周期,确定是否对在CG资源上所传输的信息进行HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
通信装置1200为网络设备,包括:
处理模块,用于配置CG资源对应的混合自动重传请求HARQ反馈周期,并根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。
在一种可能的实现方式中,处理模块,还用于:根据HARQ反馈周期,确定不同时隙上CG资源对应的HARQ进程标识;基于HARQ进程标识的反馈使能信息,确定是否接收终端设备对在CG资源对应时间单元上所传输的信息的HARQ反馈。
在一种可能的实现方式中,处理模块,还用于:响应于反馈使能信息指示HARQ进程标识处于反馈使能状态,则基于HARQ进程标识所标识的HARQ进程上,接收终端设备在CG资源对应时间单元上所传输的信息的HARQ反馈;响应于反馈使能信息指示HARQ进程标识处于反馈禁用状态,则无法接收在CG资源对应时间单元上所传输的信息的HARQ反馈。
在一种可能的实现方式中,通信装置1200还包括处理模块,用于:向终端设备发送无线资源控制RRC配置信息,其中配置信息中为终端设备配置HARQ进程标识和/或HARQ进程标识的反馈使能信息。
在一种可能的实现方式中,处理模块,还用于:从为终端设备的CG资源配置的HARQ进程标识中,根据HARQ反馈周期确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:确定当前发送的CG资源所在时间单元;基于时间单元和HARQ反馈周期,确定选取因子的取值;基于选取因子的取值,从为终端设备的CG资源配置的HARQ进程标识中,确定不同时间单元上CG资源对应的HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于选取因子的取值为设定值,确定时间单元为HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于选取因子的取值非设定值,确定时间单元非HARQ反馈周期的整数倍,从为终端设备的CG资源配置的HARQ进程标识中,确定时间单元对应的HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源为下行CG资源,时间单元为当 前发送的CG资源所在时隙,基于时间单元确定第一参数;基于每帧连续时隙数和HARQ反馈周期,确定第二参数;获取第一参数和第二参数之间的余数,作为选取因子的取值。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源为上行CG资源,时间单元为当前发送到的CG资源所在符号,获取时间单元和反馈周期之间的余数,作为选取因子的取值。
在一种可能的实现方式中,处理模块,还用于:响应于为终端设备的CG资源未配置HARQ进程标识,每间隔设定时长接收终端设备上报一次HARQ反馈。
在一种可能的实现方式中,HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
在一种可能的实现方式中,处理模块,还用于:响应于CG资源未配置HARQ反馈周期,基于CG资源的周期及其他RRC参数,确定CG资源对应的HARQ进程标识。
本申请实施例中,配置CG资源对应的HARQ反馈周期,根据HARQ反馈周期,确定是否接收终端设备对在CG资源上所传输的信息的HARQ反馈。由此,通过引入的HARQ反馈周期来确定HARQ process ID,使得HARQ process ID的确定与SPS PDSCH周期解绑,可以协调SPS PDSCH周期与HARQ process ID之间的矛盾,进而提高数据传输的速度及质量,提高数据传输的灵活性,避免数据传输误差。
请参见图13,图13是本申请实施例提供的另一种通信装置1300的结构示意图。通信装置1300可以是网络设备,也可以是终端设备(如前述方法实施例中的第一终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1300可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1300中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行所述计算机程序1304,以使得通信装置130执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。通信装置1300和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置1300还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1300中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使通信装置1300执行上述方法实施例中描述的方法。
通信装置1300为终端设备(如前述方法实施例中的第一终端设备):处理器1301用于执行图2中的步骤S201、步骤S202,图3中的步骤S301、步骤S302、步骤S303,图4中的步骤S401、步骤S402、步骤S403、步骤S404,图5中的步骤S501、步骤S502,图6中的步骤S601。
通信装置1300为网络设备:处理器1301用于执行图7中的步骤S701、步骤S702,图8中的步骤S801、步骤S802、步骤S803,图9中的步骤S901、步骤S902、步骤S903、步骤S904,图10中的步骤S1001、步骤S1002,图11中的步骤S1101。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置1300执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置1300可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备(如前述方法实施例中的第一终端设备)的功能的情况:
接口1402,用于图2中的步骤S201、步骤S202,图3中的步骤S301、步骤S302、步骤S303,图4中的步骤S401、步骤S402、步骤S403、步骤S404,图5中的步骤S501、步骤S502,图6中的步骤S601。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1402,用于执行图7中的步骤S701、步骤S702,图8中的步骤S801、步骤S802、步骤S803,图9中的步骤S901、步骤S902、步骤S903、步骤S904,图10中的步骤S1001、步骤S1002,图11中的步骤S1101。
可选的,芯片还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定侧链路时长的***,该***包括前述图7实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述图12实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例 如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (58)

  1. 一种CG资源的HARQ反馈方法,其特征在于,由终端设备执行,所述方法包括:
    确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期;
    根据所述HARQ反馈周期,确定是否对在所述CG资源上所传输的信息进行HARQ反馈。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于为所述终端设备配置有HARQ进程标识,根据所述HARQ反馈周期,确定不同时间单元上所述CG资源对应的HARQ进程标识;
    基于所述HARQ进程标识的反馈使能信息,确定是否对在所述CG资源对应时间单元上所传输的信息进行HARQ反馈。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈使能状态,则在所述HARQ进程标识所标识的HARQ进程上,对在所述CG资源对应时间单元上所传输的信息进行HARQ反馈;
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈禁用状态,则对在所述CG资源对应时间单元上所传输的信息不进行HARQ反馈。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的无线资源控制RRC配置信息,其中所述配置信息中包括为所述终端设备配置的HARQ进程标识和/或所述HARQ进程标识的反馈使能信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从所述为所述终端设备配置的HARQ进程标识中,根据所述HARQ反馈周期确定不同时间单元上所述CG资源对应的HARQ进程标识。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    确定当前接收到的所述CG资源所在时间单元;
    基于所述时间单元和所述HARQ反馈周期,确定选取因子的取值;
    基于所述选取因子的取值,从所述为所述终端设备配置的HARQ进程标识中,确定不同时间单元上所述CG资源对应的HARQ进程标识。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    响应于所述选取因子的取值为设定值,确定所述时间单元为所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    响应于所述选取因子的取值非所述设定值,确定所述时间单元非所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源为下行CG资源,所述时间单元为当前接收到的所述CG资源所在时隙,基于所述时间单元确定第一参数;
    基于每帧连续时隙数和所述HARQ反馈周期,确定第二参数;
    获取所述第一参数和所述第二参数之间的余数,作为所述选取因子的取值。
  10. 根据权利要求6-8任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源为上行CG资源,所述时间单元为当前接收到的所述CG资源所在符号,获取所述时间单元和所述反馈周期之间的余数,作为所述选取因子的取值。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于为所述终端设备的CG资源未配置HARQ进程标识,每间隔设定时长向网络设备上报一次HARQ反馈。
  12. 根据权利要求1-8任一项所述的方法,其特征在于,所述HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
  13. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源未配置所述HARQ反馈周期,基于所述CG资源的周期及其他RRC参数,确定所述CG资源对应的HARQ进程标识。
  14. 一种CG资源的HARQ反馈方法,其特征在于,由网络设备执行,所述方法包括:
    配置CG资源对应的混合自动重传请求HARQ反馈周期;
    根据所述HARQ反馈周期,确定是否接收终端设备对在所述CG资源上所传输的信息的HARQ反馈。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述HARQ反馈周期,确定不同时隙上所述CG资源对应的HARQ进程标识;
    基于所述HARQ进程标识的反馈使能信息,确定是否接收终端设备对在所述CG资源对应时间单元上所传输的信息的HARQ反馈。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈使能状态,则基于所述HARQ进程标识所标识的HARQ进程上,接收所述终端设备在所述CG资源对应时间单元上所传输的信息的HARQ反馈;
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈禁用状态,则无法接收在所述CG资源对应时间单元上所传输的信息的HARQ反馈。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向终端设备发送无线资源控制RRC配置信息,其中所述配置信息中为所述终端设备配置HARQ进程标识和/或所述HARQ进程标识的反馈使能信息。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    从所述为所述终端设备配置的HARQ进程标识中,根据所述HARQ反馈周期确定不同时间单元上所述CG资源对应的HARQ进程标识。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    确定当前发送的所述CG资源所在时间单元;
    基于所述时间单元和所述HARQ反馈周期,确定选取因子的取值;
    基于所述选取因子的取值,从所述为所述终端设备配置的HARQ进程标识中,确定不同时间单元上所述CG资源对应的HARQ进程标识。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    响应于所述选取因子的取值为设定值,确定所述时间单元为所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    响应于所述选取因子的取值非所述设定值,确定所述时间单元非所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源为下行CG资源,所述时间单元为当前发送的所述CG资源所在时隙,基于所述时间单元确定第一参数;
    基于每帧连续时隙数和所述HARQ反馈周期,确定第二参数;
    获取所述第一参数和所述第二参数之间的余数,作为所述选取因子的取值。
  23. 根据权利要求19-21任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源为上行CG资源,所述时间单元为当前发送到的所述CG资源所在符号,获取所述时间单元和所述反馈周期之间的余数,作为所述选取因子的取值。
  24. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    响应于为所述终端设备的CG资源未配置HARQ进程标识,每间隔设定时长接收终端设备上报一次HARQ反馈。
  25. 根据权利要求14-21任一项所述的方法,其特征在于,所述HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
  26. 根据权利要求14-21任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述CG资源未配置所述HARQ反馈周期,基于所述CG资源的周期及其他RRC参数,确定所述CG资源对应的HARQ进程标识。
  27. 一种通信装置,其特征在于,包括:
    处理模块,用于确定配置授权CG资源对应的混合自动重传请求HARQ反馈周期,并根据所述HARQ反馈周期,确定是否对在所述CG资源上所传输的信息进行HARQ反馈。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块,还用于:
    响应于为所述终端设备配置有HARQ进程标识,根据所述HARQ反馈周期,确定不同时间单元上所述CG资源对应的HARQ进程标识;
    基于所述HARQ进程标识的反馈使能信息,确定是否对在所述CG资源对应时间单元上所传输的信息进行HARQ反馈。
  29. 根据权利要求28所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈使能状态,则在所述HARQ进程标识所标识的HARQ进程上,对在所述CG资源对应时间单元上所传输的信息进行HARQ反馈;
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈禁用状态,则对在所述CG资源对应时间单元上所传输的信息不进行HARQ反馈。
  30. 根据权利要求28所述的装置,其特征在于,还包括,收发模块,用于:
    接收网络设备发送的无线资源控制RRC配置信息,其中所述配置信息中包括为所述终端设备配置的HARQ进程标识和/或所述HARQ进程标识的反馈使能信息。
  31. 根据权利要求30所述的装置,其特征在于,所述处理模块,还用于:
    从所述为所述终端设备配置的HARQ进程标识中,根据所述HARQ反馈周期确定不同时间单元上所述CG资源对应的HARQ进程标识。
  32. 根据权利要求31所述的装置,其特征在于,所述处理模块,还用于:
    确定当前接收到的所述CG资源所在时间单元;
    基于所述时间单元和所述HARQ反馈周期,确定选取因子的取值;
    基于所述选取因子的取值,从所述为所述终端设备配置的HARQ进程标识中,确定不同时间单元上所述CG资源对应的HARQ进程标识。
  33. 根据权利要求32所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述选取因子的取值为设定值,确定所述时间单元为所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
  34. 根据权利要求32所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述选取因子的取值非所述设定值,确定所述时间单元非所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
  35. 根据权利要求32-34任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源为下行CG资源,所述时间单元为当前接收到的所述CG资源所在时隙,基于所述时间单元确定第一参数;
    基于每帧连续时隙数和所述HARQ反馈周期,确定第二参数;
    获取所述第一参数和所述第二参数之间的余数,作为所述选取因子的取值。
  36. 根据权利要求32-34任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源为上行CG资源,所述时间单元为当前接收到的所述CG资源所在符号,获取所述时间单元和所述反馈周期之间的余数,作为所述选取因子的取值。
  37. 根据权利要求27所述的装置,其特征在于,所述处理模块,还用于:
    响应于为所述终端设备的CG资源未配置HARQ进程标识,每间隔设定时长向网络设备上报一次HARQ反馈。
  38. 根据权利要求27-34任一项所述的装置,其特征在于,所述HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
  39. 根据权利要求27-34任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源未配置所述HARQ反馈周期,基于所述CG资源的周期及其他RRC参数,确定所述CG资源对应的HARQ进程标识。
  40. 一种通信装置,其特征在于,包括:
    处理模块,用于配置CG资源对应的混合自动重传请求HARQ反馈周期,并根据所述HARQ反馈周期,确定是否接收终端设备对在所述CG资源上所传输的信息的HARQ反馈。
  41. 根据权利要求40所述的装置,其特征在于,所述处理模块,还用于:
    根据所述HARQ反馈周期,确定不同时隙上所述CG资源对应的HARQ进程标识;
    基于所述HARQ进程标识的反馈使能信息,确定是否接收终端设备对在所述CG资源对应时间单元上所传输的信息的HARQ反馈。
  42. 根据权利要求41所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈使能状态,则基于所述HARQ进程标识所标识的HARQ进程上,接收所述终端设备在所述CG资源对应时间单元上所传输的信息的HARQ反馈;
    响应于所述反馈使能信息指示所述HARQ进程标识处于反馈禁用状态,则无法接收在所述CG资源对应时间单元上所传输的信息的HARQ反馈。
  43. 根据权利要求41所述的装置,其特征在于,还包括,收发模块,用于:
    向终端设备发送无线资源控制RRC配置信息,其中所述配置信息中为所述终端设备配置HARQ 进程标识和/或所述HARQ进程标识的反馈使能信息。
  44. 根据权利要求43所述的装置,其特征在于,所述处理模块,还用于:
    从所述为所述终端设备配置的HARQ进程标识中,根据所述HARQ反馈周期确定不同时间单元上所述CG资源对应的HARQ进程标识。
  45. 根据权利要求44所述的装置,其特征在于,所述处理模块,还用于:
    确定当前发送的所述CG资源所在时间单元;
    基于所述时间单元和所述HARQ反馈周期,确定选取因子的取值;
    基于所述选取因子的取值,从所述为所述终端设备配置的HARQ进程标识中,确定不同时间单元上所述CG资源对应的HARQ进程标识。
  46. 根据权利要求45所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述选取因子的取值为设定值,确定所述时间单元为所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈使能状态的第一HARQ进程标识。
  47. 根据权利要求45所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述选取因子的取值非所述设定值,确定所述时间单元非所述HARQ反馈周期的整数倍,从所述为所述终端设备配置的HARQ进程标识中,确定所述时间单元对应的所述HARQ进程标识为处于反馈禁用状态的第二HARQ进程标识。
  48. 根据权利要求45-47任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源为下行CG资源,所述时间单元为当前发送的所述CG资源所在时隙,基于所述时间单元确定第一参数;
    基于每帧连续时隙数和所述HARQ反馈周期,确定第二参数;
    获取所述第一参数和所述第二参数之间的余数,作为所述选取因子的取值。
  49. 根据权利要求45-47任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源为上行CG资源,所述时间单元为当前发送到的所述CG资源所在符号,获取所述时间单元和所述反馈周期之间的余数,作为所述选取因子的取值。
  50. 根据权利要求40所述的装置,其特征在于,所述处理模块,还用于:
    响应于为所述终端设备的CG资源未配置HARQ进程标识,每间隔设定时长接收终端设备上报一次HARQ反馈。
  51. 根据权利要求40-47任一项所述的装置,其特征在于,所述HARQ反馈周期为处于反馈使能状态的同一HARQ进程标识对应HARQ进程相邻两次被CG资源使用的时间间隔。
  52. 根据权利要求40-47任一项所述的装置,其特征在于,所述处理模块,还用于:
    响应于所述CG资源未配置所述HARQ反馈周期,基于所述CG资源的周期及其他RRC参数,确定所述CG资源对应的HARQ进程标识。
  53. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~13中任一项所述的方法。
  54. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程 序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求14~23中任一项所述的方法。
  55. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1~13中任一项所述的方法。
  56. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求14~23中任一项所述的方法。
  57. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~13中任一项所述的方法被实现。
  58. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求14~23中任一项所述的方法被实现。
PCT/CN2021/121922 2021-09-29 2021-09-29 一种cg资源的harq反馈的方法及其装置 WO2023050212A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002921.XA CN114051763A (zh) 2021-09-29 2021-09-29 一种cg资源的harq反馈的方法及其装置
PCT/CN2021/121922 WO2023050212A1 (zh) 2021-09-29 2021-09-29 一种cg资源的harq反馈的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121922 WO2023050212A1 (zh) 2021-09-29 2021-09-29 一种cg资源的harq反馈的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023050212A1 true WO2023050212A1 (zh) 2023-04-06

Family

ID=80213645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121922 WO2023050212A1 (zh) 2021-09-29 2021-09-29 一种cg资源的harq反馈的方法及其装置

Country Status (2)

Country Link
CN (1) CN114051763A (zh)
WO (1) WO2023050212A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187416A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 通信方法、装置及***
WO2021168833A1 (zh) * 2020-02-28 2021-09-02 Oppo广东移动通信有限公司 数据传输方法、装置及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187416A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 通信方法、装置及***
WO2021168833A1 (zh) * 2020-02-28 2021-09-02 Oppo广东移动通信有限公司 数据传输方法、装置及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion of HARQ feedback for NTN", 3GPP TSG-RAN WG2 #111E ELECTRONIC, R2-2007428, 7 August 2020 (2020-08-07), XP051912173 *
ERICSSON: "Configured scheduling for NTN", 3GPP TSG-RAN WG2 #107, R2-1910804, 15 August 2019 (2019-08-15), XP051768571 *

Also Published As

Publication number Publication date
CN114051763A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
WO2022213295A1 (zh) 一种跳频方法及装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
WO2023044808A1 (zh) Mbs业务中sps对应hpn的确定方法及其装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023065251A1 (zh) 混合自动重传请求harq进程分配方法及装置
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2023044811A1 (zh) 应用于组播调度mbs的半持续调度sps传输指示方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置
WO2023050211A1 (zh) 一种混合自动重传请求进程号的确定方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2022217448A1 (zh) 一种上行控制信息的复用方法及其装置
WO2023050061A1 (zh) 一种确定tb的起始传输位置的方法及其装置
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2023151047A1 (zh) 一种终端设备调度方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE