WO2022000923A1 - 一种负载型核壳结构ZnO催化剂及其制备方法和应用 - Google Patents

一种负载型核壳结构ZnO催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022000923A1
WO2022000923A1 PCT/CN2020/127847 CN2020127847W WO2022000923A1 WO 2022000923 A1 WO2022000923 A1 WO 2022000923A1 CN 2020127847 W CN2020127847 W CN 2020127847W WO 2022000923 A1 WO2022000923 A1 WO 2022000923A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
catalyst
shell structure
core
nizn
Prior art date
Application number
PCT/CN2020/127847
Other languages
English (en)
French (fr)
Inventor
巩金龙
徐依依
陈赛
裴春雷
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to GB2202206.5A priority Critical patent/GB2605010B/en
Priority to US17/542,215 priority patent/US20220088573A1/en
Publication of WO2022000923A1 publication Critical patent/WO2022000923A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/322Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the invention belongs to the technical field of supported catalysts, and in particular relates to a NiZn@ZnO core-shell structure catalyst supported by Al 2 O 3 and a preparation method and application thereof.
  • Propylene is one of the important basic chemical raw materials for industrial production, mainly used to produce polypropylene, propylene oxide, acrylonitrile and other products.
  • the global demand for propylene has greatly increased, which has promoted the rapid growth of its production capacity.
  • the total domestic production of propylene in 2019 reached 33 million tons, an increase of 8.75% compared with 2018.
  • propylene supply mainly comes from naphtha cracking to ethylene and by-products of petroleum catalytic cracking process.
  • the ethylene production process began to shift from naphtha cracking to non-co-produced propylene technologies such as ethane steam cracking, so propylene prices also rose.
  • the reaction is a strong endothermic reaction controlled by thermodynamic equilibrium, and the conditions of high temperature and low pressure are favorable for the reaction to proceed.
  • Supported CrO x and Pt catalysts are two important industrial catalysts, which are respectively used in the industrialized production process of propane dehydrogenation; namely, Lummus' Catofin process and UOP's Oleflex process, the CrO x catalyst used in the Catofin process is affected by carbon loss. The catalyst needs to be regenerated every 12 minutes on average, and CrO x will also cause serious pollution to the environment.
  • the Pt-based catalyst used in the Oleflex process has excellent ability to activate the CH bond of alkanes, but as a precious metal, the application of Pt is strongly limited by its high price. Therefore, inexpensive and environmentally friendly alternative catalysts have received extensive attention.
  • zinc oxide has high activity and selectivity to propylene, and is abundant in reserves and cheap and easy to obtain. is a potential catalyst.
  • the current problem is that zinc oxide, as an active species, is easily deactivated rapidly when exposed to a reducing reaction atmosphere during the dehydrogenation reaction of propane.
  • the mechanism of deactivation is the surface hydroxyl and The formation and desorption of H 2 O caused by the formation and desorption of H 2 O in the H recombination of Zn-based ZnO species reduce the metal Zn, which has no propane dehydrogenation activity and has a low melting point and is easy to lose.
  • the present invention aims to solve the technical problem that the existing ZnO-based catalysts are easily and quickly deactivated, and provides a supported core-shell structure ZnO catalyst and its preparation method and application, which have high activity and high selectivity, and are inexpensive and non-toxic. At the same time, it exhibits excellent stability, breaks the limitation of rapid deactivation of ZnO-based catalysts, and can be used as a catalyst in the dehydrogenation of light alkanes to olefins.
  • a supported ZnO catalyst with a core-shell structure wherein the catalyst uses Al 2 O 3 as a carrier and ZnO as an active site; the Al 2 O 3 carrier is loaded with a NiZn@ZnO core-shell structure, and the NiZn
  • the mass percentage of Ni is 1%-3%.
  • the mass percentage of Ni is 0.5%-6%.
  • a preparation method of the supported core-shell structure ZnO catalyst is provided, and the method is carried out according to the following steps:
  • step (2) immersing Al 2 O 3 in the solution obtained in step (1), dispersing it uniformly by ultrasonic, and drying it completely;
  • step (3) The solid obtained in step (2) was calcined at 500-600° C. for 2-4 h, and after reduction, the NiZn@ZnO core-shell structure catalyst supported by Al 2 O 3 was obtained.
  • step (2) is to completely dry at 80-100° C. after natural drying at room temperature.
  • the reduction temperature in step (3) is 500-700° C., and the reduction time is 1-2 h.
  • an application of the supported core-shell structure ZnO catalyst in dehydrogenation of light alkanes to olefins is provided.
  • the low-carbon alkane is propane
  • the olefin is propylene
  • the supported core-shell structure ZnO catalyst of the present invention uses the inexpensive and readily available non-precious metal oxide ZnO as the active component, which greatly reduces the cost of the catalyst compared with the precious metal Pt catalysts commonly used in the industry, and utilizes strong interaction (SMSI).
  • SMSI strong interaction
  • NiZn@ZnO core-shell structure in which the core is NiZn alloy and the outer shell is ZnO
  • the strong interaction between this NiZn alloy and ZnO and the accompanying electron transfer between NiZn alloy and ZnO can significantly change the geometry of ZnO and electronic properties, thereby changing the binding strength of the O site of the active center of ZnO to H during the dehydrogenation reaction, inhibiting the formation and desorption of H 2 O and thus inhibiting the reductive inactivation of ZnO, which is in line with other reported ZnO-based dehydrogenation.
  • the stability is significantly improved.
  • the catalyst of the invention is prepared by the co-impregnation method, the raw materials are easily obtained, the process is simple, the repeatability is high, and the catalyst has certain industrial significance.
  • the catalyst of the invention has good catalytic effect on the dehydrogenation of low-carbon alkanes to olefins, the conversion rate of low-carbon alkanes can reach more than 40% under high temperature conditions, the selectivity of olefins can reach more than 90%, and at the same time, it shows excellent stability , breaking the limitation of rapid deactivation of ZnO-based catalysts.
  • Fig. 1 is the catalytic performance diagram of the catalysts prepared in Examples 1-6; wherein, (a) is the curve of propane conversion with time, (b) is the curve of propylene selectivity with time, and (c) is the deactivation rate Constant k d calculation result graph.
  • FIG. 2 is a diagram showing the catalytic performance of the catalysts prepared in Examples 1, 7, 8, and 9.
  • FIG. 4 is a test chart of the regeneration stability at 550° C. of the Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1.
  • FIG. 4 is a test chart of the regeneration stability at 550° C. of the Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1.
  • FIG. 6 is an EDS-mapping diagram of the Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1.
  • FIG. 7 is a TEM image of the Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1.
  • Fig. 8 is the comparison chart of CO adsorption infrared results of the catalysts prepared in Examples 1, 5 and 6 with the time of He gas purging; wherein, (a), (b) and (c) correspond to Example 5 and Example 1, respectively. , the catalyst prepared in Example 6.
  • Figure 9 is a graph showing the relationship between the catalytic activity of the catalysts prepared in Examples 1, 2, 4, and 5 and the Ni metal surface area; wherein, (a) is the measurement of the Ni metal surface area of the catalysts prepared in Examples 1, 2, 4, and 5. Result graph; (b) is a graph showing the relationship between the conversion of propane and the surface area of Ni metal.
  • FIG. 10 is a graph showing the H 2 -TPD test results of the catalysts prepared in Examples 1 and 6; wherein, (a) and (b) correspond to the catalysts prepared in Example 6 and Example 1, respectively.
  • NiZn@ZnO core-shell structure granular catalyst supported by Al 2 O 3 after tableting is loaded into the fixed-bed reactor, and the reaction gas is introduced to carry out the reaction, and the molar ratio of hydrogen and propane in the reaction gas is 1:1 , the mass space velocity of propane is 4h -1 , and the balance gas is nitrogen.
  • Example 1 The method of Example 1 is used to prepare and react, and the difference is only that 0.15 parts by mass of zinc nitrate (Zn(NO 3 ) 2 ⁇ 6H 2 O) is taken in step (1); the obtained catalyst is based on the quality of the carrier, and the quality of Ni The percentage content is 3%, and the molecular formula is recorded as Ni1Zn1/Al 2 O 3 .
  • Example 1 The method of Example 1 is used to prepare and react, and the difference is only that 0.6 parts by mass of zinc nitrate (Zn(NO 3 ) 2 ⁇ 6H 2 O) is taken in step (1); the obtained catalyst is based on the quality of the carrier, and the quality of Ni The percentage content is 3%, and the molecular formula is recorded as Ni1Zn4/Al 2 O 3 .
  • Example 1 The method of Example 1 is used for preparation and reaction, and the difference is only that in step (1), 0.05 parts by mass of zinc nitrate (Zn(NO 3 ) 2 ⁇ 6H 2 O) is taken; the obtained catalyst is based on the quality of the carrier, and the quality of Ni The percentage content is 3%, and the molecular formula is recorded as Ni3Zn1/Al 2 O 3 .
  • step (1) Prepare and react with the method of Example 1, and the difference is only that in step (1), take 0 mass parts of zinc nitrate (Zn(NO 3 ) 2 ⁇ 6H 2 O); the obtained catalyst is based on the quality of the carrier, and the quality of Ni The percentage content is 3%, and the molecular formula is recorded as Ni/Al 2 O 3 .
  • step (1) prepare and react with the method of Example 1, the difference is only that in step (1), take 0 mass parts of nickel nitrate Ni(NO 3 ) 3 .6H 2 O, the obtained catalyst is based on the quality of the carrier, and the mass percentage of Zn The content is 10%, and the molecular formula is recorded as ZnO/Al 2 O 3 .
  • Example 1 The method of Example 1 is used to prepare and react, and the difference is only that 0.025 parts by mass of nickel nitrate Ni(NO 3 ) 3 6H 2 O is taken in step (1), and the obtained catalyst is based on the quality of the carrier, and the mass percentage of Ni is The content is 0.5%, and the molecular formula is recorded as Ni1Zn3/Al 2 O 3 .
  • step (1) prepare and react with the method of Example 1, the difference is only that in step (1), take 0.05 parts by mass of nickel nitrate Ni(NO 3 ) 3 6H 2 O, the obtained catalyst is based on the quality of the carrier, and the mass percentage of Ni The content is 1%, and the molecular formula is recorded as Ni1Zn3/Al 2 O 33 .
  • Example 1 The method of Example 1 is used to prepare and react, and the difference is only that in step (1), 0.3 parts by mass of nickel nitrate Ni(NO 3 ) 3 6H 2 O is taken, and the obtained catalyst is based on the quality of the carrier, and the mass percentage of Ni The content is 6%, and the molecular formula is recorded as Ni1Zn3/Al 2 O 3 .
  • the catalyst prepared in the above example was tested for the catalytic performance of the propane dehydrogenation reaction, and the catalyst activity was represented by the conversion rate of propane, the selectivity of propylene and the deactivation rate. The calculation results are discussed as follows:
  • Embodiments 1, 7, 8, and 9 are catalysts prepared with different Ni mass percentages (based on the quality of the carrier) and the propane dehydrogenation to olefins reaction carried out.
  • the catalytic performance is shown in Figure 2, and it can be seen that with The propane conversion increased gradually with the increase of Ni content, but when the Ni content increased to 6 wt%, the propylene selectivity decreased sharply, probably because the higher Ni content resulted in the exposure of part of Ni sites. When the mass percentage of Ni is 3wt%, the catalytic performance is the best.
  • Examples 1, 14, and 15 are the catalysts prepared under different reduction temperature conditions and their propane dehydrogenation to olefin reaction.
  • the catalytic performance is shown in Figure 3. It can be seen that the reduction temperature is in the range of 500 °C to 600 °C. The performance did not change significantly, but when the reduction temperature was increased to 700 °C, the propane conversion of the catalyst decreased significantly, which was due to the fact that the reduction temperature of 700 °C would lead to the deep reduction of ZnO as the active species, forming a lower melting point (420 °C) and Inactive metallic state Zn, leading to loss of activity.
  • Example 1 The catalyst prepared in Example 1 was further tested for long-term regeneration stability at 550 °C. The results are shown in Figure 4. While maintaining a stable selectivity of more than 90%, the Ni1Zn3/Al 2 O 3 catalyst was deactivated. The rate constant (k d ) is as low as 0.017h -1 , showing excellent long-term stability, breaking the limitation of rapid deactivation of ZnO-based catalysts.
  • Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1 was subjected to EDS-mapping analysis. The results are shown in Figure 6. The uniform distribution of Ni and Zn elements is obtained without phase separation, indicating that Ni1Zn3 may form bulk NiZn alloy at the same time. There is surface segregation of Zn.
  • the Ni1Zn3/Al 2 O 3 catalyst prepared in Example 1 was analyzed by high magnification TEM through the identification of lattice fringes. It was found that there was a uniform ZnO coating layer on the surface of the Ni1Zn3 bulk NiZn alloy, forming a The inner core is NiZn alloy and the outer shell is ZnO core-shell structure.
  • Example 6 the catalyst prepared was found Ni1Zn3 see Comparative pure Ni Ni 2055cm CO adsorption peak at -1 and 2198cm -1 appears at the CO adsorption peaks of ZnO line, appears at 1696 and 1522cm -1 ZnO surface The adsorption peaks of some carbonate species confirmed the occurrence of the reverse-coated Ni phenomenon induced by the strong interaction.
  • the catalysts prepared in Examples 1, 2, 4, and 5 measured the active surface area of Ni by hydrogen pulse adsorption, as shown in Figure 9, wherein (a) is the measurement result of Ni metal surface area; (b) is the conversion rate of propane Graph of the variation of Ni metal surface area. It can be seen that with the increase of Zn content, the active surface area of Ni first increases and then decreases continuously. The initial increase may be due to the formation of the initial NiZn alloy to improve the surface dispersion of Ni, while the continued addition of Zn will increase the surface of the alloy.
  • the formation of the ZnO coating resulted in a decrease in the Ni active surface area, and most importantly, a value of Ni active surface area close to zero was obtained for Ni1Zn3, confirming the complete coating of Ni by ZnO with no exposure of Ni on the surface, while the At the same time, the kinetic interval conversion rate of propane reaches the highest, which can rule out the assumption that Ni at the alloy site or the interface site is the active site, and confirm that the shell ZnO in the core-shell structure is the active site for propane dehydrogenation.
  • H 2 -TPD experiment was performed on the catalysts prepared in Examples 1 and 6, and the results are shown in Figure 10, wherein (a) and (b) correspond to the catalysts prepared in Examples 6 and 1, respectively.
  • H 2 -TPD results can be explained NiZn @ ZnO ZnO species of inactivated suppressing effect due to the strong interaction of the core-shell structure induced by the changed geometry ZnO and Zn O environmental sites to the core and shell ZnO alloy electron transfer lowers the electron density on the O site, reduced ability to bind to hydrogen, resulting in easier OH bond dissociation solution ratio of Zn-OH bond, to promote the formation and desorption of H 2 instead of H 2 O, thereby inhibiting
  • the reductive inactivation of ZnO resulted in improved stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种负载型核壳结构ZnO催化剂及其制备方法和应用,该催化剂以Al 2O 3为载体,以ZnO为活性位;Al 2O 3载体负载有NiZn@ZnO核壳结构,NiZn@ZnO核壳结构包括NiZn合金内核和ZnO外壳;制备方法为先将Ni(NO 3) 3·6H 2O和Zn(NO 3) 2·6H 2O溶于去离子水中;然后将Al 2O 3浸渍于上述所得溶液中,超声分散均匀后完全干燥;最后所得固体焙烧,还原后得到目标催化剂。该催化剂具有高活性和高选择性,并表现出优异的稳定性,打破了ZnO基催化剂快速失活的限制,可以在低碳烷烃脱氢制烯烃,特别是丙烷脱氢制丙烯中应用。

Description

一种负载型核壳结构ZnO催化剂及其制备方法和应用 技术领域
本发明属于负载型催化剂技术领域,具体来说,是涉及一种Al 2O 3负载的NiZn@ZnO核壳结构催化剂及其制备方法和应用。
背景技术
丙烯是工业生产重要的基础化工原料之一,主要用于生产聚丙烯、环氧丙烷、丙烯腈等产品。近年来,全球范围内丙烯的需求量大增,促进了其产能快速增长,国内2019年丙烯总产量达到3300万吨,同比2018年涨幅在8.75%。目前,丙烯供应主要来自石脑油裂解制乙烯和石油催化裂化过程的副产品。但是,随着富含低碳烷烃的页岩气的开发,乙烯生产工艺开始从石脑油裂解转向乙烷蒸汽裂解等非联产丙烯技术,因而丙烯价格也随之上升。加上传统工艺的高耗能、低选择性以及石油资源的短缺,无法满足日益增长的需求,促使人们寻找更经济更高效的丙烯生产方式。而丙烯-丙烷价差自2016年来持续扩大,丙烷脱氢借助成本优势产能增加显著,丙烷脱氢制丙烯技术(PDH)展现出了广阔的前景。2013年10月,天津渤化年产能60万吨的丙烷脱氢装置的投产,丙烷脱氢大幕在中国正式拉开。2014-2016年间,丙烷脱氢(含混烷)产能已每年至少投产三套装置的速度增长。截止2017年底,中国丙烷脱氢(含混烷)总产能达513.5万吨,在总产能中占比达15%。
丙烷脱氢的反应式为:
Figure PCTCN2020127847-appb-000001
△H 298K=124.3kJ/g.mol。反应是受热力学平衡控制的强吸热反应,高温、低压条件有利于反应的进行。负载型CrO x和Pt催化剂是两类重要的工业催化剂,分别应用于丙烷脱氢已经工业化的生产工艺;即Lummus的Catofin工艺和UOP的Oleflex工艺中,Catofin工艺采用的CrO x催化剂受积碳失活困扰,平均12分钟就要对催化剂再生一次,同时CrO x也会对环境造成严重污染。而Oleflex工艺选用的Pt系催化剂具有优异的活化烷烃C-H键的能力,但作为贵金属,Pt的应用受到其昂贵价格的强烈限制。因此,廉价且环境友好的替代催化剂受到广泛关注。
在具有催化丙烷脱氢活性的各种金属氧化物中(氧化钒,氧化镓,氧化铁,氧化锆等),氧化锌具有较高的活性和对丙烯的选择性,储量丰富且廉价易得,是很有潜力的催化剂。 目前存在的问题是氧化锌作为活性物种,在丙烷脱氢反应过程中暴露于还原性的反应气氛下容易快速失活,失活的机制是脱氢反应过程中ZnO活性位点上表面羟基和烷基锌的H重组时H 2O的形成和脱附导致的ZnO物种还原金属Zn,金属Zn无丙烷脱氢活性且熔点较低易流失。
发明内容
本发明要解决的是现有ZnO基催化剂容易快速失活的技术问题,提供了一种负载型核壳结构ZnO催化剂及其制备方法和应用,该催化剂具有高活性和高选择性,廉价无毒,与此同时表现出优异的稳定性,打破了ZnO基催化剂快速失活的限制,可以在低碳烷烃脱氢制烯烃中作为催化剂应用。
为了解决上述技术问题,本发明通过以下的技术方案予以实现:
根据本发明的一个方面,提供了一种负载型核壳结构ZnO催化剂,该催化剂以Al 2O 3为载体,以ZnO为活性位;Al 2O 3载体负载有NiZn@ZnO核壳结构,NiZn@ZnO核壳结构包括NiZn合金内核和ZnO外壳;该催化剂分子式记为NixZny/Al 2O 3,x:y=(1:1)-(1:4)。
进一步地,以催化剂中Al 2O 3载体质量为基准,Ni的质量百分含量为1%-3%。
更进一步地,以催化剂中Al 2O 3载体质量为基准,Ni的质量百分含量为0.5%-6%。
进一步地,x:y=1:3。
根据本发明的另一个方面,提供了一种所述负载型核壳结构ZnO催化剂的制备方法,该方法按照以下步骤进行:
(1)将Ni(NO 3) 3·6H 2O和Zn(NO 3) 2·6H 2O溶于去离子水中;
(2)将Al 2O 3浸渍于步骤(1)所得溶液中,超声分散均匀后完全干燥;
(3)将步骤(2)所得固体在500-600℃焙烧2-4h,还原后得到Al 2O 3负载的NiZn@ZnO核壳结构催化剂。
进一步地,步骤(2)中的干燥过程为在室温下自然干燥后,在80-100℃下完全干燥。
进一步地,步骤(3)中的还原温度为500-700℃,还原时间为1-2h。
根据本发明的另一个方面,提供了一种所述负载型核壳结构ZnO催化剂在低碳烷烃脱氢制烯烃中的应用。
进一步地,所述低碳烷烃为丙烷,所述烯烃为丙烯。
本发明的有益效果是:
本发明的负载型核壳结构ZnO催化剂,以廉价易得的非贵金属氧化物ZnO为活性组分,与工业上常用的贵金属Pt系催化剂相比大大降低了催化剂的成本,利用强相互作用(SMSI)构建了内核是NiZn合金,外壳是ZnO的NiZn@ZnO核壳结构,这种NiZn合金与ZnO之间强烈的相互作用以及伴随的NiZn合金与ZnO之间的电子转移可以显著改变ZnO的几何结构和电子性质,从而改变脱氢反应过程中ZnO活性中心O位点对H的结合强度,抑制H 2O的形成和脱附从而抑制ZnO的还原失活,与已有报道的其他ZnO基脱氢催化剂相比稳定性显著提升。通过多种表征手段证实ZnO壳层的完全包覆,催化剂表面没有Ni位点的暴露,避免具有C-H断键活性和高C-C断键活性的Ni位点对脱氢选择性造成不利影响,保持ZnO基脱氢催化剂的高选择性。
本发明的催化剂采用共浸渍法制备,原料易得,过程简单,重复性高,具有一定的工业意义。
本发明的催化剂对低碳烷烃脱氢制烯烃具有良好的催化效果,在高温条件下低碳烷烃转化率可达40%以上,烯烃选择性可达到90%以上,与此同时表现出优异的稳定性,打破了ZnO基催化剂快速失活的限制。
附图说明
图1为实施例1-6所制得催化剂的催化性能图;其中,(a)为丙烷转化率随时间变化曲线,(b)为丙烯选择性随时间变化曲线,(c)为失活速率常数k d计算结果图。
图2为实施例1、7、8、9所制备催化剂的催化性能图。
图3为实施例1、14、15所制得的Ni1Zn3/Al 2O 3催化剂的催化性能图。
图4为实施例1所制得的Ni1Zn3/Al 2O 3催化剂的550℃再生稳定性测试图。
图5为实施例1、2、4、5所制得催化剂的XRD谱图,其中I、II、III、IV分别对应实施例5、4、2、1。
图6为实施例1所制得Ni1Zn3/Al 2O 3催化剂的EDS-mapping图。
图7为实施例1所制得Ni1Zn3/Al 2O 3催化剂的TEM图。
图8为实施例1、5、6所制得催化剂随He气吹扫时间变化CO吸附红外结果对比图; 其中,(a)、(b)、(c)分别对应实施例5、实施例1、实施例6所制得催化剂。
图9为实施例1、2、4、5所制得催化剂的催化活性与Ni金属表面积关系图;其中,(a)为实施例1、2、4、5所制得催化剂的Ni金属表面积测量结果图;(b)为丙烷转化率随Ni金属表面积变化关系图。
图10为实施例1、6所制得催化剂H 2-TPD测试结果图;其中,(a)、(b)分别对应实施例6、实施例1所制得催化剂。
具体实施方式
下面通过具体的实施例对本发明作进一步的详细描述,以下实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
(1)将0.15质量份的Ni(NO 3) 3·6H 2O和0.45质量份的Zn(NO 3) 2·6H 2O溶于1mL的去离子水中;
(2)将1质量份Al 2O 3浸渍于上述溶液,超声0.5h-1h,在室温下自然干燥12h,然后在80-100℃下完全干燥;
(3)将(2)得到的固体在600℃空气气氛下焙烧3h,在600℃下还原1h,得到Al 2O 3负载的NiZn@ZnO核壳结构催化剂,该催化剂以其中载体质量为基准,Ni的质量百分含量为3%,分子式记为Ni1Zn3/Al 2O 3
(4)将制备好的Al 2O 3负载的NiZn@ZnO核壳结构催化剂压片为20-40目的颗粒状催化剂;
(5)将压片后的Al 2O 3负载的NiZn@ZnO核壳结构颗粒状催化剂装入固定床反应器,通入反应气进行反应,反应气中氢气和丙烷的摩尔比为1:1,丙烷质量空速为4h -1,平衡气为氮气。
实施例2:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.15质量份的硝酸锌(Zn(NO 3) 2·6H 2O);所得催化剂以载体质量为基准,Ni的质量百分含量为3%,分子式记为Ni1Zn1/Al 2O 3
实施例3:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.6质量份的硝酸锌(Zn(NO 3) 2·6H 2O);所得催化剂以载体质量为基准,Ni的质量百分含量为3%,分子式记为Ni1Zn4/Al 2O 3
实施例4:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.05质量份的硝酸锌(Zn(NO 3) 2·6H 2O);所得催化剂以载体质量为基准,Ni的质量百分含量为3%,分子式记为Ni3Zn1/Al 2O 3
实施例5:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0质量份的硝酸锌(Zn(NO 3) 2·6H 2O);所得催化剂以载体质量为基准,Ni的质量百分含量为3%,分子式记为Ni/Al 2O 3
实施例6:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0质量份的硝酸镍Ni(NO 3) 3·6H 2O,所得催化剂以载体质量为基准,Zn的质量百分含量为10%,分子式记为ZnO/Al 2O 3
实施例7:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.025质量份的硝酸镍Ni(NO 3) 3·6H 2O,所得催化剂以载体质量为基准,Ni的质量百分含量为0.5%,分子式记为Ni1Zn3/Al 2O 3
实施例8:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.05质量份的硝酸镍Ni(NO 3) 3·6H 2O,所得催化剂以载体质量为基准,Ni的质量百分含量为1%,分子式记为Ni1Zn3/Al 2O 33
实施例9:
用实施例1方法进行制备和反应,其区别仅在于步骤(1)中取0.3质量份的硝酸镍Ni(NO 3) 3·6H 2O,所得催化剂以载体质量为基准,Ni的质量百分含量为6%,分子式记为 Ni1Zn3/Al 2O 3
实施例10:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的焙烧温度为400℃。
实施例11:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的焙烧温度为500℃。
实施例12:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的焙烧时间为2h。
实施例13:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的焙烧时间为4h。
实施例14:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的还原温度为500℃。
实施例15:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的还原温度为700℃。
实施例16:
用实施例1方法进行制备和反应,其区别仅在于步骤(3)中的还原时间为2h。
对于上述实施例所制备的催化剂进行丙烷脱氢反应催化性能的测试,催化剂活性以丙烷转化率和丙烯选择性及失活速率表示,结合计算结果讨论如下:
对实施例1-6对应不同Ni/Zn比的催化剂进行丙烷脱氢反应催化性能的测试,催化性能如图1所示,其中(a)为丙烷转化率随时间变化曲线,(b)为丙烯选择性随时间变化曲线,(c)为失活速率常数k d计算结果图。从图1中可以看出,实施例1-3对应的NixZny/Al 2O 3催化剂稳定性有了显著提升;而实施例5的纯Ni/Al 2O 3表现出高的初始活性,但对丙烯的选择性差,并且经历了由于快速的焦炭沉积覆盖了高活性位点而快速失活的诱导期,然后变为相对稳定和低活。实施例6的ZnO/Al 2O 3对丙烯选择性可达90%以上,但具有连续快速失活的倾向,失活速率常数(k d)高于0.37h -1,表明丙烷脱氢反应过程中稳定性较差。另外,从图1中可以看出,随着Zn添加量的增加,NixZny/Al 2O 3的催化行为趋于从类Ni转变为类ZnO,这可能暗示了活性位的转变。与ZnO相比,Ni1Zn3/Al 2O 3失 活趋势得到显著抑制,并且具有更高的活性和相似的选择性,初始所得丙烷转化率为37%,选择性可达90%以上。
实施例1、7、8、9为不同Ni质量百分含量(以载体质量为基准)所制得催化剂及其进行的丙烷脱氢制烯烃反应,催化性能如图2所示,可以看到随Ni含量的增加丙烷转化率逐渐增加,但当Ni含量增加到6wt%时,丙烯选择性大幅下降,可能是更高的Ni含量导致部分Ni位点的暴露。当Ni质量百分含量为3wt%时催化性能最优。
实施例1、14、15为在不同还原温度条件下所制得催化剂及其进行的丙烷脱氢制烯烃反应,催化性能如图3所示,可以看到还原温度在500℃到600℃区间催化性能没有发生显著变化,但当还原温度提高至700℃时,催化剂丙烷转化率显著降低,这是由于700℃的还原温度会导致作为活性物种的ZnO深度还原,形成熔点较低(420℃)且无活性的金属态Zn,导致活性的损失。
进一步对实施例1所制得催化剂在550℃下进行了长时间再生稳定性测试,结果如图4所示,在保持稳定的90%以上选择性的同时,Ni1Zn3/Al 2O 3催化剂失活速率常数(k d)低至0.017h -1,表现出优异的长时间稳定性,打破了ZnO基催化剂快速失活的限制。
对实施例1、2、4、5对应不同Ni/Zn比的催化剂进行XRD分析,结果如图5所示,其中I、II、III、IV分别对应实施例5、4、2、1,可以看到随Zn含量的增加Zn逐渐渗透到Ni的体相晶格中,衍射峰由Ni(111)向NiZn(101)发生转变,形成了体相NiZn合金。
对实施例1所制得Ni1Zn3/Al 2O 3催化剂进行EDS-mapping分析,结果如图6所示,得到均一的Ni和Zn元素分布并无分相发生,表明Ni1Zn3形成体相NiZn合金同时可能存在Zn的表面偏析。
结合图7所示,对实施例1所制得Ni1Zn3/Al 2O 3催化剂用高倍TEM分析通过对晶格条纹的识别发现,Ni1Zn3体相NiZn合金的表面存在着均匀的ZnO包覆层,形成了内核是NiZn合金,外壳是ZnO的核壳结构。
对实施例1、5、6所制得催化剂进行表面敏感的CO吸附红外实验,结果如图8所示,其中(a)、(b)、(c)分别对应实施例5、实施例1、实施例6所制得催化剂,发现Ni1Zn3对比纯Ni看不到2055cm -1处Ni的CO吸附峰,同时2198cm -1处出现了ZnO的CO线式吸附峰,1696和1522cm -1处出现ZnO表面一些碳酸盐物种的吸附峰,证实了由强相互作 用诱导的ZnO反向包覆Ni现象的发生。
进一步实施例1、2、4、5所制得催化剂通过氢脉冲吸附测量了Ni的活性表面积,如图9所示,其中(a)为Ni金属表面积测量结果图;(b)为丙烷转化率随Ni金属表面积变化关系图。可以看到随Zn含量的增加,Ni的活性表面积先升高随后一直下降,一开始的升高可能是因为初始NiZn合金的形成改善了Ni的表面分散,而Zn的继续添加则会在合金表面形成ZnO包覆层,导致Ni活性表面积的下降,最重要的是,对于Ni1Zn3得到了一个接近于零的Ni活性表面积数值,证实了ZnO对Ni的完全包覆,表面没有Ni的暴露,而与此同时丙烷的动力学区间转化率却达到了最高,可以排除合金位或者界面位的Ni是活性位点的假设,证实了核壳结构中壳层ZnO是丙烷脱氢的活性位点。
对实施例1、6所制得催化剂进行H 2-TPD实验,结果如图10所示,其中,(a)、(b)分别对应实施例6、实施例1所制得催化剂。H 2-TPD实验结果可以解释NiZn@ZnO对ZnO物种失活的抑制效果,由于强相互作用诱导的核壳结构改变了Zn和O位点的几何环境以及壳层ZnO向内核合金的ZnO转移电子降低了O位点上的电子密度,减弱了对氢的结合能力,导致O-H键解离比Zn-OH键解离更容易,促进了H 2的形成和脱附而不是H 2O,从而抑制了ZnO的还原失活,导致稳定性的提高。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (9)

  1. 一种负载型核壳结构ZnO催化剂,其特征在于,该催化剂以Al 2O 3为载体,以ZnO为活性位;Al 2O 3载体负载有NiZn@ZnO核壳结构,NiZn@ZnO核壳结构包括NiZn合金内核和ZnO外壳;该催化剂分子式记为NixZny/Al 2O 3,x:y=(1:1)-(1:4)。
  2. 根据权利要求1所述的一种负载型核壳结构ZnO催化剂,其特征在于,以催化剂中Al 2O 3载体质量为基准,Ni的质量百分含量为1%-3%。
  3. 根据权利要求2所述的一种负载型核壳结构ZnO催化剂,其特征在于,以催化剂中Al 2O 3载体质量为基准,Ni的质量百分含量为0.5%-6%。
  4. 根据权利要求1所述的一种负载型核壳结构ZnO催化剂,其特征在于,x:y=1:3。
  5. 一种如权利要求1-4中任一项所述负载型核壳结构ZnO催化剂的制备方法,其特征在于,该方法按照以下步骤进行:
    (1)将Ni(NO 3) 3·6H 2O和Zn(NO 3) 2·6H 2O溶于去离子水中;
    (2)将Al 2O 3浸渍于步骤(1)所得溶液中,超声分散均匀后完全干燥;
    (3)将步骤(2)所得固体在500-600℃焙烧2-4h,还原后得到Al 2O 3负载的NiZn@ZnO核壳结构催化剂。
  6. 根据权利要求5所述的一种负载型核壳结构ZnO催化剂的制备方法,其特征在于,步骤(2)中的干燥过程为在室温下自然干燥后,在80-100℃下完全干燥。
  7. 根据权利要求5所述的一种负载型核壳结构ZnO催化剂的制备方法,其特征在于,步骤(3)中的还原温度为500-700℃,还原时间为1-2h。
  8. 一种如权利要求1-4中任一项所述负载型核壳结构ZnO催化剂在低碳烷烃脱氢制烯烃中的应用。
  9. 根据权利要求8所述的一种所述负载型核壳结构ZnO催化剂在低碳烷烃脱氢制烯烃中的应用,其特征在于,所述低碳烷烃为丙烷,所述烯烃为丙烯。
PCT/CN2020/127847 2020-06-30 2020-11-10 一种负载型核壳结构ZnO催化剂及其制备方法和应用 WO2022000923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2202206.5A GB2605010B (en) 2020-06-30 2020-11-10 Supported core-shell structure ZnO catalyst, preparation method and use thereof
US17/542,215 US20220088573A1 (en) 2020-06-30 2021-12-03 SUPPORTED CORE-SHELL STRUCTURED ZnO CATALYST, AND PREPARATION METHOD AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010621436.8A CN111659404B (zh) 2020-06-30 2020-06-30 一种负载型核壳结构ZnO催化剂及其制备方法和应用
CN202010621436.8 2020-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/542,215 Continuation US20220088573A1 (en) 2020-06-30 2021-12-03 SUPPORTED CORE-SHELL STRUCTURED ZnO CATALYST, AND PREPARATION METHOD AND USE THEREOF

Publications (1)

Publication Number Publication Date
WO2022000923A1 true WO2022000923A1 (zh) 2022-01-06

Family

ID=72391055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127847 WO2022000923A1 (zh) 2020-06-30 2020-11-10 一种负载型核壳结构ZnO催化剂及其制备方法和应用

Country Status (4)

Country Link
US (1) US20220088573A1 (zh)
CN (1) CN111659404B (zh)
GB (1) GB2605010B (zh)
WO (1) WO2022000923A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116408126A (zh) * 2023-04-14 2023-07-11 中国科学院兰州化学物理研究所 一种纳米氧化锌/氮掺杂碳催化剂的制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659404B (zh) * 2020-06-30 2021-08-17 天津大学 一种负载型核壳结构ZnO催化剂及其制备方法和应用
CN112516977B (zh) * 2020-12-21 2023-05-12 南京环保产业创新中心有限公司 一种磁性树脂的高效脱附***及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264761A (ja) * 2007-03-26 2008-11-06 Mitsubishi Chemicals Corp 新規な合金ナノコロイド粒子及びそれを用いた化学反応用触媒
CN102898312A (zh) * 2011-07-28 2013-01-30 泰州石油化工有限责任公司 甲乙酮催化氨化加氢制备仲丁胺的方法
WO2015028529A1 (en) * 2013-08-30 2015-03-05 Eth Zurich Visible light photoactive nanoparticles and methods for the preparation thereof
CN104971717A (zh) * 2015-06-25 2015-10-14 天津大学 Pt修饰的ZnO/Al2O3催化剂及其制备方法和应用
CN105664951A (zh) * 2016-02-18 2016-06-15 厦门大学 铜镍-氧化锌复合纳米晶光催化剂及其制备方法与应用
CN105921148A (zh) * 2016-05-09 2016-09-07 青岛神飞化工科技有限公司 一种用于饱和烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN109647414A (zh) * 2019-01-25 2019-04-19 郑州大学 NiO-ZnO球链状纳米材料及其制备方法和应用
CN110172668A (zh) * 2019-05-23 2019-08-27 钢铁研究总院 一种金属/氧化物核壳结构纳米颗粒的制备方法及其纳米颗粒
CN110614092A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 非贵金属系丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN111659404A (zh) * 2020-06-30 2020-09-15 天津大学 一种负载型核壳结构ZnO催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264761A (ja) * 2007-03-26 2008-11-06 Mitsubishi Chemicals Corp 新規な合金ナノコロイド粒子及びそれを用いた化学反応用触媒
CN102898312A (zh) * 2011-07-28 2013-01-30 泰州石油化工有限责任公司 甲乙酮催化氨化加氢制备仲丁胺的方法
WO2015028529A1 (en) * 2013-08-30 2015-03-05 Eth Zurich Visible light photoactive nanoparticles and methods for the preparation thereof
CN104971717A (zh) * 2015-06-25 2015-10-14 天津大学 Pt修饰的ZnO/Al2O3催化剂及其制备方法和应用
CN105664951A (zh) * 2016-02-18 2016-06-15 厦门大学 铜镍-氧化锌复合纳米晶光催化剂及其制备方法与应用
CN105921148A (zh) * 2016-05-09 2016-09-07 青岛神飞化工科技有限公司 一种用于饱和烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN110614092A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 非贵金属系丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109647414A (zh) * 2019-01-25 2019-04-19 郑州大学 NiO-ZnO球链状纳米材料及其制备方法和应用
CN110172668A (zh) * 2019-05-23 2019-08-27 钢铁研究总院 一种金属/氧化物核壳结构纳米颗粒的制备方法及其纳米颗粒
CN111659404A (zh) * 2020-06-30 2020-09-15 天津大学 一种负载型核壳结构ZnO催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEGGEN MARC, PENNER SIMON, FRIEDRICH MATTHIAS, DUNIN-BORKOWSKI RAFAL E., ARMBRÜSTER MARC: "Formation of ZnO Patches on ZnPd/ZnO during Methanol Steam Reforming: A Strong Metal–Support Interaction Effect?", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 120, no. 19, 19 May 2016 (2016-05-19), US , pages 10460 - 10465, XP055884146, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.6b02562 *
WANG WEIXING, LI XUEKUAN, ZHANG YE, ZHANG RONG, GE HUI, BI JICHENG, TANG MINGXING: "Strong metal–support interactions between Ni and ZnO particles and their effect on the methanation performance of Ni/ZnO", CATALYSIS SCIENCE & TECHNOLOGY, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 7, no. 19, 1 January 2017 (2017-01-01), UK , pages 4413 - 4421, XP055884147, ISSN: 2044-4753, DOI: 10.1039/C7CY01119A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116408126A (zh) * 2023-04-14 2023-07-11 中国科学院兰州化学物理研究所 一种纳米氧化锌/氮掺杂碳催化剂的制备方法与应用
CN116408126B (zh) * 2023-04-14 2023-11-17 中国科学院兰州化学物理研究所 一种纳米氧化锌/氮掺杂碳催化剂的制备方法与应用

Also Published As

Publication number Publication date
GB2605010B (en) 2024-05-15
CN111659404A (zh) 2020-09-15
CN111659404B (zh) 2021-08-17
US20220088573A1 (en) 2022-03-24
GB2605010A (en) 2022-09-21
GB202202206D0 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2022000923A1 (zh) 一种负载型核壳结构ZnO催化剂及其制备方法和应用
Chen et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming
Torimoto et al. Effects of alloying for steam or dry reforming of methane: a review of recent studies
CN114570360B (zh) 一种Ru基催化剂及其制备方法、应用
US20200238259A1 (en) Nickel alloy catalysts for light alkane dehydrogenation
US7196036B2 (en) Catalyst for decomposition of hydrocarbons, process for producing the catalyst, and process for producing hydrogen using the catalyst
CN105056952A (zh) 一种光催化一氧化碳加氢制备碳二以上高碳烃用镍基光催化剂的制备方法及应用
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN111790381B (zh) 一种用于低碳烷烃脱氢的金属催化剂
WO2019015528A1 (zh) 循环流化床镍基重整催化剂及其制备方法和应用
CN112973761A (zh) 一种石墨相氮化碳复合材料及制备方法和应用
WO2024008171A1 (zh) 过渡金属基低碳烷烃脱氢催化剂及其制备方法和应用
CN108067227B (zh) 一种高分散于载体三氧化二铝的铂基催化剂及其制备方法和应用
EP1060123A1 (en) Hydrogen production via the direct cracking of hydrocarbons
CN112427041A (zh) 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
US20220119249A1 (en) A catalyst composition and method of making thereof for pure hydrogen production
CN110075855B (zh) 一种脱氢催化剂及其制备方法和应用
CN110026199B (zh) 碳酸氧镧改性的氧化铝负载的镍基催化剂及其制备方法
CN103586045A (zh) 一种制低碳烯烃催化剂及其制备方法
KR20140122117A (ko) 탄화수소의 이산화탄소 개질용 촉매
CN109718764B (zh) 一种用于丙烷脱氢制丙烯的贵金属催化剂及其制备和应用
CN106563440A (zh) 一种控制晶粒分布的低碳烷烃脱氢催化剂及其制备方法
CN109304174B (zh) 制备费托合成钴基催化剂的方法
Tang et al. Review of CO 2 selectivity and its control in the Fischer–Tropsch synthesis of value-added chemicals
Wang et al. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202202206

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201110

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943674

Country of ref document: EP

Kind code of ref document: A1