WO2022239710A1 - 即席フライ麺の製造方法及び即席フライ麺 - Google Patents

即席フライ麺の製造方法及び即席フライ麺 Download PDF

Info

Publication number
WO2022239710A1
WO2022239710A1 PCT/JP2022/019603 JP2022019603W WO2022239710A1 WO 2022239710 A1 WO2022239710 A1 WO 2022239710A1 JP 2022019603 W JP2022019603 W JP 2022019603W WO 2022239710 A1 WO2022239710 A1 WO 2022239710A1
Authority
WO
WIPO (PCT)
Prior art keywords
noodle strings
noodle
noodles
fried noodles
raw
Prior art date
Application number
PCT/JP2022/019603
Other languages
English (en)
French (fr)
Inventor
嘉昭 永山
Original Assignee
サンヨー食品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンヨー食品株式会社 filed Critical サンヨー食品株式会社
Priority to EP22807412.6A priority Critical patent/EP4338597A1/en
Priority to KR1020237034859A priority patent/KR20230156120A/ko
Priority to CN202280034277.9A priority patent/CN117337139A/zh
Priority to CA3218717A priority patent/CA3218717A1/en
Priority to JP2022565824A priority patent/JP7267513B2/ja
Publication of WO2022239710A1 publication Critical patent/WO2022239710A1/ja
Priority to JP2023068708A priority patent/JP2023084137A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/109Types of pasta, e.g. macaroni or noodles
    • A23L7/113Parboiled or instant pasta
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/11General methods of cooking foods, e.g. by roasting or frying using oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/109Types of pasta, e.g. macaroni or noodles
    • A23L7/111Semi-moist pasta, i.e. containing about 20% of moist; Moist packaged or frozen pasta; Pasta fried or pre-fried in a non-aqueous frying medium, e.g. oil; Packaged pasta to be cooked directly in the package
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/15Inorganic Compounds
    • A23V2250/156Mineral combination
    • A23V2250/1578Calcium
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment

Definitions

  • This disclosure relates to a method for producing instant fried noodles and instant fried noodles.
  • Instant noodles are generally classified into fried noodles (fried noodles) and non-fried noodles (non-fried noodles).
  • instant noodles are produced by kneading wheat flour, which is the main raw material, with auxiliary raw materials in a mixer or the like to obtain a dough, producing noodle strings from the dough, steaming the noodle strings, and steaming the noodle strings. including drying.
  • Fried noodles are obtained by drying noodle strings in heated oil.
  • Non-fried noodles are obtained by hot-air drying, microwave drying, freeze-drying, or cold-drying the noodle strings.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-121629 describes, "A process of adding water to a raw material containing wheat flour, starch, and polysaccharide thickener, kneading to obtain noodle dough, cutting out raw noodle strings, and ⁇ A method for producing fried instant noodles, which has a step of frying the raw noodle strings in oil without performing a hardening step.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2020-202771 describes, "A process of adding water to the main raw material, kneading to obtain noodle dough, cutting out raw noodle strings, and pregelatinizing the raw noodle strings.
  • a method for producing fried instant noodles comprising a step of attaching water to the raw noodle strings, subjecting them to an oil shower treatment, and then immersing them in oil to fry them.
  • JP 2018-121629 A Japanese Patent Application Laid-Open No. 2020-202771
  • the present disclosure provides a method for producing instant fried noodles that have a high degree of gelatinization and excellent taste and texture in a method for producing instant fried noodles that includes frying and drying raw noodle strings without steaming them. for the purpose.
  • the present inventor compared steam-pregelatinized noodle strings with fried-dried instant noodles, and found that the instant noodles, which were fried-dried without steaming the raw noodle strings, were powdery and insufficiently cooked. It was found that it exhibits a taste and texture like this.
  • the inventors of the present invention found that the instant noodles obtained by frying and drying the gelatinized noodle strings by steaming, compared to the instant noodles obtained by frying and drying the raw noodle strings without steaming, showed that the noodle strings swelled more during the frying and drying. It was also found to be less oily and less oily. Based on these findings, the present inventor considered that, when raw noodle strings are fried and dried without being steamed, suppressing swelling of the noodle strings during frying and drying is important for improving taste and texture.
  • raw noodle strings need not be steamed by using at least one calcium-containing material selected from the group consisting of calcined calcium and calcium hydroxide as one of the noodle ingredients.
  • the moisture contained in the raw noodle strings can be effectively used to increase the degree of gelatinization of instant fried noodles and to suppress swelling of the noodle strings.
  • the present inventors have found that as a result of suppressing the swelling of the noodle strings, the oil content of the instant fried noodles can be reduced, thereby further improving the taste.
  • the present invention includes the following aspects.
  • [Aspect 1] Obtaining a dough by kneading a noodle raw material containing a main raw material, at least one calcium-containing material selected from the group consisting of calcined calcium and calcium hydroxide, and water; A method of producing instant fried noodles, comprising: cutting raw noodle strings from said dough; and frying and drying said raw noodle strings without steaming said raw noodle strings.
  • Aspect 2 The method according to aspect 1, wherein the content of the calcium-containing material in the noodle raw material is 0.05 parts by mass to 0.5 parts by mass based on 100 parts by mass of the main raw material.
  • FIG. 1 is a photomicrograph of the surface of instant fried noodles of Example 1.
  • FIG. 2 is a micrograph of the surface of instant fried noodles of Comparative Example 1.
  • noodles in the present disclosure includes powder raw materials such as wheat flour and starch as main raw materials, is processed into a linear shape, boiled, boiled, fried, poured with hot water, heated as it is or with water and heated in a microwave oven.
  • Means food that becomes edible by cooking such as. Noodles include, for example, udon, kishimen, Chinese noodles, soba, and pasta. Examples of the state of noodles before cooking include raw noodles, semi-raw noodles, dried noodles, steamed noodles, boiled noodles, frozen noodles, and instant noodles.
  • “Instant fried noodles” in the present disclosure refer to noodles that are dried by deep-frying until the water content in the noodles reaches about 1% by mass to about 10% by mass, and are boiled in hot water or added with hot water at the time of eating. , or noodles cooked by pouring water and heating in a microwave oven.
  • the "cutting strength of instant fried noodles" in the present disclosure refers to the cross-sectional area of 1 mm 2 of noodle strings, which is measured one minute after the completion of rehydration in hot water for three minutes according to the procedure described in the Examples. means the cutting strength (mN/mm 2 ).
  • cross-sectional area of the noodle strip in the present disclosure means the area of the cross-sectional shape perpendicular to the length direction of the noodle strip.
  • a dough is obtained by kneading a noodle raw material containing a main raw material, at least one calcium-containing material selected from the group consisting of calcined calcium and calcium hydroxide, and water. cutting out the raw noodle strings from the dough; and frying and drying the raw noodle strings without steaming the raw noodle strings.
  • the calcium-containing material as one of the noodle ingredients
  • conventionally known processes in the technical field of instant fried noodles can be used without particular limitations.
  • the calcium-containing raw material can increase the moisture content of the dough while maintaining the noodle-making aptitude.
  • the moisture contained in the raw noodle strings can be effectively used, and the gelatinization of the noodle strings can be highly promoted only by frying and drying. Since the instant fried noodles of the present disclosure have a high degree of gelatinization, the powderiness and uncooked feeling when eating are eliminated.
  • swelling of the noodle strings is suppressed, the density of the noodle strings is high, and together with having a high degree of alpha conversion, the noodle strings are excellent in stiffness and texture.
  • noodle raw material for instant fried noodles conventionally known ingredients used for the production of instant fried noodles can be used without particular limitations. Specifically, for example, the main raw materials and auxiliary raw materials described in the "Introduction to New Instant Noodles" supervised by the Japan Instant Food Industry Association, published by Japan Shokuhin Shimbun (1998), paragraphs 52 to 62. can be used.
  • Main raw materials include, for example, cereal flour such as wheat flour, buckwheat flour, barley flour, and rice flour.
  • the main ingredient may also contain starch.
  • the main ingredient contains wheat flour.
  • the primary ingredient may further include starch.
  • wheat flour examples include ASW (Australian white intermediate wheat, about 10% protein) and HRW (American hard red wheat, about 11% protein).
  • optional starch examples include sweet potato starch, potato starch, tapioca starch, waxy corn starch, corn starch, and wheat starch.
  • Etherified modified starch, esterified modified starch, crosslinked modified starch, and oxidized modified starch obtained using these starches as raw materials can also be used.
  • Preferred starches are tapioca starch, potato starch, waxy corn starch, and modified etherified starch and modified esterified starch thereof.
  • Tapioca starch, potato starch, and waxy corn starch have a lower gelatinization initiation temperature than wheat flour and a large amount of water absorption, so they are easily gelatinized during frying and drying. Therefore, the degree of gelatinization of the noodle strings can be effectively increased.
  • modified etherified starch include hydroxypropyl starch.
  • Esterified modified starches include, for example, starch acetate, starch phosphate, and starch octenylsuccinate.
  • the starch may be crosslinked.
  • moderately crosslinked starch or highly crosslinked starch it tends to provide a chewier texture when eaten.
  • moderately crosslinked starch or highly crosslinked starch it is preferable to adjust other factors (eg, reduce the protein content of the flour).
  • the amount used varies depending on the thickness of the desired noodle strings, but is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the mass of the main raw material.
  • the amount of starch used may be small, and as the noodles become medium or thick noodles, the amount of starch used may be increased in order to ensure the ability to rehydrate with hot water when eating. preferable.
  • the amount of starch used By setting the amount of starch used to 1% by mass or more, it is possible to ensure reconstitution with hot water and texture at the time of eating.
  • the amount of starch used By setting the amount of starch used to 50% by mass or less, the stickiness of the noodle sheet during the production of instant fried noodles can be suppressed, and production efficiency can be enhanced.
  • the calcium-containing material is at least one selected from the group consisting of calcined calcium and calcium hydroxide.
  • calcined calcium refers to a material mainly composed of calcium oxide obtained by calcining lime, shells, eggshells, etc. as raw materials, and calcium phosphate obtained by calcining fish bones, whey, etc. as raw materials. are distinguished.
  • Calcium hydroxide may be added from the outside, or may be produced by hydrating calcined calcium with water in the noodle raw material.
  • calcined calcium is used to increase the elasticity of the noodle strings of fresh or dried noodles, or to replace brine.
  • calcined calcium is used in conventional instant fried noodles produced through steaming and frying processes, the surface of the noodle strings may be burnt (excessive browning) during the drying process due to the high pH of the calcined calcium.
  • the surface of the noodle strings is less likely to burn, and the appearance and taste of the noodle strings are at an unacceptable level as a product. The effects of the present disclosure can be obtained without doing so.
  • the amount of calcium-containing raw material to be used can be appropriately determined according to the pH of the starch and additives used.
  • the amount of the calcium-containing raw material used is 0.05 to 0.5 parts by mass, 0.08 to 0.4 parts by mass, or 0.1 to 0.1 parts by mass, based on 100 parts by mass of the main raw material. It can be 0.35 parts by mass.
  • the noodle raw material may further contain sub-raw materials.
  • Adjunct ingredients include, for example, brine, phosphate, salt, eggs, thermoset proteins, and gluten.
  • the secondary raw material may be mixed with the main raw material in the form of powder, or may be dissolved in water and mixed with the main raw material.
  • thermocoagulable protein By using heat-coagulable protein as an auxiliary ingredient, the oil content in instant fried noodles can be further reduced. Although not wishing to be bound by any theory, it is believed that the heat-coagulable protein gels or solidifies upon heating, thereby suppressing the penetration of oil into the instant fried noodles during the drying process.
  • the thermocoagulable protein may be powder-mixed with the main raw material, or may be dissolved in water and mixed with the main raw material.
  • the thermocoagulable protein is preferably in the form of powder that has been subjected to a treatment such as spray drying or freeze-pulverization drying.
  • heat-coagulable proteins examples include egg protein (egg white), soy protein, and whey protein concentrate.
  • egg protein egg white
  • soy protein soy protein
  • whey protein concentrate Preferred are egg protein (egg white) and whey protein concentrates, which can effectively reduce oil content due to their high gelling ability.
  • thermocoagulable protein is preferably water-soluble.
  • a water-soluble heat-coagulable protein such as egg protein (egg white)
  • the water content of the dough can be increased, and the gelatinization of the noodle strings can be further promoted.
  • thermocoagulable protein used is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass, based on 100 parts by mass of the main raw material.
  • the amount of water added to the main raw material and the optional auxiliary raw material is preferably 35 parts by mass to 45 parts by mass based on 100 mass of the main raw material, and more It is preferably 38 parts by mass to 43 parts by mass.
  • the water content can be kept at a high level while maintaining the noodle-making aptitude. As a result, the moisture contained in the raw noodle strings can be effectively used, and the gelatinization of the noodle strings can be highly promoted only by frying and drying.
  • Dough noodle dough
  • a mixing device such as a kneader or a planetary mixer.
  • a powdery auxiliary ingredient such as gluten may be premixed with the main ingredient. Salt, brine, etc. may be dissolved in water in advance.
  • the density of the dough may be increased by extruding the dough under reduced pressure using an extruder after kneading the noodle ingredients.
  • the dough extruded by the extruder may be formed into cylindrical, spherical, flat, or irregularly shaped nodules.
  • the extruder that can be used is not particularly limited as long as it can reduce the pressure inside the barrel into which the dough is put.
  • the extruder for example, the degassing device in the dough manufacturing apparatus described in JP-A-61-132132 can be preferably used.
  • Reduced-pressure extrusion can be performed by applying pressure to the dough in an extruder under a reduced pressure of 70 kPa to 101 kPa.
  • the hole diameter (maximum diameter) of the die attached to the extruder can be 20 mm to 50 mm.
  • the shape of the die hole is not particularly limited. Die hole shapes include, for example, circular, oval, triangular, and rectangular shapes.
  • the length of the nodules along the direction of extrusion can be, for example, 20 mm to 300 mm.
  • vacuum extrusion may directly extrude the noodle strips.
  • Raw noodle strings are cut out from the dough generally by processing the dough into a sheet having a thickness suitable for cutting out the noodle strings to form a noodle band, and cutting the obtained noodle band using a noodle band cutting device. Including cutting and slicing into raw noodle strings.
  • the dough is passed through rolling rolls to form a sheet-like coarse noodle strip, two or three coarse noodle strips are stacked by a multifunction machine, and passed through the next rolling roll to reduce the thickness to a predetermined thickness, thereby forming a noodle strip.
  • a noodle strip can be formed. Anything known as a compound machine and rolling rolls can be used.
  • the thickness of the noodle strip may be any thickness suitable for cutting raw noodle strings, and can be, for example, 0.5 mm to 10 mm.
  • Raw noodle strings can be formed by cutting the noodle strips using a noodle string cutting device.
  • a known noodle string cutting device can be used.
  • the cutting edge includes, for example, a round edge and a square edge.
  • the width of the raw noodle strings can be, for example, 1 mm to 10 mm.
  • the thickness of the raw noodle strings can be, for example, 0.5 mm to 10 mm.
  • the raw noodle strings are fried and dried without being steamed.
  • Fried tofu drying is generally performed by cutting raw noodle strings into unit amounts for eating, filling a retainer (basket) with the cut raw noodle strings, covering the retainer with a lid, and opening a retainer containing the raw noodle strings. It is done by immersion in heated oil. According to the present disclosure, fried tofu drying may be performed in a shorter time because there is no excess moisture attached or absorbed by the noodle strings during steaming.
  • oils used for frying and drying include palm oil, lard oil, rapeseed oil, sesame oil, and blends of two or more of these.
  • the temperature for drying fried tofu is preferably 140°C or higher, more preferably 145°C or higher, and even more preferably 148°C or higher.
  • the temperature for frying and drying is preferably 165°C or lower, more preferably 160°C or lower.
  • the raw noodle strings that are not steamed are deep-fried and dried, so that the main ingredients contained in the noodle ingredients are highly gelatinized at the same time as the raw noodle strings are dried. Therefore, by setting the temperature for frying and drying to a high temperature from the initial stage when the raw noodle strings contain a large amount of water, the gelatinization of the noodle strings can be efficiently promoted, and the frying and drying time can be shortened.
  • the time for performing fried tofu drying at a temperature lower than the preferred temperature range is preferably 10 seconds or less, preferably 5 seconds or less. In one embodiment, the time for frying to dry below 140° C. is 10 seconds or less, preferably 5 seconds or less.
  • Adhesion of water can be performed using a spray, a brush, or the like.
  • the amount of water attached is preferably 2 parts by mass to 8 parts by mass, more preferably 3 parts by mass to 6 parts by mass, based on 100 parts by mass of raw noodle strings.
  • the fried tofu drying is performed until the water content of the noodle strings is preferably 1% to 10% by mass, more preferably 2% to 5% by mass.
  • the oil content may be reduced by centrifugation or the like, or the instant fried noodles may be forcibly cooled using a fan, air compressor, or the like.
  • Instant fried noodles of one embodiment contain at least one calcium-containing material selected from the group consisting of calcined calcium and calcium hydroxide, have a degree of alpha conversion of 70% to 86%, and have an oil content of 18% to 28% by mass. % by mass.
  • the degree of alpha conversion in the present disclosure is determined by the second glucoamylase method using glucoamylase from Toyobo Co., Ltd. as an enzyme. Oil content is determined by the method described in the Examples.
  • the instant fried noodles have a degree of gelatinization of 70% or more, preferably 72% or more, and more preferably 75% or more.
  • the degree of gelatinization of the instant fried noodles is 86% or less, preferably 84% or less, more preferably 82% or less.
  • the instant fried noodles have a degree of gelatinization of 86% or less, it is possible to prevent the noodle strings from sticking excessively to each other and ensure that the noodle strings are loosened during eating.
  • the instant fried noodles have an oil content of 18% to 28% by mass.
  • the oil content of instant fried noodles is preferably 26% by mass or less, more preferably 25% by mass or less.
  • the arithmetic mean roughness Sa of the surface of the instant fried noodles of one embodiment is 2 ⁇ m to 5.3 ⁇ m.
  • the arithmetic mean roughness Sa is determined by the method described in Examples.
  • the instant fried noodles of this embodiment have a lower surface roughness than conventional instant fried noodles obtained by frying and drying raw noodle strings that have been gelatinized by steaming.
  • the reason why the surface roughness of the instant fried noodles of this embodiment is small is that the raw noodle strings are not steamed, so the surface of the noodle strings before being fried and dried.
  • the content of the calcium-containing material in the instant fried noodles of one embodiment is 0.057% by mass to 0.57% by mass.
  • the method for producing instant fried noodles and the instant fried noodles of the present disclosure can be used in various product forms, such as a stew type that is boiled in hot water, a cup type that pours hot water at the time of eating. Since excellent taste and texture can be obtained even with a small amount of heat, the method for producing instant fried noodles and the instant fried noodles of the present disclosure can be advantageously applied to a cup type in which hot water is added at the time of eating.
  • Comparative Example 1 and Comparative Example 2 The following tests were performed to compare conventional steamed instant fried noodles with non-steamed instant fried noodles. 8 kg of wheat flour (9.5 mass% protein), 2 kg of tapioca starch (DS 0.02), 30 g of salt, 10 g of sodium carbonate, and 30 g of phosphate, based on 100 parts by mass of the main ingredients (total of wheat flour and tapioca starch) , and 40 parts by mass of water were added, and the resulting mixture was kneaded to obtain a dough. The dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut out using a No. 18-maru cutting blade to obtain raw noodle strings with a noodle thickness of 1.5 mm.
  • Comparative Example 1 raw noodle strings were steamed for 3 minutes in a steamer set at a temperature of 100°C. In Comparative Example 2, the raw noodle strings were not steamed.
  • the steamed noodle strings (Comparative Example 1) or raw noodle strings (Comparative Example 2) were cut to 30 cm to obtain 110 g of noodle strings.
  • steamed noodle strings were sprayed with 50 mL of 3% by mass salt water, filled in a mold with an upper surface of 121 mm ⁇ 136 mm, a lower surface of 109 mm ⁇ 124 mm, and a height of 29 mm, covered, and heated to 150 ° C.
  • Instant fried noodles with a water content of about 2% by mass were obtained by frying and drying with palm oil for about 2 minutes.
  • Comparative Example 2 the raw noodle strings were directly filled into the same mold as in Comparative Example 1, covered, and fried in palm oil at 150° C. for about 1 minute to dry the instant noodles with a moisture content of about 2% by mass. Got the fried noodles.
  • ⁇ Degree of alpha> The degree of alpha conversion of instant fried noodles was determined by the second glucoamylase method using glucoamylase from Toyobo Co., Ltd. as an enzyme. The measurement conditions conformed to "Gelatinization (alpha) degree” ( http://www.jfrl.or.jp/item/nutrition/post-35.html ) of Japan Food Research Laboratories.
  • the oil content of instant fried noodles was determined by the following procedure. 5 g of the ground and homogenized instant fried noodles were weighed, and oil was extracted with diethyl ether using a Soxhlet extractor. The oil content was determined from the difference in mass before and after extraction.
  • ⁇ Taste and texture ⁇ 90 g of instant fried noodles were placed in an expanded polystyrene (PSP) cup, 530 mL of hot water at 100° C. was poured into the PSP cup, quickly covered with aluminum foil and left for 3 minutes to reconstitute with hot water. Time was measured using a stopwatch (trade name: Seiko Stopwatch S052, Seiko S-yard Co., Ltd.). After measuring for exactly 3 minutes, the clumps of the noodle strings were quickly loosened, and the taste and texture were evaluated.
  • PSP expanded polystyrene
  • Table 1 shows the evaluation results of the degree of gelatinization, oil content, swollen state of noodle strings, and taste and texture of the instant fried noodles of Comparative Examples 1 and 2.
  • ⁇ Cross-sectional area of noodle strings> The cross-sectional area of the noodle strips of the instant fried noodles of Comparative Examples 1 and 2 was determined from the image of the noodle strip cross-section taken at a magnification of 100 using a digital microscope (trade name VHX-7000, Keyence Corporation). . About 20 points of the circumference of the noodle strip were plotted on the image of the cross section of the noodle strip, and the cross-sectional area was automatically calculated by the software attached to the digital microscope. Five noodle strings were taken as samples from the instant fried noodles (sample a to sample e), and the average value of the five samples was taken as the cross-sectional area of the noodle strings.
  • Table 2 shows the cross-sectional areas of the noodle strings of the instant fried noodles of Comparative Examples 1 and 2.
  • the noodle strings would swell more when they were fried and dried if they were not steamed. Based on the average cross-sectional area of the noodle strings, the swelling degree of Comparative Example 1 was 78% when the swelling degree of Comparative Example 2 was 100%. Excessive puffing of the noodle strings is believed to provide a less dense (chewy) texture.
  • Example 1 and Comparative Example 3 The effects of calcined calcium were confirmed by the following tests.
  • 20 g of calcined calcium was added to 8 kg of wheat flour (9.5 mass% protein), 2 kg of tapioca starch (DS 0.02), 30 g of salt, 10 g of sodium carbonate, and 30 g of phosphate.
  • a mixture obtained by adding 41 parts by mass of water to 100 parts by mass of the main raw material (total of wheat flour and tapioca starch) was kneaded to obtain a dough.
  • the dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut out using a No. 18-maru cutting blade to obtain raw noodle strings with a noodle thickness of 1.5 mm.
  • the raw noodle strings were cut to 30 cm to obtain 110 g of raw noodle strings.
  • the raw noodle strings were directly filled into the same mold as in Comparative Example 1, covered, and fried in palm oil at 155° C. for 1 minute to obtain instant fried noodles having a moisture content of about 2% by mass.
  • Table 3 shows the evaluation results of the degree of gelatinization, oil content, noodle-making suitability, swollen state of noodle strings, and taste and texture of the instant fried noodles of Example 1 and Comparative Example 3.
  • DSC Differential scanning calorimetry
  • Table 4 shows the results of DSC measurement.
  • Comparative example 4 Instant fried noodles of Comparative Example 4 were obtained by reducing the amount of water added in Comparative Example 3 to 38 parts by mass based on 100 parts by mass of the main raw material so that the noodle-making aptitude was equivalent to that of Example 1.
  • Table 5 shows the evaluation results of the degree of gelatinization, oil content, noodle-making aptitude, swollen state of noodle strings, and taste and texture of the instant fried noodles of Example 1 and Comparative Example 4.
  • ⁇ Cutting load> The cutting strength of the noodle strings after rehydration with hot water in Example 1 and Comparative Example 4 was measured. 90 g of instant fried noodles were placed in an expanded polystyrene cup (PSP), 530 mL of hot water at 100° C. was poured into the PSP cup, quickly covered with aluminum foil and left for 3 minutes. After removing the lid, the noodles were loosened using disposable chopsticks to complete rehydration.
  • PSP expanded polystyrene cup
  • the hot water was quickly separated from the noodle strings when 1, 3, or 5 minutes had passed after the hot water reconstitution was completed.
  • Two noodle strings were placed on a plate of a rheometer (trade name: NRM-2010-CW, Fudo Kogyo Co., Ltd.), and 10 seconds after the hot water was separated from the noodle strings, a plate with a diameter of 0.27 mm was placed at a table speed of 2 cm / min.
  • the piano wire was pressed against the noodle strings and cut. A load was measured when the noodle strings were completely cut. The cutting load was obtained by dividing the measured value by 2.
  • Table 6 shows the cutting load results.
  • Table 7 shows the cross-sectional areas of the noodle strings of the instant fried noodles of Example 1, Comparative Examples 3 and 4.
  • Cutting strength was calculated from the cutting load (gf) and cross-sectional area (mm 2 ) of the noodle strings.
  • Table 8 shows the cutting strength of the noodle strings of the instant fried noodles of Example 1 and Comparative Example 4.
  • Table 9 shows the compressive strength of the noodle strings of the instant fried noodles of Example 1, Comparative Examples 3 and 4.
  • Table 10 shows the evaluation results of the degree of gelatinization, oil content, appearance of noodle strings, aptitude for making noodles, and taste and texture of the instant fried noodles of Examples 2 to 5.
  • Table 11 shows the cross-sectional area of the noodle strings of the instant fried noodles of Examples 2 to 5 together with that of Comparative Example 3.
  • Example 6 to 11 Instant fried noodles were obtained in the same manner as in Example 1, except that the temperature and time for drying tofu were changed as shown in Table 12.
  • Table 12 shows the evaluation results of the degree of gelatinization, oil content, and taste and texture of the instant fried noodles of Examples 6 to 11.
  • Examples 12 to 14 Instant fried noodles were obtained in the same manner as in Example 1, except that the conditions for drying the fried tofu were changed as shown in Table 13.
  • Table 13 shows the evaluation results of the degree of alpha conversion, oil content, swollen state of noodle strings, and taste and texture of the instant fried noodles of Examples 12 to 14.
  • Example 15 The effect of vacuum extrusion was confirmed by the following tests.
  • Instant fried noodles were obtained in the same manner as in Example 1, except that the noodle ingredients were kneaded and then extruded under reduced pressure using an extruder to obtain small lumps of dough. Specifically, pressure is applied to the dough while the inside of the extruder is reduced to a vacuum of 86 kPa, and the cylindrical extrudate extruded through a die having a circular hole with a diameter of 80 mm is intermittently cut. to form small lumps with a length of about 50 mm. The resulting small mass was rolled to form a noodle strip, and the resulting noodle strip was cut using a No. 18-round cutting blade to obtain raw noodle strings with a noodle thickness of 1.5 mm.
  • Table 14 shows the evaluation results of the oil content, the cross-sectional area of the noodle strings, and the taste and texture of the instant fried noodles of Example 15 together with those of Example 1.
  • thermocoagulable protein 9 kg of wheat flour (protein 10.5% by mass), 1 kg of raw potato starch, 20 g of calcined calcium, 30 g of salt, 10 g of brine (sodium carbonate), and egg protein (Examples 17 and 18 only) were mixed with the same noodle-making aptitude.
  • the dough was obtained by adjusting the water content and kneading so that The dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut out using a No. 24 cutting blade to obtain raw noodle strings with a noodle thickness of 1.15 mm.
  • Example 16 no egg protein was added, and the amount of water added was 39 parts by mass based on 100 parts by mass of the main raw material (wheat flour and raw potato starch). In Example 17, 50 g of egg protein was added, and the amount of water added was 40 parts by mass based on 100 parts by mass of the main ingredient. In Example 18, 100 g of egg protein was added, and the amount of water added was 41 parts by mass based on 100 parts by mass of the main ingredient.
  • the raw noodle strings were cut to 30 cm to obtain 85 g of raw noodle strings.
  • the raw noodle strings are directly filled into a cylindrical mold with an upper surface diameter of 95 mm, a lower surface diameter of 74 mm, and a height of 68 mm. % by mass of instant fried noodles were obtained.
  • the instant fried noodles were thin noodles suitable for pork bone ramen.
  • Example 16 to 18 The taste and texture of Examples 16 to 18 were evaluated by the following procedure. 70 g of instant fried noodles were placed in a paper container, then 430 mL of hot water at 100° C. was poured, quickly covered with aluminum foil and left for 2 minutes. After exactly measuring for 2 minutes, the clumps of the noodle strings were quickly loosened, and the taste and texture were evaluated.
  • Table 15 shows the evaluation results of the degree of alphaization, oil content, cross-sectional area of noodle strings, and taste and texture of the instant fried noodles of Examples 16 to 18.
  • thermocoagulable protein By adding water-soluble thermocoagulable protein, the oil content could be further reduced.
  • thermocoagulable protein By adding a water-soluble thermocoagulable protein, it was possible to increase the water content and further increase the degree of alpha conversion.
  • Example 19 and Comparative Examples 5-7 Instant fried noodles were obtained in the same manner as in Example 1, except that the ingredients listed in Table 16 were used in place of the calcined calcium and the water content was changed to make the noodle-making suitability equivalent.
  • Table 17 shows the cross-sectional areas of the noodle strings of Example 19 and Comparative Examples 5-7.
  • Calcium hydroxide like calcined calcium, was able to suppress swelling of the noodle strings, and was able to increase the water content while maintaining the aptitude for noodle making. Calcium lactate and calcined fish bone calcium (calcium phosphate) could not suppress swelling of noodle strings and could not increase the water content.
  • Comparative example 8 Instant fried noodles were obtained in the same manner as in Example 1, except that no calcined calcium was used and the amount of brine was increased. Specifically, 10 g of sodium carbonate was replaced with 50 g of potassium carbonate, and the amount of water added was changed to 40 parts by mass based on 100 parts by mass of the main raw material.
  • Table 18 shows the cross-sectional area of the noodle strings of Comparative Example 8.
  • Example 20 and 21 Instant frying was performed in the same manner as in Example 1, except that after filling the mold with raw noodle strings, 2 g (Example 20) or 4 g (Example 21) of water was sprayed onto the mass of raw noodle strings. got the noodles In Examples 20 and 21, the noodle strings adhered to each other, and the strength of the mass of instant fried noodles was improved.
  • Table 19 shows the arithmetic mean surface roughness Sa of the instant fried noodles of Comparative Example 1, Example 1, Example 20 and Example 21.
  • the surfaces of the instant fried noodles of Examples 1, 20, and 21 had a smaller arithmetic mean roughness Sa than the steamed Comparative Example 1, that is, they were smoother.
  • FIGS. 1 and 2 Microscopic photographs of the surfaces of the instant fried noodles of Example 1 and Comparative Example 1 are shown in FIGS. 1 and 2, respectively.
  • the imaging conditions were as follows. Apparatus: Digital microscope (trade name VHX-7000, Keyence Corporation) Magnification: 500x Mode: Opt-SEM
  • Example 1 the shape of the starch granules remained and the surface was relatively smooth. The fact that the shape of the starch granules remained suggests that the gelatinization of the starch granules on the surface of the noodle strings did not proceed because the steaming was not performed. On the other hand, in Comparative Example 1, in which the raw noodle strings were steamed before frying, the shape of the starch granules was almost lost, and it was observed that the surface was roughened during the drying of the frying to form larger irregularities.
  • Example 22 7 kg of wheat flour (10.5% by mass protein), 3 kg of tapioca starch (DS 0.08), 40 g of calcined calcium, 50 g of salt, 10 g of sodium carbonate, and 30 g of phosphate, and 100 mass of main ingredients (total of wheat flour and tapioca starch)
  • the mixture obtained by adding 42 parts by mass of water based on the part by mass was kneaded to obtain a dough.
  • the dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut using a No. 18 cutting edge to obtain raw noodle strings with a noodle thickness of 1.32 mm.
  • the raw noodle strings were cut to 30 cm to obtain 85 g of raw noodle strings.
  • the raw noodle strings were directly filled into the same mold as in Example 16, covered, and fried in palm oil at 150° C. for 1 minute to obtain instant fried noodles having a water content of about 2% by mass. This instant fried noodle was suitable for miso ramen.
  • Example 23 6.5 kg of wheat flour (protein 9.5% by mass), 0.5 kg of raw potato starch, 3 kg of buckwheat flour, 15 g of calcined calcium, 30 g of phosphate, and 50 g of egg white powder, the main ingredients (wheat flour, buckwheat flour and raw potato starch) A mixture obtained by adding 43 parts by mass of water to 100 parts by mass of the total of the above) was kneaded to obtain a dough. The dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut using a No. 20 square cutting blade to obtain raw noodle strings with a noodle thickness of 0.90 mm.
  • the raw noodle strings were cut to 30 cm to obtain 85 g of raw noodle strings.
  • the raw noodle strings were directly filled into the same mold as in Example 16, covered, and fried in palm oil at 150° C. for 1 minute to dry to obtain instant fried noodles with a water content of about 2% by mass. .
  • Example 22 and 23 were evaluated by the following procedure. Put 70 g of instant fried noodles or instant fried noodles in a paper container, then pour 430 mL of hot water at 100 ° C., quickly cover with aluminum foil, and leave for 5 minutes for Example 22 and 3 minutes for Example 23. did. After that, the clumps of noodle strings were quickly loosened, and the taste and texture were evaluated. Both the instant fried noodles of Example 22 and the instant fried noodles of Example 23 had a cooked feeling after rehydration with hot water, and had good chewy taste and texture.
  • Example 24 Wheat flour (11.5 mass% protein) 4 kg, buckwheat flour 3 kg, potato starch 2 kg, tapioca starch (DS 0.02) 1 kg, calcined calcium 10 g, salt 50 g, and phosphate 15 g, main ingredients (wheat flour, buckwheat flour, A mixture obtained by adding 45 parts by mass of water to 100 parts by mass of potato starch and tapioca starch in total was kneaded to obtain a dough. The dough was rolled by a conventional method to form a noodle strip, and the resulting noodle strip was cut using a No. 20 square cutting blade to obtain raw noodle strings with a noodle thickness of 1.1 mm.
  • the raw noodle strings were cut to 30 cm to obtain 70 g of raw noodle strings.
  • the raw noodle strings are filled in a cylindrical mold with an upper surface diameter of 87 mm, a lower surface diameter of 72 mm, and a height of 66.5 mm, covered with a lid, and fried in palm oil at 158 ° C. for about 1 minute.
  • Instant fried soba noodles with a content of about 2% by mass were obtained.
  • Example 24 The taste and texture of Example 24 were evaluated by the following procedures. 60 g of instant fried noodles were placed in a paper container, then 320 mL of hot water at 100° C. was poured, quickly covered with aluminum foil and left for 3 minutes. After that, the clumps of noodle strings were quickly loosened, and the taste and texture were evaluated. The fried instant buckwheat noodles of Example 24 had a cooked feeling after being reconstituted with hot water, and had a chewy and good taste and texture.
  • the method for producing instant fried noodles and the instant fried noodles of the present disclosure can be suitably used for instant foods such as instant ramen noodles, instant fried noodles, instant soba noodles, and instant udon noodles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Noodles (AREA)

Abstract

生麺線を蒸煮せずに油揚げ乾燥することを含む即席フライ麺の製造方法において、高いα化度を有しており食味食感に優れる即席フライ麺を製造する方法を提供する。主原料と、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料と、水とを含む麺原料を混練してドウを得ること、ドウから生麺線を切り出すこと、及び生麺線を蒸煮せずに生麺線を油揚げ乾燥することを含む、即席フライ麺を製造する方法。

Description

即席フライ麺の製造方法及び即席フライ麺
 本開示は、即席フライ麺の製造方法及び即席フライ麺に関する。
 近年、本格的な即席麺が消費者に求められている。例えば、即席ラーメンにおいては、保管時及び調理時の簡便性だけではなく、喫食時により本格的な食感、見た目などを提供することが望まれている。更に、持続可能な開発目標(Sustainable Development Goals, SDGs)等の環境問題に係る課題に対処するため、企業は即席麺の製造工程をより一層省エネルギー化するための努力を続けている。
 即席麺は、一般に油揚げ麺(フライ麺)と非油揚げ麺(ノンフライ麺)に分類される。即席麺の製造方法は、一般に主原料である小麦粉と副原料とをミキサー等で混捏してドウを得ること、ドウから麺線を製造すること、麺線を蒸煮すること、蒸煮された麺線を乾燥することを含む。油揚げ麺は、麺線を加熱した油中で乾燥することにより得られる。非油揚げ麺は、麺線を熱風乾燥、マイクロ波乾燥、フリーズドライ、又は寒干し乾燥することにより得られる。
 麺線を蒸煮せず、すなわち生麺線の状態で油揚げ乾燥を行う方法も知られている。
 特許文献1(特開2018-121629号公報)は、「小麦粉および澱粉、ならびに増粘多糖類を含む原料に水を加え、混練して麺生地を得て、生麺線を切り出す工程と、α化する工程を行うことなく前記生麺線を油で揚げる工程とを有する、油揚げ即席麺の製造方法」を記載している。
 特許文献2(特開2020-202771号公報)は、「主原料に水を加え、混練して麺生地を得て、生麺線を切り出す工程と、前記生麺線をα化することなく、前記生麺線に水を付着させ、油シャワー処理を行った後、油に浸漬して油揚げする工程とを有する、油揚げ即席麺の製造方法」を記載している。
特開2018-121629号公報 特開2020-202771号公報
 特許文献1及び2に記載の方法では、生麺線をα化せずに油揚げ工程で乾燥する。そのため、通常の即席麺の製造で用いる蒸機を必要とせずに、低エネルギーで油揚げ即席麺を製造することができる。
 しかし、これらの方法により生麺線をα化せずに、すなわち蒸煮せずに油揚げ乾燥すると、油揚げ即席麺の主原料である小麦粉のα化度が不足して、食味食感が所望の水準を満たさない場合がある。主原料の一つとして澱粉を添加することにより、油揚げ麺の全体としてのα化度を高めることはできるが、小麦粉のα化度が不十分であることは、油揚げ即席麺の食味食感に有意に影響する。
 特許文献2に記載の油シャワー処理では、液滴となった油と空気が絶えず接触するため油が劣化しやすい。そのため、劣化した油が油揚げ即席麺に残留して風味に悪影響を与える場合があり、油シャワー処理における油の使用量を低減することも難しい。
 本開示は、生麺線を蒸煮せずに油揚げ乾燥することを含む即席フライ麺の製造方法において、高いα化度を有しており食味食感に優れる即席フライ麺を製造する方法を提供することを目的とする。
 本発明者は、蒸煮によりα化した麺線を油揚げ乾燥した即席麺と比較して、生麺線を蒸煮せずに油揚げ乾燥した即席麺は、粉っぽく、調理が不十分であるかのような食味食感を呈することを見出した。また、本発明者は、生麺線を蒸煮せずに油揚げ乾燥した即席麺と比較して、蒸煮によりα化した麺線を油揚げ乾燥した即席麺では、油揚げ乾燥時の麺線の膨化がより抑制されており、油分もより少ないことも見出した。これらの知見から、本発明者は、生麺線を蒸煮せずに油揚げ乾燥する場合に、油揚げ乾燥時の麺線の膨化を抑制することが食味食感の改善に重要であると考えた。
 本発明者は、鋭意研究の結果、麺原料の一つとして、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料を使用することで、生麺線を蒸煮しなくても、生麺線に含まれる水分を効果的に利用して即席フライ麺のα化度を高め、かつ麺線の膨化を抑制することができることを見出した。また、麺線の膨化が抑制される結果、即席フライ麺の油分を低減することができ、これにより食味が更に改善されることも見出した。
 本発明は、以下の態様を包含する。
[態様1]
 主原料と、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料と、水とを含む麺原料を混練してドウを得ること、
 前記ドウから生麺線を切り出すこと、及び
 前記生麺線を蒸煮せずに前記生麺線を油揚げ乾燥すること
を含む、即席フライ麺を製造する方法。
[態様2]
 前記麺原料中の前記カルシウム含有材料の含有量が、主原料100質量部を基準として、0.05質量部~0.5質量部である、態様1に記載の方法。
[態様3]
 前記油揚げ乾燥を140℃以上で行うことを含む、態様1又は2に記載の方法。
[態様4]
 前記油揚げ乾燥が140℃未満で行われる時間が10秒間以下である、態様1~3のいずれかに記載の方法。
[態様5]
 前記油揚げ乾燥の前に、前記生麺線に水を付着させることを更に含む、態様1~4のいずれかに記載の方法。
[態様6]
 α化度が70%~86%であり、油分が18質量%~28質量%であり、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料を含む即席フライ麺。
[態様7]
 表面の算術平均粗さSaが2μm~5.3μmである、態様6に記載の即席フライ麺。
[態様8]
 前記カルシウム含有材料の含有量が0.057質量%~0.57%質量である、態様6又は7に記載の即席フライ麺。
 本発明によれば、生麺線を蒸煮せずに油揚げ乾燥したときに、高いα化度を有しており食味食感に優れる即席フライ麺を製造し、提供することができる。
 上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を開示したものとみなしてはならない。
実施例1の即席フライ麺の表面の顕微鏡写真である。 比較例1の即席フライ麺の表面の顕微鏡写真である。
 以下、本発明の代表的な実施形態を例示する目的でより詳細に説明するが、本発明はこれらの実施形態に限定されない。以下の記載において量及び比を表す「部」及び「%」は、特に断らない限り質量基準とする。
 本開示における「麺類」とは、小麦粉、澱粉等の粉末原料を主原料として含み、線状に加工され、茹でる、煮る、炒める、熱湯を注加する、そのまま又は注水して電子レンジで加熱するなどの調理により喫食可能な状態となる食品を意味する。麺類としては、例えば、うどん、きしめん、中華麺、そば、及びパスタが挙げられる。調理前の麺類の状態として、例えば、生麺、半生麺、乾麺、蒸麺、茹で麺、冷凍麺、及び即席麺が挙げられる。
 本開示における「即席フライ麺」とは、油揚げ乾燥により麺に含まれる水分が約1質量%~約10質量%となるまで乾燥された麺類であり、熱湯で煮る、喫食時に熱湯を注加する、又は注水して電子レンジで加熱することにより調理される麺類を意味する。
 本開示における「即席フライ麺の切断強度」とは、実施例に記載の手順に従い、3分間の湯戻し完了後から、その後1分経過した時点で測定される、麺線の断面積1mmあたりの切断強度(mN/mm)を意味する。
 本開示における「麺線の断面積」とは、麺線の長さ方向に直交する断面形状の面積を意味する。
[即席フライ麺の製造方法]
 一実施形態の即席フライ麺の製造方法は、主原料と、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料と、水とを含む麺原料を混練してドウを得ること、ドウから生麺線を切り出すこと、及び生麺線を蒸煮せずに生麺線を油揚げ乾燥することを含む。この実施形態において、麺原料の一つとして上記カルシウム含有材料を用いる以外は、即席フライ麺の技術分野において従来知られた工程を特に制限なく使用することができる。
 麺原料の一つとして上記カルシウム含有材料を使用することで、油揚げ乾燥時の麺線の膨化を抑制することができる。また、上記カルシウム含有原料は、製麺適性を維持したままドウの水分含有量を高めることができる。これにより、生麺線に含まれる水分を有効に利用して、油揚げ乾燥のみでも麺線のα化を高度に促進することができる。本開示の即席フライ麺は、高いα化度を有するため喫食時の粉っぽさ及び未調理感が解消されている。また、麺線の膨化が抑制されているため麺線の密度が高く、高いα化度を有することと相まって、麺線のコシ及び歯ごたえに優れている。更に、麺線の膨化が抑制されている結果、油揚げ乾燥時に麺線の表面から内部に侵入する油分を低減することができる。このことは油揚げ乾燥に使用される油量を削減できるだけでなく、即席フライ麺の風味も改善することができる。
〈麺原料〉
 即席フライ麺の麺原料としては、従来知られた即席フライ麺の製造に使用される材料を特に制限なく使用することができる。具体的には、例えば、社団法人 日本即席食品工業協会監修「新・即席めん入門」日本食糧新聞社発行(平成10年)の第52項~第62項に記載されている主原料及び副原料を使用することができる。
(主原料)
 主原料としては、例えば、小麦粉、そば粉、大麦粉、米粉等の穀物粉が挙げられる。主原料は更に澱粉を含んでもよい。
 一実施形態では、主原料は小麦粉を含む。この実施形態において、主原料は更に澱粉を含んでもよい。
 小麦粉としては、例えば、ASW(オーストラリア産白色中間質小麦、蛋白質約10%)、及びHRW(アメリカ産赤色硬質小麦、蛋白質約11%)が挙げられる。
 任意成分である澱粉としては、例えば、甘藷澱粉、馬鈴薯澱粉、タピオカ澱粉、ワキシーコーンスターチ、コーンスターチ、及び小麦澱粉が挙げられる。これらの澱粉を原料として得られる、エーテル化工澱粉、エステル化工澱粉、架橋化工澱粉、及び酸化工澱粉も使用することができる。
 澱粉としては、タピオカ澱粉、馬鈴薯澱粉、及びワキシーコーンスターチ、並びにこれらのエーテル化工澱粉及びエステル化工澱粉が好ましい。タピオカ澱粉、馬鈴薯澱粉、及びワキシーコーンスターチは、小麦粉に比べて糊化開始温度が低く、水の吸水量が大きいため、油揚げ乾燥時に容易にα化する。そのため、麺線のα化度を効果的に高めることができる。
 タピオカ澱粉、馬鈴薯澱粉、又はワキシーコーンスターチをエーテル化工又はエステル化工することで、上記効果を更に高めることができる。エーテル化工及びエステル加工の処理方法及び化工度は特に限定されない。エーテル化工澱粉としては、例えば、ヒドロキシプロピル澱粉が挙げられる。エステル化工澱粉としては、例えば、酢酸澱粉、リン酸澱粉、及びオクテニルコハク酸澱粉が挙げられる。
 澱粉は架橋されていてもよい。中度架橋澱粉又は高度架橋澱粉を使用する場合、喫食時により強いコシを有する食感を提供する傾向がある。中度架橋澱粉又は高度架橋澱粉を使用する場合は、他の要素を調整する(例えば、小麦粉の蛋白質量を下げる)ことが好ましい。
 澱粉を使用する場合、その使用量は、所望する麺線の太さにより異なるが、主原料の質量を基準として、好ましくは1~50質量%、より好ましくは5~40質量%である。豚骨ラーメン等の細麺の場合は澱粉の使用量は少なくてもよく、中麺、太麺となるにつれて、喫食時の湯戻り性を確保するために、澱粉の使用量は多くすることが好ましい。澱粉の使用量を1質量%以上とすることにより、喫食時の湯戻り性及び食感を確保することができる。澱粉の使用量を50質量%以下とすることにより、即席フライ麺の製造時の麺帯のべたつきを抑えて、生産効率を高めることができる。
(カルシウム含有材料)
 カルシウム含有材料は、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種である。本開示において、焼成カルシウムとは、原料として石灰、貝殻、卵殻等を焼成して得られる酸化カルシウムを主成分とする材料を指し、原料として魚骨、乳清等を焼成して得られるリン酸カルシウムとは区別される。水酸化カルシウムは、外部から添加されたものであってもよく、焼成カルシウムが麺原料中の水分と水和することで生成したものであってもよい。
 一般に、焼成カルシウムは、生麺又は乾麺の麺線のコシを高めるため、あるいはかん水を代替するために使用される。焼成カルシウムを蒸煮工程及び油揚げ工程を経て製造される従来の即席フライ麺に使用すると、焼成カルシウムのpHが高いために、油揚げ乾燥時に麺線の表面に焼け(過度の褐色化)が生じることが知られている。本開示によれば、蒸煮工程を経ずに生麺を油揚げ乾燥するために、焼成カルシウムを使用しても麺線表面の焼けが生じにくく、麺線の外観及び食味を製品として許容できない水準とすることなく、本開示の効果を得ることができる。
 カルシウム含有原料の使用量は、使用する澱粉、添加物等のpHに応じて適宜決定することができる。例えば、カルシウム含有原料の使用量を、主原料100質量部を基準として、0.05質量部~0.5質量部、0.08質量部~0.4質量部、又は0.1質量部~0.35質量部とすることができる。カルシウム含有原料の使用量を上記範囲とすることにより、麺線の外観及び食味を製品として許容できる水準に維持しながら、麺線の膨化を抑制し、麺線のα化を効果的に促進することができる。
(副原料)
 麺原料は副原料を更に含んでもよい。副原料としては、例えば、かん水、リン酸塩、塩、卵、熱凝固性蛋白質、及びグルテンが挙げられる。副原料は、主原料に粉の状態で混合してもよく、水に溶解させて主原料と混合してもよい。
 副原料として、熱凝固性蛋白質を用いることで、即席フライ麺中の油分をより低減することができる。いかなる理論に拘束されることを望む訳ではないが、熱凝固性蛋白質は、加熱によりゲル化又は凝固して、即席フライ麺の内部に油揚げ乾燥時の油が侵入することを抑制すると考えられる。熱凝固性蛋白質は、主原料に粉体混合してもよく、水に溶解させて主原料と混合してもよい。熱凝固性蛋白質は、スプレードライ、凍結粉砕乾燥などの処理をされた粉末状であることが好ましい。
 熱凝固性蛋白質としては、例えば、卵蛋白(卵白)、大豆蛋白、及び乳清蛋白濃縮物が挙げられる。ゲル化能が高いため油分を効果的に低減することができる、卵蛋白(卵白)及び乳清蛋白濃縮物が好ましい。
 熱凝固性蛋白質は水溶性であることが好ましい。卵蛋白(卵白)などの水溶性の熱凝固性蛋白質を用いることにより、ドウの水分量をより高めて、麺線のα化を更に促進することができる。
 熱凝固性蛋白質の使用量は、主原料100質量部を基準として、好ましくは0.1質量部~5質量部であり、より好ましくは0.2質量部~2質量部である。
(水)
 主原料及び任意成分である副原料に添加される水の量(本開示では「加水率」ともいう。)は、主原料100質量を基準として、好ましく35質量部~45質量部であり、より好ましくは38質量部~43質量部である。本開示によれば、麺原料中にカルシウム含有原料が存在するために、製麺適性を維持しながら加水率を高い水準とすることができる。これにより、生麺線に含まれる水分を有効に利用して、油揚げ乾燥のみでも麺線のα化を高度に促進することができる。
〈ドウの調製〉
 主原料、カルシウム含有材料、水、及び必要に応じて副原料をニーダ、プラネタリーミキサ等の混合装置を用いて混練することによりドウ(麺生地)を得ることができる。グルテン等の粉末状の副原料は、主原料と予め混合していてもよい。食塩、かん水等は、予め水に溶解させておいてもよい。
(減圧押出)
 麺原料を混練した後に押出成形機を用いてドウを減圧押出することにより、ドウの密度を高めてもよい。押出成形機により押し出されたドウは、円筒状、球状、平板状、又は不定形の小塊に成形されてもよい。減圧押出によりドウの密度を高めることにより、麺線の膨化を更に抑制することができ、即席フライ麺の内部に油揚げ乾燥時の油が侵入することを抑制して、即席フライ麺中の油分を効果的に低減することもできる。
 使用可能な押出成形機は、ドウが投入されるバレル内部を減圧できるものであれば特に限定されない。押出成形機としては、例えば、特開昭61-132132号公報に記載されたドウ製造装置における脱気装置を好適に使用することができる。
 減圧押出は、押出成形機の装置内を真空度70kPa~101kPaの減圧下でドウに圧力を加えることにより行うことができる。押出成形機に取り付けられるダイスの孔の直径(最大径)は、20mm~50mmとすることができる。ダイスの孔の形状は特に限定されない。ダイスの孔の形状としては、例えば、円形、楕円形、三角形、及び四角形が挙げられる。
 押出物がダイス出口から押し出されるときに、ダイス出口近辺に配置されたカッターなどを用いて間欠的に押出物を切断することにより、小塊を得ることができる。押出方向に沿った小塊の長さは、例えば、20mm~300mmとすることができる。別の実施形態では、減圧押出により直接麺帯を押し出してもよい。
〈生麺線の切出し〉
 ドウからの生麺線の切出しは、一般に、ドウを麺線の切出しに適した厚みを有するシート状に加工して麺帯を形成し、得られた麺帯を麺線切出装置を用いて切断して生麺線に切り出すことを含む。
 ドウを圧延ロールに通してシート状の粗麺帯を形成し、2枚又は3枚の粗麺帯を複合機により重ね、次の圧延ロールに通して所定の厚みまで薄くすることにより、麺帯を形成することができる。複合機及び圧延ロールとして公知のものを使用することができる。麺帯の厚さは生麺線の切出しに適した程度であればよく、例えば、0.5mm~10mmとすることができる。
 麺線切出装置を用いて麺帯を切断することにより、生麺線を形成することができる。麺線切出装置として公知のものを使用することができる。切刃としては、例えば、丸刃及び角刃が挙げられる。生麺線の幅は、例えば、1mm~10mmとすることができる。生麺線の厚さは、例えば、0.5mm~10mmとすることができる。
〈油揚げ乾燥〉
 次に、生麺線を蒸煮せずに油揚げ乾燥する。油揚げ乾燥は、一般に、生麺線を喫食単位量となるように切断し、切断された生麺線をリテイナー(バスケット)に成形充填し、リテイナーに蓋をし、生麺線を収容したリテイナーを加熱した油に浸漬することにより行われる。本開示によれば、蒸煮の際に麺線に付着又は吸収される過剰の水分がないため、油揚げ乾燥をより短時間で行うことができる場合がある。
 油揚げ乾燥に使用される油としては、例えば、パーム油、ラード油、菜種油、ごま油、及びこれらの2種以上のブレンドが挙げられる。
 油揚げ乾燥の温度は、好ましくは140℃以上、より好ましくは145℃以上、更に好ましくは148℃以上である。140℃以上で生麺線を油揚げ乾燥することにより、麺線のα化を効果的に促進することができる。油揚げ乾燥の温度は、好ましくは165℃以下、より好ましくは160℃以下である。油揚げ乾燥を165℃以下で行うことにより、麺線の焦げを効果的に抑制又は防止することができる。
 油揚げ乾燥は、初期段階から上記の好適な温度範囲で行うことが好ましい。本開示では、蒸煮しない生麺線を油揚げ乾燥することにより、生麺線の乾燥と同時に、麺原料に含まれる主原料が高度にα化される。そのため、生麺線が水分を多く含む初期段階から油揚げ乾燥の温度を高温とすることにより、麺線のα化を効率的に促進することでき、油揚げ乾燥時間も短縮することができる。具体的には、油揚げ乾燥を上記の好適な温度範囲よりも低い温度で行う時間が10秒以下であることが好ましく、5秒以下であることが好ましい。一実施形態では、油揚げ乾燥を140℃未満で行う時間が10秒以下であり、5秒以下であることが好ましい。
 油揚げ乾燥の前に、生麺線に水を付着させてもよい。これにより、麺線表面近傍におけるα化を促進して、油揚げ乾燥時の麺線の膨化を効果的に抑制することができる。油揚げ乾燥の前に生麺線の塊に水を付着させることにより、麺線同士の付着を促進して、即席フライ麺の麺線塊の強度を高めることもできる。水の付着は、スプレー、刷毛などを用いて行うことができる。水の付着量は、生麺線100質量部を基準として、好ましくは2質量部~8質量部、より好ましくは3質量部~6質量部である。
 油揚げ乾燥は、麺線の水分量が好ましくは1質量%~10質量%、より好ましくは2質量%~5質量%となるまで行われる。
 油揚げ乾燥後に、必要に応じて、遠心処理などにより油分を低減してもよく、扇風機、エアコンプレッサー等を用いて即席フライ麺を強制的に冷却してもよい。
[即席フライ麺]
 一実施形態の即席フライ麺は、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料を含み、α化度が70%~86%であり、油分が18質量%~28質量%である。本開示におけるα化度は、酵素として東洋紡株式会社のグルコアミラーゼを用いたグルコアミラーゼ第二法により決定される。油分は、実施例に記載の方法により決定される。
 この実施形態において、即席フライ麺のα化度は、70%以上であり、好ましくは72%以上、より好ましくは75%以上である。即席フライ麺のα化度が70%以上であると、喫食時の粉っぽさ及び未調理感がなく、優れたコシ及び歯ごたえを有する麺線を提供することができる。この実施形態において、即席フライ麺のα化度は、86%以下であり、好ましくは84%以下、より好ましくは82%以下である。即席フライ麺のα化度が86%以下であると、麺線同士の過度の結着を抑制して、喫食時の麺線のほぐれを確保することができる。
 この実施形態において、即席フライ麺の油分は18質量%~28質量%である。この実施形態において、即席フライ麺の油分は好ましくは26質量%以下、より好ましくは25質量%以下である。
 一実施形態の即席フライ麺の表面の算術平均粗さSaは2μm~5.3μmである。算術平均粗さSaは実施例に記載の方法により決定される。この実施形態の即席フライ麺は、蒸煮によりα化した生麺線を油揚げ乾燥した従来の即席フライ麺と比較して、より低い表面粗さを有している。いかなる理論に拘束されることを望む訳ではないが、この実施形態の即席フライ麺の表面粗さが小さい理由は、生麺線が蒸煮されていないために、油揚げ乾燥前の時点で麺線表面の澱粉粒の糊化が進行しておらず、麺線表面にα化澱粉の膜が形成されていないか比較的疎であるためと考えられる。麺線表面にα化澱粉の膜がないか疎であることは、油揚げ乾燥時に麺線表面を荒らさずに麺線の内部から水分又は水蒸気が抜けることを容易にする。このことは油揚げ時間の短縮も可能にする。一方、生麺線を蒸煮すると麺線表面の澱粉粒の糊化が進行し、麺線表面にα化澱粉の膜が形成される。そのため、油揚げ乾燥時に麺線の内部から水分又は水蒸気が抜けにくく、これらが麺線表面から外部に放出される際に、α化澱粉の膜が破られる。このことにより麺線の表面が荒れて、即席フライ麺の表面粗さが大きくなる。
 一実施形態の即席フライ麺のカルシウム含有材料の含有量は、0.057質量%~0.57質量%である。
 本開示の即席フライ麺の製造方法及び即席フライ麺は、熱湯で煮る煮込みタイプ、喫食時に熱湯を注加するカップタイプなど、様々な製品形態で使用することができる。少ない熱量でも優れた食味食感が得られることから、本開示の即席フライ麺の製造方法及び即席フライ麺は、喫食時に熱湯を注加するカップタイプに有利に適用することができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
比較例1及び比較例2
 下記の試験により、従来の蒸煮した即席フライ麺と蒸煮していない即席フライ麺との比較を行った。小麦粉(蛋白質9.5質量%)8kg、タピオカ澱粉(DS0.02)2kg、食塩30g、炭酸ナトリウム10g、及びリン酸塩30gに、主原料(小麦粉及びタピオカ澱粉の合計)100質量部を基準として、水を40質量部添加して得られた混合物を混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃18番丸を用いて切り出すことにより、麺厚1.5mmの生麺線を得た。
 比較例1では、温度100℃に設定した蒸機で生麺線を3分間蒸煮した。比較例2では、生麺線を蒸煮しなかった。
 蒸煮した麺線(比較例1)又は生麺線(比較例2)を30cmに裁断して、110gの麺線を得た。比較例1では、蒸煮した麺線に3質量%の塩水50mLを吹き付け、上面が121mm×136mm、下面が109mm×124mm、高さが29mmの型枠に充填し、蓋をして、150℃のパーム油で約2分間油揚げ乾燥することにより、水分量が約2質量%の即席フライ麺を得た。比較例2では、生麺線をそのまま比較例1と同じ型枠に充填し、蓋をして、150℃のパーム油で約1分間油揚げ乾燥することにより、水分量が約2質量%の即席フライ麺を得た。
〈水分量〉
 即席フライ麺から2gの麺線を取り出し、電気乾燥機(商品名DN―41、ヤマト科学株式会社)を用いて105℃で2時間乾燥させた。乾燥前後の質量差から水分量を決定した。
〈α化度〉
 即席フライ麺のα化度は、酵素として東洋紡株式会社のグルコアミラーゼを用いたグルコアミラーゼ第二法により決定した。測定条件は、財団法人日本食品分析センターの「糊化(α化)度」(http://www.jfrl.or.jp/item/nutrition/post-35.html)に準拠した。
〈油分〉
 即席フライ麺の油分は、以下の手順により決定した。粉砕して均質化した即席フライ麺から5gを量り、ソックスレー抽出器を用いてジエチルエーテルで油脂を抽出した。抽出前後の質量差から油分を決定した。
〈食味食感〉
 発泡ポリスチレン(PSP)カップに、90gの即席フライ麺を入れ、PSPカップに100℃の熱湯を530mL注ぎ、素早くアルミ箔で蓋をして3分間放置して湯戻しした。時間の測定はストップウォッチ(商品名セイコーストップウォッチS052、セイコーエスヤード株式会社)を用いて行った。正確に3分間測定した後、素早く麺線の塊をほぐし、食味触感を評価した。
 表1に比較例1及び比較例2の即席フライ麺のα化度、油分、麺線の膨化状態、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1と比較例2とでは食味食感が大きく異なった。食味食感に麺線のα化度及び膨化状態が影響したものと考えられる。蒸煮しないと油分が増加する。即席フライ麺の油分が高いと、健康志向の製品に適用しにくくなるだけではなく、水分が麺線の内部に浸透しにくく湯戻り性が低下する場合がある。
〈麺線の断面積〉
 比較例1及び比較例2の即席フライ麺の麺線の断面積を、デジタルマイクロスコープ(商品名VHX-7000、株式会社キーエンス)を用いて倍率100倍で撮影した麺線断面の画像から決定した。麺線断面の画像において、麺線の外周を20点程度プロットし、デジタルマイクロスコープに付属のソフトウェアにより自動的に断面積を計算した。即席フライ麺から試料として麺線を5本取り出し(試料a~試料e)、5本の試料の平均値を麺線の断面積とした。
 表2に比較例1及び比較例2の即席フライ麺の麺線の断面積を示す。
Figure JPOXMLDOC01-appb-T000002
 蒸煮しないと油揚げ乾燥時に麺線がより膨化することが分かった。麺線の断面積の平均値から、比較例2の膨化度合いを100%としたときに、比較例1の膨化度合いは78%であった。麺線の過度の膨化は、密度の低い(歯ごたえのない)食感を提供すると考えられる。
実施例1及び比較例3
 下記の試験により、焼成カルシウムの効果を確認した。小麦粉(蛋白質9.5質量%)8kg、タピオカ澱粉(DS0.02)2kg、食塩30g、炭酸ナトリウム10g、及びリン酸塩30gに、実施例1では焼成カルシウム20gを添加し、比較例3では添加せずに、主原料(小麦粉及びタピオカ澱粉の合計)100質量部を基準として、水を41質量部添加して得られた混合物を混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃18番丸を用いて切り出すことにより、麺厚1.5mmの生麺線を得た。
 生麺線を30cmに裁断して、110gの生麺線を得た。生麺線をそのまま比較例1と同じ型枠に充填し、蓋をして、155℃のパーム油で1分間油揚げ乾燥することにより、水分量が約2質量%の即席フライ麺を得た。
 表3に実施例1及び比較例3の即席フライ麺のα化度、油分、製麺適性、麺線の膨化状態、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 焼成カルシウムを用いると、油揚げ乾燥時の麺線の膨化が抑制された。焼成カルシウムを添加しないとドウ及び麺線が柔らか過ぎるため、製麺適性が不良であった。これらの結果から、焼成カルシウムを用いることにより、製麺適性を維持しながら高い加水率で即席フライ麺を製造できることが分かる。実施例1及び比較例3のグルコアミラーゼ第二法によるα化度は殆ど変わらなかった。
〈DSC測定〉
 実施例1、比較例1及び比較例3について、示差走査熱量測定(DSC)を行った。測定条件は以下のとおりであった。
 装置:DSC-60(株式会社島津製作所)
 リファレンス:水20μL
 開始温度:30℃
 目標温度:110℃
 昇温速度:10℃/分
 雰囲気:空気
 表4にDSC測定の結果を示す。
Figure JPOXMLDOC01-appb-T000004
 焼成カルシウムを用いると吸熱開始温度が低下した。このことは、麺線の糊化開始温度が低下しており、低温でも湯戻りが早く進行することを意味する。実施例1と比較例3を比較すると、グルコアミラーゼ第二法ではα化度に有意差はなかったが、DSCでは焼成カルシウムを用いた実施例1の吸熱量が小さかった。このことは、実施例1の即席フライ麺に含まれる生澱粉(α化していない澱粉)の量が相対的に少なく、実施例1の即席フライ麺では比較例3の即席フライ麺よりも多くの澱粉がα化されていることを示唆する。
比較例4
 実施例1と製麺適性が同等になるように、比較例3の水の添加量を、主原料100質量部を基準として38質量部に減らして比較例4の即席フライ麺を得た。
 表5に実施例1及び比較例4の即席フライ麺のα化度、油分、製麺適性、麺線の膨化状態、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 比較例4では実施例1と同等の製麺適性を得るために加水率を減少させたところ、即席フライ麺の油分が増加して湯戻り性が悪化した。
〈切断荷重〉
 実施例1及び比較例4の湯戻し後の麺線の切断強度を測定した。発泡ポリスチレンカップ(PSP)に、90gの即席フライ麺を入れ、PSPカップに100℃の熱湯を530mL注ぎ、素早くアルミ箔で蓋をして3分間放置した。蓋を取った後、麺線を割り箸を用いて解して湯戻しを完了した。
 湯戻し完了後から1分、3分又は5分経過した時点で、素早く湯を麺線から分離した。2本の麺線をレオメータ(商品名NRM-2010-CW、不動工業株式会社)のプレートに載せ、湯を麺線から分離してから10秒後に、テーブル速度2cm/分で直径0.27mmのピアノ線を麺線に押し付けて切断した。麺線が完全に切断されたときの荷重を測定した。測定値を2で割った値を切断荷重とした。
 表6に切断荷重の結果を示す。
Figure JPOXMLDOC01-appb-T000006
 焼成カルシウムを用いると、より高い切断荷重が得られた。このことは、焼成カルシウムの使用により、湯戻し後の麺線のコシが向上することを示唆する。
 表7に実施例1、比較例3及び比較例4の即席フライ麺の麺線の断面積を示す。
Figure JPOXMLDOC01-appb-T000007
 焼成カルシウムを用いると、油揚げ乾燥時の麺線の膨化が抑制された。焼成カルシウムを添加しない場合、加水率の違いは膨化に殆ど影響しなかった。
〈切断強度〉
 実施例1及び比較例4について、麺線の切断荷重(gf)及び断面積(mm)から切断強度を計算した。切断強度は以下の式で定義される。
 切断強度(mN/mm)=切断荷重(gf)×9.80665/麺線の断面積(mm
 表8に実施例1及び比較例4の即席フライ麺の麺線の切断強度を示す。
Figure JPOXMLDOC01-appb-T000008
〈圧縮強度〉
 実施例1、比較例3及び比較例4の即席フライ麺の麺線の圧縮強度を測定した。即席フライ麺の塊の中央(A)及び四隅(B~E)の5箇所からそれぞれ長さ10mmの麺線を取り出して試験片とした。500Nのロードセルを備えた圧縮試験装置EZ-LX(株式会社島津製作所)のステージの上に試験片を置き、直径30mmのプラテンとステージの間隔を3mmとした状態からプラテンをストローク2mm、速度5mm/分で下降させて、プラテンにかかる荷重の最大値を測定した。試験片A~Eの測定値の平均を圧縮強度とした。
 表9に実施例1、比較例3及び比較例4の即席フライ麺の麺線の圧縮強度を示す。
Figure JPOXMLDOC01-appb-T000009
 焼成カルシウムを用いると、即席フライ麺の麺線の強度が向上した。
実施例2~実施例5
 表10に記載のとおり焼成カルシウムの使用量を変化させた以外は実施例1と同様の手順で即席フライ麺を得た。
 表10に実施例2~実施例5の即席フライ麺のα化度、油分、麺線の外観、製麺適性、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000010
 焼成カルシウムの使用量を変えてもα化度及び油分は大きく変化しなかった。焼成カルシウムの使用量が増えると麺線の外観が褐色(焦げ色)に変化した。焼成カルシウムの使用量が多いと、焼成カルシウムの苦味がわずかに知覚された。
〈麺線の断面積〉
 表11に比較例3と合わせて実施例2~実施例5の即席フライ麺の麺線の断面積を示す。
Figure JPOXMLDOC01-appb-T000011
 焼成カルシウムの使用量を増やすと、麺線の膨化をより抑制することができた。
実施例6~実施例11
 表12に記載のとおり油揚げ乾燥の温度及び時間を変化させた以外は実施例1と同様の手順で即席フライ麺を得た。
 表12に実施例6~実施例11の即席フライ麺のα化度、油分、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000012
実施例12~実施例14
 表13に記載のとおり油揚げ乾燥の条件を変更した以外は実施例1と同様の手順で即席フライ麺を得た。
 表13に実施例12~実施例14の即席フライ麺のα化度、油分、麺線の膨化状態、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000013
実施例15
 下記の試験により、減圧押出の効果を確認した。麺原料を混練した後に押出成形機を用いて減圧押出することによりドウの小塊を得た以外は実施例1と同様の手順で即席フライ麺を得た。具体的には、押出成形機の装置内を真空度86kPaの減圧とした状態でドウに圧力を加え、直径80mmの円形の孔を有するダイスを通して押し出された円筒状の押出物を間欠的に切断して、長さ約50mmの小塊とした。得られた小塊を圧延して麺帯を形成し、得られた麺帯を切刃18番丸を用いて切り出すことにより、麺厚1.5mmの生麺線を得た。
 表14に実施例1と合わせて実施例15の即席フライ麺の油分、麺線の断面積、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000014
 減圧押出を用いてドウの密度を高めることにより、麺線の膨化を更に抑制し、かつ油分を低減することができた。
実施例16~実施例18
 下記の試験により、熱凝固性蛋白質の効果を確認した。小麦粉(蛋白質10.5質量%)9kg、生馬鈴薯澱粉1kg、焼成カルシウム20g、食塩30g、かん水(炭酸ナトリウム)10g、及び卵蛋白(実施例17及び実施例18のみ)を、製麺適性が同等となるように加水率を調節して混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃24番丸を用いて切り出すことにより、麺厚1.15mmの生麺線を得た。実施例16では卵蛋白を添加せず、水の添加量を主原料(小麦粉及び生馬鈴薯澱粉の合計)100質量部を基準として39質量部とした。実施例17では卵蛋白を50g添加し、水の添加量を主原料100質量部を基準として40質量部とした。実施例18では卵蛋白を100g添加し、水の添加量を主原料100質量部を基準として41質量部とした。
 生麺線を30cmに裁断して、85gの生麺線を得た。生麺線をそのまま上面直径95mm、下面直径74mm、高さ68mmの円筒状の型枠に充填し、蓋をして、155℃のパーム油で1分間油揚げ乾燥することにより、水分量が約2質量%の即席フライ麺を得た。この即席フライ麺は、豚骨ラーメンに適した細麺であった。
〈食味食感〉
 実施例16~実施例18の食味食感は以下の手順で評価した。紙容器に70gの即席フライ麺を入れ、次いで100℃の熱湯を430mL注ぎ、素早くアルミ箔で蓋をして2分間放置した。正確に2分間測定した後、素早く麺線の塊をほぐし、食味触感を評価した。
 表15に実施例16~実施例18の即席フライ麺のα化度、油分、麺線の断面積、及び食味食感の評価結果を示す。
Figure JPOXMLDOC01-appb-T000015
 水溶性熱凝固性蛋白質を添加することにより、油分を更に低減することができた。また、水溶性熱凝固性蛋白質を添加することにより、加水率を高めてα化度を更に高めることができた。
実施例19及び比較例5~7
 焼成カルシウムの代わりに表16に記載の成分を用い、製麺適性を同等とするため加水率を変化させた以外は、実施例1と同様の手順で即席フライ麺を得た。
Figure JPOXMLDOC01-appb-T000016
 表17に実施例19及び比較例5~7の麺線の断面積を示す。
Figure JPOXMLDOC01-appb-T000017
 水酸化カルシウムも焼成カルシウムと同様に、麺線の膨化を抑制することができ、製麺適性を維持しながら、加水率を高めることができた。乳酸カルシウム及び魚骨焼成カルシウム(リン酸カルシウム)は、麺線の膨化を抑制することができず、加水率を高めることもできなかった。
比較例8
 焼成カルシウムを使用せず、かん水を増量した以外は実施例1と同様の手順で即席フライ麺を得た。具体的には、10gの炭酸ナトリウムを50gの炭酸カリウムに置き換え、水の添加量を主原料100質量部を基準として40質量部に変更した。
 表18に比較例8の麺線の断面積を示す。
Figure JPOXMLDOC01-appb-T000018
 かん水を増量しても、加水率を高めることができず、麺線の膨化も抑制することができなかった。
実施例20及び実施例21
 生麺線を型枠に充填した後、生麺線の塊に2g(実施例20)又は4g(実施例21)の水を霧吹きで吹き付けた以外は、実施例1と同様の手順で即席フライ麺を得た。実施例20及び実施例21では麺線同士の付着が生じており、即席フライ麺の塊の強度が向上した。
〈算術平均粗さSa〉
 比較例1、実施例1、実施例20及び実施例21の即席フライ麺の表面の算術平均粗さSaを以下の条件で測定した。即席フライ麺から突発的な火膨れが生じていない部分から可能な限り真っ直ぐな麺線3本(麺線a、b及びc)を取り出し、各麺線を2cmに切断して、麺線の中央付近の任意の5箇所の側面の表面粗さを測定し、各麺線の算術平均粗さSaを得た。Sz(最大深さ+最大高さ)が100μm超である測定箇所はデータとして不適切と判断して棄却し、別の箇所を測定し直した。
 装置:デジタルマイクロスコープ(商品名VHX-7000、株式会社キーエンス)
 倍率:400倍
 輝度:40
 同軸片射
 測定範囲:600μm×500μm
 Lフィルター0.25mm
 表19に比較例1、実施例1、実施例20及び実施例21の即席フライ麺の表面の算術平均粗さSaを示す。
Figure JPOXMLDOC01-appb-T000019
 実施例1、実施例20、及び実施例21の即席フライ麺の表面は、蒸煮した比較例1よりも小さい算術平均粗さSaを有する、すなわちより滑らかであった。油揚げ乾燥前に水分を付着させていない実施例1の即席フライ麺の表面が最も滑らかであった。
 実施例1及び比較例1の即席フライ麺の表面の顕微鏡写真を図1及び図2にそれぞれ示す。撮影条件は以下のとおりであった。
 装置:デジタルマイクロスコープ(商品名VHX-7000、株式会社キーエンス)
 倍率:500倍
 モード:Opt-SEM
 実施例1では、澱粉粒の形状が残存しており、表面が比較的滑らかであった。澱粉粒の形状が残存していたことは、蒸煮をしなかったために、麺線表面の澱粉粒の糊化が進行しなかったことを示唆する。一方、油揚げ前に生麺線を蒸煮した比較例1では、澱粉粒の形状が殆ど失われており、油揚げ乾燥時に表面が荒れてより大きな凹凸が形成されたことが観察された。
<実施例22>
 小麦粉(蛋白質10.5質量%)7kg、タピオカ澱粉(DS0.08)3kg、焼成カルシウム40g、食塩50g、炭酸ナトリウム10g、及びリン酸塩30gに、主原料(小麦粉及びタピオカ澱粉の合計)100質量部を基準として、水を42質量部添加して得られた混合物を混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃18番角を用いて切り出すことにより、麺厚1.32mmの生麺線を得た。
 生麺線を30cmに裁断して、85gの生麺線を得た。生麺線をそのまま実施例16と同じ型枠に充填し、蓋をして、150℃のパーム油で1分間油揚げ乾燥することにより、水分量が約2質量%の即席フライ麺を得た。この即席フライ麺は、味噌ラーメンに適した麺であった。
<実施例23>
 小麦粉(蛋白質9.5質量%)6.5kg、生馬鈴薯澱粉0.5kg、そば粉3kg、焼成カルシウム15g、リン酸塩30g、及び卵白粉50gに、主原料(小麦粉、そば粉及び生馬鈴薯澱粉の合計)100質量部を基準として、水を43質量部添加して得られた混合物を混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃20番角を用いて切り出すことにより、麺厚0.90mmの生麺線を得た。
 生麺線を30cmに裁断して、85gの生麺線を得た。生麺線をそのまま実施例16と同じ型枠に充填し、蓋をして、150℃のパーム油で1分間油揚げ乾燥することにより、水分量が約2質量%の即席そばフライ麺を得た。
〈食味食感〉
 実施例22及び実施例23の食味食感は以下の手順で評価した。紙容器に70gの即席フライ麺又は即席そばフライ麺を入れ、次いで100℃の熱湯を430mL注ぎ、素早くアルミ箔で蓋をして、実施例22は5分間、実施例23は3分間、それぞれ放置した。その後、素早く麺線の塊をほぐし、食味触感を評価した。実施例22の即席フライ麺及び実施例23の即席そばフライ麺のいずれも、湯戻し後に調理感があり、コシがある良好な食味食感を有していた。
<実施例24>
 小麦粉(蛋白質11.5質量%)4kg、そば粉3kg、馬鈴薯澱粉2kg、タピオカ澱粉(DS0.02)1kg、焼成カルシウム10g、食塩50g、及びリン酸塩15gに、主原料(小麦粉、そば粉、馬鈴薯澱粉及びタピオカ澱粉の合計)100質量部を基準として、水を45質量部添加して得られた混合物を混練してドウを得た。常法によりドウを圧延して麺帯を形成し、得られた麺帯を切刃20番角を用いて切り出すことにより、麺厚1.1mmの生麺線を得た。
 生麺線を30cmに裁断して、70gの生麺線を得た。生麺線を上面直径87mm、下面直径72mm、高さが66.5mmの円筒状の型枠に充填し、蓋をして、158℃のパーム油で約1分間油揚げ乾燥することにより、水分量が約2質量%の即席そばフライ麺を得た。
〈食味食感〉
 実施例24の食味食感は以下の手順で評価した。紙容器に60gの即席そばフライ麺を入れ、次いで100℃の熱湯を320mL注ぎ、素早くアルミ箔で蓋をして3分間放置した。その後、素早く麺線の塊をほぐし、食味触感を評価した。実施例24の即席そばフライ麺は、湯戻し後に調理感があり、コシがある良好な食味食感を有していた。
 本開示の即席フライ麺の製造方法及び即席フライ麺は、即席ラーメン、即席焼きそば、即席そば、即席うどんなどの即席食品に好適に使用することができる。

Claims (8)

  1.  主原料と、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料と、水とを含む麺原料を混練してドウを得ること、
     前記ドウから生麺線を切り出すこと、及び
     前記生麺線を蒸煮せずに前記生麺線を油揚げ乾燥すること
    を含む、即席フライ麺を製造する方法。
  2.  前記麺原料中の前記カルシウム含有材料の含有量が、主原料100質量部を基準として、0.05質量部~0.5質量部である、請求項1に記載の方法。
  3.  前記油揚げ乾燥を140℃以上で行うことを含む、請求項1又は2に記載の方法。
  4.  前記油揚げ乾燥が140℃未満で行われる時間が10秒間以下である、請求項1~3のいずれか一項に記載の方法。
  5.  前記油揚げ乾燥の前に、前記生麺線に水を付着させることを更に含む、請求項1~4のいずれか一項に記載の方法。
  6.  α化度が70%~86%であり、油分が18質量%~28質量%であり、焼成カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも1種のカルシウム含有材料を含む即席フライ麺。
  7.  表面の算術平均粗さSaが2μm~5.3μmである、請求項6に記載の即席フライ麺。
  8.  前記カルシウム含有材料の含有量が0.057質量%~0.57%質量である、請求項6又は7に記載の即席フライ麺。
PCT/JP2022/019603 2021-05-13 2022-05-06 即席フライ麺の製造方法及び即席フライ麺 WO2022239710A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22807412.6A EP4338597A1 (en) 2021-05-13 2022-05-06 Method for manufacturing instant fried noodles and instant fried noodles
KR1020237034859A KR20230156120A (ko) 2021-05-13 2022-05-06 즉석 유탕면의 제조 방법 및 즉석 유탕면
CN202280034277.9A CN117337139A (zh) 2021-05-13 2022-05-06 油炸方便面的制造方法和油炸方便面
CA3218717A CA3218717A1 (en) 2021-05-13 2022-05-06 Method for manufacturing instant fried noodles and instant fried noodles
JP2022565824A JP7267513B2 (ja) 2021-05-13 2022-05-06 即席フライ麺の製造方法及び即席フライ麺
JP2023068708A JP2023084137A (ja) 2021-05-13 2023-04-19 即席フライ麺の製造方法及び即席フライ麺

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021081884 2021-05-13
JP2021-081884 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022239710A1 true WO2022239710A1 (ja) 2022-11-17

Family

ID=84029604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019603 WO2022239710A1 (ja) 2021-05-13 2022-05-06 即席フライ麺の製造方法及び即席フライ麺

Country Status (7)

Country Link
EP (1) EP4338597A1 (ja)
JP (2) JP7267513B2 (ja)
KR (1) KR20230156120A (ja)
CN (1) CN117337139A (ja)
CA (1) CA3218717A1 (ja)
TW (1) TW202310753A (ja)
WO (1) WO2022239710A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615754A (ja) * 1984-06-19 1986-01-11 Ajinomoto Co Inc 即席麺の製造法
JPH11178529A (ja) * 1997-12-18 1999-07-06 Sanyo Shokuhin Kk 保存性と調理の簡便性にすぐれた生麺の製造方法
JPH11196799A (ja) * 1998-01-13 1999-07-27 Myojo Food Co Ltd 即席乾燥麺類の製造方法
JP2000245377A (ja) * 1999-01-01 2000-09-12 Nissin Food Prod Co Ltd 即席麺類の製造方法
WO2008081931A1 (ja) * 2006-12-29 2008-07-10 Nissin Foods Holdings Co., Ltd. 即席油揚げ麺類およびその製造方法
WO2011013185A1 (ja) * 2009-07-31 2011-02-03 日清食品ホールディングス株式会社 即席麺の製造方法
WO2013191136A1 (ja) * 2012-06-18 2013-12-27 日清フーズ株式会社 生パスタ類および冷凍生パスタ類の製造方法
JP2018121629A (ja) 2017-01-31 2018-08-09 東洋水産株式会社 油揚げ即席麺の製造方法および油揚げ即席麺
JP2020202771A (ja) 2019-06-14 2020-12-24 東洋水産株式会社 油揚げ即席麺の製造方法および製造装置ならびに油揚げ即席麺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936032B2 (ja) 2017-03-30 2021-09-15 日清食品ホールディングス株式会社 ノンフライ中華麺の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615754A (ja) * 1984-06-19 1986-01-11 Ajinomoto Co Inc 即席麺の製造法
JPH11178529A (ja) * 1997-12-18 1999-07-06 Sanyo Shokuhin Kk 保存性と調理の簡便性にすぐれた生麺の製造方法
JPH11196799A (ja) * 1998-01-13 1999-07-27 Myojo Food Co Ltd 即席乾燥麺類の製造方法
JP2000245377A (ja) * 1999-01-01 2000-09-12 Nissin Food Prod Co Ltd 即席麺類の製造方法
WO2008081931A1 (ja) * 2006-12-29 2008-07-10 Nissin Foods Holdings Co., Ltd. 即席油揚げ麺類およびその製造方法
WO2011013185A1 (ja) * 2009-07-31 2011-02-03 日清食品ホールディングス株式会社 即席麺の製造方法
WO2013191136A1 (ja) * 2012-06-18 2013-12-27 日清フーズ株式会社 生パスタ類および冷凍生パスタ類の製造方法
JP2018121629A (ja) 2017-01-31 2018-08-09 東洋水産株式会社 油揚げ即席麺の製造方法および油揚げ即席麺
JP2020202771A (ja) 2019-06-14 2020-12-24 東洋水産株式会社 油揚げ即席麺の製造方法および製造装置ならびに油揚げ即席麺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Introduction to Instant Noodles - New Edition", 1998, THE JAPAN FOOD JOURNAL, CO., LTD.

Also Published As

Publication number Publication date
EP4338597A1 (en) 2024-03-20
JP7267513B2 (ja) 2023-05-01
JPWO2022239710A1 (ja) 2022-11-17
JP2023084137A (ja) 2023-06-16
TW202310753A (zh) 2023-03-16
CA3218717A1 (en) 2022-11-17
CN117337139A (zh) 2024-01-02
KR20230156120A (ko) 2023-11-13

Similar Documents

Publication Publication Date Title
JP6494276B2 (ja) 乾燥麺及びその製造方法
US4590083A (en) Process for producing rapid-cooking noodles
TWI503080B (zh) Instant food drying surface and its manufacturing method
JP6530504B2 (ja) ノンフライ即席復元容器入り乾燥麺の製造方法
TWI713820B (zh) 速食油炸麵之製造方法
JP3195740B2 (ja) 即席油揚げ麺の製造方法
JP7267513B2 (ja) 即席フライ麺の製造方法及び即席フライ麺
JP7191500B2 (ja) 即席フライ麺
JPH0793870B2 (ja) 膨化穀類食品およびその製造方法
JPH06292528A (ja) 即席麺類の製造方法
WO2017099133A1 (ja) ビーフン様米粉麺類の製造方法
JP2021054452A (ja) 電子レンジ調理用麺類
JP7348256B2 (ja) 即席フライ麺
JP3133000B2 (ja) 小麦粉製品の製造方法
WO2022071119A1 (ja) 乾燥水産ねり製品及びその製造方法
TWI705768B (zh) 速食油炸麵
JP2879213B1 (ja) 鮭鱒類を素材としたチップス
JP2019050752A (ja) 乾燥おつまみ及びその製造方法
JP3173923B2 (ja) ピザ用クラスト、ピザ様食品およびその製造方法
JP2879214B1 (ja) 鮭鱒類を素材とした浮き実
JP2022173924A (ja) 即席フライ麺及びその製造方法
WO2019176682A1 (ja) 餃子類の皮及びその製造方法
JP2955264B2 (ja) 膨化スナック食品の製造方法
JP2022059535A (ja) 乾燥水産ねり製品及びその製造方法
JP2018130119A (ja) 即席フライ麺の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022565824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237034859

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034859

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3218717

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18560087

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280034277.9

Country of ref document: CN

Ref document number: 2301007388

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022807412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807412

Country of ref document: EP

Effective date: 20231213