WO2021254533A1 - 双向dc/dc变换器及储能*** - Google Patents

双向dc/dc变换器及储能*** Download PDF

Info

Publication number
WO2021254533A1
WO2021254533A1 PCT/CN2021/110804 CN2021110804W WO2021254533A1 WO 2021254533 A1 WO2021254533 A1 WO 2021254533A1 CN 2021110804 W CN2021110804 W CN 2021110804W WO 2021254533 A1 WO2021254533 A1 WO 2021254533A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
bridge
control
switching
Prior art date
Application number
PCT/CN2021/110804
Other languages
English (en)
French (fr)
Inventor
王雷
陈熙
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Priority to JP2021564219A priority Critical patent/JP7169467B2/ja
Priority to EP21826698.9A priority patent/EP4290752A1/en
Priority to KR1020227005076A priority patent/KR102633598B1/ko
Priority to US17/521,294 priority patent/US11368087B1/en
Publication of WO2021254533A1 publication Critical patent/WO2021254533A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • This application relates to the technical field of voltage conversion, and in particular to a bidirectional DC/DC converter and an energy storage system.
  • the DC/DC converter can realize voltage conversion, so the DC/DC converter can be used to charge and discharge lithium batteries. Specifically, when the lithium battery is charged and discharged, the DC/DC converter can form a buck circuit or a boost circuit inside. So as to achieve voltage conversion.
  • some DC/DC converters have the problem of poor reliability during the working process.
  • a bidirectional DC/DC converter and an energy storage system are provided.
  • an embodiment of the present application provides a bidirectional DC/DC converter, including:
  • the first half of the bridge circuit includes two switch circuits connected in series, and is used to connect to a first power port; the first power port is used to connect to a DC bus;
  • the second half-bridge circuit includes two switch circuits connected in series, which are used to connect to a second power port; the second power port is used to connect to an energy storage device;
  • An inductance circuit one end of the inductance circuit is connected to the connection of the two switching circuits in the first half-bridge circuit, and the other end of the inductance circuit is connected to the connection of the two switching circuits in the second half-bridge circuit At; the first half-bridge circuit and the second half-bridge circuit form an H-bridge loop through the inductance circuit;
  • the inductor current detection circuit is used to collect the current value flowing through the inductor circuit; the control circuit is respectively connected to the four switch circuits and the inductor current detection circuit to determine the operation of the bidirectional DC/DC converter Mode, and determine one of the half-bridge circuits as the target half-bridge circuit according to the operating mode, and determine that one of the switching circuits in the target half-bridge circuit is the target switching circuit and the other switching circuit is the freewheeling switching circuit;
  • the control circuit is also used to control the periodic on and off of the target switch circuit, and to control the freewheeling switch circuit to turn off when the target switch circuit is turned on; the control circuit is also used to switch the target switch circuit on and off.
  • the freewheeling switch circuit When it is turned off, the freewheeling switch circuit is controlled to be turned on, and when the current value is less than or equal to a preset threshold, it is confirmed that the stored energy of the inductive circuit is released, and the freewheeling switch circuit is controlled to be turned off.
  • an embodiment of the present application provides a bidirectional DC/DC converter, including:
  • the first half of the bridge circuit includes two switch circuits connected in series, and is used to connect to a first power port; the first power port is used to connect to a DC bus;
  • the second half-bridge circuit includes two switch circuits connected in series, which are used to connect to the second power port; the second power port is used to connect to the energy storage device; each of the switch circuits consists of a switch tube or multiple parallel Switch tube composition;
  • An inductance circuit one end of the inductance circuit is connected to the connection of the two switching circuits in the first half-bridge circuit, and the other end of the inductance circuit is connected to the connection of the two switching circuits in the second half-bridge circuit At; the first half-bridge circuit and the second half-bridge circuit form an H-bridge loop through the inductance circuit;
  • An inductor current detection circuit for collecting the current value flowing through the inductor circuit
  • a control circuit is used to determine the operating mode of the bidirectional DC/DC converter, and determine one of the half-bridge circuits as the target half-bridge according to the operating mode Circuit, and determine that one switch circuit in the target half-bridge circuit is the target switch circuit and the other switch circuit is the freewheeling switch circuit;
  • the control circuit is also used to control the periodic on and off of the target switch circuit, and When the target switch circuit is turned on, the freewheeling switch circuit is controlled to be turned off;
  • the control circuit is also used to control the freewheeling switch circuit to be turned on when the target switch circuit is turned off, and when the current When the value is less than or equal to the preset threshold, confirm that the stored energy of the inductance circuit is released, and control the freewheeling switch circuit to turn off;
  • the control circuit is also used to determine the duty cycle of the target switching circuit according to the switching control quantity, wherein the switching control quantity includes a current deviation control quantity, and the switching control quantity changes with the current deviation control quantity.
  • the current deviation control quantity corresponds to the difference between the current setting value in the working mode and the current value; the control circuit is also used to correct the current deviation control quantity according to the compensation current value to improve Control accuracy, wherein the compensation current value is the difference between the current setting value and the average value of the current flowing through the second power port.
  • an embodiment of the present application provides an energy storage system, including a bidirectional DC/DC converter and an energy storage device, the energy storage device is connected to the second power port of the bidirectional DC/DC converter;
  • the two-way DC/DC converter includes:
  • the first half of the bridge circuit includes two switch circuits connected in series, and is used to connect to a first power port; the first power port is used to connect to a DC bus;
  • the second half-bridge circuit includes two switch circuits connected in series, which are used to connect to a second power port; the second power port is used to connect to an energy storage device;
  • An inductance circuit one end of the inductance circuit is connected to the connection of the two switching circuits in the first half-bridge circuit, and the other end of the inductance circuit is connected to the connection of the two switching circuits in the second half-bridge circuit At; the first half-bridge circuit and the second half-bridge circuit form an H-bridge loop through the inductance circuit;
  • An inductor current detection circuit for collecting the current value flowing through the inductor circuit
  • a control circuit respectively connected to the four switching circuits and the inductor current detection circuit, is used to determine the operating mode of the bidirectional DC/DC converter, and determine one of the half-bridge circuits as the target half-bridge according to the operating mode Circuit, and determine that one switch circuit in the target half-bridge circuit is the target switch circuit and the other switch circuit is the freewheeling switch circuit;
  • the control circuit is also used to control the periodic on and off of the target switch circuit, and When the target switch circuit is turned on, the freewheeling switch circuit is controlled to be turned off;
  • the control circuit is also used to control the freewheeling switch circuit to be turned on when the target switch circuit is turned off, and when the current When the value is less than or equal to the preset threshold, it is confirmed that the stored energy of the inductance circuit is released, and the freewheeling switch circuit is controlled to be turned off.
  • Fig. 1 is a schematic diagram of a circuit structure of a DC/DC converter in the prior art.
  • Fig. 2 is a schematic diagram of another circuit structure of a DC/DC converter in the prior art.
  • FIG. 3 is a schematic diagram of a circuit structure of an energy storage system provided by an embodiment.
  • FIG. 4 is a schematic diagram of an exemplary circuit structure when the energy storage system in an embodiment is applied to the charging and discharging of a lithium battery.
  • FIG. 5 is a schematic diagram of a circuit structure of a bidirectional DC/DC converter provided by an embodiment.
  • FIG. 6 is a control timing diagram for controlling the turn-off of the freewheeling switch circuit according to the current value flowing through the inductance circuit in an embodiment.
  • FIG. 7 is a schematic diagram of a circuit structure of an inductor current detection circuit in an embodiment.
  • FIG. 8 is a schematic diagram of a circuit structure of a sampling circuit in an embodiment.
  • Fig. 9 is a schematic diagram of a flow chart for the control circuit to determine the working mode in an embodiment.
  • FIG. 10A is a schematic diagram of a circuit structure formed when the working mode of the bidirectional DC/DC converter is step-down charging in an embodiment.
  • FIG. 10B is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 10A when the first switch circuit is turned on and the second switch circuit is turned off.
  • FIG. 10C is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 10A when the first switch circuit is turned off and the second switch circuit is turned on.
  • FIG. 10D is a schematic diagram of an exemplary circuit structure when the working mode of the bidirectional DC/DC converter is step-down charging.
  • FIG. 11A is a schematic diagram of a circuit structure formed when the working mode of the bidirectional DC/DC converter is boost charging in an embodiment.
  • FIG. 11B is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 11A when the fourth switch circuit is turned on and the third switch circuit is turned off.
  • FIG. 11C is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 11A when the fourth switch circuit is turned off and the third switch circuit is turned on.
  • FIG. 11D is a schematic diagram of an exemplary circuit structure when the working mode of the bidirectional DC/DC converter is boost charging.
  • FIG. 12A is a schematic diagram of a circuit structure formed when the working mode of the bidirectional DC/DC converter is boosting and discharging in an embodiment.
  • FIG. 12B is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 12A when the second switch circuit is turned on and the first switch circuit is turned off.
  • 11C is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 12A when the second switch circuit is turned off and the first switch circuit is turned on.
  • FIG. 12D is a schematic diagram of an exemplary circuit structure when the working mode of the bidirectional DC/DC converter is boosting and discharging.
  • FIG. 13A is a schematic diagram of a circuit structure formed when the working mode of the bidirectional DC/DC converter is step-down discharge in an embodiment.
  • FIG. 13B is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 13A when the third switch circuit is turned on and the fourth switch circuit is turned off.
  • FIG. 13C is a schematic diagram of the circuit structure of the bidirectional DC/DC converter shown in FIG. 13A when the third switch circuit is turned off and the fourth switch circuit is turned on.
  • FIG. 13D is a schematic diagram of an exemplary circuit structure when the working mode of the bidirectional DC/DC converter is step-down discharge.
  • Fig. 14 is a schematic diagram of a closed loop used in an embodiment.
  • Fig. 15 is a schematic diagram of another closed loop used in an embodiment.
  • FIG. 16 is a schematic diagram of a circuit structure of a bypass switch circuit in an embodiment.
  • Fig. 17 is a schematic diagram of a specific circuit structure of a bidirectional DC/DC converter in an embodiment.
  • a buck circuit or a boost circuit can be formed inside it to realize the voltage conversion from DC to DC.
  • a buck circuit may be formed inside the DC/DC converter, that is, it is composed of a main switching tube S1, a freewheeling tube S2, and an inductor L. Therefore, the DC/DC converter can reduce the output voltage of the DC power supply to the charging voltage that the lithium battery can withstand, so that the lithium battery can be step-down charging; or, as shown in Figure 2, the DC/DC converter can be formed inside Boost circuit, so the DC/DC converter can boost the output voltage of the DC power supply to a suitable charging voltage for the lithium battery, so that the lithium battery can be boosted and charged.
  • the main switching tube S1 and the freewheeling tube S2 in FIGS. 1 and 2 are all MOS tubes as examples. Those skilled in the art know that MOS tubes have parasitic diodes (also called body diodes). The drawings in this application None of the parasitic diodes of the MOS tube are shown.
  • the DC/DC converter may have a problem of poor stability during the working process, resulting in lower reliability of the DC/DC converter.
  • the DC/DC converter in the traditional technology can use the switching tube as the freewheeling tube (that is, using the switching tube as the slave tube), and the master and slave tubes usually adopt a strict complementary conduction control strategy, that is, the master is turned on.
  • the secondary tube is turned off, the secondary tube is turned on when the main tube is turned off. Based on this, when the inductor current is interrupted, the secondary tube may still be in the on state after the freewheeling ends, which may cause problems such as reverse current flow. It even causes the DC/DC converter to fail to convert the voltage normally, which leads to poor stability of the DC/DC converter.
  • the DC/DC converters shown in Figure 1 and Figure 2 all use the switch S2 as a continuous
  • the current tube that is, the switching tube S2 is used as a slave tube
  • the switching tube S2 may still be in the conducting state after the freewheeling ends.
  • the battery may pass through the switching tube S2 and the inductor L. Discharge, resulting in the reverse of the current flowing through the inductor L, and serious positive feedback, leading to control failure, and then starting over-current protection or damaging the power device, which will cause the DC/DC converter to fail to convert the voltage normally , Resulting in poor stability of the converter.
  • the energy storage system includes a bidirectional DC/DC converter 10 and an energy storage device 20.
  • the bidirectional DC/DC converter 10 is useful
  • the device connected to the DC bus is referred to as an external device 30 in this embodiment for convenience of discussion;
  • the energy storage device 20 is a device with electrical energy storage capability, such as a lithium battery or the like.
  • the energy storage system described in the embodiments of the present application can be used for the charge and discharge test of lithium batteries, and can also be used for the normal use process of lithium batteries.
  • the energy storage device 20 can be a lithium battery.
  • the DC bus connected to the first power port 110 is connected to the city power through an AC/DC conversion device, and the city power is used as an AC power source to charge the energy storage device.
  • the bidirectional DC/DC converter is a bidirectional conversion circuit, the direct current output by the energy storage device can also be converted into alternating current through the AC/DC converter and then integrated into the grid after passing through the bidirectional DC/DC converter.
  • the bidirectional DC/DC converter 10 in the embodiment of the present application includes a first half-bridge circuit 130, a second half-bridge circuit 140, an inductor circuit 150, and an inductor.
  • Current detection circuit 160 and control circuit 170 includes a first half-bridge circuit 130, a second half-bridge circuit 140, an inductor circuit 150, and an inductor.
  • the first half-bridge circuit 130 and the second half-bridge circuit 140 both include two switching circuits connected in series, and the first half-bridge circuit 130 is connected to the first power port 110, and the second half-bridge circuit 140 is connected to the second power port 120
  • the inductance circuit 150 includes an inductor, one end of which is connected to the connection of the two switching circuits in the first half-bridge circuit 130, and the other end is connected to the connection of the two switching circuits in the second half-bridge circuit 140. It can be understood that the first half-bridge circuit 130 and the second half-bridge circuit 140 form an H-bridge loop through the inductance circuit 150. Based on this, the inductor current detection circuit 160 is arranged on the H-bridge loop for collecting data flowing through the inductance circuit. The current value of 150.
  • control circuit 170 includes a Microcontroller Unit (MCU), a Digital Signal Processing (Digital Signal Processor, DSP) control system, etc., which are respectively connected to four switch circuits (the connection relationship is not shown in the figure), which can be specifically It is respectively connected to the control terminal of each switch circuit.
  • control circuit 170 is also connected to the inductor current detection circuit 160.
  • the control circuit 170 can be used to determine the operating mode of the bidirectional DC/DC converter 10, and determine one of the half-bridge circuits as the target half-bridge circuit and determine a switching circuit in the target half-bridge circuit as the target according to the operating mode.
  • the switch circuit and the other switch circuit is a freewheeling switch circuit.
  • the control circuit 170 can determine the target half-bridge circuit among the two half-bridge circuits according to the specific working mode, and determine the target switch circuit and the freewheeling switch circuit at the same time, so that the bidirectional DC/DC converter 10 can pass the target half-bridge circuit.
  • the bridge circuit and the inductance circuit 150 form a step-up circuit or a step-down circuit, for example, a boost circuit or a buck circuit.
  • control circuit 170 is also used to control the periodic on and off of the target switch circuit, and control the freewheeling switch circuit to turn off when the target switch circuit is turned on, and to control the freewheeling switch circuit to turn on when the target switch circuit is turned off, And when the value of the current flowing through the inductance circuit 150 is less than or equal to the preset threshold value, the freewheeling switch circuit is controlled to be turned off. That is, after the freewheeling switch circuit is turned on, it is determined whether the freewheeling switch circuit needs to be turned off in advance according to the magnitude relationship between the current value flowing through the inductance circuit 150 and the preset threshold, wherein the preset threshold is determined The current threshold value at the end or near the end of the energy storage release in the inductance circuit 150.
  • the preset threshold can be set to 0A. In other embodiments, the threshold can also be set within a certain range. As long as the current is within this range, the storage in the inductance circuit 150 can be determined. The energy has been released. Therefore, by comparing the actual detected current value flowing through the inductance circuit 150 with the threshold value when the inductance circuit 150 is discharged, it can be determined whether the stored energy of the inductance circuit 150 is completely discharged, that is, whether the circuit is still in the circuit. There is a freewheeling current, so that the freewheeling switch circuit is closed when the freewheeling ends.
  • the control circuit 170 can determine that the electric energy stored in the inductance circuit 150 has been discharged or is about to be discharged, so the control circuit 170 can control the freewheeling switch circuit to turn off .
  • the freewheeling switch circuit by determining the turn-off time point of the freewheeling switch circuit according to the actual current detection in the loop where the inductance circuit 150 is located, it can be ensured that the freewheeling switch circuit is closed in time after the freewheeling of the inductance circuit 150 ends.
  • the traditional main switch and freewheeling switch are strictly complementary conduction, that is, one on and one off, the freewheeling switch will be turned off only when the main switch is turned on again, which causes the freewheeling switch to turn on
  • the duration is longer than the freewheeling duration of the inductive circuit, that is, the current switch tube is still in the on state after the freewheeling ends. At this time, the power supply equipment in the freewheeling loop may discharge and cause the current to flow in the reverse direction.
  • the freewheeling switch circuit can be turned off in time when the freewheeling ends, thereby effectively avoiding this problem; at the same time, the switch circuit is used as the freewheeling of the inductance circuit 150, so that no large energy loss will be caused. .
  • the control circuit 170 can use the PWM control signal corresponding to the "main switch drive signal curve" in the figure to control the target switch circuit, so that the target switch circuit can be turned on and off periodically. It is understandable that Each on-off period T of the target switch circuit is the same, that is, T1, T2, T3, T4, and T5 are the same. In addition, the current value flowing through the inductance circuit 150 at each time can be as shown in the corresponding curve in the figure, and it is predicted The specific value of the threshold can also be set reasonably. Based on this, when the target switch circuit is turned on, the control circuit 170 controls the freewheeling switch circuit (that is, the slave switch) to turn off.
  • the freewheeling switch circuit that is, the slave switch
  • the value of the current flowing through the inductance circuit 150 will become larger and larger, for example, at T1 and T2.
  • the target switch circuit is in the on state during the t 1 time period.
  • the control circuit 170 needs to control the freewheeling switch circuit to turn off, and the current value flowing through the inductance circuit 150 will increase. The larger; then, when the target switch circuit is turned off, the control circuit 170 needs to control the freewheeling switch circuit to conduct.
  • the inductance circuit 150 forms a freewheeling current through the freewheeling switch circuit, and as the freewheeling progresses, it flows through the inductor
  • the current value of the circuit 150 will become smaller and smaller, so when the current value flowing through the inductance circuit 150 is lower than the preset threshold, the control circuit 170 can control the freewheeling switch circuit to turn off, that is, when the freewheeling ends, the continuous current will be turned off in time.
  • inductive circuit 150 is formed in the freewheeling period t 2, and with the freewheeling performed, the current value flowing through the inductor circuit 150 below a preset threshold, Accordingly advance control circuit 170 controls the freewheeling switch circuit is turned off, the main switch circuit and the switching circuit freewheeling period t 3 are in an off state, and to be noted that,, T4 and T5 in the off period T3 on When the target switch circuit is turned off, the current value flowing through the inductance circuit 150 is not lower than the preset threshold, so the control circuit 170 does not need to control the freewheeling switch circuit to turn off in advance, that is, the early turn-off in this embodiment is It is executed when the freewheeling has ended and the main switching tube has not been turned on. When the freewheeling has not ended and the main switching tube has been turned on, the freewheeling switching tube can be directly turned off.
  • the inductor current detection circuit 160 includes a resistor circuit 161 and a sampling circuit 162.
  • the resistor circuit 161 includes a high-precision resistor, which is arranged on the aforementioned H-bridge loop, and the sampling circuit 162 is connected to the resistor.
  • Circuit 161 and control circuit 170 are in a series relationship. Therefore, the current flowing through the resistance circuit 161 is equal to the current flowing through the inductance circuit 150.
  • the control circuit 170 can determine the current value flowing through the inductance circuit 150 through the sampling circuit 162.
  • control circuit 170 acquires the voltage value across the resistance circuit 161 through the sampling circuit 162 and determines the current value based on the voltage value and the resistance value of the resistance circuit 161.
  • the sampling circuit 162 includes a first differential circuit 1621 and a second differential circuit 1622, wherein the positive input terminal of the first differential circuit 1621 is connected to the first terminal of the resistance circuit 161, and the negative input The end is connected to the second end of the resistance circuit 161, and the signal output end is connected to the control circuit 170. Therefore, when the direction of current flowing through the resistance circuit 161 is from the first end to the second end, the control circuit 170 can pass through the first differential circuit 1621. Determine the value of the current flowing through the inductance circuit 150.
  • the first differential circuit 1621 collects the voltage across the resistance circuit 161 and generates a corresponding electrical signal, so the control circuit 170 can determine the resistance circuit by the electrical signal input by the first differential circuit 1621
  • the voltage value at both ends of 161 determines the current value flowing through the inductance circuit 150; similarly, the positive input end of the second differential circuit 1622 is connected to the second end of the resistance circuit 161, and the negative input end is connected to the first end of the resistance circuit 161.
  • the signal output terminal is connected to the control circuit 170. Therefore, when the direction of the current flowing through the resistance circuit 161 is from the second terminal to the first terminal, the control circuit 170 can determine the current value flowing through the inductance circuit 150 through the second differential circuit 1622.
  • the control circuit 170 is used to determine the working mode of the bidirectional DC/DC converter 10, specifically: obtaining a working instruction, and according to the working instruction and the voltage value of the first power port 110 and the voltage value of the second power port 120 The magnitude relationship between the voltage values determines the working mode, where the working modes of the bidirectional DC/DC converter 10 include boost charging, boost discharging, step-down charging, and step-down discharging.
  • the work instructions may include charging instructions, discharging instructions, etc.
  • the work instructions may be issued to the control circuit 170 by the monitoring host computer in a communication manner, or the user may directly operate the instruction buttons on the converter to issue the work. instruction.
  • the monitoring host computer issues specific work instructions to the control circuit 170 according to the user's operation.
  • the user can directly operate the discharge switch button or the charge switch button on the converter to issue specific work instructions.
  • the control circuit 170 can obtain the work instruction, and determine the work mode in combination with the magnitude relationship between the voltage value of the first power port 110 and the voltage value of the second power port 120. For example, as shown in FIG.
  • the first half-bridge circuit 130 includes a first switching circuit and a second switching circuit connected in series
  • the second half-bridge circuit 140 includes a third switching circuit and a fourth switching circuit connected in series.
  • the first switch circuit and the third switch circuit respectively serve as the upper bridge arms of the corresponding half-bridge circuit
  • the second switch circuit and the fourth switch circuit respectively serve as the lower bridge arms of the corresponding half-bridge circuit.
  • the first switch circuit serves as the upper arm of the first half-bridge circuit 130, which is connected to the anode 110A of the first power port 110, and the third switch circuit serves as the lower arm of the first half-bridge circuit 130, which is Connected to the negative pole 110B of the first power port 110; similarly, the third switch circuit serves as the upper arm of the second half-bridge circuit 140, which is connected to the positive pole 120A of the second power port 120, and the fourth switch circuit serves as the first The lower arm of the second half-bridge circuit 140 is connected to the negative electrode 120B of the second power port 120.
  • each switch circuit may include a switch tube or multiple switch tubes connected in parallel, for example, a MOS tube or three MOS tubes connected in parallel, etc. At the same time, the switch tube may have a body The switch tube of the diode, etc., the body diode is not shown in the figure.
  • the control circuit 170 can determine the target half-bridge circuit, the target switch circuit, and the freewheeling switch circuit according to the working mode.
  • the target switch circuit can be understood as the master switch, and the freewheeling switch circuit can be understood as the slave switch.
  • the bidirectional DC/DC converter 10 can form a step-up circuit or a step-down circuit through the target half-bridge circuit and the inductor circuit 150.
  • the control circuit 170 may determine that the first half-bridge circuit 130 is the target half-bridge circuit, and determine that the first switching circuit is the target switching circuit and the second switching circuit is the freewheeling switching circuit, That is, the first switch circuit is the master switch, and the second switch circuit is the slave switch.
  • the bidirectional DC/DC converter 10 forms a buck step-down circuit through the first half-bridge circuit 130 and the inductor circuit 150.
  • the second half-bridge circuit 140 is in the off state, and the current formed by the first half-bridge circuit 130 and the inductance circuit 150 flows through the body diode of the switch tube in the second half-bridge circuit 140 and then is output to the energy storage device 20. .
  • the second half-bridge circuit 140 in the off state is omitted in FIG. 10A.
  • the third switch circuit can also be kept in the on state, so that the inductance circuit 150 is connected to the 120A of the second power port 120, but it is not limited to the foregoing manner.
  • the external device 30 charges the energy storage device 20 through the first switch circuit and charges the inductance circuit 150 at the same time;
  • FIG. 10B The second half-bridge circuit 140 in the off state and the second switch circuit in the off state are omitted here.
  • the switch unit in the off state is omitted.
  • the first switching circuit may include a switching tube S1
  • the second switching circuit may include a switching tube S2
  • the inductance circuit 150 may include an inductor L
  • both the switching tube S1 and the switching tube S2 include at least one MOS. Tube.
  • the resistance circuit 161 in the inductor current detection circuit 160 may include a resistor R.
  • the control circuit 170 can determine that the second half-bridge circuit 140 is the target half-bridge circuit, and that the fourth switch circuit is the target switch circuit and the third switch circuit is the freewheeling switch circuit, That is, the fourth switch circuit is the master switch, and the third switch circuit is the slave switch.
  • the bidirectional DC/DC converter 10 forms a boost circuit through the second half-bridge circuit 140 and the inductor circuit 150.
  • the first half-bridge circuit 130 is in the off state, the current in the inductance circuit flows through the body diode of the switch tube of the first switch circuit and is output through the first power port 110.
  • the first switch circuit may be kept in the on state, so that the inductance circuit 150 is connected to the 110A of the first power port 110, but it is not limited to the foregoing manner. More specifically, when the fourth switching circuit is turned on and the third switching circuit is turned off, as shown in FIG. 11B, the external device 30 charges the inductance circuit 150 through the fourth switching circuit; When the three switch circuits are turned on, as shown in FIG. 11C, the electric energy stored in the inductance circuit 150 forms a freewheeling current through the third switch circuit, and the external device 30 and the inductance circuit 150 charge the energy storage device 20 together. Exemplarily, as shown in FIG.
  • the third switching circuit may include a switching tube S3, the fourth switching circuit may include a switching tube S4, the inductor circuit 150 may include an inductor L, and the resistance circuit 161 in the inductor current detection circuit 160 may include Resistance R, when the working mode of the bidirectional DC/DC converter 10 is boost charging, the switch S4 is the master switch, and the switch S3 is the slave switch, so when the master switch S4 is turned on and the slave switch S3 is turned off, the current The flow direction is shown in the curve 1 in the figure. When the main switch S4 is turned off and the slave switch S3 is turned off, the current flow is shown in the curve 2 in the figure.
  • the control circuit 170 can determine that the first half-bridge circuit 130 is the target half-bridge circuit, and that the second switching circuit is the target switching circuit and the first switching circuit is the freewheeling switching circuit, That is, the second switch circuit is the master switch, and the first switch circuit is the slave switch.
  • the bidirectional DC/DC converter 10 forms a boost circuit through the first half-bridge circuit 130 and the inductor circuit 150.
  • the second half-bridge circuit 140 is in the off state, the current output by the energy storage device is output to the inductor circuit after flowing through the body diode of the switch tube of the third switch circuit.
  • the third switch circuit may be kept in the on state, so that the inductance circuit 150 is connected to the 120A of the second power port 120, but it is not limited to the foregoing manner. More specifically, when the second switching circuit is turned on and the first switching circuit is turned off, as shown in FIG. 12B, the energy storage device 20 supplies power to the inductance circuit 150 through the second switching circuit; and when the second switching circuit is turned off and When the first switch circuit is turned on, as shown in FIG. 12C, the electric energy stored in the inductance circuit 150 forms a freewheeling current through the first switch circuit, and the energy storage device 20 and the inductance circuit 150 supply power to the external device 30 together. Exemplarily, as shown in FIG.
  • the first switching circuit may include a switching tube S1
  • the second switching circuit may include a switching tube S2
  • the inductor circuit 150 may include an inductor L
  • the resistance circuit 161 in the inductor current detection circuit 160 may include Resistance R
  • the control circuit 170 can determine that the second half-bridge circuit 140 is the target half-bridge circuit, and that the third switch circuit is the target switch circuit and the fourth switch circuit is the freewheeling switch circuit, That is, the third switch circuit is the master switch, and the fourth switch circuit is the slave switch.
  • the bidirectional DC/DC converter 10 forms a buck step-down circuit through the second half-bridge circuit 130 and the inductor circuit 150.
  • the first half-bridge circuit 130 is in the off state, the current in the inductance circuit flows through the body diode of the switch tube of the first switch circuit and is output through the first power port 110.
  • the first switch circuit may be kept in the on state, so that the inductance circuit 150 is connected to the 110A of the first power port 110, but it is not limited to the foregoing manner. More specifically, when the third switch circuit is turned on and the fourth switch circuit is turned off, as shown in FIG. 13B, the energy storage device 20 supplies power to the external device 30 through the third switch circuit and at the same time supplies power to the inductance circuit 150; When the third switch circuit is turned off and the fourth switch circuit is turned on, as shown in FIG. 13C, the electric energy stored on the inductance circuit 150 forms a freewheeling current through the fourth switch circuit to supply power to the external device 30. Exemplarily, as shown in FIG.
  • the third switching circuit may include a switching tube S3, the fourth switching circuit may include a switching tube S4, the inductor circuit 150 may include an inductor L, and the resistance circuit 161 in the inductor current detection circuit 160 may include Resistance R, when the working mode of the bidirectional DC/DC converter 10 is boost charging, the switch S4 is the master switch, and the switch S3 is the slave switch, so when the master switch S4 is turned on and the slave switch S3 is turned off, the current The flow direction is shown in the curve 1 in the figure. When the main switch S4 is turned off and the slave switch S3 is turned off, the current flow is shown in the curve 2 in the figure.
  • the control circuit 170 when the bidirectional DC/DC converter 10 is used for charging and discharging the energy storage device 20, in order to control the charging current or discharging current of the energy storage device 20, the control circuit 170 is also used to control the amount of The duty cycle of the target switching circuit is determined, where the switching control quantity includes a current deviation control quantity, which corresponds to the difference between the current setting value in the working mode and the current value flowing through the inductance circuit 150.
  • the current setting value is the charging and discharging current value expected by the user or the system, that is, the user or the system expects the charging current value of the energy storage device 20 during charging or the discharge current value during discharging.
  • the current setting value may be sent to the control circuit 170 by the user through the monitoring upper computer. For example, when the user sends a work instruction to the control circuit 170 through the monitoring upper computer, the current setting value is downloaded together.
  • the user sends the current setting value to the control circuit 170 for adjustment purposes; or, the current setting value may be a preset parameter, for example .
  • the current setting value may be a preset parameter, for example .
  • the control circuit 170 can use the charging current reference value as the aforementioned current setting value
  • the control circuit 170 can set the discharge current reference value As the aforementioned current setting value.
  • the numerical value of the current setting value can be determined by a mapping relationship table.
  • the mapping relationship table records corresponding reference values of charge and discharge currents in multiple application scenarios, so it can be determined according to specific In the application scenario, the corresponding reference value is obtained through this mapping relationship table, and the reference value is used as the aforementioned current setting value.
  • the control circuit 170 can use a PWM control signal to drive the target switch circuit to periodically turn on and off, and it can be understood that the charging and discharging current of the energy storage device 20 is affected by the inductance circuit 150. Therefore, the control circuit 170 can pass a current closed loop The loop controls the charging and discharging current of the energy storage device 20. More specifically, as shown in FIG. 14, the control circuit 170 may determine according to the difference between the determined current setting value (I ref in the figure) and the current value flowing through the inductance circuit 150 (I fed in the figure) The current deviation control quantity, and because the switching control quantity includes the current deviation control quantity, when the current deviation control quantity changes, the switching control quantity also changes accordingly.
  • the control circuit 170 can determine the target switching circuit according to the switching control quantity. Duty ratio, that is, adjusting the duty ratio of the PWM control signal, such as increasing or decreasing the duty ratio, so that the current value flowing through the inductance circuit 150 can be adjusted, and then the charging and discharging current value of the energy storage device 20 can be adjusted. Therefore, The control circuit 170 can effectively control the charging current value or the discharging current value of the bidirectional DC/DC converter 10.
  • the control circuit 170 is also used to correct the current deviation control amount according to the compensation current value, wherein the compensation current value is the value of the current setting value and the average value of the current flowing through the second power port 120 The difference between.
  • the compensation current value is the value of the current setting value and the average value of the current flowing through the second power port 120.
  • the average value of the battery current is also used for compensation, thereby increasing the battery current (that is, the current of the energy storage device 20, It can be the accuracy of the charge current or discharge current) control.
  • the average value of the current flowing through the second power port 120 is the average value of the current flowing through the second power port 120 within a preset period of time, and since the energy storage device 20 is connected to the second power port 120, the current The average current passing through the second power port 120 can be regarded as the average current flowing through the energy storage device 20; in addition, since the compensation current value is between the current setting value and the average current flowing through the second power port 120 Therefore, the compensation current value can be understood as the difference between the expected charge and discharge current value and the actual charge and discharge current value. Therefore, the control circuit 170 can correct the current deviation control amount according to the compensation current value, thereby improving the control accuracy. For example, as shown in FIG.
  • control circuit 170 may determine the compensation current value based on the difference between the current setting value (I ref in the figure) and the average current flowing through the second power port 120 (I ave in the figure) (I o_avg in the figure ), so as to determine the current deviation control amount according to I ref , I fed and I o_avg , which improves the control accuracy.
  • the first half-bridge circuit 130 further includes a first bypass switch circuit connected in parallel with the first switch circuit
  • the second half-bridge circuit 140 also includes a second bypass switch circuit connected in parallel with the third switch circuit, wherein the internal resistance of the first bypass switch circuit is lower than the internal resistance of the first switch circuit, and the second bypass switch The internal resistance of the circuit is lower than that of the third switch circuit. Therefore, it can be understood that the conduction loss of the first bypass switch is lower than that of the first switch circuit. Similarly, the conduction loss of the second bypass switch The conduction loss is lower than that of the third switching circuit.
  • control circuit 170 is also used to: when the first half-bridge circuit 130 is the target half-bridge circuit, control the first bypass switch circuit to turn off and control the second bypass switch circuit to turn on, When the second half-bridge circuit 140 is the target half-bridge circuit, the first bypass switch circuit is controlled to be turned on and the second bypass switch is controlled to be turned off.
  • the control circuit 170 can control the first bypass switch circuit to turn off And control the second bypass switch circuit to conduct, so it can be understood that the inductance circuit 150 and the 120A of the second power port 120 can be connected through the second bypass switch circuit; similarly, when the bidirectional DC/DC converter 10 When the working mode is boost charging and buck discharging, and the second half-bridge circuit 140 is the target half-bridge circuit, the control circuit 170 can control the first bypass switch circuit to be turned on and the second bypass switch circuit to be turned off.
  • the inductance circuit 150 and the 110A of the first power port 110 can be connected through the first bypass switch circuit. Therefore, since the conduction loss of the bypass switch is lower than the conduction loss of the switch circuit, the power consumption of the bidirectional DC/DC converter 10 can be further reduced, that is, the reliability of the bidirectional DC/DC converter 10 can be further improved.
  • each switch circuit may include one switch tube or multiple switch tubes connected in parallel, so the control circuit 170 is also used to determine the number of switch tubes turned on according to the charging power or the discharging power.
  • the first half-bridge circuit 130 may be a target half-bridge circuit, and the first switch circuit may be a target switch circuit, where the first switch circuit may include three switch tubes connected in parallel, and each switch tube can The endurable power is 1100W.
  • the control circuit 170 can determine that the number of switching tubes is 3; if the charging power or discharging power at this time is 1000W, the control circuit 170 can determine that the number of switch tubes turned on is one.
  • the bidirectional DC/DC converter 10 in the embodiment of the present application may be as shown in FIG.
  • the first switching circuit includes a switching tube S1
  • the second switching circuit includes a switching tube S2
  • the third switching circuit includes a switching tube S3
  • the fourth switching circuit includes a switching tube S4
  • the inductance circuit 150 includes an inductor.
  • the resistance circuit 161 includes a high-precision resistor R
  • the first bypass switch circuit includes a relay K1
  • the second bypass switch circuit includes a relay K2
  • the control circuit 170 is respectively connected to the switching tube S1, the switching tube S2, the switching tube S3, and
  • control circuit 170 can be used for, but not limited to, the following content: obtain a work instruction, and determine the work mode according to the work instruction and the magnitude relationship between the voltage value of the first power port 110 and the voltage value of the second power port 120 ; According to the working mode, determine one of the half-bridge circuits as the target half-bridge circuit and determine that one of the switching circuits in the target half-bridge circuit is the target switching circuit and the other is the freewheeling switching circuit, and turn off the bypass switch in the target half-bridge circuit Circuit and a bypass switch circuit that turns on another half-bridge circuit; control the target switch circuit in the target half-bridge circuit to periodically turn on and off, and control the freewheeling switch circuit to turn off when the target switch circuit is turned on, and when the target The freewheeling switch circuit is controlled to be turned on when the switch circuit is turned off, and the freewheeling switch circuit is controlled to be turned off when the value of the current flowing through the inductor circuit 150 is less than or equal to the preset threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种双向DC/DC变换器包括第一半桥电路、第二半桥电路、电感电路、电感电流检测电路和控制电路,其中,控制电路用于根据工作模式确定其中一个半桥电路为目标半桥电路、以及确定目标开关电路和续流开关电路;该控制电路还用于控制目标开关电路周期性的通断,并在目标开关电路导通时控制续流开关电路关断、以及在目标开关电路关断时控制续流开关电路导通,并在流经电感电路的电流值小于或者等于预设阈值时控制续流开关电路关断。

Description

双向DC/DC变换器及储能*** 技术领域
本申请涉及电压变换技术领域,尤其涉及一种双向DC/DC变换器及储能***。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
DC/DC变换器可以实现电压转换,因此DC/DC变换器可以用于锂电池的充放电,具体的,当锂电池进行充放电时,DC/DC变换器内部可以形成buck电路或者boost电路,从而实现电压转换。但在现有技术中,部分DC/DC变换器在工作过程中存在可靠性较差的问题。
发明内容
根据本申请的各种实施例,提供一种双向DC/DC变换器及储能***。
第一方面,本申请实施例提供了一种双向DC/DC变换器,包括:
第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;
电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
电感电流检测电路,用于采集流经所述电感电路的电流值;控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断。
第二方面,本申请实施例提供了一种双向DC/DC变换器,包括:
第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;各所述开关电路均由一个开关管或并联的多个开关管组成;
电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
电感电流检测电路,用于采集流经所述电感电路的电流值;
控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双 向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断;
所述控制电路还用于根据开关控制量确定所述目标开关电路的占空比,其中,所述开关控制量包括电流偏差控制量,所述开关控制量随所述电流偏差控制量变化,所述电流偏差控制量为对应于所述工作模式下的电流设定值与所述电流值之间的差值;所述控制电路还用于根据补偿电流值修正所述电流偏差控制量,以提高控制精度,其中,所述补偿电流值为所述电流设定值与流经所述第二电源端口的电流平均值之间的差值。
第三方面,本申请实施例提供了一种储能***,包括双向DC/DC变换器和储能装置,所述储能装置与所述双向DC/DC变换器的第二电源端口连接;所述双向DC/DC变换器包括:
第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;
电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
电感电流检测电路,用于采集流经所述电感电路的电流值;
控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,并且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中DC/DC变换器的一种电路结构示意图。
图2为现有技术中DC/DC变换器的另一种电路结构示意图。
图3为一实施例提供的储能***的一种电路结构示意图。
图4为一实施例中的储能***应用于锂电池充放电时的一种示例性电路结构示意图。
图5为一实施例提供的双向DC/DC变换器的一种电路结构示意图。
图6为一实施例中根据流经电感电路的电流值控制续流开关电路关断的一种控制时序图。
图7为一实施例中电感电流检测电路的一种电路结构示意图。
图8为一实施例中采样电路的一种电路结构示意图。
图9为一实施例中控制电路确定工作模式的一种流程示意图。
图10A为一实施例中的双向DC/DC变换器的工作模式为降压充电时形成的电路结构示意图。
图10B为图10A所示的双向DC/DC变换器在第一开关电路导通且第二开关电路关断时的电路结构示意图。
图10C为图10A所示的双向DC/DC变换器在第一开关电路关断且第二开关电路导通时的电路结构示意图。
图10D为双向DC/DC变换器的工作模式为降压充电时的一种示例性电路结构示意图。
图11A为一实施例中的双向DC/DC变换器的工作模式为升压充电时形成的电路结构示意图。
图11B为图11A所示的双向DC/DC变换器在第四开关电路导通且第三开关电路关断时的电路结构示意图。
图11C为图11A所示的双向DC/DC变换器在第四开关电路关断且第三开关电路导通时的电路结构示意图。
图11D为双向DC/DC变换器的工作模式为升压充电时的一种示例性电路结构示意图。
图12A为一实施例中的双向DC/DC变换器的工作模式为升压放电时形成的电路结构示意图。
图12B为图12A所示的双向DC/DC变换器在第二开关电路导通且第一开关电路关断时的电路结构示意图。
图11C为图12A所示的双向DC/DC变换器在第二开关电路关断且第一开关电路导通时的电路结构示意图。
图12D为双向DC/DC变换器的工作模式为升压放电时的一种示例性电路结构示意图。
图13A为一实施例中的双向DC/DC变换器的工作模式为降压放电时形成的电路结构示意图。
图13B为图13A所示的双向DC/DC变换器在第三开关电路导通且第四开关电路关断时的电路结构示意图。
图13C为如图13A所示的双向DC/DC变换器在第三开关电路关断且第四开关电路导通时的电路结构示意图。
图13D为双向DC/DC变换器的工作模式为降压放电时的一种示例性电路结构示意图。
图14为一实施例中所采用的一种闭环环路示意图。
图15为一实施例中所采用的另一种闭环环路示意图。
图16为一实施例中旁路开关电路的一种电路结构示意图。
图17为一实施例中双向DC/DC变换器的一种具体的电路结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,本申请的说明书、权利要求书或上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序, 不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
当DC/DC变换器用于锂电池的充放电时,其内部可以形成buck电路或者boost电路,从而实现直流到直流的电压转换。
示例性的,如图1所示,DC/DC变换器内部可以形成buck电路,也即由主开关管S1、续流管S2以及电感L组成。因此DC/DC变换器能够将直流电源输出的电压降低至锂电池所能够承受的充电电压,从而可以进行锂电池的降压充电;或者,如图2所示,DC/DC变换器内部可以形成boost电路,因此DC/DC变换器能够将直流电源输出的电压升高至锂电池所适合的充电电压,从而可以进行锂电池的升压充电。图1和图2中的主开关管S1和续流管S2均以MOS管为例,本领域技术人员均知晓MOS管具有寄生二极管(也可以称之为体二极管),本申请中各附图中均没有将MOS管的寄生二极管示意出来。
经发明人发现,DC/DC变换器在工作过程中可能存在稳定性较差的问题,从而导致DC/DC变换器的可靠性较低。具体而言,传统技术中的DC/DC变换器可以利用开关管作为续流管(即利用开关管作为从管),而主管和从管通常采用严格互补导通的控制策略,即主管导通时从管关断,主管关断时从管导通,基于此,在电感电流断续时从管可能会在续流结束后仍处于导通状态,如此可能会引起电流反向流动等问题,甚至造成DC/DC变换器无法正常进行电压的转换等等,从而导致DC/DC变换器的稳定性较差,例如图1和图2所示的DC/DC变换器均利用开关管S2作为续流管(即开关管S2作为从管),因此在电感L的电流断续时开关管S2可能会在续流结束后仍处于导通状态,此时可能出现电池通过开关管S2以及电感L进行放电,从而导致流经电感L上的电流出现反向,严重的会产生正反馈,导致控制失败,进而启动过流保护或者损坏功率器件,因此会造成DC/DC变换器无法正常进行电压的转换,导致变换器的稳定性较差。
为此,本申请实施例提供一种储能***,如图3所示,该储能***包括双向DC/DC变换器10和储能装置20,具体的,双向DC/DC变换器10具有用于连接直流母线的第一电源端口110以及用于连接储能装置20的第二电源端口120,其中,直流母线可以用于直接与直流负载或者直流电源连接,也可以通过AC/DC变换电路与交流负载或者交流电源连接,为了论述方便本实施例将与直流母线连接的设备称为外部设备30;储能装置20为具备电能存储能力的装置,例如可以为锂电池等等。示例性的,本申请实施例所述的储能***可以用于锂电池的充放电测试,也可以用于锂电池的正常使用过程,如图4所示,储能装置20可以为锂电池,第一电源端口110连接的直流母线通过AC/DC变换装置与市电连接,市电作为交流电源给储能装置进行充电。同时,由于双向DC/DC变换器为双向变换电路,因此储能装置输出的直流电也可以通过双向DC/DC变换器后,经过AC/DC变换装置转换为交流电后并入电网。
基于此,本申请实施例中的双向DC/DC变换器10,如图5所示,该双向DC/DC变换器包括第一半桥电路130、第二半桥电路140、电感电路150、电感电流检测电路160和控制电路170。
其中,第一半桥电路130和第二半桥电路140均包括串联的两个开关电路,且第一半桥电路130连接第一电源端口110,第二半桥电路140连接第二电源端口120;电感电路150包括电感,其一端连接于第一半桥电路130中两个开关电路的连接处,另一端连接于第二半桥电路140中两个开关电路的连接处。可以理解,第一半桥电路130和第二半桥电路140通过电感电路150形成了一个H桥回路,基于此,电感电流检测电路160设置在此 H桥回路上,用于采集流经电感电路150的电流值。
其中,控制电路170包括微控制单元(Microcontroller Unit,MCU)、数字信号处理(Digital Signal Processor,DSP)控制***等等,其分别连接四个开关电路(图中未画出连接关系),具体可以分别与每个开关电路的控制端连接,另外,控制电路170还与电感电流检测电路160连接。
基于此,控制电路170可以用于确定双向DC/DC变换器10的工作模式,并根据工作模式确定其中一个半桥电路为目标半桥电路、以及确定目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路。具体的,控制电路170可以根据具体的工作模式在两个半桥电路中确定出目标半桥电路,同时确定出目标开关电路和续流开关电路,如此双向DC/DC变换器10可以通过目标半桥电路与电感电路150形成一个升压电路或降压电路,例如形成一个boost电路或buck电路。
此外,控制电路170还用于控制目标开关电路周期性的通断,并在目标开关电路导通时控制续流开关电路关断、以及在目标开关电路关断时控制续流开关电路导通,并在流经电感电路150的电流值小于或者等于预设阈值时控制续流开关电路关断。也即,在续流开关电路导通后,会根据流经电感电路150的电流值以及预设阈值之间的大小关系来确定是否需要提前关断该续流开关电路,其中预设阈值是确定电感电路150中的储能释放结束或者临近结束时的电流阈值。在一实施方式中,可以将该预设阈值设置为0A,在其他的实施方式中,也可以将该阈值设置在一定的范围内,只要电流在该范围内均可以认定电感电路150中的储能已经释放完毕即可。因此,通过比较实际检测到的流经电感电路150的电流值与电感电路150储能释放完毕时的阈值来进行比较,从而可以确定电感电路150的储能是否释放完毕,也即电路中是否还有续流电流,从而在续流结束时关闭续流开关电路。
具体而言,在电感电路150通过续流开关电路形成续流时,通过不断的放电,电感电路150中存储的电能被逐渐释放从而越来越少,整个续流电路中的电流也会逐渐降低,因此当流经电感电路150的电流值低于预设阈值时,控制电路170可以确定电感电路150中存储的电能已经释放完毕或者即将释放完毕,因此控制电路170可以控制续流开关电路关断。在本实施例中,通过根据电感电路150所在回路中的实际电流检测来确定续流开关电路的关断时间点,能够确保在电感电路150的续流结束后及时关闭续流开关电路。传统的主开关管和续流开关管二者严格互补导通,也即一开一关,续流开关管仅仅在主开关管再次开启时才会被关断,从而导致续流开关管的开启时长比电感电路的续流时长要长,也即存在在续流结束后续流开关管仍处于导通状态的情况,此时续流回路中的电源设备可能会放电从而造成电流反向流动,严重的会产生正反馈,进而导致控制失败,产生DC/DC过流保护或者损坏功率器件。而本实施例中,能够在续流结束时及时关闭续流开关电路,从而能够有效避免该问题的出现;同时,采用开关电路作为电感电路150的续流,如此不会造成较大的能量损耗。
示例性的,请参阅图6,控制电路170可以采用图中的“主开关驱动信号曲线图”所对应的PWM控制信号控制目标开关电路,使得目标开关电路实现周期性的通断,可以理解,目标开关电路的每一个通断周期T都相同,即T1、T2、T3、T4、T5均相同,另外,流经电感电路150在各个时刻的电流值可以如图中对应曲线所示,且预设阈值的具体数值也可以合理设置。基于此,在目标开关电路导通时,控制电路170控制续流开关电路(即从开关)关断,此时流经电感电路150的电流值将会越来越大,例如,在T1和T2通断周期内,目标开关电路在t 1时间段内处于导通状态,则在该时间段内控制电路170需控制续流开关电路关断,并且流经电感电路150的电流值将会越来越大;接着,待目标开关电路关断时, 控制电路170需控制续流开关电路导通,此时电感电路150通过续流开关电路形成续流,而随着续流的进行,流经电感电路150的电流值将会越来越小,如此当流经电感电路150的电流值低于预设阈值时,控制电路170可以控制续流开关电路关断,即在续流结束时及时关闭续流开关电路,例如,在T1和T2通断周期内,电感电路150在t 2时间段内形成续流,而随着续流的进行,流经电感电路150的电流值低于预设阈值,因此控制电路170提前控制续流开关电路关断,则主开关电路和续流开关电路在t 3时间段内均处于关断状态,而需要说明的是,在T3、T4和T5通断周期内,在目标开关电路关断时流经电感电路150的电流值并未低于预设阈值,因此控制电路170不需要提前控制续流开关电路关断,也即本实施例中的提前关断是在续流已经结束且主开关管还没有开启时执行的,当续流还未结束且主开关管已经开启时,则直接关断续流开关管即可。
在一实施例中,如图7所示,电感电流检测电路160包括电阻电路161和采样电路162,其中,电阻电路161包括高精度电阻,其设置于前述H桥回路上,采样电路162连接电阻电路161和控制电路170。具体的,当双向DC/DC变换器10处于工作状态时,电阻电路161与电感电路150处于串联的关系,因此流经电阻电路161的电流与流经电感电路150的电流相等,如此,控制电路170可以通过采样电路162确定流经电感电路150的电流值,例如,控制电路170通过采样电路162获取电阻电路161两端的电压值并根据该电压值和电阻电路161的电阻值,即可确定流经电阻电路161的电流值,由于电阻电路161与电感电路150串联于同一回路中,故能够确定出流经电感电路150的电流值。
在一实施方式中,如图8所示,采样电路162包括第一差分电路1621和第二差分电路1622,其中,第一差分电路1621的正输入端连接电阻电路161的第一端,负输入端连接电阻电路161的第二端,信号输出端连接控制电路170,因此,在流经电阻电路161的电流方向为从第一端流向第二端时,控制电路170可以通过第一差分电路1621确定流经电感电路150的电流值,例如,第一差分电路1621采集电阻电路161两端的电压并生成相应的电信号,因此控制电路170就可以通过第一差分电路1621输入的电信号确定电阻电路161两端的电压值,进而确定流经电感电路150的电流值;相似的,第二差分电路1622的正输入端连接电阻电路161的第二端,负输入端连接电阻电路161的第一端,信号输出端连接控制电路170,因此,在流经电阻电路161的电流方向为从第二端流向第一端时,控制电路170可以通过第二差分电路1622确定流经电感电路150的电流值。
在一实施例中,控制电路170用于确定双向DC/DC变换器10的工作模式,具体为:获取工作指令,并根据工作指令以及第一电源端口110的电压值与第二电源端口120的电压值之间的大小关系,确定工作模式,其中,双向DC/DC变换器10的工作模式包括升压充电、升压放电、降压充电和降压放电。具体的,工作指令可以包括充电指令、放电指令等等,该工作指令可以由监控上位机以通讯的方式下发给控制电路170,也可以由用户直接操作变换器上的指令按键来下发工作指令。例如,监控上位机根据用户的操作向控制电路170下发具体的工作指令,又例如,用户可以直接操作变换器上的放电开关按键或者充电开关按键来下发具体的工作指令。如此,控制电路170可以获取到工作指令,并结合第一电源端口110的电压值与第二电源端口120的电压值之间的大小关系,确定工作模式,例如,如图9所示,当工作指令为充电指令时,若第一电源端口110的电压值(图中V1)超过第二电源端口120的电压值(图中V2),则确定工作模式为降压充电,否则确定工作模式为升压充电;相似的,当工作指令为放电指令时,若第一电源端口110的电压值超过第二电源端口120的电压值,则确定工作模式为升压放电,否则确定工作模式为降压放电。
在一实施例中,如图5所示,第一半桥电路130包括串联的第一开关电路和第二开关 电路,第二半桥电路140包括串联的第三开关电路和第四开关电路,其中,第一开关电路和第三开关电路分别作为对应半桥电路的上桥臂,第二开关电路和第四开关电路分别作为对应半桥电路的下桥臂。具体而言,第一开关电路作为第一半桥电路130的上桥臂,其与第一电源端口110的正极110A连接,而第三开关电路作为第一半桥电路130的下桥臂,其与第一电源端口110的负极110B连接;相似的,第三开关电路作为第二半桥电路140的上桥臂,其与第二电源端口120中的正极120A连接,而第四开关电路作为第二半桥电路140的下桥臂,其与第二电源端口120中的负极120B连接。此外,在一实施方式中,每个开关电路均可以包括一个开关管或并联的多个开关管,例如,包括一个MOS管或者并联的三个MOS管等等,同时,开关管可以为具有体二极管的开关管等等,图中均未示出体二极管。
基于此在本实施例中,控制电路170可以根据工作模式确定目标半桥电路、目标开关电路以及续流开关电路,其中,目标开关电路可以理解为主开关,续流开关电路可以理解为从开关,如此,双向DC/DC变换器10可以通过目标半桥电路与电感电路150形成一个升压电路或降压电路,具体分析如下:
(1)当工作模式为降压充电时,控制电路170可以确定第一半桥电路130为目标半桥电路,以及确定第一开关电路为目标开关电路且第二开关电路为续流开关电路,即第一开关电路为主开关,第二开关电路为从开关,如图10A所示,双向DC/DC变换器10通过第一半桥电路130和电感电路150形成了一个buck降压电路。此时,第二半桥电路140均处于断开状态,第一半桥电路130以及电感电路150形成的电流流经第二半桥电路140中的开关管的体二极管后输出至储能装置20。因此,为方便更加清楚的了解电路,图10A中省略了处于断开状态的第二半桥电路140。在其他的实施例中,也可以使第三开关电路保持导通状态,以使电感电路150与第二电源端口120的120A形成连接,但并不局限于前述方式。
更具体的,在第一开关电路导通且第二开关电路关断时,如图10B所示,外部设备30通过第一开关电路给储能装置20充电,同时给电感电路150充电;图10B中在省略了处于断开状态的第二半桥电路140以及处于断开状态的第二开关电路。后续附图中为了更好的说明电路的工作,均省略了处于断开状态的开关单元。在第一开关电路关断且第二开关电路导通时,如图10C所示,电感电路150上存储的电能通过第二开关电路形成续流,给储能装置20充电。示例性的,如图10D所示,第一开关电路可以包括开关管S1,第二开关电路可以包括开关管S2,电感电路150可以包括电感L,开关管S1和开关管S2均包括至少一个MOS管。电感电流检测电路160中的电阻电路161可以包括电阻R,则双向DC/DC变换器10的工作模式为降压充电时,开关管S1为主开关,开关管S2为从开关,如此在主开关S1导通且从开关S2关断时,电流流向如图中曲线①所示,在主开关S1关断且从开关S2导通时,电流流向如图中曲线②所示。
(2)当工作模式为升压充电时,控制电路170可以确定第二半桥电路140为目标半桥电路,以及确定第四开关电路为目标开关电路且第三开关电路为续流开关电路,即第四开关电路为主开关,第三开关电路为从开关,如图11A所示,双向DC/DC变换器10通过第二半桥电路140和电感电路150形成了一个boost升压电路,此时,第一半桥电路130均处于断开状态,电感电路中的电流在流经第一开关电路的开关管的体二极管后通过第一电源端口110输出。在其他的实施例中,可以使第一开关电路保持导通状态,以使电感电路150与第一电源端口110的110A形成连接,但并不局限于前述方式。更具体的,在第四开关电路导通且第三开关电路关断时,如图11B所示,外部设备30通过第四开关电路 给电感电路150充电;而在第四开关电路关断且第三开关电路导通时,如图11C所示,电感电路150上存储的电能通过第三开关电路形成续流,外部设备30和电感电路150一起向储能装置20充电。示例性的,如图11D所示,第三开关电路可以包括开关管S3,第四开关电路可以包括开关管S4,电感电路150可以包括电感L,电感电流检测电路160中的电阻电路161可以包括电阻R,则双向DC/DC变换器10的工作模式为升压充电时,开关管S4为主开关,开关管S3为从开关,如此在主开关S4导通且从开关S3关断时,电流流向如图中曲线①所示,在主开关S4关断且从开关S3关断时,电流流向如图中曲线②所示。
(3)当工作模式为升压放电时,控制电路170可以确定第一半桥电路130为目标半桥电路,以及确定第二开关电路为目标开关电路且第一开关电路为续流开关电路,即第二开关电路为主开关,第一开关电路为从开关,如图12A所示,双向DC/DC变换器10通过第一半桥电路130和电感电路150形成了一个boost升压电路,此时,第二半桥电路140均处于断开状态,储能装置输出的电流在流经第三开关电路的开关管的体二极管后输出至电感电路。在其他的实施例中,另外,可以使第三开关电路保持导通状态,以使电感电路150与第二电源端口120的120A形成连接,但并不局限于前述方式。更具体的,在第二开关电路导通且第一开关电路关断时,如图12B所示,储能装置20通过第二开关电路向电感电路150供电;而在第二开关电路关断且第一开关电路导通时,如图12C所示,电感电路150上存储的电能通过第一开关电路形成续流,储能装置20和电感电路150一起向外部设备30供电。示例性的,如图12D所示,第一开关电路可以包括开关管S1,第二开关电路可以包括开关管S2,电感电路150可以包括电感L,电感电流检测电路160中的电阻电路161可以包括电阻R,则双向DC/DC变换器10的工作模式为升压放电时,开关管S2为主开关,开关管S1为从开关,如此在主开关S2导通且从开关S1关断时,电流流向如图中曲线①所示,在主开关S2关断且从开关S1关断时,电流流向如图中曲线②所示。
(4)当工作模式为降压放电时,控制电路170可以确定第二半桥电路140为目标半桥电路,以及确定第三开关电路为目标开关电路且第四开关电路为续流开关电路,即第三开关电路为主开关,第四开关电路为从开关,如图13A所示,双向DC/DC变换器10通过第二半桥电路130和电感电路150形成了一个buck降压电路,此时,第一半桥电路130均处于断开状态,电感电路中的电流在流经第一开关电路的开关管的体二极管后通过第一电源端口110输出。在其他的实施例中,可以使第一开关电路保持导通状态,以使电感电路150与第一电源端口110的110A形成连接,但并不局限于前述方式。更具体的,在第三开关电路导通且第四开关电路关断时,如图13B所示,储能装置20通过第三开关电路向外部设备30供电,同时向电感电路150供电;而在第三开关电路关断且第四开关电路导通时,如图13C所示,电感电路150上存储的电能通过第四开关电路形成续流,给外部设备30供电。示例性的,如图13D所示,第三开关电路可以包括开关管S3,第四开关电路可以包括开关管S4,电感电路150可以包括电感L,电感电流检测电路160中的电阻电路161可以包括电阻R,则双向DC/DC变换器10的工作模式为升压充电时,开关管S4为主开关,开关管S3为从开关,如此在主开关S4导通且从开关S3关断时,电流流向如图中曲线①所示,在主开关S4关断且从开关S3关断时,电流流向如图中曲线②所示。
在一实施例中,当双向DC/DC变换器10用于储能装置20的充放电时,为了控制储能装置20的充电电流大小或放电电流大小,控制电路170还用于根据开关控制量确定目标开关电路的占空比,其中,开关控制量包括电流偏差控制量,电流偏差控制量为对应于工作模式下的电流设定值与流经电感电路150的电流值之间的差值。
在本实施例中,电流设定值为用户或者***所期望的充放电电流值,即用户或者*** 期望储能装置20在充电时的充电电流值或者在放电时的放电电流值。在一实施方式中,此电流设定值可以是用户通过监控上位机下发给控制电路170的,例如,用户通过监控上位机向控制电路170下发工作指令时将该电流设定值一起下发、或者在双向DC/DC变换器10的工作过程中用户出于调整等目的将该电流设定值下发给控制电路170;或者,此电流设定值可以是一个预设的参数,例如,双向DC/DC变换器10中存储有多个参考值,比如存储有充电电流参考值、放电电流参考值等等,则当双向DC/DC变换器10的工作模式为升压或降压充电时,控制电路170可以将充电电流参考值作为前述电流设定值,相似的,当双向DC/DC变换器10的工作模式为升压或降压放电时,控制电路170可以将放电电流参考值作为前述电流设定值。在一实施方式中,此电流设定值在数值上的确定可以通过一映射关系表确定,例如,此映射关系表中记载有多个应用场景下对应的充放电电流参考值,因此可以根据具体的应用场景,通过此映射关系表得到对应的参考值,并将该参考值作为前述电流设定值。
具体的,控制电路170可以采用PWM控制信号驱动目标开关电路周期性的通断,并且可以理解,储能装置20的充放电电流受到电感电路150的影响,因此,控制电路170可以通过一个电流闭环环路控制储能装置20的充放电电流。更具体的,如图14所示,控制电路170可以根据已确定的电流设定值(图中I ref)与流经电感电路150的电流值(图中I fed)之间的差值,确定电流偏差控制量,而由于开关控制量包括了电流偏差控制量,因此当电流偏差控制量发生变化时开关控制量也随之发生变化,因此,控制电路170可以根据开关控制量确定目标开关电路的占空比,即调整PWM控制信号的占空比,比如增大或减小占空比,如此可以调整流经电感电路150的电流值,进而调整储能装置20的充放电电流值,因此,控制电路170可以有效控制双向DC/DC变换器10的充电电流值或放电电流值。
在一实施方式中,为了提高控制精度,控制电路170还用于根据补偿电流值修正电流偏差控制量,其中,补偿电流值为电流设定值与流经第二电源端口120的电流平均值之间的差值。如前所述,由于存在主电路以及续流电路,因此电感电流峰值和电池电流平均值之间的对应关系是可变的,即在不同的工作条件下,对应关系不同,因此仅通过前述电流峰值控制算法是无法保证输出电流精度的,因此在一实施例中在利用电感电流进行偏差控制时,还会利用电池电流平均值进行补偿,从而提高电池电流(也即储能装置20的电流,可以为充电电流或者放电电流)控制的精度。具体的,流经第二电源端口120的电流平均值为在预设时间长度内,流经第二电源端口120电流的平均值,并且,由于储能装置20连接第二电源端口120,因此流经第二电源端口120的电流平均值可以看作流经储能装置20的电流平均值;另外,由于补偿电流值为电流设定值与流经第二电源端口120的电流平均值之间的差值,因此补偿电流值可以理解为期望的充放电电流值与实际充放电电流值之间的差值,因此,控制电路170可以根据补偿电流值去修正电流偏差控制量,进而提高控制精度,例如,如图15所示,控制电路170可以根据电流设定值(图中I ref)与流经第二电源端口120的电流平均值(图中I ave)之间的差值确定补偿电流值(图中I o_avg),从而根据I ref、I fed和I o_avg确定电流偏差控制量,提高了控制精度。
在一实施例中,为了进一步降低双向DC/DC变换器10的功耗,如图16所示,第一半桥电路130还包括与第一开关电路并联的第一旁路开关电路,且第二半桥电路140还包括与第三开关电路并联的第二旁路开关电路,其中,第一旁路开关电路的内阻值低于第一开关电路的内阻值,且第二旁路开关电路的内阻值低于第三开关电路的内阻值,因此可以理解,第一旁路开关的导通损耗要低于第一开关电路的导通损耗,同样的,第二旁路开关 的导通损耗要低于第三开关电路的导通损耗。
基于此在本实施例中,控制电路170还用于:在第一半桥电路130为目标半桥电路时,控制第一旁路开关电路断开以及控制第二旁路开关电路导通,在第二半桥电路140为目标半桥电路时,控制第一旁路开关电路导通以及控制第二旁路开关断开。具体的,当双向DC/DC变换器10的工作模式为降压充电和升压放电时,第一半桥电路130为目标半桥电路,则控制电路170可以控制第一旁路开关电路断开以及控制第二旁路开关电路导通,如此可以理解,电感电路150与第二电源端口120的120A就可以通过第二旁路开关电路形成连接;相似的,当双向DC/DC变换器10的工作模式为升压充电和降压放电时,第二半桥电路140为目标半桥电路,则控制电路170可以控制第一旁路开关电路导通以及控制第二旁路开关电路断开,如此可以理解,电感电路150与第一电源端口110的110A就可以通过第一旁路开关电路形成连接。因此,由于旁路开关的导通损耗要低于开关电路的导通损耗,因此可以进一步降低双向DC/DC变换器10的功耗,即进一步提高了双向DC/DC变换器10的可靠性。
在一实施例中,由前述可知,每个开关电路均可以包括一个开关管或并联的多个开关管,因此控制电路170还用于根据充电功率或者放电功率确定开关管的开启数量。示例性的,第一半桥电路130可以为目标半桥电路,且第一开关电路可以为目标开关电路,其中,第一开关电路可以包括并联的三个开关管,且每个开关管所能承受的功率为1100W,基于此,若此时的充电功率或放电功率为3000W,则控制电路170可以确定开关管的开启数量为3;若此时的充电功率或放电功率为1000W,则控制电路170可以确定开关管的开启数量为1。
综上所述,本申请实施例中的双向DC/DC变换器10可以如图17所示,其可以分别与储能装置20和外部设备30连接,用于储能装置20的充放电。具体的,在该变换器中,第一开关电路包括开关管S1,第二开关电路包括开关管S2,第三开关电路包括开关管S3,第四开关电路包括开关管S4,电感电路150包括电感L,电阻电路161包括高精度电阻R,第一旁路开关电路包括继电器K1,第二旁路开关电路包括继电器K2,其中,控制电路170分别连接开关管S1、开关管S2、开关管S3和开关管S4的控制端,其他元器件和连接关系具体参照前文论述和附图,此处不再赘述。基于此,控制电路170可以用于但不限于如下内容:获取工作指令,并根据工作指令以及第一电源端口110的电压值与第二电源端口120的电压值之间的大小关系,确定工作模式;根据工作模式确定其中一个半桥电路为目标半桥电路并确定目标半桥电路中的一个开关电路为目标开关电路且另一个为续流开关电路,以及关闭目标半桥电路中的旁路开关电路以及导通另外一个半桥电路的旁路开关电路;控制目标半桥电路中的目标开关电路周期性的通断,并在目标开关电路导通时控制续流开关电路关断,以及在目标开关电路关断时控制续流开关电路导通,并在流经电感电路150的电流值小于或者等于预设阈值时控制续流开关电路关断。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种双向DC/DC变换器,包括:
    第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
    第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;
    电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
    电感电流检测电路,用于采集流经所述电感电路的电流值;控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断。
  2. 根据权利要求1所述的双向DC/DC变换器,其中,所述电感电流检测电路包括电阻电路和采样电路;
    所述电阻电路设置于所述H桥回路上,所述采样电路连接所述电阻电路和所述控制电路,所述控制电路通过所述采样电路获取流经所述电阻电路的电流值进而确定流经所述电感电路的电流值。
  3. 根据权利要求2所述的双向DC/DC变换器,其中,所述采样电路包括第一差分电路和第二差分电路;
    所述第一差分电路的正输入端连接所述电阻电路的第一端,所述第一差分电路的负输入端连接所述电阻电路的第二端,所述第一差分电路的信号输出端连接所述控制电路;所述第二差分电路的正输入端连接所述电阻电路的第二端,所述第二差分电路的负输入端连接所述电阻电路的第一端,所述第二差分电路的信号输出端连接所述控制电路;
    在流经所述电阻电路的电流方向为从第一端流向第二端时,所述控制电路通过所述第一差分电路确定流经所述电感电路的电流值;在流经所述电阻电路的电流方向为从第二端流向第一端时,所述控制电路通过所述第二差分电路确定流经所述电感电路的电流值。
  4. 根据权利要求1所述的双向DC/DC变换器,其中,所述控制电路用于确定所述双向DC/DC变换器的工作模式,具体为:
    获取工作指令,并根据所述工作指令以及所述第一电源端口的电压值与所述第二电源端口的电压值之间的大小关系,确定所述工作模式;所述工作模式包括升压充电、升压放电、降压充电和降压放电。
  5. 根据权利要求4所述的双向DC/DC变换器,其中,所述第一半桥电路包括串联的第一开关电路和第二开关电路,所述第二半桥电路包括串联的第三开关电路和第四开关电路;所述第一开关电路为所述第一半桥电路的上桥臂;所述第三开关电路为所述第二半桥电路的上桥臂;所述第二开关电路为所述第一半桥电路的下桥臂;所述第四开关电路为所述第二半桥电路的下桥臂;
    所述控制电路用于根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路, 具体为:
    当所述工作模式为降压充电时,确定所述第一半桥电路为所述目标半桥电路,以及确定所述第一开关电路为所述目标开关电路且所述第二开关电路为续流开关电路;
    当所述工作模式为升压充电时,确定所述第二半桥电路为所述目标半桥电路,以及确定所述第四开关电路为所述目标开关电路且所述第三开关电路为续流开关电路;
    当所述工作模式为升压放电时,确定所述第一半桥电路为所述目标半桥电路,以及确定所述第二开关电路为所述目标开关电路且所述第一开关电路为续流开关电路;
    当所述工作模式为降压放电时,确定所述第二半桥电路为所述目标半桥电路,以及确定所述第三开关电路为所述目标开关电路且所述第四开关电路为续流开关电路。
  6. 根据权利要求5所述的双向DC/DC变换器,其中,所述第一半桥电路还包括与所述第一开关电路并联的第一旁路开关电路,所述第二半桥电路还包括与所述第三开关电路并联的第二旁路开关电路;所述第一旁路开关电路的内阻值低于所述第一开关电路的内阻值,所述第二旁路开关电路的内阻值低于所述第三开关电路的内阻值;
    所述控制电路还用于:在所述第一半桥电路为所述目标半桥电路时,控制所述第一旁路开关电路断开以及控制所述第二旁路开关电路导通,在所述第二半桥电路为所述目标半桥电路时,控制所述第一旁路开关电路导通以及控制所述第二旁路开关断开。
  7. 根据权利要求6所述的双向DC/DC变换器,其中,所述第一旁路开关电路和所述第二旁路开关电路均包括继电器。
  8. 根据权利要求1所述的双向DC/DC变换器,其中,所述控制电路还用于:根据开关控制量确定所述目标开关电路的占空比,其中,所述开关控制量包括电流偏差控制量;所述电流偏差控制量为对应于所述工作模式下的电流设定值与所述电流值之间的差值。
  9. 根据权利要求8所述的双向DC/DC变换器,其中,所述控制电路还用于:根据补偿电流值修正所述电流偏差控制量,其中,所述补偿电流值为所述电流设定值与流经所述第二电源端口的电流平均值之间的差值。
  10. 根据权利要求1所述的双向DC/DC变换器,其中,所述开关电路包括一个开关管或并联的多个开关管;所述控制电路还用于根据充电功率或者放电功率确定开关管的开启数量。
  11. 根据权利要求10所述的双向DC/DC变换器,其中,所述开关管为MOS管。
  12. 根据权利要求10所述的双向DC/DC变换器,其中,所述控制电路用于采用PWM控制信号驱动所述目标开关电路周期性的通断。
  13. 一种双向DC/DC变换器,包括:
    第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
    第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;各所述开关电路均由一个开关管或并联的多个开关管组成;
    电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
    电感电流检测电路,用于采集流经所述电感电路的电流值;
    控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流 开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断;
    所述控制电路还用于根据开关控制量确定所述目标开关电路的占空比,其中,所述开关控制量包括电流偏差控制量,所述开关控制量随所述电流偏差控制量变化,所述电流偏差控制量为对应于所述工作模式下的电流设定值与所述电流值之间的差值;所述控制电路还用于根据补偿电流值修正所述电流偏差控制量,以提高控制精度,其中,所述补偿电流值为所述电流设定值与流经所述第二电源端口的电流平均值之间的差值。
  14. 一种储能***,包括双向DC/DC变换器和储能装置,所述储能装置与所述双向DC/DC变换器的第二电源端口连接;所述双向DC/DC变换器包括:
    第一半桥电路,包括串联的两个开关电路,用于连接第一电源端口;所述第一电源端口用于连接直流母线;
    第二半桥电路,包括串联的两个开关电路,用于连接第二电源端口;所述第二电源端口用于连接储能装置;
    电感电路,所述电感电路的一端连接于所述第一半桥电路中两个开关电路的连接处,所述电感电路的另一端连接于所述第二半桥电路中两个开关电路的连接处;所述第一半桥电路与所述第二半桥电路通过所述电感电路形成H桥回路;
    电感电流检测电路,用于采集流经所述电感电路的电流值;
    控制电路,分别连接四个所述开关电路以及所述电感电流检测电路,用于确定所述双向DC/DC变换器的工作模式,并根据所述工作模式确定其中一个半桥电路为目标半桥电路,并确定所述目标半桥电路中的一个开关电路为目标开关电路且另一个开关电路为续流开关电路;所述控制电路还用于控制所述目标开关电路周期性的通断,并在所述目标开关电路导通时控制所述续流开关电路关断;所述控制电路还用于在所述目标开关电路关断时控制所述续流开关电路导通,并且在所述电流值小于或者等于预设阈值时,确认所述电感电路的储能释放完毕,并控制所述续流开关电路关断。
PCT/CN2021/110804 2021-02-03 2021-08-05 双向dc/dc变换器及储能*** WO2021254533A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021564219A JP7169467B2 (ja) 2021-02-03 2021-08-05 双方向dc/dcコンバータ及びエネルギ貯蔵システム
EP21826698.9A EP4290752A1 (en) 2021-02-03 2021-08-05 Bidirectional dc/dc converter and energy storage system
KR1020227005076A KR102633598B1 (ko) 2021-02-03 2021-08-05 쌍방향dc/dc컨버터 및 에너지 저장 시스템
US17/521,294 US11368087B1 (en) 2021-02-03 2021-11-08 Bidirectional DC/DC converter and energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110146268.6A CN112511005B (zh) 2021-02-03 2021-02-03 双向dc/dc变换器及储能***
CN202110146268.6 2021-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/521,294 Continuation US11368087B1 (en) 2021-02-03 2021-11-08 Bidirectional DC/DC converter and energy storage system

Publications (1)

Publication Number Publication Date
WO2021254533A1 true WO2021254533A1 (zh) 2021-12-23

Family

ID=74952525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110804 WO2021254533A1 (zh) 2021-02-03 2021-08-05 双向dc/dc变换器及储能***

Country Status (6)

Country Link
US (1) US11368087B1 (zh)
EP (1) EP4290752A1 (zh)
JP (1) JP7169467B2 (zh)
KR (1) KR102633598B1 (zh)
CN (1) CN112511005B (zh)
WO (1) WO2021254533A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511005B (zh) 2021-02-03 2021-06-01 深圳市正浩创新科技有限公司 双向dc/dc变换器及储能***
CN117501607A (zh) * 2021-08-12 2024-02-02 华为技术有限公司 一种具备均流的电压转换装置、均流方法、装置和介质
CN116365886B (zh) * 2023-03-10 2024-04-12 深圳麦格米特电气股份有限公司 双向dc/dc变换器及储能设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712511A (zh) * 2016-12-30 2017-05-24 矽力杰半导体技术(杭州)有限公司 超音频模式控制电路、开关变换器及其控制电路
CN110768528A (zh) * 2019-11-13 2020-02-07 清华大学 一种用于非反向Buck-Boost电路工作模式平滑切换的控制方法
CN111049378A (zh) * 2018-10-12 2020-04-21 广州汽车集团股份有限公司 一种dc/dc变换器及其控制方法和汽车
CN112511005A (zh) * 2021-02-03 2021-03-16 深圳市正浩创新科技有限公司 双向dc/dc变换器及储能***

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438330B2 (ja) * 1994-06-27 2003-08-18 株式会社デンソー 電源装置
JP5195101B2 (ja) * 2008-07-10 2013-05-08 日産自動車株式会社 Dc/dcコンバータの制御装置及び制御方法
US9154026B2 (en) * 2012-06-27 2015-10-06 Intel Corporation Bridge driver for a switching voltage regulator which is operable to soft-switch and hard-switch
TWI540822B (zh) * 2012-07-03 2016-07-01 盈正豫順電子股份有限公司 雙向直流/直流轉換器之控制方法
JP5983403B2 (ja) * 2012-12-28 2016-08-31 株式会社オートネットワーク技術研究所 双方向昇降圧回路の制御方法及び双方向昇降圧回路
CN103326566A (zh) * 2013-06-30 2013-09-25 南京集能易新能源技术有限公司 一种四开关升降压直流变换器及其控制方法
US10476283B2 (en) * 2013-09-27 2019-11-12 Intel Corporation Bi-directional charger for battery device with control logic based on sensed voltage and device type
JP2015116042A (ja) * 2013-12-11 2015-06-22 株式会社オートネットワーク技術研究所 直流電圧変換装置及び直流電圧変換装置の逆流防止方法
JP6185860B2 (ja) * 2014-02-27 2017-08-23 株式会社 日立産業制御ソリューションズ 双方向コンバータ
KR101632243B1 (ko) * 2015-07-10 2016-06-21 포항공과대학교 산학협력단 양방향 직류/직류 컨버터
JP6718308B2 (ja) * 2016-05-24 2020-07-08 ローム株式会社 同期整流型のdc/dcコンバータおよびそのコントローラ、制御方法ならびに電子機器
US9882482B1 (en) * 2016-09-15 2018-01-30 Monolithic Power Systems, Inc. Current sense circuit with adaptive common mode voltage adjust and associated method thereof
US20180090944A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Charger-converter with single inductor and downstream low-dropout regulator
JP6453526B1 (ja) * 2017-02-10 2019-01-16 三菱電機株式会社 電力変換装置
CN107465343A (zh) * 2017-09-20 2017-12-12 重庆聚陆新能源有限公司 一种低导通损耗的双向dc/dc变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712511A (zh) * 2016-12-30 2017-05-24 矽力杰半导体技术(杭州)有限公司 超音频模式控制电路、开关变换器及其控制电路
CN111049378A (zh) * 2018-10-12 2020-04-21 广州汽车集团股份有限公司 一种dc/dc变换器及其控制方法和汽车
CN110768528A (zh) * 2019-11-13 2020-02-07 清华大学 一种用于非反向Buck-Boost电路工作模式平滑切换的控制方法
CN112511005A (zh) * 2021-02-03 2021-03-16 深圳市正浩创新科技有限公司 双向dc/dc变换器及储能***

Also Published As

Publication number Publication date
KR102633598B1 (ko) 2024-02-02
KR20220112744A (ko) 2022-08-11
CN112511005B (zh) 2021-06-01
EP4290752A1 (en) 2023-12-13
CN112511005A (zh) 2021-03-16
JP2022532311A (ja) 2022-07-14
US11368087B1 (en) 2022-06-21
JP7169467B2 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021254533A1 (zh) 双向dc/dc变换器及储能***
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源***
US11616451B2 (en) Pre-chargeable DCDC conversion circuit
TWI491153B (zh) 電容放電電路及變換器
WO2020029312A1 (zh) 一种充电电路移相控制方法
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
WO2016112784A1 (zh) 不间断电源及其控制方法
US8824180B2 (en) Power conversion apparatus
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源***
US20220376548A1 (en) Online interactive uninterruptible power supply and method for control thereof
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
JP6526800B2 (ja) Dc−dc直列共振コンバータを有したバッテリ充電器を制御する方法
WO2023273490A1 (zh) 控制电路、电路板组件及电池并联***
CN110380619B (zh) 一种直流转换电路及其控制方法、直流转换装置
CN116613976A (zh) 一种功率变换电路及其控制方法、电池包及储能***
CN110831284B (zh) 一种led驱动电源及其控制器
WO2023207442A1 (zh) 一种电源电路及电源适配器
WO2022057281A1 (zh) 一种电压输出装置及电压输出控制方法
TW202125964A (zh) 電源供應裝置及其操作方法
WO2023050103A1 (zh) 一种功率因数校正pfc电路的控制方法和pfc电路
CN109494976B (zh) 一种开关电源及其驱动电路
CN215956272U (zh) 一种大范围宽输入升降压转换器
CN220254361U (zh) 一种双向直流变换电路
CN217282692U (zh) 一种buck-boost双向dcdc变换器及其ocp电路
CN117200587B (zh) 基于直接功率传输的低功率损耗充电桩电路及充电桩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021564219

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826698

Country of ref document: EP

Effective date: 20230904