WO2019015528A1 - 循环流化床镍基重整催化剂及其制备方法和应用 - Google Patents

循环流化床镍基重整催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019015528A1
WO2019015528A1 PCT/CN2018/095551 CN2018095551W WO2019015528A1 WO 2019015528 A1 WO2019015528 A1 WO 2019015528A1 CN 2018095551 W CN2018095551 W CN 2018095551W WO 2019015528 A1 WO2019015528 A1 WO 2019015528A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
fluidized bed
active metal
circulating fluidized
reforming catalyst
Prior art date
Application number
PCT/CN2018/095551
Other languages
English (en)
French (fr)
Inventor
梅慧
蒯平宇
梁明芯
鲁伟康
王大祥
Original Assignee
武汉丰盈长江生态科技研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉丰盈长江生态科技研究总院有限公司 filed Critical 武汉丰盈长江生态科技研究总院有限公司
Publication of WO2019015528A1 publication Critical patent/WO2019015528A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalyst production technology, in particular to a circulating fluidized bed nickel-based reforming catalyst, a preparation method and application thereof.
  • biomass resources are one of the important ways to solve the fossil energy crisis and mitigate the global climate deterioration caused by carbon dioxide emissions.
  • the synthesis gas is produced by biomass gasification technology, and the synthesis gas is used as a raw material to produce liquid fuel through the technology of Fischer-Tropsch synthesis, methanol synthesis and syngas production, or gasification is used as a fuel to generate electricity through a gas turbine.
  • the two important ways of using biomass raw materials have been widely applied.
  • the crude syngas product In the relatively mature and economical biomass fluidized bed gasification process, the crude syngas product usually contains 10 to 100 g/Nm 3 of tar and 5 to 20% of low carbon hydrocarbons.
  • the tar in the crude syngas is liable to cause problems such as equipment fouling and pipeline blockage during the cooling process of the gas.
  • residual biomass tar can cause poisoning of downstream synthetic catalysts.
  • methane and a hydrocarbon of C2 or higher contained in the crude syngas are inert gases, and cannot participate in the synthesis reaction to form a target product, thereby reducing the carbon efficiency of the system.
  • Removing the tar in the crude syngas and effectively converting the hydrocarbon compounds in the crude syngas into effective syngas is an important technical way to improve the indirect liquefaction process of biomass gasification.
  • Water vapor conversion is the primary means of converting tar and low carbon hydrocarbons into effective syngas.
  • the crude syngas produced by the fluidized bed gasification technology usually contains 30 mg to 10 g/Nm 3 of solid impurities in addition to tar and low carbon hydrocarbons, mainly gasification by-product solid coke and is used for gasification. Process heat carrier dust.
  • Solid impurities are likely to cause blockage of the bed, and tar impurities containing polycyclic aromatic hydrocarbons as main components can easily cause catalyst coke formation, resulting in catalyst coking.
  • Catalyst deactivation and increased bed lamination reduce the economics of fixed bed catalytic steam reforming to purify crude syngas.
  • US patent US8591610 proposes a process technology for purification of biomass gasification crude syngas products by circulating fluidized bed technology, which passes the catalyst circulation
  • the regeneration solves the problems of catalyst deactivation, bed clogging and the like in the above fixed bed reactor.
  • the circulating fluidized bed process comprises two fluidized bed reactors, namely a reforming reactor and a regenerating reactor.
  • the solid catalyst is rapidly circulated between the two reactors, not only functions as a reforming activation but also heat transfer.
  • the need to complete regeneration and reaction heating is the most promising reforming process.
  • Nickel-based reforming catalysts suitable for circulating fluidized beds are rare.
  • the following disadvantages often exist: 1) it is difficult to balance the reforming activity and fluidization of the nickel-based reforming catalyst; 2) in the circulating fluidized bed due to the catalyst particles and the reaction device, the fluidizing medium and itself The friction between the two is prone to wear, which causes the catalyst to have a reduced particle size, which causes problems such as running agents, product contamination, and the need to frequently replenish the catalyst.
  • 7,915,196 discloses a dual fluidized bed biomass gasification tar reforming catalyst which screens a series of industrial alpha-alumina microspheres produced by American alumina manufacturer CoorsTek to select better wear resistance.
  • the microsphere carrier with suitable and specific surface area carries different contents of nickel, magnesium, potassium and platinum as active materials by impregnation method. The results show that the catalyst has certain anti-wear property and catalytic activity, but the catalyst has a small specific surface area.
  • the active metal has a high reduction temperature, and the wear resistance and catalytic activity are still in need of further improvement.
  • Cia Patent CN1751789A discloses a preparation method of a nickel-based microsphere catalyst suitable for fluidized bed, which is prepared by impregnating a nickel-based complex onto alumina microspheres or silica microspheres to prepare a nickel-based microsphere catalyst. It has the characteristics of high dispersion, but the organic or inorganic coordination nickel ion solution is used as the precursor, which greatly increases the catalyst production cost, and the nickel crystal grains prepared by the impregnation method are more likely to be sintered at high temperature and cause deactivation.
  • Chinese patent CN104368345 uses urea to deposit nickel and other metals on alumina microspheres for a selective hydrogenation reaction of pyrolysis gasoline.
  • the patent says that the catalyst can also be used for methane reforming, but no catalyst reforming activity is observed. Discussion of wear resistance.
  • the object of the present invention is to provide a circulating fluidized bed nickel-based reforming catalyst and a preparation method and application thereof, which have high reforming activity, low abrasion and good wear resistance.
  • the technical scheme adopted by the present invention is: a circulating fluidized bed nickel-based reforming catalyst comprising a carrier and an active metal nickel supported on the carrier, the carrier being activated alumina microspheres,
  • the activated alumina microspheres have a particle size of 50 to 500 um, a D50 of 80 to 300 um, a specific surface area of ⁇ 50 m 2 /g, a total pore volume of ⁇ 0.1 cm 3 /g, and a wear index of ⁇ 0.1%/h.
  • the carrier is further loaded with a second active metal, the active metal nickel accounts for 0.5-20% of the total weight of the catalyst, and the molar ratio of the second active metal to the active metal nickel is 0.01- 1.
  • the balance is an activated alumina microsphere carrier.
  • the activated alumina microspheres have a ⁇ -alumina content of >90%, a particle diameter of 50 to 300 um, a D50 of 100 to 200 um, a specific surface area of 160 to 170 m 2 /g, and a total pore volume of ⁇ 0.3 cm 3 . /g.
  • the active metal nickel is selected from the group consisting of anhydrous nickel chloride, hydrated nickel chloride, nickel nitrate, nickel sulfate or nickel acetate, and the active metal nickel accounts for 1 to 15% by weight of the catalyst.
  • the second active metal is selected from the group consisting of anhydrous nitrate, hydrated nitrate, chloride, sulfate or acetate, and the molar ratio of the second metal to the active metal nickel is 0.1 to 1.
  • the second active metal is one or more of cobalt, copper and zinc.
  • a method for preparing a circulating fluidized bed nickel-based reforming catalyst characterized in that the method comprises the following steps:
  • the washed fluidized bed is subjected to low-temperature drying and high-temperature calcination in order to obtain the circulating fluidized bed nickel-based reforming catalyst.
  • the molar ratio of the hexamethylenetetramine to the metal ion is 0.5 to 3.
  • the reflux or crystallization temperature is 80 to 150 ° C, and the reflux or crystallization time is 3 to 10 h.
  • the high-temperature calcination adopts a two-stage heating program, firstly raising the temperature to 300-450 ° C at a heating rate of 1 to 10 ° C / min, maintaining the temperature for 0.5 to 3 h, and then 0.5 to 5 ° C / min.
  • the heating rate is raised to 600-800 ° C, and the temperature is maintained for 0.5-3 h.
  • the drying temperature is 80 to 120 ° C, and the drying time is 3 to 10 h.
  • the invention relates to the above-mentioned circulating fluidized bed nickel-based reforming catalyst, characterized in that the catalyst is applied to a circulating fluidized bed methane water reforming synthesis gas, and the process conditions are: reaction temperature: 700-900 ° C, reaction pressure It is 0.1 to 0.5 MPa, the space velocity is 10,000 to 1,200,000 h -1 , and the water-carbon ratio is ⁇ 3:1.
  • the present invention has the following advantages:
  • the catalyst carrier of the invention adopts activated alumina microspheres with moderate particle size range and high physical strength to prepare a high wear-resistant nickel-based microsphere catalyst with a standard wear index of less than 0.1%/h;
  • the gas velocity required for the fracture wear of the catalyst microspheres is greater than 100 m/s, and the wear resistance is excellent, which provides a broader choice for the catalyst preparation equipment and the fluidized bed reactor, and is easy to realize industrial production.
  • the present invention applies nickel and a second metal (cobalt, copper, zinc) to the surface and pores of an industrially shaped alumina microsphere carrier having high mechanical strength and good wear resistance by a uniform precipitation method, and is dried at a low temperature.
  • a micro-spherical composite metal oxide catalyst containing nickel and a second metal ion is formed, which has the advantages of high catalytic activity, low abrasion, stable performance, and the like, and the preparation process is simple and cost-effective.
  • the method of the invention utilizes the precipitating agent to decompose into a precipitating agent at a low temperature and at a high temperature, and the hexamethylenetetramine can be slowly hydrolyzed to release ammonia water under heating conditions, and the ammonia ion ionization produces OH - and the solution is made.
  • the pH is uniformly increased, and homogeneous nucleation and crystallization are induced.
  • the catalyst prepared by the method of the invention has good catalytic activity and anti-wear property for methane water reforming synthesis gas, can be recycled under high space velocity conditions (1.1 ⁇ 10 6 h -1 ) and the methane conversion rate is maintained at 70%. Above, the standard wear index is less than 0.1%/h, and can maintain activity after recycling. It can be used in the methane reforming process and the catalytic reforming process of coke-containing gas such as coal, biomass gasification gas and coke oven tail gas, especially applicable. In a circulating fluidized bed catalytic reforming process.
  • the catalyst of the invention has good fluidization performance, wear resistance and high stability, and avoids problems such as catalyst running agent, product contamination and the need to periodically replenish the catalyst.
  • Figure 1 is a graph showing the wear index of the catalyst prepared in Example 1 at different gas velocities.
  • the activated alumina microspheres of catalyst 1 have a particle size of 50 to 300 um, a D50 of 111.8 um, a specific surface area of 169.7 m 2 /g, a total pore volume of 0.3 cm 3 /g, and a standard wear index at a gas velocity of 84 m/s. 0.08% / h.
  • the catalyst precursor is obtained; then the catalyst precursor is dried in an oven at 100 ° C for 5 h, and then calcined in a muffle furnace, first at 3 ° C / min to 350 ° C for 1 h, and then raised to 0.5 ° C / min.
  • the supported Ni/Al 2 O 3 microsphere catalyst 2 was prepared by leaving at 650 ° C for 2 h.
  • the activated alumina microspheres of catalyst 2 have a particle size of 50-300 um, a D50 of 115.3 um, a specific surface area of 169.1 m 2 /g, a total pore volume of 0.3 cm 3 /g, and a standard wear index of 0.08 at a gas velocity of 84 m/s. %/h.
  • the activated alumina microspheres of the catalyst 3 have a particle diameter of 50 to 300 um, a D50 of (110.0) um, a specific surface area of (162.9) m 2 /g, a total pore volume of (0.3) cm 3 /g, and a gas velocity of 84 m/s.
  • the lower standard wear index is (0.08)%/h.
  • a precipitant solution Forming a precipitant solution; adding the precipitant solution to the above suspension at 100 ° C for 5 h, suction filtration, washing the microspheres to neutral with deionized water and ethanol to obtain a catalyst precursor; and placing the catalyst precursor in an oven Drying at 100 ° C for 5 h, and then calcining in a muffle furnace, firstly at 3 ° C / min to 350 ° C for 1 h, then 0.5 ° C / min to 650 ° C for 2 h, to obtain a supported Ni-Cu / Al 2 O 3 microsphere catalyst 4.
  • the activated alumina microspheres of catalyst 4 have a particle size of 50-300 um, a D50 of 111.3 um, a specific surface area of 161.3 m 2 /g, a total pore volume of 0.3 cm 3 /g, and a standard wear index of 0.08 at a gas velocity of 84 m/s. %/h.
  • the activated alumina microspheres of catalyst 5 have a particle size of 50-300 um, a D50 of 132.9 um, a specific surface area of 160.6 m 2 /g, a total pore volume of 0.3 cm 3 /g, and a standard wear index of 0.08 at a gas velocity of 84 m/s. %/h.
  • a comparative catalyst was prepared in accordance with the catalyst preparation method disclosed in U.S. Patent No. 7,915,196.
  • the wear index is measured by the China National Petroleum Corporation Co., Ltd. Catalyst Branch Enterprise Standard Q/TSH 3490 909-2006, and the wear index of the catalyst is determined by a straight tube method.
  • the specific steps are as follows: 10 g of the catalyst is charged into the abrasion measuring device, and after the air at different flow rates is humidified, the catalyst is purged through a wear tube having a small hole at the bottom.
  • the fine powder generated by the abrasion is collected by a powder collection filter device above the wear tube. After 1 hour of continuous purging, the collected fine powder was weighed; the purging was continued for 4 h, and the weight of the blown fine powder was weighed.
  • the catalyst wear index was calculated based on the percentage of the fine powder blown out at 4 h as a percentage of the total weight of the catalyst.
  • the wear index of Catalyst 1 and Comparative Catalysts was measured at 24 m/s, 50 m/s, 84 m/s, 114 m/s, and 120 m/s using an abrasion index tester. The results are shown in Figure 1. It can be seen that at the same gas velocity, the standard wear index of the catalyst 1 is less than 0.1%/h, which is lower than the wear index of the catalyst of the comparative example. It is generally believed that the abrasion of alumina particles is dominated by two wear mechanisms, namely the stripping mechanism and the fracture mechanism.
  • the wear resistance of the microsphere catalyst can be characterized by the wear index. It can also be linearly fitted by the wear index at different gas velocities.
  • the two fittings represent the straight line of the particle delamination wear and the particle rupture wear.
  • the intersection point is defined as the critical gas velocity of the microsphere from delamination to rupture.
  • the higher the critical gas velocity the greater the gas velocity required to force the catalyst particles to break, and the stronger the wear resistance.
  • the critical gas velocity of the catalyst of the comparative example is 107 m/s
  • the wear index of the catalyst 1 does not change significantly in the above gas velocity range, indicating that the critical gas velocity of the cracking of the catalyst 1 is greater than 107 m/s, the catalyst 1
  • the wear resistance is significantly better than the comparative catalyst.
  • tar reforming is easier to achieve than methane conversion. Therefore, the methane conversion capacity of the catalyst is used as an evaluation index to screen the desulfurized oil and hydrocarbons suitable for circulating fluidized bed. Conversion catalysts are effective catalyst development methods. The catalyst with excellent methane water vapor conversion performance will be able to meet the requirements of the circulating fluidized bed crude syngas deodorization oil and hydrocarbon conversion process.
  • the catalysts prepared in Examples 1 to 5 were used for methane reforming to syngas, and the catalyst weight was tested at a reaction temperature of 850 ° C, a normal pressure, a space velocity of 1.1 ⁇ 10 6 h -1 , and a water to carbon ratio of 2.8: 1 . Overall performance. Specific steps are as follows:
  • CH 4 and N 2 were introduced into the reactor at flow rates of 100 ml/min and 334 ml/min, respectively, and mixed with 280 ml/min of water vapor, and preheated to 850 ° C for 30 minutes.
  • CH 4 and N 2 having a flow rate of 100 ml/min and 334 ml/min were introduced into the reactor again, and mixed with 280 ml/min of water vapor, and preheated to 850 ° C for 30 minutes.
  • Steps 3) and 4) were repeated for a total of 6 cycles of testing, and the simulated catalyst was subjected to a "reaction-regeneration-reaction-regeneration" process in a circulating fluidized bed reactor.
  • the composition of the reaction product was measured by an American ARI Raman spectroscopy online gas analyzer.
  • the methane conversion rate, hydrogen yield, and carbon monoxide yield are calculated using the following formula (where out represents out gas and in represents air intake):
  • the nickel-based reforming catalyst prepared by the method of the present invention has high catalytic activity, and the reforming activities of the catalysts of Examples 1 to 5 are significantly higher than those of the comparative catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

公开了一种循环流化床镍基重整催化剂及其制备方法和应用,包括载体和负载在载体上的活性金属镍,载体为活性氧化铝微球,其粒径为50~500um,D50为80~300um,比表面积≥50m 2/g,总孔容≥0.1cm 3/g,磨损指数<0.1%/h。方法包括1)将镍盐和第二活性金属盐溶于水配成混合盐溶液;2)将六次甲基四胺溶于有机溶剂配成沉淀剂溶液;3)将混合盐溶液和沉淀剂溶液混合,然后加入活性氧化铝微球进行浸渍,使活性金属镍及第二活性金属负载在氧化铝载体表面及孔道内;4)再向悬浮液中加入沉淀剂溶液,进行回流或晶化;5)低温干燥和高温煅烧。该催化剂重整活性高,磨耗低,耐磨性能好。

Description

循环流化床镍基重整催化剂及其制备方法和应用 技术领域
本发明涉及催化剂生产技术,具体地指一种循环流化床镍基重整催化剂及其制备方法和应用。
背景技术
生物质资源的利用是解决化石能源危机、减缓二氧化碳排放引起全球气候恶化的重要途径之一。其中,通过生物质气化技术生产合成气,并以合成气为原料通过费托合成、甲醇合成及合成气制汽油等技术生产液体燃料,或者利用气化气为燃料通过燃气轮机发电,是大规模利用生物质原料的两条重要途径,得到了广泛的应用开发。
现有比较成熟的且经济性好的生物质流化床气化工艺中,粗合成气产品中通常含有10~100g/Nm 3的焦油和5~20%的低碳烃。粗合成气中的焦油在气体的冷却过程中容易造成设备结垢、管路堵塞等问题。同时,残留的生物质焦油会引起下游合成催化剂的中毒。
另外,粗合成气中含有的甲烷及C2以上碳氢化合物作为惰性气体,不能参与合成反应生成目标产品,降低了***的炭效率。脱除粗合成气中的焦油,并有效地将粗合成气中的烃类化合物转化为有效合成气,是提高生物质气化间接液化工艺中的重要技术途径。水蒸汽转化是使焦油和低碳烃转化为有效合成气的主要手段。
通常采用的流化床气化技术产生的粗合成气中,除了含有焦油、低碳烃外,还含有30mg~10g/Nm 3的固体杂质,主要是气化副产物固体焦和用于气化过程热载体的粉尘。利用工业上成熟的固定床催化水蒸汽转化对粗合成气进行脱焦油和烃转化,固体杂质容易造成床层堵塞,同时,以多环芳烃为主要成份的焦油杂质很容易造成催化剂积炭,导致催化剂失活和床层压降提高,限制了固定床催化水蒸汽转化净化粗合成气的经济性。
针对前述问题,美国RenTech公司进行了一系列的研究,如:美国专利US8591610提出了一种利用循环流化床技术进行生物质气化粗合成气产品净化的工艺技术,该技术通过对催化剂的循环再生解决了上述固定床反应器中的催化剂失活、床层堵塞等问题。循环流化床工艺包含两个流化床反应器,即重整反应器和再生反应器,固体催化剂在两个反应器之间快速循环,不仅起到重整活化的作用,还可实现热量传递,同时完成再生和反应供热的需要,是最具有应用前景的重整工艺。
尽管现有文献中对镍基重整催化剂的研究较多,但大多是沿用固定床反应器中筛选出来的催化剂,适用于循环流化床的镍基重整催化剂并不多见,将其用于循环流化床时往往存在以下缺点:1)难以兼顾镍基重整催化剂的重整活性和流化性;2)循环流化床内由于催化剂颗粒与反应装置、流化介质及其自身之间的摩擦容易产生磨损,使得催化剂粒度下降,带来跑剂、产品污染和需要频繁补充催化剂等问题。如:美国专利US7915196公开了一种双流化床生物质气化焦油重整催化剂,其对美国氧化铝厂商CoorsTek生产的一系列工业α-氧化铝微球进行筛选,选出具有较好耐磨性和适宜比表面积的微球载体,通过浸渍的方法,担载不同含量的镍、镁、钾、铂作为活性物质,结果显示此催化剂具有一定的抗磨损性能和催化活性,但催化剂比表面积小、活性金属还原温度高,耐磨损强度和催化活性仍亟需进一步提高。
中国专利CN1751789A公开了一种流化床适用的镍基微球催化剂的制备方法,其通过浸渍的方法将镍基配合物负载到氧化铝微球或硅胶微球上,制备的镍基微球催化剂具有高分散的特点,但采用有机或无机配位镍离子溶液作为前躯体,大幅提高了催化剂生产成本,而且浸渍方法制备的镍晶粒,高温下更容易烧结导致失活。
中国专利CN104368345中利用尿素将镍及其它金属沉淀负载于氧化铝微球上,应用于裂解汽油一段选择加氢反应,该专利称该催化剂还可用于甲烷重整,但未见催化剂重整活性及耐磨损性能的讨论。
发明内容
本发明的目的就是要提供一种循环流化床镍基重整催化剂及其制备方法和应用,该催化剂重整活性高,磨耗低,耐磨性能好。
为实现上述目的,本发明采用的技术方案是:一种循环流化床镍基重整催化剂,包括载体和负载在所述载体上的活性金属镍,所述载体为活性氧化铝微球,所述活性氧化铝微球粒径为50~500um,D50为80~300um,比表面积≥50m 2/g,总孔容≥0.1cm 3/g,磨损指数<0.1%/h。
进一步地,所述载体上还负载有第二活性金属,所述活性金属镍占所述催化剂总重量的0.5~20%,所述第二活性金属与所述活性金属镍的摩尔比为0.01~1,余量为活性氧化铝微球载体。
进一步地,所述活性氧化铝微球中γ-氧化铝含量>90%,粒径为50~300um,D50为 100~200um,比表面积为160~170m 2/g,总孔容≥0.3cm 3/g。
进一步地,所述活性金属镍选自无水氯化镍、水合氯化镍、硝酸镍、硫酸镍或醋酸镍,所述活性金属镍占催化剂重量的1~15%。
进一步地,所述第二活性金属选自无水硝酸盐、水合硝酸盐、氯化盐、硫酸盐或醋酸盐,所述第二金属与所述活性金属镍的摩尔比为0.1~1。
进一步地,所述第二活性金属为钴、铜和锌中的一种或几种。
一种上述循环流化床镍基重整催化剂的制备方法,其特征在于:包括以下步骤:
1)将镍盐和第二活性金属盐溶于水,配制成混合盐溶液;
2)将六次甲基四胺溶于有机溶剂,配制成沉淀剂溶液;
3)将所述混合盐溶液和所述沉淀剂溶液混合,然后加入活性氧化铝微球形成悬浮液,充分浸渍,使得活性金属镍及第二活性金属负载在氧化铝载体表面及孔道内;
4)再向所述悬浮液中加入所述沉淀剂溶液,进行回流或晶化,抽滤后将滤出物洗涤至中性;
5)将洗涤后的滤出物依次进行低温干燥和高温煅烧,即可得到所述循环流化床镍基重整催化剂。
进一步地,所述步骤3)中,六次甲基四胺与金属离子的摩尔比为0.5~3。
进一步地,所述步骤4)中,回流或晶化温度为80~150℃,回流或晶化时间为3~10h。
进一步地,所述步骤5)中,高温煅烧采用两段式升温程序,先以1~10℃/min的升温速率升温至300~450℃,保温0.5~3h,再以0.5~5℃/min的升温速率升温至600~800℃,保温0.5~3h。
进一步地,所述步骤5)中,干燥温度为80~120℃,干燥时间为3~10h。
一种上述循环流化床镍基重整催化剂的应用,其特征在于:所述催化剂应用于循环流化床甲烷水重整制合成气,其工艺条件为:反应温度700~900℃,反应压力为0.1~0.5MPa,空速为10000~1200000h -1、水碳比<3∶1。
与现有技术相比,本发明具有以下优点:
其一,本发明催化剂载体采用具有适度粒度范围和高物理强度的活性氧化铝微球,制备的高耐磨镍基微球催化剂,其标准磨损指数小于0.1%/h;磨损指数测定仪内测得致使催化剂微球发生断裂磨损所需的气速大于100m/s,耐磨损性能优异,这为催化剂制备 设备和流化床反应器提供了更宽泛的选择,易于实现工业化生产。
其二,本发明通过均匀沉淀法将镍、第二金属(钴、铜、锌)负载于机械强度高和耐磨性能好的工业成型氧化铝微球载体的表面和孔道内,经低温干燥和高温煅烧后形成含有镍、第二金属离子的微球状的复合金属氧化物催化剂,该催化剂具有催化活性高、磨耗低、性能稳定等优点,且制备工艺简单、成本经济。
其三,本发明方法利用沉淀剂在低温下显中性和高温下分解成沉淀剂的特性,六次甲基四胺在加热条件下可以缓慢水解释放氨水,氨水电离产生OH -而使溶液的pH均匀升高,诱导产生均相晶核和结晶。由于沉淀离子OH -是通过六次甲基四胺水解和氨水电离反应逐渐生成,有效避免了沉淀剂加入过程中局部浓度过高导致的团聚或组分不均匀,而且溶液在低饱和的状态下晶核生长速率慢,有利于形成晶粒较大、结晶性高和形貌均一的晶体产物。本发明方法制备得到的催化剂对甲烷水重整制合成气具有很好的催化活性和抗磨损性,能在高空速条件下(1.1×10 6h -1)循环使用且甲烷转化率维持70%以上,标准磨损指数小于0.1%/h,并能在循环再生后保持活性,可用于甲烷重整过程及煤、生物质气化气、焦炉尾气等含焦气体的催化重整过程,尤其适用于循环流化床催化重整工艺。
其四,本发明的催化剂具有良好的流化性能、耐磨性能和高稳定性,避免了催化剂跑剂、产品污染和需要定期补充催化剂等问题。
附图说明
图1为实施例1制得的催化剂在不同气速下的磨损指数图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。(以下实施例和对比例中所用试剂,除特别说明外,均为化学纯试剂。)
实施例1
将2.919g六水合硝酸镍溶于4ml去离子水;将0.704gHMT(六次甲基四胺)溶于6ml等体积的去离子水/乙醇混合溶液;前述两种溶液混合后加入10g活性氧化铝微球浸渍1h,形成悬浮液;向悬浮液中再加入等量HMT溶液,100℃回流5h,抽滤,去离子水和乙醇充分洗涤微球至中性,得到催化剂前体;然后将催化剂前体置于烘箱内100℃干燥5h,再于马弗炉内程序升温煅烧,先以3℃/min升至350℃停留1h,再以0.5℃/min 升至650℃停留2h,制备得到负载型Ni/Al 2O 3微球催化剂1。
催化剂1的活性氧化铝微球粒径为50~300um,D50为111.8um,比表面积为169.7m 2/g,总孔容为0.3cm 3/g,84m/s气速下的标准磨损指数为0.08%/h。
实施例2
将2.919g六水合硝酸镍溶于4ml去离子水;将0.704gHMT(六次甲基四胺)溶于6ml等体积的去离子水/乙醇混合溶液;前述两种溶液混合后加入10g活性氧化铝微球浸渍1h,形成悬浮液;向悬浮液中再加入等量HMT溶液,转移至高压釜中晶化沉淀,120℃加热5h,抽滤,去离子水和乙醇充分洗涤微球至中性,得到催化剂前体;然后将催化剂前体置于烘箱内100℃干燥5h,再于马弗炉内程序升温煅烧,先以3℃/min升至350℃停留1h,再以0.5℃/min升至650℃停留2h,制备得到负载型Ni/Al 2O 3微球催化剂2。
催化剂2的活性氧化铝微球粒径为50~300um,D50为115.3um,比表面积为169.1m 2/g,总孔容为0.3cm 3/g,84m/s气速下标准磨损指数为0.08%/h。
实施例3
将3.156g六水合硝酸镍和1.580g六水合硝酸钴溶于4ml去离子水;将1.141gHMT溶于6ml等体积的去离子水/乙醇混合溶液;将前述两种溶液混合后加入10g活性氧化铝微球浸渍1h,得悬浮液;向悬浮液中再加入等量HMT溶液,100℃回流5h,抽滤,去离子水和乙醇充分洗涤微球至中性,得到催化剂前体;将催化剂前体置于烘箱内100℃干燥5h,再于马弗炉内程序升温煅烧,先以3℃/min升至350℃停留1h,再以0.5℃/min升至650℃停留2h,制备得到负载型Ni-Co/Al 2O 3微球催化剂3。
催化剂3的活性氧化铝微球粒径为50~300um,D50为(110.0)um,比表面积为(162.9)m 2/g,总孔容为(0.3)cm 3/g,84m/s气速下标准磨损指数为(0.08)%/h。
实施例4
将3.156g六水合硝酸镍和1.318g三水合硝酸铜溶于6ml去离子水;加入10g活性氧化铝微球浸渍1h,得悬浮液;将1.835gHMT溶于4ml去离子水和6ml乙醇的混合溶液中形成沉淀剂溶液;将该沉淀剂溶液加入上述悬浮液中100℃回流5h,抽滤,去离子水和乙醇充分洗涤微球至中性,得到催化剂前体;将催化剂前体置于烘箱内100℃干燥5h,再于马弗炉内程序升温煅烧,先以3℃/min升至350℃停留1h,再以0.5℃/min升至650℃停留2h,制备得到负载型Ni-Cu/Al 2O 3微球催化剂4。
催化剂4的活性氧化铝微球粒径为50~300um,D50为111.3um,比表面积为161.3m 2/g,总孔容为0.3cm 3/g,84m/s气速下标准磨损指数为0.08%/h。
实施例5
将3.043g六水合硝酸镍和1.557g六水合硝酸锌溶于4ml去离子水;将1.101gHMT溶于8ml等体积的去离子水/乙醇混合溶液;两种溶液混合后加入10g活性氧化铝微球浸渍1h,得悬浮液;向悬浮液中再加入等量HMT溶液后100℃回流5h,抽滤,去离子水和乙醇充分洗涤微球至中性,得到催化剂前体;将催化剂前体置于烘箱内100℃干燥5h,再于马弗炉内程序升温煅烧,先以3℃/min升至350℃停留1h,再以0.5℃/min升至650℃停留2h,制备得到负载型Ni-Zn/Al 2O 3微球催化剂5。
催化剂5的活性氧化铝微球粒径为50~300um,D50为132.9um,比表面积为160.6m 2/g,总孔容为0.3cm 3/g,84m/s气速下标准磨损指数为0.08%/h。
比较例
按照专利US7915196公开的催化剂制备方法,制备了比较例催化剂。
磨损指数的测定:
在本发明中,磨损指数的测定采用中国石油化工股份有限公司催化剂分公司企业标准Q/TSH 3490 909—2006,通过直管法测定催化剂的磨损指数。具体步骤为:将10g催化剂装入磨耗测定装置中,不同流速下的空气经过加湿后,通过底部有小孔的磨损管对催化剂进行吹扫。磨损产生的细粉通过磨损管上方的粉末收集过滤装置收集。持续吹扫1时后,对收集的细粉称重;继续吹扫4h,称量吹出的细粉重量。根据4h吹出的细粉占催化剂总重的百分比计算催化剂磨损指数。
使用磨损指数测定仪,分别在24m/s、50m/s、84m/s、114m/s、120m/s气速下测定了催化剂1和比较例催化剂的磨损指数,结果见附图1,由图1可见,在同一气速下,催化剂1的标准磨损指数均小于0.1%/h,低于比较例催化剂的磨损指数。通常认为氧化铝颗粒的磨耗主要由两种磨损机制支配,即剥层机制和断裂机制。微球催化剂的耐磨损性能除了可用磨损指数来表征,还可通过不同气速下的磨损指数经线性拟合,将两条拟合得到的分别代表颗粒剥层磨损和颗粒断裂磨损的直线之交点定义为微球由剥层到破裂的临界气速。临界气速越高,说明迫使催化剂颗粒发生断裂所需的气速越大,耐磨损性能越强。由图1可见,比较例催化剂的临界气速为107m/s,催化剂1在上述气速范围内 磨损指数均未发生显著变化,说明催化剂1发生断裂破碎的临界气速大于107m/s,催化剂1的耐磨损性能明显优于比较例催化剂。
催化剂活性评价:
在粗合成气的焦油重整和甲烷转化反应中,焦油重整比甲烷转化更容易实现,因此,通过催化剂的甲烷转化能力作为评价指标,筛选适合循环流化床粗合成气脱焦油、烃类转化催化剂是有效的催化剂研发方法。具有优良甲烷水蒸汽转化性能的催化剂将能够满足循环流化床粗合成气脱焦油、烃类转化工艺要求。
将实施例1~5制备的催化剂用于甲烷重整制合成气反应,在反应温度850℃、常压、空速1.1×10 6h -1、水碳比2.8∶1条件下测试催化剂的重整性能。具体步骤如下:
1)称取0.05g催化剂,加入10g载体作为稀释剂与之均匀混合,置于常压微型流化床反应器内,通入5%H 2-Ar在850℃下完全还原催化剂。
2)反应器内通入流量分别为100ml/min和334ml/min的CH 4和N 2,并与280ml/min的水蒸汽混合,预热至850℃后反应30min。
3)通入流量为300ml/min的4%H 2/3%O 2/93%N 2再生气,850℃对催化剂进行再生,再生期为8min。再生完成后以300ml/min氮气进行吹扫。
4)再次将流量分别为100ml/min和334ml/min的CH 4和N 2引入反应器,并与280ml/min的水蒸汽混合,预热至850℃后反应30min。
5)重复步骤3)、4),共进行6个循环的测试,模拟催化剂在循环流化床反应器中经历“反应-再生-反应-再生”过程。
反应产物的组成采用美国ARI拉曼光谱在线气体分析仪测定。甲烷转化率、氢收率和一氧化碳收率使用如下公式计算(其中,out表示出气,in表示进气):
X CH4=(F CO,out+F CO2,out)/F CH4,in×100%
Y H2=F H2,out/(3×F CH4,in)×100%
Y CO=F CO,out/F CH4,in×100%
以重整反应周期内(30min)甲烷转化率、氢收率和一氧化碳收率的平均值作为反应活性,所得结果汇入下表1。
表1
Figure PCTCN2018095551-appb-000001
由表1数据可以看出,采用本发明方法制备的镍基重整催化剂催化活性高,实施例1~5的催化剂的重整活性明显高于比较例催化剂。

Claims (12)

  1. 一种循环流化床镍基重整催化剂,包括载体和负载在所述载体上的活性金属镍,其特征在于:所述载体为活性氧化铝微球,所述活性氧化铝微球粒径为50~500um,D50为80~300um,比表面积≥50m 2/g,总孔容≥0.1cm 3/g,磨损指数<0.1%/h。
  2. 根据权利要求1所述循环流化床镍基重整催化剂,其特征在于:所述载体上还负载有第二活性金属,所述活性金属镍占所述催化剂总重量的0.5~20%,所述第二活性金属与所述活性金属镍的摩尔比为0.01~1,余量为活性氧化铝微球载体。
  3. 根据权利要求1或2所述循环流化床镍基重整催化剂,其特征在于:所述活性氧化铝微球中γ-氧化铝含量>90%,粒径为50~300um,D50为100~200um,比表面积为160~170m 2/g,总孔容≥0.3cm 3/g。
  4. 根据权利要求1或2所述循环流化床镍基重整催化剂,其特征在于:所述活性金属镍选自无水氯化镍、水合氯化镍、硝酸镍、硫酸镍或醋酸镍,所述活性金属镍占催化剂重量的1~15%。
  5. 根据权利要求2所述循环流化床镍基重整催化剂,其特征在于:所述第二活性金属选自无水硝酸盐、水合硝酸盐、氯化盐、硫酸盐或醋酸盐,所述第二金属与所述活性金属镍的摩尔比为0.1~1。
  6. 根据权利要求2或5所述循环流化床镍基重整催化剂,其特征在于:所述第二活性金属为钴、铜和锌中的一种或几种。
  7. 一种权利要求1所述循环流化床镍基重整催化剂的制备方法,其特征在于:包括以下步骤:
    1)将镍盐和第二活性金属盐溶于水,配制成混合盐溶液;
    2)将六次甲基四胺溶于有机溶剂,配制成沉淀剂溶液;
    3)将所述混合盐溶液和所述沉淀剂溶液混合,然后加入活性氧化铝微球形成悬浮液,充分浸渍,使得活性金属镍及第二活性金属负载在氧化铝载体表面及孔道内;
    4)再向所述悬浮液中加入所述沉淀剂溶液,进行回流或晶化,抽滤后将滤出物洗涤至中性;
    5)将洗涤后的滤出物依次进行低温干燥和高温煅烧,即可得到所述循环流化床镍基 重整催化剂。
  8. 根据权利要求7所述循环流化床镍基重整催化剂的制备方法,其特征在于:所述步骤3)中,六次甲基四胺与金属离子的摩尔比为0.5~3。
  9. 根据权利要求7或8所述循环流化床镍基重整催化剂的制备方法,其特征在于:所述步骤4)中,回流或晶化温度为80~150℃,回流或晶化时间为3~10h。
  10. 根据权利要求7或8所述循环流化床镍基重整催化剂的制备方法,其特征在于:所述步骤5)中,高温煅烧采用两段式升温程序,先以1~10℃/min的升温速率升温至300~450℃,保温0.5~3h,再以0.5~5℃/min的升温速率升温至600~800℃,保温0.5~3h。
  11. 根据权利要求7或8所述循环流化床镍基重整催化剂的制备方法,其特征在于:所述步骤5)中,干燥温度为80~120℃,干燥时间为3~10h。
  12. 一种权利要求1所述循环流化床镍基重整催化剂的应用,其特征在于:所述催化剂应用于循环流化床甲烷水重整制合成气,其工艺条件为:反应温度700~900℃,反应压力为0.1~0.5MPa,空速为10000~1200000h -1、水碳比<3∶1。
PCT/CN2018/095551 2017-07-19 2018-07-13 循环流化床镍基重整催化剂及其制备方法和应用 WO2019015528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710592195.7 2017-07-19
CN201710592195.7A CN107321352B (zh) 2017-07-19 2017-07-19 循环流化床镍基重整催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019015528A1 true WO2019015528A1 (zh) 2019-01-24

Family

ID=60226740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095551 WO2019015528A1 (zh) 2017-07-19 2018-07-13 循环流化床镍基重整催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN107321352B (zh)
WO (1) WO2019015528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805149A1 (en) * 2019-10-08 2021-04-14 C&CS Catalysts and Chemical Specialties GmbH Fluidizable steam reforming catalyst and use of a catalyst in methane steam reforming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841550B (zh) * 2020-08-18 2022-12-30 中国科学技术大学 双金属合金在抗积碳甲烷水汽重整催化剂中的应用
CN113318590B (zh) * 2021-07-05 2022-12-02 烟台大学 一种高表面积高分散氧化锰包覆氧化铝固氟剂的制备方法及应用
CN117399014B (zh) * 2023-12-15 2024-04-23 乌镇实验室 一种限域氨分解催化剂的制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751789A (zh) * 2005-09-02 2006-03-29 浙江大学 高分散负载型镍基催化剂的制备及应用
US7915196B2 (en) * 2005-10-07 2011-03-29 Alliance For Sustainable Energy, Llc Attrition resistant fluidizable reforming catalyst
US8591610B2 (en) * 2009-01-21 2013-11-26 Rentech, Inc. System and method for dual fluidized bed gasification
CN104368345A (zh) * 2014-11-20 2015-02-25 北京化工大学 一种负载型高分散镍基合金催化剂的制备方法及其催化应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101352686B (zh) * 2008-09-05 2010-10-27 华东理工大学 一种用于催化制氢的催化剂及一种催化制氢的方法
CN101954288B (zh) * 2010-09-27 2013-01-23 上海华谊(集团)公司 一种草酸二甲酯加氢制乙醇酸甲酯的催化剂及其制备方法和应用
CN102464299B (zh) * 2010-10-28 2013-06-26 中国石油化工股份有限公司 一种流化床甲烷水蒸气重整制氢的方法
CN103170349B (zh) * 2011-12-23 2016-05-25 中国石油化工股份有限公司 一种混合碳四选择加氢的铜催化剂及其制备方法
CN104801333B (zh) * 2015-03-03 2017-12-19 新奥科技发展有限公司 一种负载型镍基催化剂的制备方法
CN105688916B (zh) * 2016-02-23 2018-10-26 中国科学院上海高等研究院 一种高分散高负载高活性低温甲烷重整镍基催化剂及其应用
CN106391028B (zh) * 2016-10-31 2019-09-24 中国海洋石油集团有限公司 一种用于流化床的甲烷化催化剂及其制备方法
CN106902829B (zh) * 2017-04-01 2019-08-23 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751789A (zh) * 2005-09-02 2006-03-29 浙江大学 高分散负载型镍基催化剂的制备及应用
US7915196B2 (en) * 2005-10-07 2011-03-29 Alliance For Sustainable Energy, Llc Attrition resistant fluidizable reforming catalyst
US8591610B2 (en) * 2009-01-21 2013-11-26 Rentech, Inc. System and method for dual fluidized bed gasification
CN104368345A (zh) * 2014-11-20 2015-02-25 北京化工大学 一种负载型高分散镍基合金催化剂的制备方法及其催化应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AYODELE, O.B. ET AL.: "Effect of Ethanedioic Acid Functionalization on Ni/A1203 Catalytic Hydrodeoxygenation and Isomerization of Octadec-9-enoic Acid into Biofuel: Kinetics and Arrhenius Parameters", JOURNAL OF ENERGY CHEMISTRY, vol. 25, 5 January 2016 (2016-01-05), XP029407816 *
CHEN, XIAOCUI ET AL.: "Study on Catalytic Decomposition of Methane for Preparation of Hydrogen in Fluidized Bed", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE (ELECTRONIC JOURNALS, 31 December 2011 (2011-12-31) *
GAO, JIAJIAN ET AL.: "Ni/A1203 Catalysts for CO Methanation: Effect of A1203 Supports Calcined at Different Temperatures", JOURNAL OF ENERGY CHEMISTRY, vol. 22, no. 6, 31 December 2013 (2013-12-31) *
LIU, AIPING: "Development of Novel High Active CO Combustion-supporting Agent Carrier", INDUSTRIAL CATALYSIS, 31 December 2005 (2005-12-31) *
MA, SHENGLI ET AL.: "Methanation of Syngas over Coral Reef-like Ni/A1203 Catalysts", JOURNAL OF NATURAL GAS CHEMISTRY, vol. 20, no. 4, 31 December 2011 (2011-12-31) *
XU, JUNKE ET AL.: "Characterization and Analysis of Carbon Deposited on the Surface of Ni/A1203 Catalyst for Methane Dry Reforming", ACTA PHYSICO-CHIMICA SINICA, vol. 25, no. 2, 31 December 2009 (2009-12-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805149A1 (en) * 2019-10-08 2021-04-14 C&CS Catalysts and Chemical Specialties GmbH Fluidizable steam reforming catalyst and use of a catalyst in methane steam reforming

Also Published As

Publication number Publication date
CN107321352B (zh) 2021-04-09
CN107321352A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019015528A1 (zh) 循环流化床镍基重整催化剂及其制备方法和应用
WO2017173791A1 (zh) 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用
CN106140165B (zh) 多孔炭载双晶相钴基费托合成催化剂及其制备方法与应用
WO2019042158A1 (zh) 氧化钙基高温co 2吸附剂及其制备方法
WO2010069133A1 (zh) 一种由合成气制备甲醇、二甲醚和低碳烯烃的方法
CN114522688B (zh) 一种多孔碳负载双金属催化剂及其制备和应用
CN111229235A (zh) NiO/MgAl2O4催化剂及其制备方法和应用
KR102035714B1 (ko) 탄화수소 개질용 니켈 촉매
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
Wang et al. Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming
WO2018053890A1 (zh) 一种劣质重油悬浮床加氢裂化催化剂及其制备方法
Wang et al. Understanding relationship of sepiolite structure tailoring and the catalytic behaviors in glycerol steam reforming over Co/sepiolite derived Co-phyllosilicate catalyst
Lu et al. Ni–MnO x Catalysts Supported on Al2O3-Modified Si Waste with Outstanding CO Methanation Catalytic Performance
CN114570360A (zh) 一种Ru基催化剂及其制备方法、应用
WO2022000923A1 (zh) 一种负载型核壳结构ZnO催化剂及其制备方法和应用
US7470647B2 (en) Nickel oxide nanoparticles as catalyst precursor for hydrogen production
Shen et al. Carbon-confined Ni based catalyst by auto-reduction for low-temperature dry reforming of methane
CN106975486B (zh) 一种co加氢制低碳混合醇的催化剂及其制备方法
Zhang et al. Comparative study of mineral with different structures supported Fe-Ni catalysts for steam reforming of toluene
Shi et al. Improving the coking resistance of Ni/Al2O3 modified by promoter (Ce, Zr, or Mg) under ethanol steam reforming: Perspective from growth sites of coking
Zhao et al. Preparation of high performance Co3O4/Al2O3 catalysts by doping Al into ZIF-67: Effect of Al sources on Fischer-Tropsch synthesis
CN104984769A (zh) 一种甲烷二氧化碳重整制合成气炭基催化剂的方法
Wang et al. Product characteristics for fast co-pyrolysis of bituminous coal and biomass
JP5932093B2 (ja) 重質留分の分解反応を利用した炭素構造体の製造方法
WO2007100333A1 (en) Nickel oxide nanoparticles as catalyst precursor for hydrogen production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835544

Country of ref document: EP

Kind code of ref document: A1