WO2022202783A1 - 塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用 - Google Patents

塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用 Download PDF

Info

Publication number
WO2022202783A1
WO2022202783A1 PCT/JP2022/013069 JP2022013069W WO2022202783A1 WO 2022202783 A1 WO2022202783 A1 WO 2022202783A1 JP 2022013069 W JP2022013069 W JP 2022013069W WO 2022202783 A1 WO2022202783 A1 WO 2022202783A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl chloride
chloride resin
chlorinated polyvinyl
resin
cpvc
Prior art date
Application number
PCT/JP2022/013069
Other languages
English (en)
French (fr)
Inventor
和紘 松尾
克幸 田中
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023509182A priority Critical patent/JPWO2022202783A1/ja
Publication of WO2022202783A1 publication Critical patent/WO2022202783A1/ja
Priority to US18/371,679 priority patent/US20240010762A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated

Definitions

  • the present invention relates to a method for producing a chlorinated polyvinyl chloride resin and its use.
  • Chlorinated polyvinyl chloride resin which is obtained by chlorinating polyvinyl chloride resin, retains the chemical resistance, solvent resistance, and water resistance of polyvinyl chloride resin while maintaining heat resistance and flame resistance. It is known that thermal stability such as is improved. Also, the chlorinated polyvinyl chloride resin can be used for various purposes by changing the degree of polymerization and the degree of chlorination.
  • Chlorinated polyvinyl chloride resin can also be used for various applications such as heat-resistant pipes, heat-resistant joints, heat-resistant valves, and heat-resistant sheets that cannot be used with polyvinyl chloride resin.
  • Patent Document 1 100 parts by weight of a chlorinated polyvinyl chloride resin, 0.1 to 3 parts by weight of a chlorinated polypropylene resin, a heat stabilizer, an impact absorber (impact modifier) and a lubricant A chlorinated polyvinyl chloride resin composition containing
  • Patent Document 2 discloses a vinyl chloride polymer composition containing a vinyl chloride polymer resin having repeating units polymerized from vinyl chloride monomers, a block chlorinated polyolefin having residual blocks of crystalline polyolefin, and an impact modifier. things are disclosed.
  • Patent Document 3 a vinyl chloride monomer is polymerized in a state in which powder of a propylene polymer having a viscosity average molecular weight of 10000 or less and a vinyl chloride monomer are dispersed in a solvent, and a polyvinyl chloride resin is chlorinated.
  • a method for producing a chlorinated polyvinyl chloride resin is disclosed.
  • chlorinated polyvinyl chloride resin composition chlorinated polyvinyl chloride resin composition obtained by the above-described prior art
  • lubricants heat Additives such as stabilizers and shock absorbers had to be added in large amounts. Therefore, there is room for improvement in the conventional technology described above.
  • One aspect of the present invention is to obtain a chlorinated polyvinyl chloride resin composition that is excellent in workability, thermal stability and physical properties without adding a large amount of additives when making a resin composition.
  • An object of the present invention is to provide a polyvinyl chloride resin.
  • One embodiment of the invention includes the following configurations: A chlorination step of supplying chlorine to a slurry containing a polyvinyl chloride resin and a polypropylene resin powder having a viscosity average molecular weight of 3500 or more, irradiating it with ultraviolet rays, and chlorinating the polyvinyl chloride resin.
  • a method for producing a chlorinated polyvinyl chloride resin comprising:
  • a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition excellent in processability, thermal stability and physical properties without adding a large amount of additives is provided. can provide.
  • the method for producing a chlorinated polyvinyl chloride-based resin according to the present embodiment includes a chlorination step, and may further include water washing and drying steps after the chlorination step.
  • chlorination step In the chlorination step, chlorine is supplied to a slurry containing a polyvinyl chloride resin and a polypropylene resin powder having a viscosity average molecular weight of 3500 or more, and ultraviolet rays are irradiated to chlorinate the polyvinyl chloride resin. do.
  • chlorinated polyvinyl chloride-based resins usually have an increased number of chlorine atoms in the polar groups, so shear heat generation increases during processing.
  • a high processing temperature is required to obtain a chlorinated polyvinyl chloride resin composition having good physical properties.
  • the decomposition temperature is the same as that of polyvinyl chloride resins, and is almost the same, so the workability is not superior to that of polyvinyl chloride resins.
  • the chlorination process includes a material supply process, a chlorine supply process, and an ultraviolet irradiation process, and may further include a stirring process between the material supply process and the chlorine supply process.
  • the polyvinyl chloride resin, the polypropylene resin powder and slurry having a viscosity average molecular weight of 3500 or more, and the chlorinated polyvinyl chloride resin will be described in detail in the raw material supply step and the ultraviolet irradiation step described later.
  • the slurry is obtained by dispersing a resin containing a polyvinyl chloride resin and a polypropylene resin powder having a viscosity average molecular weight of 3500 or more in a solvent.
  • solvents examples include aqueous solvents and water-insoluble organic solvents added to water.
  • the aqueous solvent is not limited to water, and may be, for example, one obtained by adding an organic solvent such as methyl alcohol or ethyl alcohol that is miscible with water to water.
  • water-insoluble organic solvents examples include chloroform, halogenated hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, and ethers.
  • Halogenated hydrocarbons include, for example, carbon tetrachloride.
  • Halogenated hydrocarbons include, for example, benzene and toluene.
  • Aromatic hydrocarbons include, for example, benzene and toluene.
  • Ethers include, for example, methyl ethyl ketone and methyl isobutyl ketone.
  • the slurry may contain a dispersant.
  • a dispersant By including a dispersant in the slurry, the polyvinyl chloride resin and the powder of the polypropylene resin can be suitably dispersed in the solvent.
  • the dispersant is not particularly limited as long as it can disperse the polyvinyl chloride resin and the polypropylene resin powder in the solvent, but examples thereof include cellulose derivatives.
  • Cellulose derivatives include, for example, cellulose ethers.
  • Cellulose ethers include, for example, methylcellulose, ethylcellulose, hydroxymethylcellulose and hydroxypropylcellulose.
  • Polyvinyl chloride resin is a polymer of vinyl chloride resin.
  • polyvinyl chloride-based resins examples include polyvinyl chloride (PVC), which is a homopolymer of vinyl chloride, copolymers of vinyl chloride units and other monomer units copolymerizable with vinyl chloride, and A graft polymer obtained by graft-polymerizing a vinyl chloride monomer may be used.
  • PVC polyvinyl chloride
  • a graft polymer obtained by graft-polymerizing a vinyl chloride monomer may be used.
  • vinyl chloride examples include ⁇ -olefins, vinyl esters, vinyl ethers, acrylates, methacrylates, N-substituted maleimides, allyl chloride, vinylidene chloride, Allyl glycidyl ether, acrylic acid ester, and the like.
  • Examples of ⁇ -olefins include ethylene and propylene.
  • Examples of vinyl esters include vinyl acetate.
  • Vinyl ethers include, for example, cetyl vinyl ether.
  • Acrylates include, for example, 2-ethylhexyl acrylate and butyl methacrylate.
  • N-substituted maleimides include, for example, phenylmaleimide and cyclohexylmaleimide.
  • graft polymers obtained by graft polymerization of vinyl chloride monomers include graft polymers of polymers such as ethylene-vinyl acetate copolymers and vinyl chloride monomers.
  • the K value (degree of polymerization) of the polyvinyl chloride resin is preferably 45 or more and 89 or less, more preferably 49 or more and 77 or less, and even more preferably 50 or more and 72 or less.
  • the polyvinyl chloride resin has a K value of 45 or more and 89 or less, it is possible to produce a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having more excellent workability and physical properties. can.
  • the K value is a value determined according to JIS K7367-2.
  • the apparent density of the polyvinyl chloride resin is preferably 0.400 g/mL or more and 0.700 g/mL or less, more preferably 0.450 g/mL or more and 0.670 g/mL or less.
  • Chlorinated polyvinyl chloride for obtaining a chlorinated polyvinyl chloride resin composition having excellent workability and physical properties by making the polyvinyl chloride resin have an apparent density of 0.400 g/mL or more and 0.700 g/mL or less Vinyl resin can be produced.
  • the apparent density is a value measured according to JIS K7365.
  • the average particle size of the polyvinyl chloride resin is preferably 50 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 200 ⁇ m or less, and even more preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • Production of a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having excellent workability and physical properties by making the polyvinyl chloride resin have an average particle size of 50 ⁇ m or more and 500 ⁇ m or less. be able to.
  • the "average particle size" referred to here is a value that means the particle size when the cumulative distribution % reaches 50% when the particle size distribution is measured according to JIS K0069.
  • the content of the polyvinyl chloride resin in the slurry is preferably 10% by weight or more and 40% by weight or less, more preferably 10% by weight or more and 31% by weight or less.
  • the polyvinyl chloride resin can be more preferably chlorinated.
  • polypropylene resin A polypropylene-based resin is a polymer of propylene.
  • polypropylene-based resins examples include polypropylene (PP), which is a homopolymer of propylene, and copolymers of propylene units and other monomer units that can be copolymerized with polypropylene.
  • PP polypropylene
  • By being a polypropylene-based resin it is possible to produce a chlorinated polyvinyl chloride-based resin for obtaining a chlorinated polyvinyl chloride-based resin composition having more excellent workability and physical properties.
  • monomers to be copolymerized with propylene are not particularly limited, but include, for example, monomers having ethylene, hydroxyl group, carboxyl group, ketone group and epoxy group.
  • the lower limit of the viscosity average molecular weight of the polypropylene resin may be, for example, 3,500 or more, preferably 4,000 or more, 5,000 or more, 7,000 or more, and 10,000 or more, in that order.
  • the upper limit of the viscosity average molecular weight of the polypropylene-based resin is preferably 30,000 or less, 25,000 or less, and 21,000 or less, in that order.
  • a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having more excellent processability, thermal stability and physical properties by setting the lower limit of the viscosity average molecular weight of the polypropylene resin to 3500 or more. can be manufactured.
  • a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having further excellent processability, thermal stability and physical properties by setting the lower limit of the viscosity average molecular weight of the polypropylene resin to 4000 or more. can be manufactured.
  • the upper limit of the viscosity average molecular weight of the polypropylene resin is 30000 or less, so that the chlorinated polyvinyl chloride for obtaining a chlorinated polyvinyl chloride resin composition that is more excellent in processability, thermal stability and physical properties. system resin can be produced. Since the upper limit of the viscosity average molecular weight of the polypropylene resin is 25000 or less, the processability, thermal stability and physical properties are further excellent, and in particular, the chlorinated polyvinyl chloride resin composition having excellent physical properties is obtained. Chlorinated polyvinyl chloride resins can be produced.
  • the melting point of the polypropylene-based resin is, for example, preferably 100°C or higher and 170°C or lower, more preferably 105°C or higher and 168°C or lower, and even more preferably 110°C or higher and 165°C or lower.
  • the melting point of the polypropylene resin is 100° C. or higher and 170° C. or lower, it is possible to produce a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having more excellent processability and physical properties. can.
  • the melting point of the polypropylene-based resin was measured based on the following equipment and conditions.
  • Apparatus Differential Scanning Calorimeter DSC7020 (manufactured by Hitachi High-Tech Science Co., Ltd.): Sample container: AI open sample container ⁇ 5.2, H2.5mm (product number: GAA-0068, manufactured by Hitachi High-Tech Science Co., Ltd.): Sample weight: 10 ⁇ 0.05 mg: Measurement conditions: heating start temperature 30°C, heating end temperature 170°C, heating rate 10°C/min.
  • the melting point was defined as the temperature at which the amount of endotherm shown in the DSC (differential scanning calorimeter) curve obtained based on the above measurement method was maximum. Note that the temperature was raised only once per measurement, and the temperature was not raised twice or more.
  • the average particle size of the polypropylene resin is, for example, preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 20 ⁇ m or more and 900 ⁇ m or less, and even more preferably 30 ⁇ m or more and 800 ⁇ m or less.
  • the average particle size of the polypropylene resin is 1 ⁇ m or more and 1000 ⁇ m or less, it is possible to produce a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition having excellent processability and physical properties. .
  • the average particle size is 1000 ⁇ m or less, it becomes easy to disperse the PP powder in the solvent. As a result, it becomes easier to produce a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition that is more excellent in processability, thermal stability and physical properties.
  • the average particle size of the polypropylene resin was measured using the following equipment and conditions.
  • Apparatus Particle size distribution analyzer Microtrac MT3300EXII (manufactured by Microtrac Bell Co., Ltd.): Measurement conditions: solvent water, refractive index 1.51, shape aspheric, measurement time 10 seconds.
  • the “average particle size” described here means the particle size at the time when the integrated value in the particle size distribution obtained by the laser diffraction/scattering method using the above equipment reaches 50%.
  • the content of the polypropylene resin in the slurry is preferably 0.060% by weight or more and 0.359% by weight or less, more preferably 0.060% by weight or more and 0.279% by weight or less, and 0.060% by weight or more and 0.200% by weight. Weight % or less is more preferable.
  • the content of the polypropylene-based resin is 0.060% by weight or more and 0.359% by weight or less, the reaction rate of the chlorination reaction of the polyvinyl chloride-based resin is not affected.
  • Examples of commercially available polypropylene resin powders include Hi-Wax NP055, Hi-Wax NP056, Hi-Wax NP105 and Hi-Wax NP805 manufactured by Mitsui Chemicals, Viscol 550P manufactured by Sanyo Chemical Industries, Ltd. and Chugoku Seiyu Co., Ltd. and L-C502NC.
  • the stirring speed of the slurry is not particularly limited. It is particularly preferable that it is above.
  • the upper limit of the number of revolutions per minute is preferably 800 rpm or less, more preferably 700 rpm or less.
  • the lower limit of the number of rotations per minute is 100 rpm or more, and the upper limit of the number of rotations per minute is 800 rpm or less.
  • Powders can be dispersed in solvents. As a result, it is possible to produce a chlorinated polyvinyl chloride resin for obtaining a chlorinated polyvinyl chloride resin composition which promotes the chlorination reaction more favorably and which is more excellent in processability, thermal stability and physical properties. .
  • chlorine supply step In the chlorine supplying step, chlorine is supplied to the slurry. This causes the polyvinyl chloride resin to be chlorinated.
  • the method of supplying chlorine is not particularly limited, but an example is a method of supplying a chlorine-containing gas to the slurry.
  • the time for supplying chlorine to the slurry is not particularly limited, but for example, it is preferably 0.3 hours or more and 12.0 hours or less, more preferably 0.5 hours or more and 7.0 hours or less, It is more preferably 1.0 hours or more and 3.5 hours or less, and particularly preferably 2.0 hours or more and 3.5 hours or less.
  • the polyvinyl chloride resin contained in the slurry can be sufficiently chlorinated. That is, a chlorinated polyvinyl chloride resin having a sufficient chlorine content can be produced.
  • the internal pressure of the reactor during the chlorination reaction is not particularly limited as long as the state in which chlorine is supplied to the slurry can be maintained.
  • the internal pressure of the reactor during the chlorination reaction is, for example, preferably 0 kPa or more and 200 kPa or less, more preferably 0 kPa or more and 100 kPa or less, and even more preferably 0 kPa or more and 50 kPa or less, as a gauge pressure, which is expressed with the atmospheric pressure being zero.
  • Chlorinated polyvinyl chloride for obtaining a chlorinated polyvinyl chloride resin composition having excellent workability, thermal stability and physical properties by adjusting the pressure in the reactor at the time of the chlorination reaction to a gauge pressure of 0 kPa or more and 200 kPa or less. system resin can be produced.
  • UV irradiation step In the UV process, the slurry supplied with chlorine is irradiated with UV rays. This promotes chlorination of polyvinyl chloride resin to chlorinated polyvinyl chloride resin.
  • the method of irradiating with ultraviolet rays is not particularly limited, for example, a method of irradiating slurry supplied with chlorine with ultraviolet rays using a light source such as an LED (light emitting diode) can be mentioned.
  • the peak wavelength of the ultraviolet rays to be irradiated is not particularly limited, it is preferably 280 nm or more and 420 nm or less, for example.
  • the chlorination reaction is promoted more preferably, and a chlorinated polyvinyl chloride resin composition having more excellent workability, thermal stability and physical properties is obtained. Chlorinated polyvinyl chloride resins can be produced.
  • the ultraviolet supply process is performed after the chlorine supply process, but in the present embodiment, the ultraviolet supply process may be performed simultaneously with the chlorine supply process. That is, chlorine may be supplied under UV irradiation. Further, in the present embodiment, the chlorine supplying step may be performed after the ultraviolet supplying step.
  • the polyvinyl chloride resin can be chlorinated by performing the chlorine supplying step and the ultraviolet supplying step in any order.
  • Chlorinated polyvinyl chloride resin Chlorinated polyvinyl chloride resin is obtained by supplying chlorine to a slurry containing polyvinyl chloride resin and polypropylene resin powder having a viscosity average molecular weight of 3500 or more in the chlorination process, and irradiating ultraviolet rays to produce polyvinyl chloride. It is produced by chlorinating the system resin.
  • the chlorinated polyvinyl chloride resin is a chlorinated polyvinyl chloride resin
  • the powder of the polypropylene resin having a viscosity average molecular weight of 3500 or more is more uniformly added than when it is simply added. is mixed with
  • the polypropylene resin powder having a viscosity average molecular weight of 3500 or more is added to obtain a chlorinated polyvinyl chloride resin composition that is superior in both processability and physical properties.
  • a resin composition of a vinyl resin can be produced.
  • the lower limit of the degree of chlorination of the chlorinated polyvinyl chloride resin is preferably 62% or more, more preferably 64% or more, and the upper limit is preferably 70% or less. Since the lower limit of the degree of chlorination of the chlorinated polyvinyl chloride resin is 62% or more, it has a sufficient heat distortion temperature and is excellent in thermal stability for obtaining a chlorinated polyvinyl chloride resin composition. A chlorinated polyvinyl chloride resin is obtained. Since the upper limit of the degree of chlorination of the chlorinated polyvinyl chloride resin is 70% or more, the melt viscosity is not too high, so that the chlorinated polyvinyl chloride resin composition is more excellent in workability, thermal stability and physical properties. A chlorinated polyvinyl chloride resin for obtaining a product is obtained.
  • the method for producing a chlorinated polyvinyl chloride-based resin composition according to this embodiment includes an adding step.
  • an additive is added to the chlorinated polyvinyl chloride resin obtained in the chlorinating step. More specifically, in the adding step, the additive is added to the chlorinated polyvinyl chloride resin obtained by the ultraviolet ray step in the chlorination step described above, and optionally washed and dried by the washing step and the drying step. is added. Thereby, a chlorinated polyvinyl chloride-based resin composition is obtained.
  • additives may be added to the resin consisting only of the chlorinated polyvinyl chloride resin.
  • only chlorinated polyvinyl chloride resin is added without containing resin other than chlorinated polyvinyl chloride resin, such as a resin mixed with chlorinated polyvinyl chloride resin and polypropylene resin powder.
  • Additives may be added to the resin composed of.
  • the polypropylene-based resin powder By adding polypropylene-based resin powder having a viscosity average molecular weight of 3500 or more to the slurry in advance and then chlorinating the polyvinyl chloride-based resin, the polypropylene-based resin powder is added after the chlorination step. is mixed with chlorinated polyvinyl chloride resin. As described above, the chlorinated polyvinyl chloride resin composition is more uniformly mixed than when the polypropylene resin powder having a viscosity average molecular weight of 3500 or more is simply added, thereby improving workability and physical properties. is superior.
  • the additive is added to the chlorinated polyvinyl chloride resin after the chlorination process, and examples thereof include lubricants, heat stabilizers and shock absorbers, and are selected from the group consisting of these. may include at least one
  • a lubricant is for improving the workability of the chlorinated polyvinyl chloride resin composition.
  • the chlorinated polyvinyl chloride resin composition can be suitably extruded.
  • the lubricant is not particularly limited, but includes, for example, polyethylene wax, oxidized polyethylene and high-molecular-weight polyethylene wax, with polyethylene wax being preferred.
  • polyethylene wax By including polyethylene wax in the lubricant, the workability of the chlorinated polyvinyl chloride resin composition can be further improved.
  • the amount of the lubricant to be added is 2.8 parts by weight or less, 2.7 parts by weight or less, 2.6 parts by weight or less, or 2.4 parts by weight or less with respect to 100 parts by weight of the chlorinated polyvinyl chloride resin. good too.
  • the polyvinyl chloride resin is chlorinated after the powder of the above-mentioned polypropylene resin is added to the slurry in advance, the amount of lubricant added is small, and even if it is not large, workability is improved. It is possible to obtain a chlorinated polyvinyl chloride resin composition excellent in
  • the heat stabilizer is for improving the heat stability of the chlorinated polyvinyl chloride resin composition.
  • a heat stabilizer By adding a heat stabilizer to the chlorinated polyvinyl chloride resin, it is possible to prevent the chlorinated polyvinyl chloride resin from burning during processing and lowering the extrusion productivity.
  • the heat stabilizer is not particularly limited, but includes, for example, Sn-based stabilizers, Ba--Zn-based stabilizers, Ca--Zn-based stabilizers, Pb-based stabilizers, Mg--Al-based stabilizers, and hydrotalcite-based stabilizers.
  • Sn-based stabilizers such as methyl tin mercapto are preferred.
  • the heat stabilizer contains the Sn-based stabilizer, the heat stability of the chlorinated polyvinyl chloride-based resin composition can be further improved.
  • the amount of the heat stabilizer to be added is 2.0 parts by weight or less, 1.8 parts by weight or less, 1.5 parts by weight or less, or 1.2 parts by weight or less with respect to 100 parts by weight of the chlorinated polyvinyl chloride resin. Alternatively, it may be 1.0 parts by weight or less.
  • the polyvinyl chloride resin is chlorinated after the powder of the above-mentioned polypropylene resin is added to the slurry in advance, the amount of the heat stabilizer added is small, even if it is not large. A chlorinated polyvinyl chloride resin composition having excellent thermal stability can be obtained.
  • the impact absorber is for improving the physical properties of the chlorinated polyvinyl chloride resin composition.
  • a shock absorber By adding a shock absorber to the chlorinated polyvinyl chloride resin, physical properties such as tensile strength and impact resistance of the chlorinated polyvinyl chloride resin composition can be improved.
  • the shock absorber is not particularly limited, but includes, for example, acrylic rubber shock absorber, methyl methacrylate-butadiene-styrene polymer (MBS), graft polymer and chlorinated polyethylene (CPE).
  • the graft polymer includes, for example, acrylonitrile-butadiene-styrene polymer (ABS), butadiene or styrene-butadiene rubber graft polymerized with methyl methacrylate-styrene-acrylonitrile (MABS).
  • ABS acrylonitrile-butadiene-styrene polymer
  • MABS methyl methacrylate-styrene-acrylonitrile
  • an acrylic rubber shock absorber, MBS and CPE are preferred.
  • the physical properties of the chlorinated polyvinyl chloride resin composition can be further improved by including at least one of the acrylic rubber impact absorber, MBS and CPE in the impact absorber.
  • the amount of the shock absorber added may be 9 parts by weight or less, 8 parts by weight or less, 7 parts by weight or less, or 6 parts by weight or less with respect to 100 parts by weight of the chlorinated polyvinyl chloride resin.
  • the polyvinyl chloride resin is chlorinated after the powder of the above-mentioned polypropylene resin is added to the slurry in advance, the amount of the impact absorber added is small, even if it is not large.
  • a chlorinated polyvinyl chloride resin composition having excellent physical properties can be obtained.
  • CPVC-1 was produced by the following production method.
  • the polyvinyl chloride-based resin used was manufactured by Kaneka Corporation and has a K value of 66.4, an apparent density of 0.519 g/mL, and an average particle size of 171 ⁇ m.
  • As the polypropylene resin powder Hi-Wax NP056 manufactured by Mitsui Chemicals, Inc. having a melting point of 127° C. and an average particle size of 171 ⁇ m was used.
  • the chlorine content of CPVC-1 was calculated based on a neutralization titration value calculated by neutralization titration of an aqueous solution of hydrogen chloride (hydrochloric acid) by-produced by the chlorination reaction.
  • the factor is 1.000, that is, neutralization titration is performed using a 1 mol / L sodium hydroxide aqueous solution prepared to the indicated concentration, and from the following equation, the by-product in the system (reactor)
  • the chlorine content of CPVC-1 was calculated by determining the amount of hydrogen chloride generated.
  • chlorinated polyvinyl chloride resin is described as "CPVC” and polypropylene resin as “PP”.
  • the constituent resin at the time of addition of the below-mentioned additive is described as "the constituent resin at the time of addition”.
  • the viscosity average molecular weight of the polypropylene resin contained in the slurry during the chlorination reaction is described as "PP molecular weight during chlorination”.
  • the melting point of the polypropylene resin contained in the slurry during the chlorination reaction is described as "PP melting point during chlorination”.
  • the average particle size of the polypropylene resin contained in the slurry during the chlorination reaction is described as "PP average particle size during chlorination”.
  • the viscosity-average molecular weight of the polypropylene resin contained in the resin at the time of adding the additive is described as "PP molecular weight at the time of addition”. Further, “parts by weight” in Table 1 means parts by weight of the resin and the additive based on 100 parts by weight of the resin when the additive is added.
  • the chamber of the roller mixer was stably heated to 170°C
  • the chamber was filled with 65 g of the CPVC-1 resin composition.
  • the rollers were rotated at a rotation speed of 50 rpm to knead the CPVC-1 resin composition for 7 minutes or longer, and the torque applied to the rollers was measured.
  • the torque value when the torque leveled off and the fluctuation of the torque value stabilized was read as the "kneading torque" for evaluating the processability of the CPVC-1 resin composition.
  • the kneading torque is proportional to the melt viscosity of the CPVC-1 resin composition, and the lower the kneading torque value, the less likely shear heat generation occurs. .
  • the CPVC-1 resin composition was found to have a low kneading torque of 4.87 kgf ⁇ m and excellent workability.
  • thermal stability of the CPVC-1 resin composition was evaluated using a Laboplastomill roller mixer R60 manufactured by Toyo Seiki Co., Ltd.
  • the time (period) until the torque value starts to rise after the torque value leveled off once and stabilized was read as the "torque rise time" for evaluating the thermal stability of the CPVC-1 resin composition. rice field.
  • the torque rise time is proportional to the dynamic thermal stability of the CPVC-1 resin composition, and it was determined that the longer the torque rise time, the better the thermal stability of the CPVC-1 resin composition.
  • the CPVC-1 resin composition was found to have a long torque rise time of 12.9 minutes and excellent thermal stability.
  • the CPVC-1 resin composition was kneaded for 6 minutes using an 8-inch roll with a roll temperature of 190° C., and then a sheet of the CPVC-1 resin composition having a thickness of 0.7 to 0.9 mm was formed. made.
  • the obtained sheet of CPVC-1 resin composition is cut into a certain size (18 cm ⁇ 9 cm), the cut CPVC-1 resin compositions are superimposed, and the hydraulic molding press described above is used. Then, the CPVC-1 resin composition was pressed for 10 minutes under pressure conditions of 200° C. and 1 to 8 MPa.
  • the CPVC-1 resin composition was cooled and taken out as a pressed plate with a thickness of 3 mm. After that, the press plate was cut to prepare a Type-1 test piece (ASTM D638), commonly known as ASTM No. 1 dumbbell piece.
  • test piece obtained under the measurement conditions of test temperature 23 ° C, distance between chucks 110 mm, distance between gauge lines 50 mm, tensile speed 5 mm / min
  • ASTM D638 the test piece obtained under the measurement conditions of test temperature 23 ° C, distance between chucks 110 mm, distance between gauge lines 50 mm, tensile speed 5 mm / min
  • a tensile test was performed using the CPVC-1 resin composition to measure the yield point stress.
  • the yield point stress is proportional to the physical properties of the CPVC-1 resin composition, and it was determined that the higher the yield point stress value, the better the physical properties of the CPVC-1 resin composition.
  • the CPVC-1 resin composition had a high yield point stress of 51.1 MPa, so it was recognized that it had excellent physical properties.
  • Example 2 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 7,300 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7,000 to produce a chlorinated polyvinyl chloride resin.
  • Polypropylene resin powder having a viscosity-average molecular weight of 7300 was Hi-Wax NP055 manufactured by Mitsui Chemicals, Inc., having a melting point of 147° C. and an average particle size of 111 ⁇ m. Except for this change, in Example 2, a chlorinated polyvinyl chloride resin was produced by the same production method (operation) as in Example 1 to obtain CPVC-2.
  • the chlorine content of the obtained CPVC-2 was 67% by weight.
  • Example 2 instead of CPVC-1 in Example 1, an additive was added to CPVC-2 to obtain a CPVC-2 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-2 resin composition in the same manner as for the CPVC-1 resin composition in Example 1 except for this change.
  • the CPVC-2 resin composition had a lower kneading torque of 4.84 kgf m, a long torque rise time of 12.7 minutes, and a high yield point stress of 51.1 MPa. . Therefore, the CPVC-2 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in terms of processability, thermal stability and physical properties.
  • Example 3 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 11,000 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7,000 to produce a chlorinated polyvinyl chloride resin.
  • Polypropylene resin powder with a viscosity-average molecular weight of 11,000 was Hi-Wax NP105 manufactured by Mitsui Chemicals, Inc., having a melting point of 150° C. and an average particle size of 106 ⁇ m. Except for this change, in Example 3, a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1 to obtain CPVC-3.
  • the chlorine content of the obtained CPVC-3 was 67% by weight.
  • Example 3 instead of CPVC-1 in Example 1, an additive was added to CPVC-3 to obtain a CPVC-3 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-3 resin composition in the same manner as for the CPVC-1 resin composition in Example 1, except for this change.
  • the CPVC-3 resin composition has a particularly low kneading torque of 4.83 kgf m, a particularly long torque rise time of 13.6 minutes, and a yield point stress of 51.2 MPa. was expensive. Therefore, the CPVC-3 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in terms of all processability, thermal stability and physical properties.
  • Example 4 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 21,000 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7,000 to produce a chlorinated polyvinyl chloride resin.
  • Polypropylene resin powder with a viscosity-average molecular weight of 21000 used Hi-Wax NP505 manufactured by Mitsui Chemicals, Inc. having a melting point of 153° C. and an average particle size of 124 ⁇ m.
  • a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1 to obtain CPVC-4.
  • the chlorine content of the obtained CPVC-4 was 67% by weight.
  • Example 4 instead of CPVC-1 in Example 1, an additive was added to CPVC-4 to obtain a CPVC-4 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-4 resin composition in the same manner as for the CPVC-1 resin composition in Example 1 except for this change.
  • the CPVC-4 resin composition has a lower kneading torque of 4.85 kgf m, a longer torque rise time of 13.1 minutes, and a yield point stress of 51.5 MPa. it was high. Therefore, the CPVC-4 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in terms of all processability, thermal stability and physical properties.
  • Example 5 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 30,000 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7,000 to produce a chlorinated polyvinyl chloride resin.
  • Polypropylene resin powder having a viscosity-average molecular weight of 30,000 was Hi-Wax NP805 manufactured by Mitsui Chemicals, Inc., having a melting point of 155° C. and an average particle size of 131 ⁇ m. Except for this change, in Example 5, a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1 to obtain CPVC-5.
  • the chlorine content of the obtained CPVC-5 was 67% by weight.
  • Example 5 instead of CPVC-1 in Example 1, an additive was added to CPVC-5 to obtain a CPVC-5 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-5 resin composition in the same manner as for the CPVC-1 resin composition in Example 1 except for this change.
  • the CPVC-5 resin composition had a low kneading torque of 4.90 kgf m, a long torque rise time of 12.4 minutes, and a particularly high yield point stress of 51.7 MPa. . Therefore, the CPVC-5 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in all of the workability, thermal stability and physical properties.
  • Example 6 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 4,000 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7,000 to produce a chlorinated polyvinyl chloride resin.
  • Viscole 550P manufactured by Sanyo Chemical Industries, Ltd. and having a melting point of 148° C. and an average particle size of 87 ⁇ m was used as the polypropylene resin powder having a viscosity average molecular weight of 4000.
  • a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1 to obtain CPVC-6.
  • the chlorine content of the obtained CPVC-6 was 67% by weight.
  • Example 6 instead of CPVC-1 in Example 1, an additive was added to CPVC-6 to obtain a CPVC-6 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-6 resin composition in the same manner as for the CPVC-1 resin composition in Example 1 except for this change.
  • the CPVC-6 resin composition had a low kneading torque of 4.86 kgf ⁇ m, a long torque rise time of 12.8 minutes, and a high yield point stress of 51.3 MPa. Therefore, the CPVC-6 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in all of the processability, thermal stability and physical properties.
  • Example 7 [Production of chlorinated polyvinyl chloride resin]
  • a polypropylene resin powder with a viscosity average molecular weight of 3500 was used instead of a polypropylene resin powder with a viscosity average molecular weight of 7000 to produce a chlorinated polyvinyl chloride resin.
  • the polypropylene resin powder having a viscosity average molecular weight of 3500 L-C502NC manufactured by Chugoku Oil Co., Ltd. and having a melting point of 149° C. and an average particle size of 79 ⁇ m was used. Except for this change, in Example 7, a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1 to obtain CPVC-7.
  • the chlorine content of the obtained CPVC-7 was 67% by weight.
  • Example 6 instead of CPVC-1 in Example 1, an additive was added to CPVC-7 to obtain a CPVC-7 resin composition. Processability, thermal stability and physical properties were evaluated for the CPVC-7 resin composition in the same manner as for the CPVC-1 resin composition in Example 1, except for this change.
  • the CPVC-7 resin composition had a low kneading torque of 4.86 kgf ⁇ m, a long torque rise time of 13.1 minutes, and a high yield point stress of 51.4 MPa. Therefore, the CPVC-7 resin composition was found to be superior to the CPVC-1 resin composition in Example 1 in all of the processability, thermal stability and physical properties.
  • Comparative Example 1 [Production of chlorinated polyvinyl chloride resin]
  • chlorine gas was supplied to a slurry that did not contain polypropylene resin powder having a viscosity-average molecular weight of 7000 and Hi-Wax NP056 manufactured by Mitsui Chemicals, Inc., and the polyvinyl chloride resin was irradiated with ultraviolet rays. chlorinated.
  • a chlorinated polyvinyl chloride resin was produced by the same production method as in Example 1, except that the polypropylene resin powder was not used during chlorination, and CPVC-8 was obtained.
  • the chlorine content of the obtained CPVC-8 was 67% by weight.
  • CPVC-8 resin composition-1 had a high yield point stress of 51.7 MPa, but a high kneading torque of 5.00 kgf m and a torque rise time of 10 minutes. was short. Therefore, although CPVC-8 resin composition-1 is excellent in physical properties, it was found to be inferior (bad) in workability and thermal stability.
  • CPVC-8 resin composition-2 had a low kneading torque of 4.89 kgf ⁇ m and a long thermal stability of 13.8 minutes. CPVC-8 resin composition-2 also had a high yield point stress of 51.1 MPa.
  • CPVC-8 resin composition-2 was found to be excellent in all of processability, thermal stability and physical properties.
  • CPVC-8 resin composition-2 required a large amount of compounding agents (lubricants and heat stabilizers) in order to develop the above properties.
  • CPVC-8 resin composition-2 was found to have improved workability and thermal stability by increasing the amount of lubricant and thermal stabilizer added.
  • the resin compositions in Examples 1 to 7 can be processed even if the amount of additives such as lubricants and heat stabilizers is not large. It was found to have excellent properties and thermal stability.
  • Comparative Example 2 an additive was added to 100 parts by weight of a mixed resin obtained by replacing 1 part by weight of 100 parts by weight of CPVC-8 with a polypropylene resin powder having a viscosity average molecular weight of 11,000.
  • CPVC-8 resin composition-3 was obtained in the same manner as in Comparative Example 1 except for this change.
  • CPVC-8 resin composition-3 had a low kneading torque of 4.67 kgf ⁇ m and a long thermal stability of 19.1 minutes. However, CPVC-8 resin composition-3 had a low yield point stress of 50.3 MPa.
  • CPVC-8 resin composition-3 is excellent in processability and thermal stability, but not excellent in physical properties.
  • a chlorinated polyvinyl chloride resin obtained by supplying chlorine to a slurry containing a polypropylene resin powder having a viscosity average molecular weight of 3500 or more and irradiating with ultraviolet rays is used.
  • the resin composition obtained was found to be excellent in processability, thermal stability and physical properties.
  • Comparative Example 3 an additive was added to 100 parts by weight of a mixed resin obtained by replacing 1 part by weight of 100 parts by weight of CPVC-8 with a polypropylene resin powder having a viscosity average molecular weight of 21,000.
  • CPVC-8 resin composition-4 was obtained in the same manner as in Comparative Example 1 except for this change.
  • Comparative Example 3 the same operation as in Comparative Example 2 was performed except that a polypropylene resin powder having a viscosity average molecular weight of 21,000 was used instead of a polypropylene resin powder having a viscosity average molecular weight of 11,000. , to obtain CPVC-8 resin composition-4.
  • CPVC-8 resin composition-4 had a low kneading torque of 4.73 kgf ⁇ m and a long torque rise time of 19 minutes. However, CPVC-8 resin composition-4 had a low yield point stress of 50.4 MPa.
  • CPVC-8 resin composition-4 is excellent in processability and thermal stability even when a polypropylene-based resin powder having a viscosity average molecular weight of 21000 is added, which makes the physical properties of the resin composition particularly high. , the physical properties were not excellent and were found to be inferior.
  • One embodiment of the invention includes the following configurations: [1] Chlorine is supplied to a slurry containing a polyvinyl chloride resin and a polypropylene resin powder having a viscosity average molecular weight of 3500 or more, and ultraviolet rays are irradiated to chlorinate the polyvinyl chloride resin. A method for producing a chlorinated polyvinyl chloride resin, including a chlorination step.
  • the present invention can be used for heat-resistant pipes, heat-resistant joints, heat-resistant valves, heat-resistant sheets, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂を提供するために、本塩素化ポリ塩化ビニル系樹脂の製造方法は、ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに対して、塩素を供給し、紫外線を照射し、前記ポリ塩化ビニル系樹脂を塩素化する塩素化工程を含む。

Description

塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用
 本発明は、塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用に関する。
 ポリ塩化ビニル系樹脂を塩素化して得られる塩素化ポリ塩化ビニル系樹脂は、ポリ塩化ビニル系樹脂の耐薬品性、耐溶剤性および耐水性などの長所を保持したまま、耐熱性および難燃性などの熱安定性が向上することが知られている。また、塩素化ポリ塩化ビニル系樹脂は、重合度および塩素化度を変更することによって、様々な用途に使用することができる。
 塩素化ポリ塩化ビニル系樹脂は、ポリ塩化ビニル系樹脂では使用できない耐熱パイプ、耐熱継手、耐熱バルブおよび耐熱シートなどの種々の用途にも使用することができる。
 例えば、特許文献1には、塩素化ポリ塩化ビニル系樹脂100重量部に、0.1以上3重量以下の塩素化ポリプロピレン系樹脂、熱安定剤、衝撃吸収剤(耐衝撃性改良剤)および滑剤を含有する塩素化ポリ塩化ビニル系樹脂組成物が開示されている。
 特許文献2には、塩化ビニルモノマーから重合された繰返し単位を有する塩化ビニルポリマー樹脂と、結晶性ポリオレフィンの残留ブロックを有するブロック塩素化ポリオレフィンと、衝撃改質剤と、を含有する塩化ビニルポリマー組成物が開示されている。
 特許文献3には、粘度平均分子量が10000以下のプロピレン重合体の粉末および塩化ビニル単量体を溶媒中に分散させた状態で塩化ビニル単量体を重合させ、ポリ塩化ビニル系樹脂を塩素化する塩素化ポリ塩化ビニル系樹脂の製造方法が開示されている。
日本国特開2001-131374号公報 日本国特表2003-510438号公報 日本国特開平2-242841号公報
 しかしながら、上述した従来技術で得られた塩素化ポリ塩化ビニル系樹脂の樹脂組成物(塩素化ポリ塩化ビニル系樹脂組成物)の加工性、熱安定性および物性を向上させるには、滑剤、熱安定剤および衝撃吸収剤などの添加剤を多量に添加する必要があった。そのたため、上述した従来技術には、改善の余地があった。
 本発明の一態様は、樹脂組成物とする際に、添加剤を多量に添加することなく、加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を提供することを目的とする。
 本発明の一実施形態は、以下の構成を含む:
 ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに対して、塩素を供給し、紫外線を照射し、前記ポリ塩化ビニル系樹脂を塩素化する塩素化工程を含む、塩素化ポリ塩化ビニル系樹脂の製造方法。
 本発明の一態様によれば、添加剤を多量に添加することなく、加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を提供することができる。
 <塩素化ポリ塩化ビニル系樹脂の製造方法>
 以下、本発明の一実施形態に係る塩素化ポリ塩化ビニル系樹脂の製造方法について、詳細に説明する。
 本実施形態に係る塩素化ポリ塩化ビニル系樹脂の製造方法は、塩素化工程を含み、塩素化工程の後、水洗、乾燥工程をさらに含んでいてもよい。
 〔塩素化工程〕
 塩素化工程では、ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに対して、塩素を供給し、紫外線を照射し、ポリ塩化ビニル系樹脂を塩素化する。
 ここで、塩素化ポリ塩化ビニル系樹脂は、通常、極性基の塩素原子が増加するため、加工時にせん断発熱が大きくなる。また、物性が良好な塩素化ポリ塩化ビニル系樹脂組成物を得るには、高い加工温度が求められる。さらに、分解温度はポリ塩化ビニル系樹脂と同様であり、ほぼ変わらないため、ポリ塩化ビニル系樹脂よりも加工性に優れていない。
 そこで、従来の塩素化ポリ塩化ビニル系樹脂は、通常、加工性を向上させるため、滑剤、熱安定剤および衝撃吸収剤などの添加剤を多量に添加する必要があり、塩素化ポリ塩化ビニル系樹脂組成物を得るための製造コストが高かった。また、本発明者らの検討の結果、滑剤などの添加剤を多量に添加した場合、加工性が向上する代わりに物性が低下することがあるという理由から、塩素化ポリ塩化ビニル系樹脂組成物の加工性と物性とを両立するのが難しいという問題もあることがわかった。
 そこで、本発明者らが鋭意検討した結果、ポリ塩化ビニル系樹脂のスラリーに、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末を事前に添加した後、スラリーに紫外線を照射して塩素化することにより、添加剤を多量に添加しなくとも、加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができることを見出した。
 これは、ポリプロピレン系樹脂を粉末としてポリ塩化ビニル系樹脂を含むスラリーに事前に分散させることにより、ポリ塩化ビニル系樹脂を含むスラリーにポリプロピレン系樹脂を均一に分散させた状態でポリ塩化ビニル系樹脂の塩素化できるためだと推測される。この場合、ポリ塩化ビニル系樹脂の塩素化後に、ポリプロピレン系樹脂の粉末を別途添加する場合に比べて、より均一に、(塩素化された)ポリプロピレン系樹脂と塩素化ポリ塩化ビニル系樹脂とが混合された樹脂組成物を得ることができるためと推測される。
 塩素化工程は、原料供給工程と、塩素供給工程と、紫外線照射工程とを含み、原料供給工程と、塩素供給工程との間に撹拌工程をさらに含んでいてもよい。
 ポリ塩化ビニル系樹脂、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末、スラリーおよび塩素化ポリ塩化ビニル系樹脂は、後述の原料供給工程および紫外線照射工程において、それぞれ詳細に説明する。
 [原料供給工程]
 原料供給工程では、反応器に、溶媒、ポリ塩化ビニル系樹脂、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末、および、必要に応じて分散剤を供給して、スラリーを得る。
 (スラリー)
 スラリーは、ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含む樹脂が溶媒中に分散したものである。
 溶媒としては、例えば、水性溶媒、および、水に不溶な有機溶媒を水に加えたものなどが挙げられる。
 水性溶媒としては、水に限定されず、例えば、メチルアルコール、エチルアルコールなどの水と混合し得る有機溶媒を水に加えたものであってもよい。
 水に不溶の有機溶媒としては、クロロホルム、ハロゲン化炭化水素類、ハロゲン化炭化水素類、芳香族炭化水素類、および、エーテル類などが挙げられる。ハロゲン化炭化水素類としては、例えば、四塩化炭素などが挙げられる。ハロゲン化炭化水素類としては、例えば、ベンゼンおよびトルエンなどが挙げられる。芳香族炭化水素類としては、例えば、ベンゼンおよびトルエンなどが挙げられる。エーテル類としては、例えば、メチルエチルケトンおよびメチルイソブチルケトンなどが挙げられる。
 スラリーは、分散剤を含んでいてもよい。スラリーが分散剤を含むことにより、ポリ塩化ビニル系樹脂と、ポリプロピレン系樹脂の粉末とを溶媒中に好適に分散させることができる。
 分散剤としては、ポリ塩化ビニル系樹脂と、ポリプロピレン系樹脂の粉末とを溶媒中に分散させることができるものであれば特に限定されないが、例えば、セルロース誘導体などが挙げられる。
 セルロース誘導体としては、例えば、セルロースエーテル類などが挙げられる。セルロースエーテル類としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロースおよびヒドロキシプロピルセルロースなどが挙げられる。
 (ポリ塩化ビニル系樹脂)
 ポリ塩化ビニル系樹脂は、塩化ビニル系樹脂の重合体である。
 ポリ塩化ビニル系樹脂としては、例えば、塩化ビニルの単独重合体であるポリ塩化ビニル(PVC)、塩化ビニル単位と、塩化ビニルと共重合可能な他の単量体単位との共重合体、および塩化ビニル単量体をグラフト重合させたグラフト重合体などが挙げられる。
 塩化ビニルと共重合可能な他の単量体としては、特に限定されないが、例えば、αオレフィン類、ビニルエステル類、ビニルエーテル類、アクリレート、メタクリレート類、N-置換マレイミド類、塩化アリル、塩化ビニリデン、アリルグリシジルエーテルおよびアクリル酸エステルなどが挙げられる。
 αオレフィン類としては、例えば、エチレンおよびプロピレンなどが挙げられる。ビニルエステル類としては、例えば、酢酸ビニルなどが挙げられる。ビニルエーテル類としては、例えば、セチルビニルエーテルなどが挙げられる。アクリレートとしては、例えば、2-エチルへキシルアクリレートおよびブチルメタクリレートなどが挙げられる。N-置換マレイミド類としては、例えば、フエニルマレイミドおよびシクロへキシルマレイミドなどが挙げられる。
 塩化ビニル単量体をグラフト重合させたグラフト重合体としては、例えば、エチレン-酢酸ビニル共重合体などの重合体と、塩化ビニル単量体とのグラフト重合体などが挙げられる。
 ポリ塩化ビニル系樹脂のK値(重合度)は、45以上89以下であることが好ましく、49以上77以下であることがより好ましく、50以上72以下であることがさらに好ましい。ポリ塩化ビニル系樹脂のK値が45以上89以下であることにより、より加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。なお、K値は、JIS K7367-2に準拠して求められた値である。
 ポリ塩化ビニル系樹脂の見かけ密度は、0.400g/mL以上0.700g/mL以下であることが好ましく、0.450g/mL以上0.670g/mL以下であることがより好ましい。ポリ塩化ビニル系樹脂の見かけ密度が0.400g/mL以上0.700g/mL以下であることにより、より加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。なお、見かけ密度は、JIS K7365に準拠して測定した値である。
 ポリ塩化ビニル系樹脂の平均粒子径は、50μm以上500μm以下であることが好ましく、50μm以上200μm以下であることがより好ましく、100μm以上200μm以下であることがさらに好ましい。ポリ塩化ビニル系樹脂の平均粒径が50μm以上500以下μmであることにより、より加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。なお、ここで述べる「平均粒子径」とは、JIS K0069に準拠して粒子径分布を測定し、積算分布%が50%に達した時点の粒子径を意味する値である。
 スラリーにおけるポリ塩化ビニル系樹脂の含有量は、10重量%以上40重量%以下であることが好ましく、10重量%以上31重量%以下であることがより好ましい。スラリーにおけるポリ塩化ビニル系樹脂の含有量が、10重量%以上40重量%以下であることにより、より好適にポリ塩化ビニル系樹脂を塩素化することができる。
 (ポリプロピレン系樹脂)
 ポリプロピレン系樹脂は、プロピレンの重合体である。
 ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体であるポリプロピレン(PP)、および、プロピレン単位と、ポリプロピレンと共重合可能な他の単量体単位との共重合体などが挙げられる。ポリプロピレン系樹脂であることにより、より加工性および物性に優れた塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 プロピレンと共重合させる他の単量体としては、特に限定されないが、例えば、エチレン、水酸基、カルボキシル基、ケトン基およびエポキシ基などを有する単量体などが挙げられる。
 ポリプロピレン系樹脂の粘度平均分子量の下限値は、例えば、3500以上であればよく、4000以上、5000以上、7000以上、10000以上の順に好ましい。また、ポリプロピレン系樹脂の粘度平均分子量の上限値は、30000以下、25000以下、21000以下の順に好ましい。
 ポリプロピレン系樹脂の粘度平均分子量の下限値が、3500以上であることにより、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。ポリプロピレン系樹脂の粘度平均分子量の下限値が、4000以上であることにより、さらに加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。特に、加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 同様に、ポリプロピレン系樹脂の粘度平均分子量の上限値が30000以下であることにより、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。ポリプロピレン系樹脂の粘度平均分子量の上限値が25000以下であることにより、さらに加工性、熱安定性および物性に優れており、特に、物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 ポリプロピレン系樹脂の融点は、例えば、100℃以上170℃以下が好ましく、105℃以上168℃以下がより好ましく、110℃以上165℃以下であることがさらに好ましい。ポリプロピレン系樹脂の融点が、100℃以上170℃以下であることにより、より加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 ポリプロピレン系樹脂の融点測定は、以下の装置および条件に基づき測定した。
装置:示差走査熱量計DSC7020(日立ハイテクサイエンス株式会社製):
試料容器:AIオープン型試料容器 φ5.2、H2.5mm(品番:GAA-0068、日立ハイテクサイエンス株式会社製):
試料重量:10±0.05mg:
測定条件:昇温開始温度 30℃、昇温終了温度 170℃、昇温速度 10℃/分。
 上記の測定方法に基づいて得られたDSC(differential scanning calorimeter)曲線に表れた吸熱量が最大となる温度を融点とした。なお、一回の測定につき昇温は一度のみ行い、二度以上の昇温は行っていない。
 ポリプロピレン系樹脂の平均粒子径は、例えば、10μm以上1000μm以下であることが好ましく、20μm以上900μm以下であることがより好ましく、30μm以上800μm以下であることがさらに好ましい。ポリプロピレン系樹脂の平均粒径が1μm以上1000μm以下であることにより、より加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。また、平均粒子径が1000μm以下であることにより、溶媒中にPP粉末を分散させることが容易となる。その結果、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することが容易となる。
 ポリプロピレン系樹脂の平均粒子径は、以下の装置および条件に基づき測定した。
装置:粒子径分布測定装置 マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社製):
測定条件:溶媒 水、屈折率 1.51、形状 非球体、測定時間 10秒。
 なお、ここで述べる「平均粒子径」とは、上記の装置を用いたレーザー回折・散乱法によって求められた粒度分布における積算値が50%に達する時点の粒子径を意味する。
 スラリーにおけるポリプロピレン系樹脂の含有量は、0.060重量%以上0.359重量%以下が好ましく、0.060重量%以上0.279重量%以下がより好ましく、0.060重量%以上0.200重量%以下がさらに好ましい。ポリプロピレン系樹脂の含有量が0.060重量%以上0.359重量%以下であることで、ポリ塩化ビニル系樹脂の塩素化反応の反応速度に影響を及さない。そのため、ポリプロピレン系樹脂の含有量がこの範囲にあることにより、加工性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造できる。
 ポリプロピレン系樹脂の粉末の市販品としては、例えば、三井化学社製のハイワックスNP055、ハイワックスNP056、ハイワックスNP105およびハイワックスNP805、三洋化成工業株式会社製のビスコール550Pならびに中国精油株式会社製のL-C502NCなどが挙げられる。
 [撹拌工程]
 撹拌工程では、反応器内のスラリーを撹拌し、反応器内を真空脱気および窒素置換する。
 スラリーの撹拌速度は、特に限定されないが、例えば、1分間当たりの回転数の下限値が100rpm以上であることが好ましく、150rpm以上であることがより好ましく、400rpm以上であることがさらに好ましく、500rpm以上であることが特に好ましい。スラリーの撹拌速度について、1分間当たりの回転数の上限値は、800rpm以下であることが好ましく、700rpm以下であることがより好ましい。スラリーの撹拌速度について、1分間当たりの回転数の下限値が100rpm以上であり、1分間当たりの回転数の上限値が800rpm以下であることにより、好適にポリ塩化ビニル系樹脂およびポリプロピレン系樹脂の粉末を溶媒に分散させることができる。その結果、より好適に塩素化反応を促進させ、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 [塩素供給工程]
 塩素供給工程では、スラリーに対して塩素を供給する。これにより、ポリ塩化ビニル系樹脂を塩素化させる。
 塩素を供給する方法は特に限定されないが、例えば、塩素含有ガスをスラリーに供給する方法が挙げられる。
 スラリーに塩素を供給する時間としては、特に限定されないが、例えば、0.3時間以上12.0時間以下であることが好ましく、0.5時間以上7.0時間以下であることがより好ましく、1.0時間以上3.5時間以下であることがさらに好ましく、2.0時間以上3.5時間以下であることが特に好ましい。スラリーに塩素を供給する時間が0.3時間以上12.0時間以下であればスラリーに含まれるポリ塩化ビニル系樹脂を十分に塩素化することができる。すなわち、十分な塩素含有量の塩素化ポリ塩化ビニル系樹脂を製造することができる。その結果、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 塩素化反応時の反応器内圧力は、スラリーに塩素が供給されている状態を維持できるのであれば特に限定されない。塩素化反応時の反応器内圧力としては、例えば大気圧をゼロとして圧力を表すゲージ圧で0kPa以上200kPa以下が好ましく、0kPa以上100kPa以下がより好ましく、0kPa以上50kPa以下であることがさらに好ましい。塩素化反応時の反応器内圧力がゲージ圧で0kPa以上200kPa以下であることにより、加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 [紫外線照射工程]
 紫外線工程では、塩素が供給されたスラリーに対して、紫外線を照射する。これにより、ポリ塩化ビニル系樹脂から塩素化ポリ塩化ビニル系樹脂への塩素化を促進する。
 紫外線を照射する方法は特に限定されないが、例えば、LED(light emitting diode:発光ダイオード)などの光源を用いて、塩素が供給されたスラリーに紫外線を照射する方法が挙げられる。
 所定の期間、スラリーに塩素を供給したら、塩素化反応が進行し、ポリ塩化ビニル系樹脂が十分に塩素化することができたとみなし、紫外線の照射を終了して、塩素化反応を終了させる。これにより、塩素化ポリ塩化ビニル系樹脂を製造することができる。
 なお、照射する紫外線のピーク波長は、特に限定されないが、例えば、280nm以上420nm以下であることが好ましい。照射する紫外線のピーク波長が280nm以上420nm以下であることにより、より好適に塩素化反応を促進させ、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂を製造することができる。
 なお、上述の例では、塩素供給工程の後に紫外線供給工程を行っているが、本実施形態では、塩素供給工程と同時に紫外線供給工程を行ってもよい。すなわち、紫外線の照射下で、塩素を供給してもよい。また、本実施形態では、紫外線供給工程の後に塩素供給工程を行ってもよい。いずれの順序にて塩素供給工程および紫外線供給工程を行っても、ポリ塩化ビニル系樹脂を塩素化することができる。
 (塩素化ポリ塩化ビニル系樹脂)
 塩素化ポリ塩化ビニル系樹脂は、塩素化工程においてポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに塩素を供給し、紫外線を照射してポリ塩化ビニル系樹脂を塩素化することにより、製造される。
 ここで、塩素化ポリ塩化ビニル系樹脂は、ポリ塩化ビニル系樹脂が塩素化したものであり、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末が、単に添加された場合よりも全体的に均一に混合されている。これにより、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末が、単に添加された場合よりも、加工性および物性の両方に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂の樹脂組成物を製造することができる。
 塩素化ポリ塩化ビニル系樹脂の塩素化度は、下限値が62%以上であることが好ましく、64%以上であることがより好ましく、上限値が70%以下であることが好ましい。塩素化ポリ塩化ビニル系樹脂の塩素化度の下限値が62%以上であることにより、十分な熱変形温度を有し、熱安定性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂が得られる。塩素化ポリ塩化ビニル系樹脂の塩素化度の上限値が70%以上であることにより、溶融粘度が高すぎないため、より加工性、熱安定性および物性に優れる塩素化ポリ塩化ビニル系樹脂組成物を得るための塩素化ポリ塩化ビニル系樹脂が得られる。
 〔水洗、乾燥工程〕
 (水洗工程)
 水洗工程では、塩素化工程における紫外線照射工程の後、窒素(例えば、窒素含有ガス)を反応器に供給し、窒素によって塩素化ポリ塩化ビニル系樹脂中の未反応の塩素を追い出する。続いて、水洗工程では、塩素化ポリ塩化ビニル系樹脂を水洗し、残存する塩酸を除去する。
 (乾燥工程)
 乾燥工程では、水洗工程の後、反応器から塩素化ポリ塩化ビニル系樹脂を取り出し、乾燥させる。
 <塩素化ポリ塩化ビニル系樹脂組成物の製造方法>
 本実施形態に係る塩素化ポリ塩化ビニル系樹脂組成物の製造方法は、添加工程を含む。
 〔添加工程〕
 添加工程では、塩素化工程によって得られた塩素化ポリ塩化ビニル系樹脂に対して、添加剤を添加する。より具体的には、添加工程では、上述した塩素化工程における紫外線工程によって得られ、必要に応じて水洗工程および乾燥工程によって水洗および乾燥された塩素化ポリ塩化ビニル系樹脂に対して、添加剤を添加する。これにより、塩素化ポリ塩化ビニル系樹脂組成物が得られる。
 なお、添加工程では、塩素化ポリ塩化ビニル系樹脂のみからなる樹脂に対して、添加剤を添加してもよい。例えば、添加工程では、塩素化ポリ塩化ビニル系樹脂と、ポリプロピレン系樹脂の粉末とを混合した樹脂など、塩素化ポリ塩化ビニル系樹脂以外の樹脂を含むことなく、塩素化ポリ塩化ビニル系樹脂のみから構成される樹脂に対して、添加剤を添加してもよい。
 スラリーに粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末を事前に添加した後、ポリ塩化ビニル系樹脂を塩素化することにより、ポリプロピレン系樹脂の粉末が塩素化工程後に添加された場合よりも均一に塩素化ポリ塩化ビニル系樹脂に混合される。このように、塩素化ポリ塩化ビニル系樹脂組成物は、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末が、単に添加された場合よりも、均一に混合されていることにより、加工性および物性が優れる。
 そのため、塩素化工程後にポリプロピレン系樹脂の粉末などが添加(混合)されていない塩素化ポリ塩化ビニル系樹脂からなる樹脂に添加剤を添加するだけで、熱安定性を維持しつつ加工性と物性とが両立した塩素化ポリ塩化ビニル系樹脂組成物が容易に得られる。
 [添加剤]
 添加剤は、塩素化工程の後、塩素化ポリ塩化ビニル系樹脂に対して添加されるものであり、例えば、滑剤、熱安定剤および衝撃吸収剤などが挙げられ、これらからなる群から選択される少なくとも1つを含んでいてもよい。
 (滑剤)
 滑剤は、塩素化ポリ塩化ビニル系樹脂組成物の加工性を向上させるためのものである。塩素化ポリ塩化ビニル系樹脂に滑剤を添加することによって、塩素化ポリ塩化ビニル系樹脂組成物を好適に押出加工することができる。
 滑剤としては、特に限定されないが、例えば、ポリエチレンワックス、酸化ポリエチレンおよび高分子量ポリエチレンワックスなどが挙げられ、ポリエチレンワックスが好ましい。滑剤がポリエチレンワックスを含むことにより、塩素化ポリ塩化ビニル系樹脂組成物の加工性をより向上させることができる。
 滑剤の添加量は、塩素化ポリ塩化ビニル系樹脂100重量部に対して、2.8重量部以下、2.7重量部以下、2.6重量部以下、2.4重量部以下であってもよい。本実施形態では、スラリーに上述のポリプロピレン系樹脂の粉末を事前に添加した後、ポリ塩化ビニル系樹脂を塩素化しているため、滑剤の添加量が少量であり、多量でなくても、加工性に優れる塩素化ポリ塩化ビニル系樹脂組成物が得られる。
 (熱安定剤)
 熱安定剤は、塩素化ポリ塩化ビニル系樹脂組成物の熱安定性を向上させるためのものである。塩素化ポリ塩化ビニル系樹脂に熱安定剤を添加することによって、塩素化ポリ塩化ビニル系樹脂が加工中に焼けて、押出生産性が低下するのを防止することができる。
 熱安定剤としては、特に限定されないが、例えば、Sn系安定剤、Ba-Zn系安定剤、Ca-Zn系安定剤、Pb系安定剤、Mg-Al系安定剤およびハイドロタルサイト系安定剤などが挙げられ、メチル錫メルカプトなどのSn系安定剤が好ましい。熱安定剤がSn系安定剤を含むことにより、塩素化ポリ塩化ビニル系樹脂組成物の熱安定性をより向上させることができる。
 熱安定剤の添加量は、塩素化ポリ塩化ビニル系樹脂100重量部に対して、2.0重量部以下、1.8重量部以下、1.5重量部以下、1.2重量部以下、または、1.0重量部以下であってもよい。本実施形態では、スラリーに上述のポリプロピレン系樹脂の粉末を事前に添加した後、ポリ塩化ビニル系樹脂を塩素化しているため、熱安定剤の添加量が少量であり、多量でなくても、熱安定性に優れる塩素化ポリ塩化ビニル系樹脂組成物が得られる。
 (衝撃吸収剤)
 衝撃吸収剤は、塩素化ポリ塩化ビニル系樹脂組成物の物性を向上させるためのものである。塩素化ポリ塩化ビニル系樹脂に衝撃吸収剤を添加することによって、塩素化ポリ塩化ビニル系樹脂組成物の引張強度および耐衝撃性などの物性を向上させることができる。
 衝撃吸収剤としては、特に限定されないが、例えば、アクリルゴム系衝撃吸収剤、メタクリル酸メチル-ブタジエン-スチレン系重合体(MBS)、グラフト重合体および塩素化ポリエチレン(CPE)などが挙げられる。グラフト重合体としては、例えば、アクリロニトリル-ブタジエン-スチレン系重合体(ABS)、ブタジエンまたはスチレン-ブタジエンゴムにメチルメタクリレート-スチレン-アクリロニトリルをグラフト重合させたグラフト重合体(MABS)などが挙げられる。衝撃吸収剤としては、アクリルゴム系衝撃吸収剤、MBSおよびCPEが好ましい。衝撃吸収剤が、アクリルゴム系衝撃吸収剤、MBSおよびCPEの少なくとも1つを含むことにより、塩素化ポリ塩化ビニル系樹脂組成物の物性をより向上させることができる。
 衝撃吸収剤の添加量は、塩素化ポリ塩化ビニル系樹脂100重量部に対して、9重量部以下、8重量部以下、7重量以下、6重量部以下であってもよい。本実施形態では、スラリーに上述のポリプロピレン系樹脂の粉末を事前に添加した後、ポリ塩化ビニル系樹脂を塩素化しているため、衝撃吸収剤の添加量が少量であり、多量でなくても、物性に優れる塩素化ポリ塩化ビニル系樹脂組成物が得られる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 また、本明細書中に記載された文献の全てが参考として援用される。
 以下に、本発明の実施例を示し、本発明についてさらに詳しく説明する。
 もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
 <実施例1>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 (CPVC-1の製造)
 以下の製造方法により、CPVC-1を製造した。
 まず、反応器に純水40kg、ポリ塩化ビニル系樹脂10kg、および、粘度平均分子量が7000のポリプロピレン系樹脂の粉末0.1kgを投入し、600rpmの撹拌速度にて攪拌し、スラリーを得た。
 ポリ塩化ビニル系樹脂は、K値が66.4、見かけ密度が0.519g/mL、平均粒子経が171μmであるカネカ株式会社製のものを用いた。ポリプロピレン系樹脂の粉末は、融点が127℃、平均粒子径が171μmである三井化学株式会社製のハイワックスNP056を用いた。
 反応器内を真空脱気および窒素置換した後、LEDからピーク波長が365nmである紫外線を照射しながら、反応器内のスラリーに、反応器内圧力がゲージ圧で20kPaとなるように塩素ガスを2.5時間供給した。これにより、ポリ塩化ビニル系樹脂を塩素化した。
 その後、LEDによる紫外線照射を停止し、窒素を反応器に供給し、窒素によって反応器内の未反応の塩素を追い出し、塩素化ポリ塩化ビニル系樹脂を水洗し、ポリ塩化ビニル系樹脂を塩素化する塩素化反応によって副生した塩酸を除去した。続いて、反応器から塩素化ポリ塩化ビニル系樹脂を取り出し、乾燥させた。これにより、実施例1に係る塩素化ポリ塩化ビニル系樹脂であるCPVC-1を得た。
 (塩素含有量の算出)
 CPVC-1の塩素含有量は、塩素化反応によって副生した塩化水素の水溶液(塩酸)を中和滴定して算出される中和滴定値に基づいて算出した。
 具体的には、ファクターが1.000、すなわち、表示濃度に調製された1mol/Lの水酸化ナトリウム水溶液を用いて中和滴定し、以下の式から、副生した系(反応器)内の塩化水素の発生量を求めることにより、CPVC-1の塩素含有量を算出した。
塩素含有量(%)=35.5×(1+A/100)/(62.5+34.5×A/100)×100
A=(100-B)/B×0.625×C
B=ポリ塩化ビニル系樹脂の重量(kg)/(ポリ塩化ビニル系樹脂の重量+純水の重量)(kg)×100
C=水酸化ナトリウム水溶液の滴下量(mL)
 以下の表1に示すように、得られたCPVC-1の塩素含有量は67重量%だった。
 なお、以下の表1では、便宜上、塩素化ポリ塩化ビニル系樹脂を「CPVC」、ポリプロピレン系樹脂を「PP」と記載している。また、後述の添加剤の添加時の構成樹脂を「添加時構成樹脂」と記載している。同様に、塩素化反応時にスラリーに含まれるポリプロピレン系樹脂の粘度平均分子量を「塩素化時PP分子量」と記載している。塩素化反応時にスラリーに含まれるポリプロピレン系樹脂の融点を「塩素化時PP融点」と記載している。塩素化反応時にスラリーに含まれるポリプロピレン系樹脂の平均粒子径を「塩素化時PP平均粒子径」と記載している。添加剤の添加時の樹脂に含まれるポリプロピレン系樹脂の粘度平均分子量を「添加時PP分子量」と記載している。また、表1における「重量部」とは、添加剤の添加時における樹脂100重量部を基準とした樹脂および添加剤の重量部を意味する。
 〔評価〕
 100重量部のCPVC-1に対して、2.4重量部の滑剤と、1.0重量部の熱安定剤と、6重量部アクリルゴム系の衝撃吸収剤とを添加剤として添加して、CPVC-1樹脂組成物を得た。熱安定剤は、Sn系安定剤であるメチル錫メルカプトを用いた。CPVC-1樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 (加工性の評価)
 東洋精機株式会社製のラボプラストミル用ローラーミキサーR60を用いて、CPVC-1樹脂組成物の加工性を評価した。
 具体的には、上述のローラーミキサーのチャンバーが170℃に安定的に加温された状態で、チャンバーにCPVC-1樹脂組成物65gを充填した。続いて、50rpmの回転数にてローラーを回転させてCPVC-1樹脂組成物を7分間以上混練し、ローラーに対して与えるトルクの値を計測した。
 トルクの値が横ばいになり、トルクの値の変動が安定したときのトルクの値を、CPVC-1樹脂組成物の加工性を評価するための「混練トルク」として読み取った。
 混練トルクは、CPVC-1樹脂組成物の溶融粘度に比例し、混練トルクの数値が低いほど、せん断発熱が起こりにくくなることから、CPVC-1樹脂組成物が加工性に優れていると判断した。
 以下の表1に示すように、CPVC-1樹脂組成物は、混練トルクが4.87kgf・mと低く、加工性に優れていることが認められた。
 (熱安定性の評価)
 東洋精機株式会社製のラボプラストミル用ローラーミキサーR60を用いて、CPVC-1樹脂組成物の熱安定性を評価した。
 具体的には、上述のローラーミキサーのチャンバーが190℃に安定的に加温された状態で、チャンバーにCPVC-1樹脂組成物を65g充填し、50rpmの回転数にてローターを回転させてCPVC-1樹脂組成物を混練しながらトルクの値を計測した。
 トルクの値が一度横ばいになり、安定した後、トルクの値が上昇し始めるまでの時間(期間)を、CPVC-1樹脂組成物の熱安定性を評価するための「トルク上昇時間」として読み取った。
 トルク上昇時間は、CPVC-1樹脂組成物の動的熱安定性に比例し、トルク上昇時間が長いほど、CPVC-1樹脂組成物が熱安定性に優れていると判断した。
 以下の表1に示すように、CPVC-1樹脂組成物は、トルク上昇時間が12.9分と長く熱安定性に優れていることが認められた。
 (物性の評価)
 神藤金属工業株式会社製の油圧式成形プレス(単動圧縮成形機SF-37H-2C)および島津製作所株式会社製の引張試験機(島津精密万能試験機オートグラフAG-X)を用いて、CPVC-1樹脂組成物の物性を評価した。
 具体的には、まず、ロール温度190℃の8インチのロールを用いてCPVC-1樹脂組成物を6分間混練した後、厚み0.7~0.9mmのCPVC-1樹脂組成物のシートを作製した。
 次に、得られたCPVC-1樹脂組成物のシートを一定の大きさ(18cm×9cm)に切断し、切断されたCPVC-1樹脂組成物を重ね合わせて、上述の油圧式成形プレスを用いて、200℃、1以上8MPa以下の加圧条件にて、CPVC-1樹脂組成物を10分間押圧(プレス)した。
 押圧後、CPVC-1樹脂組成物を冷却して試験片厚みが3mmのプレス板として取り出した。その後、プレス板を切削することによって、Type-1試験片(ASTM D638)、通称、ASTM1号ダンベル片の試験片を作製した。
 上述の引張試験機を用いて、ASTM D638に準拠して、試験温度23℃、チャック間距離110mm、標線間距離50mm、引張速度5mm/分の測定条件にて、得られた試験片に対して引張試験を行い、CPVC-1樹脂組成物の降伏点応力を測定した。
 降伏点応力は、CPVC-1樹脂組成物の物性に比例し、降伏点応力の数値が高いほど、CPVC-1樹脂組成物が物性に優れていると判断した。
 以下の表1に示すように、CPVC-1樹脂組成物は、降伏点応力が51.1MPaと高かったので物性に優れていることが認められた。
 <実施例2>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例2では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに、粘度平均分子量が7300のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が7300のポリプロピレン系樹脂の粉末は、融点147℃、平均粒子径111μmである三井化学株式会社製のハイワックスNP055を用いた。この変更点以外は、実施例2では、実施例1と同様の製造方法(操作)により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-2を得た。
 以下の表1に示すように、得られたCPVC-2の塩素含有量は67重量%であった。
 〔評価〕
 実施例2では、実施例1におけるCPVC-1の代わりに、CPVC-2に添加剤を添加してCPVC-2樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-2樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-2樹脂組成物は、混練トルクが4.84kgf・mとより低く、トルク上昇時間が12.7分と長く、降伏点応力も51.1MPaと高かった。そのため、CPVC-2樹脂組成物は、加工性、熱安定性および物性の全てに優れており、実施例1におけるCPVC-1樹脂組成物よりも加工性がより優れていると認められた。
 <実施例3>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例3では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに、粘度平均分子量が11000のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が11000のポリプロピレン系樹脂の粉末は、融点150℃、平均粒子径106μmである三井化学株式会社製のハイワックスNP105を用いた。この変更点以外は、実施例3では、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-3を得た。
 以下の表1に示すように、得られたCPVC-3の塩素含有量は67重量%だった。
 〔評価〕
 実施例3では、実施例1におけるCPVC-1の代わりに、CPVC-3に添加剤を添加してCPVC-3樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-3樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-3樹脂組成物は、混練トルクが4.83kgf・mであって特に低く、トルク上昇時間も13.6分と特に長く、降伏点応力も51.2MPaと高かった。そのため、CPVC-3樹脂組成物は、加工性、熱安定性および物性の全てにおいて、実施例1におけるCPVC-1樹脂組成物より優れていることが認められた。
 <実施例4>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例4では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに、粘度平均分子量が21000のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が21000のポリプロピレン系樹脂の粉末は、融点153℃、平均粒子径124μmである三井化学株式会社製のハイワックスNP505を用いた。この変更点以外は、実施例4では、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-4を得た。
 以下の表1に示すように、得られたCPVC-4の塩素含有量は67重量%だった。
 〔評価〕
 実施例4では、実施例1におけるCPVC-1の代わりに、CPVC-4に添加剤を添加してCPVC-4樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-4樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-4樹脂組成物は、混練トルクが4.85kgf・mとより低く、トルク上昇時間も13.1分とより長く、降伏点応力も51.5MPaと特に高かった。そのため、CPVC-4樹脂組成物は、加工性、熱安定性および物性の全てにおいて、実施例1におけるCPVC-1樹脂組成物より優れていることが認められた。
 <実施例5>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例5では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに粘度平均分子量が30000のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が30000のポリプロピレン系樹脂の粉末は、融点155℃、平均粒子径131μmである三井化学株式会社製のハイワックスNP805を用いた。この変更点以外は、実施例5では、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-5を得た。
 以下の表1に示すように、得られたCPVC-5の塩素含有量は67重量%だった。
 〔評価〕
 実施例5では、実施例1におけるCPVC-1の代わりに、CPVC-5に添加剤を添加してCPVC-5樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-5樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-5樹脂組成物は、混練トルクが4.90kgf・mと低く、トルク上昇時間も12.4分と長く、降伏点応力も51.7MPaと特に高かった。そのため、CPVC-5樹脂組成物は、加工性、熱安定性および物性の全てに優れており、実施例1におけるCPVC-1樹脂組成物よりも物性がより優れていると認められた。
 <実施例6>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例6では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに粘度平均分子量が4000のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が4000のポリプロピレン系樹脂の粉末は、融点148℃、平均粒子径87μmである三洋化成工業株式会社製のビスコール550Pを用いた。この変更点以外は、実施例6では、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-6を得た。
 以下の表1に示すように、得られたCPVC-6の塩素含有量は67重量%だった。
 〔評価〕
 実施例6では、実施例1におけるCPVC-1の代わりに、CPVC-6に添加剤を添加してCPVC-6樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-6樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-6樹脂組成物は、混練トルクが4.86kgf・mと低く、トルク上昇時間も12.8分と長く、降伏点応力も51.3MPaと高かった。そのため、CPVC-6樹脂組成物は、加工性、熱安定性および物性の全てに優れており、実施例1におけるCPVC-1樹脂組成物よりも物性がより優れていると認められた。
 <実施例7>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 実施例7では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末の代わりに粘度平均分子量が3500のポリプロピレン系樹脂の粉末を用いて、塩素化ポリ塩化ビニル系樹脂を製造した。粘度平均分子量が3500のポリプロピレン系樹脂の粉末は、融点149℃、平均粒子径79μmである中国精油株式会社製のL-C502NCを用いた。この変更点以外は、実施例7では、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-7を得た。
 以下の表1に示すように、得られたCPVC-7の塩素含有量は67重量%だった。
 〔評価〕
 実施例6では、実施例1におけるCPVC-1の代わりに、CPVC-7に添加剤を添加してCPVC-7樹脂組成物を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-7樹脂組成物に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-7樹脂組成物は、混練トルクが4.86kgf・mと低く、トルク上昇時間も13.1分と長く、降伏点応力も51.4MPaと高かった。そのため、CPVC-7樹脂組成物は、加工性、熱安定性および物性の全てに優れており、実施例1におけるCPVC-1樹脂組成物よりも物性がより優れていると認められた。
 <比較例1>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 比較例1では、粘度平均分子量が7000のポリプロピレン系樹脂の粉末、三井化学株式会社製のハイワックスNP056を含まないスラリーに塩素ガスを供給し、紫外線を照射することによって、ポリ塩化ビニル系樹脂を塩素化した。このように、塩素化時にポリプロピレン系樹脂の粉末を用いない点以外は、実施例1と同様の製造方法により、塩素化ポリ塩化ビニル系樹脂を製造し、CPVC-8を得た。
 得られたCPVC-8の塩素含有量は67重量%だった。
 〔評価〕
 比較例1では、実施例1におけるCPVC-1の代わりに、CPVC-8に添加剤を添加してCPVC-8樹脂組成物-1を得た。この変更点以外は、実施例1におけるCPVC-1樹脂組成物と同様に、CPVC-8樹脂組成物-1に対して、加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-8樹脂組成物-1は、降伏点応力は51.7MPaと高かったが、混練トルクが5.00kgf・mであって高く、トルク上昇時間が10分と短かった。そのため、CPVC-8樹脂組成物-1は、物性に優れているが、加工性および熱安定性が優れておらず、劣っている(悪い)ことが認められた。
 <参考例1>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 参考例1では、比較例1と同様に、塩素化ポリ塩化ビニル系樹脂であるCPVC-8を製造した。
 〔評価〕
 参考例1では、100重量部のCPVC-8に対して、2.4重量部の滑剤および1.0重量部の熱安定剤の代わりに、2.9重量部の滑剤と、2.0重量部の熱安定剤とを添加した。この変更点以外は、比較例と同様の操作により、CPVC-8樹脂組成物-2を得た。
 CPVC-8樹脂組成物-2に対して、比較例と同様に加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-8樹脂組成物-2は、混練トルクが4.89kgf・mと低く、熱安定性も13.8分と長かった。また、CPVC-8樹脂組成物-2は、降伏点応力も51.1MPaと高かった。
 そのため、CPVC-8樹脂組成物-2は、加工性、熱安定性および物性の全てにおいて優れていることが認められた。しかしながら、CPVC-8樹脂組成物-2は、上述の性質を発現するために、多量の配合剤(滑剤、および、熱安定剤)を必要とした。
 また、CPVC-8樹脂組成物-2は、滑剤および熱安定剤の添加量を増加することにより、加工性および熱安定性が向上していることが認められた。
 このことから、比較例1におけるCPVC-8樹脂組成物-1と異なり、実施例1~7における樹脂組成物は、滑剤および熱安定剤などの添加剤の添加量が多量でなくても、加工性および熱安定性に優れていることが認められた。
 <比較例2>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 比較例2では、比較例1と同様に、塩素化ポリ塩化ビニル系樹脂であるCPVC-8を製造した。
 〔評価〕
 比較例2では、100重量部のCPVC-8の代わりに、99重量部のCPVC-8と、1重量部の粘度平均分子量が11000のポリプロピレン系樹脂の粉末との混合樹脂100重量部に対して、添加剤を添加した。粘度平均分子量が11000のポリプロピレン系樹脂の粉末としては、三井化学株式会社製のハイワックスNP105を用いた。
 すなわち、比較例2では、100重量部のCPVC-8のうち、1重量部を粘度平均分子量が11000のポリプロピレン系樹脂の粉末に置き換えた混合樹脂100重量部に対して、添加剤を添加した。この変更点以外は、比較例1と同様の操作により、CPVC-8樹脂組成物-3を得た。
 CPVC-8樹脂組成物-3に対して、比較例1と同様に加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-8樹脂組成物-3は、混練トルクが4.67kgf・mと低く、熱安定性も19.1分と長かった。しかし、CPVC-8樹脂組成物-3は、降伏点応力が50.3MPaと低かった。
 そのため、CPVC-8樹脂組成物-3は、加工性および熱安定性に優れているが、物性が優れておらず、劣っていることが認められた。
 反対に、実施例1~7のように、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末を含むスラリーに塩素を供給し、紫外線を照射して得られた塩素化ポリ塩化ビニル系樹脂を用いた樹脂組成物は、加工性、熱安定性および物性に優れるとわかった。
 <比較例3>
 〔塩素化ポリ塩化ビニル系樹脂の製造〕
 比較例3では、比較例1と同様に、塩素化ポリ塩化ビニル系樹脂であるCPVC-8を製造した。
 〔評価〕
 比較例3では、100重量部のCPVC-8の代わりに、99重量部のCPVC-8と、1重量部の粘度平均分子量が21000のポリプロピレン系樹脂の粉末との混合樹脂100重量部に対して、添加剤を添加した。粘度平均分子量が21000のポリプロピレン系樹脂の粉末としては、三井化学株式会社製のハイワックスNP505を用いた。
 すなわち、比較例3では、100重量部のCPVC-8のうち、1重量部を粘度平均分子量が21000のポリプロピレン系樹脂の粉末に置き換えた混合樹脂100重量部に対して、添加剤を添加した。この変更点以外は、比較例1と同様の操作により、CPVC-8樹脂組成物-4を得た。
 換言すれば、比較例3では、粘度平均分子量が11000のポリプロピレン系樹脂の粉末の代わりに、粘度平均分子量が21000のポリプロピレン系樹脂の粉末を用いた点以外は、比較例2と同様の操作により、CPVC-8樹脂組成物-4を得た。
 CPVC-8樹脂組成物-4に対して、比較例と同様に加工性、熱安定性および物性の評価を行った。
 以下の表1に示すように、CPVC-8樹脂組成物-4は、混練トルクが4.73kgf・mと低く、トルク上昇時間も19分と長かった。しかし、CPVC-8樹脂組成物-4は、降伏点応力が50.4MPaと低かった。
 そのため、樹脂組成物の物性が特に高くなる、粘度平均分子量が21000のポリプロピレン系樹脂の粉末を添加してもなお、CPVC-8樹脂組成物-4は加工性および熱安定性に優れているが、物性が優れておらず、劣っていることが認められた。
Figure JPOXMLDOC01-appb-T000001
 <付記事項>
 本発明の一実施形態は、以下の構成を含む:
 〔1〕ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに対して、塩素を供給し、紫外線を照射し、前記ポリ塩化ビニル系樹脂を塩素化する塩素化工程を含む、塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔2〕前記ポリプロピレン系樹脂の粘度平均分子量は、4000以上である、〔1〕に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔3〕前記ポリプロピレン系樹脂の粘度平均分子量は、5000以上である、〔1〕に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔4〕前記ポリプロピレン系樹脂の粘度平均分子量は、7000以上である、〔1〕に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔5〕前記ポリプロピレン系樹脂の粘度平均分子量は、10000以上である、〔1〕に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔6〕前記ポリプロピレン系樹脂の粘度平均分子量は、30000以下である、〔1〕~〔5〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔7〕前記ポリプロピレン系樹脂の粘度平均分子量は、25000以下である、〔1〕~〔5〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔8〕前記ポリプロピレン系樹脂の粘度平均分子量は、21000以下である、〔1〕~〔5〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔9〕前記ポリプロピレン系樹脂の平均粒子径は、10μm以上1000μm以下である、〔1〕~〔8〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔10〕前記ポリプロピレン系樹脂の融点は、100℃以上170℃以下である、〔1〕~〔9〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
 〔11〕〔1〕~〔10〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂の製造方法によって得られた前記塩素化ポリ塩化ビニル系樹脂に対して、添加剤を添加する添加工程を含み、
 前記添加剤は、100重量部の前記塩素化ポリ塩化ビニル系樹脂に対して、2.8重量部以下の滑剤と、2.0重量部以下の熱安定剤と、9重量部以下の衝撃吸収剤とからなる群から選択される少なくとも1つを含む、塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
 〔12〕前記熱安定剤は、1.8重量部以下である、〔11〕に記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
 〔13〕前記衝撃吸収剤は、8重量部以下である、〔11〕または〔12〕に記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
 〔14〕前記添加工程では、前記塩素化ポリ塩化ビニル系樹脂のみからなる樹脂に対して、前記添加剤を添加する、〔11〕~〔13〕のいずれかに記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
 本発明は、耐熱パイプ、耐熱継手、耐熱バルブおよび耐熱シートなどに利用することができる。

Claims (14)

  1.  ポリ塩化ビニル系樹脂と、粘度平均分子量が3500以上のポリプロピレン系樹脂の粉末とを含むスラリーに対して、塩素を供給し、紫外線を照射し、前記ポリ塩化ビニル系樹脂を塩素化する塩素化工程を含む、塩素化ポリ塩化ビニル系樹脂の製造方法。
  2.  前記ポリプロピレン系樹脂の粘度平均分子量は、4000以上である、請求項1に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  3.  前記ポリプロピレン系樹脂の粘度平均分子量は、5000以上である、請求項1に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  4.  前記ポリプロピレン系樹脂の粘度平均分子量は、7000以上である、請求項1に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  5.  前記ポリプロピレン系樹脂の粘度平均分子量は、10000以上である、請求項1に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  6.  前記ポリプロピレン系樹脂の粘度平均分子量は、30000以下である、請求項1~5のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  7.  前記ポリプロピレン系樹脂の粘度平均分子量は、25000以下である、請求項1~5のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  8.  前記ポリプロピレン系樹脂の粘度平均分子量は、21000以下である、請求項1~5のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  9.  前記ポリプロピレン系樹脂の平均粒子径は、10μm以上1000μm以下である、請求項1~8のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  10.  前記ポリプロピレン系樹脂の融点は、100℃以上170℃以下である、請求項1~9のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法。
  11.  請求項1~10のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂の製造方法によって得られた前記塩素化ポリ塩化ビニル系樹脂に対して、添加剤を添加する添加工程を含み、
     前記添加剤は、100重量部の前記塩素化ポリ塩化ビニル系樹脂に対して、2.8重量部以下の滑剤と、2.0重量部以下の熱安定剤と、9重量部以下の衝撃吸収剤とからなる群から選択される少なくとも1つを含む、塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
  12.  前記熱安定剤は、1.8重量部以下である、請求項11に記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
  13.  前記衝撃吸収剤は、8重量部以下である、請求項11または12に記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
  14.  前記添加工程では、前記塩素化ポリ塩化ビニル系樹脂のみからなる樹脂に対して、前記添加剤を添加する、請求項11~13のいずれか1項に記載の塩素化ポリ塩化ビニル系樹脂組成物の製造方法。
PCT/JP2022/013069 2021-03-24 2022-03-22 塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用 WO2022202783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509182A JPWO2022202783A1 (ja) 2021-03-24 2022-03-22
US18/371,679 US20240010762A1 (en) 2021-03-24 2023-09-22 Manufacturing method and use for chlorinated polyvinyl chloride resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050634 2021-03-24
JP2021050634 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/371,679 Continuation US20240010762A1 (en) 2021-03-24 2023-09-22 Manufacturing method and use for chlorinated polyvinyl chloride resin

Publications (1)

Publication Number Publication Date
WO2022202783A1 true WO2022202783A1 (ja) 2022-09-29

Family

ID=83397479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013069 WO2022202783A1 (ja) 2021-03-24 2022-03-22 塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用

Country Status (3)

Country Link
US (1) US20240010762A1 (ja)
JP (1) JPWO2022202783A1 (ja)
WO (1) WO2022202783A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122715A (ja) * 1986-11-12 1988-05-26 Tokuyama Sekisui Kogyo Kk 塩素化塩化ビニル樹脂の製造方法
JPH02242841A (ja) * 1989-03-16 1990-09-27 Tokuyama Sekisui Ind Corp 加工が容易な塩素化塩化ビニル系樹脂の製造方法
JP2001131374A (ja) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122715A (ja) * 1986-11-12 1988-05-26 Tokuyama Sekisui Kogyo Kk 塩素化塩化ビニル樹脂の製造方法
JPH02242841A (ja) * 1989-03-16 1990-09-27 Tokuyama Sekisui Ind Corp 加工が容易な塩素化塩化ビニル系樹脂の製造方法
JP2001131374A (ja) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂組成物

Also Published As

Publication number Publication date
JPWO2022202783A1 (ja) 2022-09-29
US20240010762A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP6263129B2 (ja) 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
JP4901130B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
JP6263128B2 (ja) 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2014180118A1 (zh) 聚氯乙烯混合物及其制备方法
EP0512610B1 (en) Chlorinated PVC blends
JP2003510438A (ja) Pvcまたはcpvcのための衝撃改質剤強化剤として使用されるブロック塩素化ポリオレフィン
JP2021185240A (ja) 塩素化塩化ビニル系樹脂
WO2022202783A1 (ja) 塩素化ポリ塩化ビニル系樹脂の製造方法およびその利用
JP2012505278A (ja) ハロゲン化ビニルポリマー系組成物
JP7488850B2 (ja) 成形用樹脂組成物及び成形体
JP7041264B2 (ja) 塩素化塩化ビニル系樹脂
CN113614121B (zh) 氯化聚氯乙烯系树脂
TWI841720B (zh) 氯化氯乙烯系樹脂
JP6705671B2 (ja) 塩化ビニル系樹脂組成物及び塩化ビニル系樹脂成形体
JP2008019448A (ja) 塩化ビニル系樹脂成形板
WO2021065941A1 (ja) 成形用樹脂組成物及び成形体
JP2021169636A (ja) 塩素化塩化ビニル系樹脂
JPH11349767A (ja) 塩素化塩化ビニル系樹脂
JP2000212366A (ja) 塩素化塩化ビニル系樹脂組成物とその成形体
JPH0680137B2 (ja) 塩素化塩化ビニル樹脂組成物
JPH0312582B2 (ja)
JP2001098126A (ja) 耐熱塩化ビニル系樹脂組成物および成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509182

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775566

Country of ref document: EP

Kind code of ref document: A1